Risk Neutral Modelling
Exercises

Geneviéve Gauthier

Exercise 12.1. Assume that the price evolution of a given asset satisfies
dXt = :U’tXt dt + O'Xt th

where p, = p (1 +sin(¢)) and W = {W, : t > 0} is a (2, F,P) —Brownian motion.

a) Show that the SDE admits a unique strong solution.

b) The riskless asset as a time ¢ instantaneous return at time of 7, = r (1 4 sin (¢)). Find
the SDE of the risky asset price in the risk neutral framework. What allows you to pretend
that the risk neutral measure exists?

c) What is this risk neutral measure? Express it in function of P.

Exercise 12.2. The instantaneous interest rate {r; : ¢ > 0} of the riskless asset satisfies
the ordinary differential equation

dry=c(p—ry) dt,

which implies that
—ct

re=p+(ro—p)e

The riskless asset price evolution {S; : ¢ > 0} satisfies

¢
Sf:exp{/ rudu}.
0

a) Show that the price evolution satisfies

dS; =S¢ dt.

b) The risky asset price evolution {S; : t > 0} is characterized by



dSt = /LSt dt + O'St th

where {W; : t > 0} is a (2, F,P) —Brownian motion.
Show how to change the probability measure such that we get the risky asset price dynamics
under the risk neutral measure.

Exercise 12.3. The prices of the assets are characterize with :

dSl (t) = /Llsl (t) dt + 0'151 (t) dWl ( )
dSQ (t) = [LQSQ (t) dt + O'QPSQ (t) dWl + 0921/ 1— 52 dW2

where W, and W5 are independent (2, F, {F; : t > 0}, P) —Brownian motions. The risk free
interest rate r is assumed to be constant. {F;:t > 0} is the filtration generated by the
Brownian motions, with the usual regularity conditions.

Find the risk neutral market model.

Exercise 12.4. The value in American dollar of the yen satisfies
dU (t) = pyU () dt +ogpU (t) dWy (t).
The value in Canadian dollars of the yen evolves like
dC (t) = ucC (t) dt + ocC (t) dWe (t).
The value in Canadian dollars of an American dollar is
dV (t) = uy,/ V (t) dt + oy V (t) dWy (t).
Wy, We and Wy are (Q, F,{F; : t > 0}, P) —Brownian motions such that for all ¢ > 0

Corr” [Wy (1), We ()] = puc,
Corr” (Wi (), Wy ()] = puv
and Cort” [Wy (t), We ()] = pye-

Moreover,

dA(t) = rpA(t) dt; A(0)
dB(t) = reB(t) dt, B(0) =

1
1
dD(t) = ryD(t) dt, D(0) =1

)
represent the evolutions of the riskless asset in the United-States, Canada and Japan, respec-
tively. More precisely, A (t) is in American dollars, B (t) is expressed in Canadian dollars
and D (t) is in yens.



Questions.

a) What are the conditions so that there is no arbitrage opportunity?
b) Is the market model complete?
c) What are the evolutions of the exchange rates in the risk neutral framework?

Interpret your results

Exercise 12.5. Assume that W, W and W are independent (Q,F,{F:0<t<T},P)—Brownian
motions. Let

B=0W,+V1—-0*W,,0<t<T
and R e
B =W+ V1 —r2W,,0<t<T.
a) Show that {]?t 0<t< T} is a ({F:},P) —Brownian motion.

b) Compute Corr” [B\t, Et] forall0 <t <T.

The price evolution of two risky assets is

dX, = pyX,dt+oxX, dB,
=y X, dt+ox0X, dW, + ox V1 — 62X, dW,

and

dY, = pyY; dt+oyY; dB,
= pyYy dt +oyrY; dW; + oy V1 — Kk?Y, th.

We can interpret W as the common chock, whereas W and W are the idiosyncratic chocks
of X and Y respectively.

c) Determine the model in the risk neutral environment , assuming that the instan-
taneous riskless interest rate is r.

d) Is this market model complete? Justify.

e) Can you price the contract that promises the difference C' = X1 — Y between to
asset? Justify all steps. Interpret your results.



