The Binomial Model Exercises

Exercise 5.1. The market model is

 $\omega \quad (S_0^1; S_0^2) \quad (S_1^1; S_1^2) \quad (S_2^1; S_2^2) \quad C$ $\omega_1 \quad \left(\frac{1}{1,21}; 2\right) \quad \left(\frac{1}{1,1}; 2\right) \quad (1; 2) \quad 0 \\ \omega_2 \quad \left(\frac{1}{1,21}; 2\right) \quad \left(\frac{1}{1,1}; 2\right) \quad (1; 3) \quad 0 \\ \omega_3 \quad \left(\frac{1}{1,21}; 2\right) \quad \left(\frac{1}{1,1}; 4\right) \quad (1; 3) \quad 0 \\ \omega_4 \quad \left(\frac{1}{1,21}; 2\right) \quad \left(\frac{1}{1,1}; 4\right) \quad (1; 4) \quad 1 \\ \omega_5 \quad \left(\frac{1}{1,21}; 2\right) \quad \left(\frac{1}{1,1}; 4\right) \quad (1; 6) \quad 3$

where $S_t^1(\omega) = \text{price of a share of the riskless asset at time } t$, and $S_t^2(\omega) = \text{price of a share of the risky asset at time } t$.

In general, the "true" probability measure on (Ω, \mathcal{F}) is not known. However, each market participant has its own opinion about \mathbb{P} . On2 of them believe that it is very likely that at time t = 2, the price of the risky asset will be below 3 dollars. That is why he offers on the market a call option with strike price K = 3, that is, the contingent claim payoff is $C(\omega) = \max \{S_2^2(\omega) - 3; 0\}.$

- a) What is the probability space?
- b) Show that this market model does not admit arbitrage opportunity.
- c) Find a self-financing trading strategy ϕ that allows the option seller to hedge.
- **d)** What is $V_0(\phi)$?
- e) Find all martingale measures.

f) For each martingale measure, compute the expected discounted option payoff. What do you notice?

Exercise 5.2. Three assets are modeled using the stochastic process

Ω	t = 0	t = 1
ω_1	(1, 1, 1)	$(1+r, x_1, y_1)$
ω_2	(1, 1, 1)	$(1+r, x_1, y_2)$
ω_3	(1,1,1)	$(1+r, x_2, y_1)$
ω_4	(1,1,1)	$(1+r, x_2, y_2)$

Without loss of generality, we may assume that $x_1 < x_2$, $y_1 < y_2$ and $x_1 < y_1$.

a) What are the conditions so that the market model do not admit arbitrage opportunities?b) Is the market model complete? Justify.

Exercise 5.3. A two-period market model is formed with a risky asset $\{S(t) : t = 0, 1, 2\}$ paying dividends $\{D(t) : t = 0, 1, 2\}$ and a bank account $\{B(t) : t = 0, 1, 2\}$ such that $B(t) = (1+r)^t$. Without loss of generality, we may assume that $s_{11} + d_{11} < s_{12} + d_{12}$, $s_{21} + d_{21} < s_{22} + d_{22}$ and $s_{23} + d_{23} < s_{24} + d_{24}$.

a) Why should we revise the self-financing condition in that case? What should it be?b) Construct the risk neutral measure.

c) What are the conditions for no arbitrage?

d) What is the time t = 0 price of the contingent claim paying at time t = 1 the amount f_{11} if ω_1 or ω_2 happen and f_{12} if ω_3 or ω_4 occur ?

Solutions

1 Exercise 5.1

a)

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5\}$$

$$\mathcal{F} = \text{ all possible subsets of }\Omega$$

$$\mathcal{F}_0 = \{\emptyset, \Omega\}$$

$$\mathcal{F}_1 = \sigma\{\{\omega_1, \omega\}, \{\omega_3, \omega_4, \omega_5\}\}$$

$$\mathcal{F}_2 = \mathcal{F}$$

b) it can be seen as several single period binomial trees. It is also possible to go back to the definition, just like in the Appendix 1.