Solutions

1 Exercise 12.1

a) We need to verify that.

(@) |b(z,t) =b(y, )|+ |o(x,t) —o(y, )| <K |z —y[, V>0
(i) \b(m,t)\—i—\a(a: HI<K (1+|z]), V>0
(i) E [X2] < oo.

Let K = 2|u| + |o].

b(z,t) = b(y,t)| + o (z,t) — o (y,1)]

lp (1 +sin(t))x — p (1 +sin(t)) y| + |oz — oy|

|l (1 +sin (8)) [z — y| + [o] [z — y|

2|plz =yl + ol |z —y| = @|u[+ |o]) [z —y| < K|z —y|

IN

|b(z, )] + |o (,1)]
| (1 +sin (¢)) x| + |oz|
< 2lplle[+ oz < Kzl

If E [X2] < oo, then the three conditions are satisfied.
b)

dXt = ,utXt dt + O'Xt th
'l"tXt dt -+ (Mt — Tt) Xt dt + O'Xt th

= TtXt dt+UXtd<Wt+/ Ius T dS)
0 g

Let

/Ys:us ) 520
o

and note that the function s — ~, is continuous, which implies that the process {v, : s > 0}



is predictable. Since

[ = [ (B57)
_ /T< (14 sin (s —7“(1—1—8111(3)))2 "
-

g

1
= 5( ) (4—4cosT —cosTsinT +3T) <
o

then EF [exp <% fOT yfdtﬂ < 0o. We can apply the Cameron-Martin-Girsanov theorem :there
is a martingale measure Q on (2, F) such that W= {VVt t €0, T]} define as

t
Wt:Wt+/")/st, t> 0.
0

is a (Q, F, Q) —Brownian motion. Therefore,
dXt = TtXt dt + O'Xt d/th

c) According to the Cameron-Martin-Girsanov theorem, the Radon-Nikodym deriv-

ative is
dQ T 1 [T
ﬁ = exp —/O Yt th — 5/0 ’y%dt:|

— fOT (1+sint) =2 dW,
_%% (“;T>2(4—4COST—COSTSinT+3T)
BT — BT f sint dW,

- (U) (1—COSTU——COSTSIHT+3T)

= exp

Consequently,

—E Wr — “_Tf sint dW,
A :]'__‘)IP> o T o t
Q( ) [exp [ _( - ) (1—cosT— LeosTsinT + 3T)

5,4] |



2 Exercise 12.2

a) Let Y, = f(f ry du. Y is an 1t6 process (dY; = K, dt + H; dW,)for which K; = r; and
H,; = 0 since

T T T
/ |Ks|ds = / |75 ds:/ |p+(r0—p)e_cs‘ ds
0 0 0
1—e T

T
< / (p—i—(?“g—i—p)e_cs) dssz+(7“0+p)T<oo.
0

Note that T
dY; = r; dt and (Y)t—/ H? ds = 0.
0

Let f (t,y) = e¥. We have & =0, g—i = giy’; =f,f(tY,) =5 and f(0,Yy) =1=5;. From
1t6’s lemma,

as; = df (t,Yr)

_of of 10%f
= f({t.Y:) dY;
= S:Tt dt

dSt = ,USt dt + O'St th
= 1,5, dt + o512 ; " gt + oS, dW,

t J—
= 7}5,5 dt + O'St d <Wt +/ o Tud'LL)
0

o

Let v, = £="*. We need to verify that

P Lt
E" |exp 3 vidt || < oo
0



is verify to use Girsanov theorem.

1 [T 1 [T o 2
EF [exp (5 / yfdtﬂ = EF |exp 3 / (M Tt) dt)]
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3 Exercise 12.4

3.1 The main ideas

To show that there is no arbitrage opportunity, we need to find a risk neutral measure under
which the discounted price process of tradable assets are martingale.

What are these tradable assets?” In the perspective of a local investor, these are the
three riskless assets, all expressed in Canadian dollars. The value in Canadian dollars of the
American riskless asset A* (t) =V (t) A (t) satisfies

dA*(t) = V(t) dA(t)+A(t) dV (t)+d(A, V) (1)
= (rg+py)A*(t) dt+oyA*(t) dWy (t).
Similarly, the value in Canadian dollars of the Japanese riskless asset D* (t) = C (t) D (t) is
characterize with
dD*(t) = C(t) dD(t)+ D (t) dC(t)+d(D,C) (t)
= (rj+4pe) D" (t) dt+ ocD* (t) dWe (t).

But the value in Canadian dollars of the American riskless asset is also A** () = %A (1).

Indeed, ﬁA (t) is the value in yen of the American bank account and C'(t) ﬁ (t) is the



value in Canadian dollars of ﬁA (t) which is expressed in yens. Using [td’s lemma,

C(t) 1 C (t)
U2 (t)A (t) dU (t) + —=A(t) dC (t) + —= dA(t)

U (t) U (1)
12C (1) 1
57 (t)A(t) d(U) (t) — Uz—(t)A(t) d(C,U) (1)

= (TU + pe — py o — UCUUPCU) A™(t) dt
LoCA™ (1) dWe (1) — oy A™ (£) dWy (£).

dA™ (1) =

Similarly, the value in Canadian dollars of the Japanese bank account satisfies D** (t) =
V(t)U (t) D (t). 1td’s lemma gives

dD** (t) = (TJ + py + ey + O'UO'VpUV) D** (t) dt

Finally, %B (t) is the value in yen of the Canadian bank account; %B (t) is expressed
in American dollars and B*(t) = %B (t) is reverted back to Canadian dollars. Itd’s
lemma gives

VU@ U (t) V(1) V(U
B* = ——————B ——B ——B
dB* (t) 0 (t) dC(t) + <0 (t) dV (t) + <0 (t) dU (t) + <0
12V (t) U (t)
503—@)3@) d{C) (1)
V() U (1)

&0 ~ GO HOV O+ 5B 0 OO

= (—pe+py + py +ro+ 0 — ocoupey — ocovpey + ouovpyy) B (t) dt
—ocB* (t) dWe (t) + oyB* (t) dWy (t) +ovB* (t) dWy ().

B(t) d(C,U)(t)

Since the value in Canadian dollars of the American bank account has two different
expressions, , A* (t) and A™ (t), these two processes must be the same

dA* (t) = (rug+py) A" (t) dt+ oy A*(t) dWy (t)
dA*™ (t) = (rv+ pe — py + 0p — ocoupey) A (t) dt
+oc AT (t) dWe (t) — op A™ (t) dWy ().

Therefore,

rUt iy = U e — fy + 0 — 0coupoy (1)
O'va (t) = O'CWC (t) - O'UWU (t) . (2)

8



Similarly, the value in Canadian dollars of the Japanese bank account have two expressions:

dD* (1) = (ry+ pg) D*(t) dt + ooD* (t) dWe (1)
dD™ () = (ry+py + py +ovovpyy) D™ (1) dt
+O'UD** (t) dWU (t) + UvD** (t) dWV (t)

Therefore

Tyt U = Tg+ Uyt iy +ouovpyy
ocWe (t) = oyWy (t) + oy Wy (t) .

These four restrictions may be rewritten as
Ry = Mo — My T U%] — 0c0UPcU>

Wy = Mo — My — O0udvPyv,
UVWV (t) = UCWC (t) - O'UWU (t) .

From the two first ones, we conclude that
0u = 0cPcu — OvPuv-
From the last one,

poy = Corr [Wy (t), Wy ()]
00WC (Zf) — OUWU (t)

= Corr |Wy (t),
oy
— Z%Corr Wy (), We (B)] — 7Y Corr Wy (t), Wy (1)]
oy oy
_ 9¢Pcu —9U
Oy
_ 9¢Pcu — (ocpey — ovpyy)
oy
= Puv

which do not brings new information. Therefore

Oy = 0OcPou — OvPyv

Huy = Hc = Ky —0udvpyy-



The second step consist in finding the risk neutral measures. The Choleski decomposition
allows to express the dependent Brownian motions as a linear combination of independent
Brownian motions:

Wy (t) = anbBi(t) + a12Bs (t) + a13Bs (1)
WU (t) = a2131 (t) + a22B2 (t) + CL23B3 (t)
WC (t) = angl (t) + a3232 (t) + agng (t) .