For the period going from t = 0 to t = 1, it is a one-period binomial tree. The prevailing interest rate is provided by the riskless asset:

$$r = \frac{\frac{1}{1.1} - \frac{1}{1.21}}{\frac{1}{1.21}} = 0.1.$$

Since $2 < 2 \times (1 + 0.1) = 2.2 < 4$, there is no arbitrage opportunity for that period. For the time period going from t = 1 to t = 2, we have to consider two cases : $\{\omega_1, \omega_2\}$ and $\{\omega_3, \omega_4, \omega_5\}$. On $\{\omega_1, \omega_2\}$, it is a one-period binomial model. The interest rate comes from the riskless asset :

$$r = \frac{1 - \frac{1}{1.1}}{\frac{1}{1.1}} = 0.1.$$

Since $2 < 2 \times (1 + 0.1) = 2.2 < 3$, there is no arbitrage. On $\{\omega_3, \omega_4, \omega_5\}$, it is a one-period trinomial model. The interest rate is

$$r = \frac{1 - \frac{1}{1.1}}{\frac{1}{1.1}} = 0.1.$$

There will be arbitrage opportunities if there is a portfolio $\phi=(\phi_1,\phi_2)$ such that

 $\begin{array}{ll} (A1) & \forall \omega \in \{\omega_3, \omega_4, \omega_5\}, \ V_{\phi}\left(0, \omega\right) = 0 \\ (A2) & \forall \omega \in \{\omega_3, \omega_4, \omega_5\}, \ V_{\phi}\left(1, \omega\right) \ge 0 \\ (A3) & \exists \omega \in \{\omega_3, \omega_4, \omega_5\}, \ V_{\phi}\left(1, \omega\right) > 0. \end{array}$

The condition (A1) implies that

$$0 = V_{\phi}(0,\omega) = \frac{1}{1.1}\phi_1 + 4\phi_2 \Leftrightarrow \phi_1 = -4.4\phi_2.$$

For any portfolio $\phi = (-4.4\phi_2, \phi_2),$

$$V_{\phi}(1,\omega_{3}) = -4.4\phi_{2} + 3\phi_{2} = -1.4\phi_{2},$$

$$V_{\phi}(1,\omega_{4}) = -4.4\phi_{2} + 4\phi_{2} = -0.4\phi_{2},$$

$$V_{\phi}(1,\omega_{5}) = -4.4\phi_{2} + 6\phi_{2} = 1.6\phi_{2}.$$

Consequently, if $\phi_2 < 0$, then $V_{\phi}(1, \omega_5) < 0$ which is in conflict with (A2). If $\phi_2 > 0$, then the Condition (A2) is not respected since $V_{\phi}(1, \omega_3) < 0$ and $V_{\phi}(1, \omega_4) < 0$. If $\phi_2 = 0$, the condition (A3) is not respected since $V_{\phi}(1, \omega_4) = V_{\phi}(1, \omega_5) = V_{\phi}(1, \omega_6) = 0$. Therefore, there is no arbitrage opportunity.

c) The answer is

$$\begin{pmatrix} \phi_1^1; \phi_1^2 \end{pmatrix} \quad \begin{pmatrix} \phi_2^1; \phi_2^2 \end{pmatrix}$$

$$\{ \omega_1, \omega_2 \} \qquad \begin{pmatrix} -\frac{14}{10}; \frac{7}{11} \end{pmatrix} \quad (0; 0)$$

$$\{ \omega_3, \omega_4, \omega_5 \} \qquad \begin{pmatrix} -\frac{14}{10}; \frac{7}{11} \end{pmatrix} \quad (-3; 1)$$

Indeed, we are looking for a self-financing strategy ϕ such that $V_2(\phi) = C$. Since ϕ_2 is \mathcal{F}_1 -measurable,

$$\phi_2(\omega_1) = \phi_2(\omega_2)$$
 and $\phi_2(\omega_3) = \phi_2(\omega_4) = \phi_2(\omega_5)$.