Let .
B; (t) = B; (t) +/ a; (s)ds, i=1,2,3
0
and
N . . - t
Wy () = anby(t)+ awbs (1) + axsBs (£) = Wy (£) + / vy (s) ds
0
_ . - - t
WU (t) = a2131 (t) + CLQQBQ (t) -+ a2333 (t) = WU (t) —+ / Yu (8) ds
0
N . . . t
WC (t) = a31B1 (t) + a32B2 (t) + (133B3 (t) = WC (t) + / Yo (S) dS
0
where
Yv (t) = a1101 (t) + 1209 (t) + 1303 (t)
Yu (t) = a921(¢q (t) + Q92(x (t) + Q9303 (t)
’}/C (t) = Q310 (t) + 3209 (t) + 3303 (t) .
Therefore

dA* (1) = (ry+ py — ovyy) A (8) dt + oy A* (1) dWy (1)
dA™ (t) = (TU + pe — Pyt UIQJ —0cOupPcy —0cYo + UUVU) A™ (t) dt
Foc A (1) dWe (t) — oy A™ (t) dWy (1)
dD*(t) = (rj+ pe —ocye) D* (1) dt + ocD* (t) dWe ()
dD™ (t) = (rj+py +py +ovovpyy — ovyy — ovyy) D™ (t) dt
+ouD™ (t) dWy (1) + oy D™ () dWy (t)

dB* (1) = —fic + py + py +re + 0% = 0coupey — Tcovpoy + Tuoy Py B* (1) dt
+ocye —ouTu —oviv

—ooB* (t) dWe (t) + oyB* (t) dWy (t) + oy B* (t) dWy (t) .

10



To risk neutralize the system, the drift parameter must be the Canadian risk free rate:

v+ py —ovYy = Tc
U+ fie — fiy + 0% — 0coupoy — 0ce +ouvy = T
ry+pe —0cYe = TcC
(ry+ py + py +ovovpyy —ovyy —ovyy) = Te
( —lic + py + by + 10+ 08 — 0coupey — 0covpey + Tudvpyy ) re.
+tocve —ovYu —oviv
On matrix form, the first three expressions become
—oy 0 O Vv Ty + Uy — o 0
0 oy —o¢ Yo | + | rv+pe —pny +0l —ocovpey —re | = | 0
0 0 —oc¢ Yo ry+ e —re 0

The solution is

v o (o + py — 1)
Ww | = | 50 (rs—rv+py —of +ocovpey)
Yo # (ry + pe —re)

The price of risk associated to the W's, (vy,, vy, 7o) , have to exist. For that, oy, oy and
oc¢ have to be strictly positive. Since 7y, vy, Yo are constants, oy, a, g are also constants.
The Novikov condition is satisfied. We can apply Girsanov theorem to find Q under which
Bl, B2, Bg are independent Q—Brownian motions. Consequently WV, WU, WC are correlated
Q—Brownian motions having the same correlation structure as the P—Brownian motions Wy,
Wy, We. Since the price of risk vy, 717, 7o are uniquely determined, the risk neutral measure
is unique and the market model is complete.

To rule out arbitrage opportunities, the prices of risk vy, vy, 7o are substituted in the
fourth and fifth equations. Replacing vy, 7, and 7. in the fourth equation leads to

ovpyy +ov —ocpey = 0

Similarly, working with the fifth equation,

0 = 020 —20c0upey — 0cOvpey T ouovpyy + 02U
= oc(00 = ovupey = ovpey) +oulovpuy + ou — dcpoy);
=0
Therefore
oc —oupcy — ovpey = 0. (3)

11



For the martingale measure to exist, we need that the yen\American dollar exchange rate

volatility satisfies

0c — ovpcv
cU

The SDE under Q are

dU (t) = (ro—ry+ 0% —ocoupey) U (t) dt + opU (1) dWy (1)
(ry — 1y — opovpyy) U (t) dt +ouU (1) dWy (t)

dC (1) = (re—r;))C ()cﬁ+acC@)d@?@%

AV (1) = (rc—rp)V () dt+ oV (t) dWy (t).