Because $V_2(\phi) = C$, we have that

(i)
$$0 = C(\omega_1) = V_2(\phi, \omega_1) = \phi_2^1(\omega_1) + 2\phi_2^2(\omega_1)$$

(*ii*)
$$0 = C(\omega_2) = V_2(\phi, \omega_2) = \phi_2^1(\omega_2) + 3\phi_2^2(\omega_2) = \phi_2^1(\omega_1) + 3\phi_2^2(\omega_1)$$

(*iii*)
$$0 = C(\omega_3) = V_2(\phi, \omega_3) = \phi_2^1(\omega_3) + 3\phi_2^2(\omega_3)$$

(*iv*)
$$1 = C(\omega_4) = V_2(\phi, \omega_4) = \phi_2^1(\omega_4) + 4\phi_2^2(\omega_4) = \phi_2^1(\omega_3) + 4\phi_2^2(\omega_3)$$

(v)
$$3 = C(\omega_5) = V_2(\phi, \omega_5) = \phi_2^1(\omega_5) + 6\phi_2^2(\omega_5) = \phi_2^1(\omega_3) + 6\phi_2^2(\omega_3).$$

The Equations (i) and (ii) imply that $\phi_2^1(\omega_1) = 0$ and $\phi_2^2(\omega_1) = 0$. The Equations (iii), (iv) and (v) imply that $\phi_2^1(\omega_3) = -3$ and $\phi_2^2(\omega_3) = 1$. Since $\phi_1 = (\phi_1^1, \phi_1^2)$ is \mathcal{F}_0 -measurable, the portfolio ϕ_1 is constant, that is,

$$\forall \omega \in \Omega, \ \phi_1(\omega) = \left(\phi_1^1, \phi_1^2\right).$$

Since the strategy ϕ is self-financing, it must satisfies $\forall \omega \in \Omega$,

$$\phi_{2}^{1}(\omega) S_{1}^{1}(\omega) + \phi_{2}^{2}(\omega) S_{1}^{2}(\omega) = \phi_{1}^{1}(\omega) S_{1}^{1}(\omega) + \phi_{1}^{2}(\omega) S_{1}^{2}(\omega) = \phi_{1}^{1} S_{1}^{1}(\omega) + \phi_{1}^{2} S_{1}^{2}(\omega).$$

Hence,

$$\begin{aligned} \forall \omega &\in \{\omega_1, \omega_2\}, \\ \frac{1}{1, 1} \phi_1^1 + 2\phi_1^2 &= \frac{1}{1, 1} \phi_2^1(\omega) + 2\phi_2^2(\omega) = 0 \Leftrightarrow \phi_1^1 = -2, 2\phi_1^2 \\ \forall \omega &\in \{\omega_3, \omega_4, \omega_5\}, \\ \frac{1}{1, 1} \phi_1^1 + 4\phi_1^2 &= \frac{1}{1, 1} \phi_2^1(\omega) + 4\phi_2^2(\omega) = \frac{-3}{1, 1} + 4 = \frac{1, 4}{1, 1} \Leftrightarrow \phi_1^1 = 1, 4 - 4, 4\phi_1^2 \end{aligned}$$

Consequently,

$$\begin{array}{rcl} -2,2\phi_1^2 &=& 1,4-4,4\phi_1^2 \Leftrightarrow \phi_1^2 = \frac{1,4}{2,2} = \frac{7}{11} \\ \\ \phi_1^1 &=& -2,2\phi_1^2 = -2,2\frac{1,4}{2,2} = -1,4. \end{array}$$

Therefore $\phi_1^1 = -1, 4$ and $\phi_1^2 = (1, 4) / (2, 2) = 7/11 \cong 0, 63636.$

d)

$$V_0(\phi) = \phi_1^1 S_0^1 + \phi_1^2 S_0^2 = \frac{-1, 4}{1, 21} + \frac{7}{11} 2 = \frac{14}{121} \cong 0,1157$$

e) Depending on you free variable, the answer is

Indeed, we must verify that $\mathbf{E}^{\mathbb{Q}}\left[\frac{S_{i}^{2}}{S_{i}^{1}}|\mathcal{F}_{0}\right](\omega) = \frac{S_{i-1}^{2}(\omega)}{S_{i-1}^{1}(\omega)}$ for i = 1, 2. Hence, the first constraint is

$$\begin{aligned} \forall \omega \in \Omega, \ \mathbf{E}^{\mathbb{Q}} \left[\frac{S_1^2}{S_1^1} \, | \mathcal{F}_0 \right] (\omega) &= \frac{S_0^2 \left(\omega \right)}{S_0^1 \left(\omega \right)} \\ \Leftrightarrow & 2, 2\mathbb{Q} \left\{ \omega_1, \omega_2 \right\} + 4, 4\mathbb{Q} \left\{ \omega_3, \omega_4, \omega_5 \right\} = 2, 42 \\ \Leftrightarrow & 2, 2\mathbb{Q} \left\{ \omega_1, \omega_2 \right\} + 4, 4 \left(1 - \mathbb{Q} \left\{ \omega_1, \omega_2 \right\} \right) = 2, 42 \\ \Leftrightarrow & \mathbb{Q} \left\{ \omega_1, \omega_2 \right\} = 0, 9 \text{ and } \mathbb{Q} \left\{ \omega_3, \omega_4, \omega_5 \right\} = 1 - \mathbb{Q} \left\{ \omega_1, \omega_2 \right\} = 0, 1. \end{aligned}$$

The second constraint is

$$\forall \omega \in \{\omega_1, \omega_2\}, \ \mathbf{E}^{\mathbb{Q}} \left[\frac{S_2^2}{S_2^1} \, | \mathcal{F}_1 \right] (\omega) = \frac{S_1^2(\omega)}{S_1^1(\omega)}$$

$$\Leftrightarrow \ 2 \frac{\mathbb{Q} \left\{ \omega_1 \right\}}{\mathbb{Q} \left\{ \omega_1, \omega_2 \right\}} + 3 \frac{\mathbb{Q} \left\{ \omega_2 \right\}}{\mathbb{Q} \left\{ \omega_1, \omega_2 \right\}} = 2, 2$$

$$\Leftrightarrow \ 2 \frac{\mathbb{Q} \left\{ \omega_1 \right\}}{\mathbb{Q} \left\{ \omega_1, \omega_2 \right\}} + 3 \left(1 - \frac{\mathbb{Q} \left\{ \omega_1 \right\}}{\mathbb{Q} \left\{ \omega_1, \omega_2 \right\}} \right) = 2, 2$$

$$\Leftrightarrow \ \mathbb{Q} \left\{ \omega_1 \right\} = 0, 8 \mathbb{Q} \left\{ \omega_1, \omega_2 \right\} = 0, 8 \cdot 0, 9 = 0, 72$$

$$\text{et } \mathbb{Q} \left\{ \omega_2 \right\} = \mathbb{Q} \left\{ \omega_1, \omega_2 \right\} - \mathbb{Q} \left\{ \omega_1 \right\} = 0, 9 - 0, 72 = 0, 18.$$