4 Exercise 12.5

4.1 Question a)
Recall that

Et =W +V1-— /<;2/I/I7t.

First R .
By = kWy + V1 — r2W, = 0.

Second, for all ty < t; < ... < t,, the increments
B, — By,, By, — By,,...,By, — By, ,

are independent since for 0 <r < s <t < u,

~

Cov [B B, B

-5
= Cov[ (W W) \/—7/€2< )>H<W Wt)+ 1_'%2(W Wt)]
= Cov[r (W = W), & (W, = W))]

+Cov |k (W, —W,), \/—7/@'2< ]

+Cov _\/1 — K2 < ) (W, — Wt)]

+Cov m ( ) V1— k2 (/Wu — Wtﬂ
=0

12



The independence property will be established once we will have prove that §t — ES is
Gaussian.

Third, because a linear combination of a multivariate Gaussian random variables is
Gaussian, B; is Gaussian. Moreover,

EP [Et} — KEF [W,] + VI — n2EF [Wt} —0
and
Var® [Et] = K*Var' W]+ (1 — &) Var" [Wt]

= K2t+<1—ﬁ2>t
= t.

Finally, the path of W and W being continuous, the ones of B are also continuous.

4.1.1 Question b)

COI'I']P [B\t , B/t:|

Cov® [Et, Et]

\/ Var® [/B\t] \/ Var® [Et]
Cov? [/@Wt V=W, 0W, + 1 — GZWt]
ViVt
1 KOCov" [Wy, W] + K/ 1 — 6*°Cov" [Wt, Wt]
t\ 4 VI=R20C0" (W, W] + VI=m2v/1 = ¢Cov [, 7]

kOCov® [Wy, Wy
t

= k0.

4.1.2 Question c)
We have
dXt = MXXt dt + UXGXt th +oxV 1-— 92Xt d/-th
and dY; = pyY; dt + oykY; dW, + oyV1 — K2Y, dW,.

13



Let
B, =exp(—rt), 0<t<T.

B, is the discounted factor at ¢. This process is deterministic and satisfies

g, = —rpB, dt.

The evolution of the discounted price processes satisfies
B, X, = (MX o —oxy, —ox ﬂ%) B,X, dt
+oxb B,X, d (Wt + /0 t 75d5> +toxV1—602B,X,d <'Wt + /O t ?Sds>
and dB,Y; = (uy o — oy — Oymfy\t) B,Y, dt
toyk B,Y, d <Wt + /0 t vsds> +oyVI—r2B,Y; d (Wt + /0 t asds> .

We find ~,7 and 7 such that the drift terms are nil:

py —1T —ox0y, —oxV1—603, = 0

Uy — 17 —0yky, —oyV1—rkr%2y, = 0

We need to solve

(2 ) (1))

oy kK 0 oyvV1— K2 %t Wy — T 0
t

The solution exists but it is not unique. Need to satisfy the Novikov condition to apply
Girsanov theorem. For 7, € R,

dB,X, = ox0 B,X, dW; +ox\V1— 0% B,X, dW;
and dB,Y; = oyk B,Y; dW; + oyV1— K2 B,Y, dW;

where W*, W* and W*are ({]—"t} ,@7) —Brownian motions. We have

dX, = rX,dt+ox0X, dW; +oxV1—60°X, dW;
and dY; = 1Y, dt + oyrY; dW; + oy V1 — K2Y; dW,.

4.1.3 Question d)

Infinitely many martingale measures, the market is incomplete.

14



4.1.4 Question e)

The contract is accessible since it suffices to hold 1 share of the first asset and —1 share of

the second one.

E? [exp(—rT)C]

B [exp(—rT) (X7 — Yr)
E? [B;'Xr] — E® [B'Yr]
EY [By " Xo] — E* [B; Yo
martingale property

Xo— Yo
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