Finally, the third constraint is

$$\begin{aligned} \forall \omega &\in \{\omega_{3}, \omega_{4}, \omega_{5}\}, \ \mathbf{E}^{\mathbb{Q}} \left[\frac{S_{2}^{2}}{S_{2}^{1}} | \mathcal{F}_{1} \right] (\omega) &= \frac{S_{1}^{2} (\omega)}{S_{1}^{1} (\omega)} \\ \Leftrightarrow \ 3 \frac{\mathbb{Q} \{\omega_{3}\}}{\mathbb{Q} \{\omega_{3}, \omega_{4}, \omega_{5}\}} + 4 \frac{\mathbb{Q} \{\omega_{4}\}}{\mathbb{Q} \{\omega_{3}, \omega_{4}, \omega_{5}\}} + 6 \frac{\mathbb{Q} \{\omega_{5}\}}{\mathbb{Q} \{\omega_{3}, \omega_{4}, \omega_{5}\}} = 4, 4 \\ \Leftrightarrow \ \frac{3 \frac{\mathbb{Q} \{\omega_{3}\}}{\mathbb{Q} \{\omega_{3}, \omega_{4}, \omega_{5}\}} + 4 \frac{\mathbb{Q} \{\omega_{4}\}}{\mathbb{Q} \{\omega_{3}, \omega_{4}, \omega_{5}\}}}{\mathbb{Q} \{\omega_{4}, \omega_{5}\}} = 4, 4 \\ \Leftrightarrow \ 3 \mathbb{Q} \{\omega_{3}\} + 2 \mathbb{Q} \{\omega_{4}\} = 1, 6 \mathbb{Q} \{\omega_{3}, \omega_{4}, \omega_{5}\} = 1, 6 \cdot 0, 1 = 0, 16 \\ \Leftrightarrow \ 3 \mathbb{Q} \{\omega_{3}\} + 2 \mathbb{Q} \{\omega_{4}\} = 1, 6 \mathbb{Q} \{\omega_{3}, \omega_{4}, \omega_{5}\} = 1, 6 \cdot 0, 1 = 0, 16 \\ \Leftrightarrow \ 0 < \mathbb{Q} \{\omega_{3}\} < \frac{4}{75}; \ \mathbb{Q} \{\omega_{4}\} = 0, 08 - \frac{3}{2} \mathbb{Q} \{\omega_{3}\} \\ \text{and} \ \mathbb{Q} \{\omega_{5}\} = 0, 02 + \frac{1}{2} \mathbb{Q} \{\omega_{3}\} \\ \Leftrightarrow \ \mathbb{Q} \{\omega_{3}\} = \frac{4}{75} - \frac{2}{3} \mathbb{Q} \{\omega_{4}\}; \ 0 < \mathbb{Q} \{\omega_{4}\} < \frac{8}{100} \\ \text{and} \ \mathbb{Q} \{\omega_{5}\} = \frac{14}{300} - \frac{1}{3} \mathbb{Q} \{\omega_{4}\} \\ \Leftrightarrow \ \mathbb{Q} \{\omega_{3}\} = 2 \mathbb{Q} \{\omega_{5}\} - 0, 04; \ \mathbb{Q} \{\omega_{4}\} = 0, 14 - 3 \mathbb{Q} \{\omega_{5}\} \\ \text{and} \ 0, 02 < \mathbb{Q} \{\omega_{5}\} < \frac{14}{300}. \end{aligned}$$

f)

$$E^{\mathbb{Q}}\left(\frac{C}{1,21}\right) = \frac{1}{1,21}\mathbb{Q}\left\{\omega_{4}\right\} + \frac{3}{1,21}\mathbb{Q}\left\{\omega_{5}\right\}$$
$$= \frac{0,14 - 3\mathbb{Q}\left\{\omega_{5}\right\} + 3\mathbb{Q}\left\{\omega_{5}\right\}}{1,21}$$
$$= \frac{14}{121} \approx 0,1157.$$

The option price does not depend on the risk neutral measure and corresponds to the initial value of the replicating investment strategy (see Question 4).

Appendix 1

A strategy ϕ is an arbitrage opportunity if

(i)
$$V_0(\phi) = 0$$

(ii) $\exists t, V_t(\phi) \ge 0 \text{ and } P(V_t(\phi) > 0) > 0$

Therefore, the model do not admit arbitrage if all self-financing trading strategies ϕ satisfying $V_0(\phi) = 0$ are such that

$$\forall t, \exists \omega \in \Omega \text{ such that } V_t(\phi, \omega) < 0 \text{ or } \mathbb{P}(V_t(\phi) > 0) = 0$$

which is equivalent to

$$\forall t, \exists \omega \in \Omega \text{ such that } V_t(\phi, \omega) < 0 \text{ or } \forall \omega \in \Omega, V_t(\phi, \omega) = 0.$$

Let ϕ , be a self-financing trading strategy with $V_0(\phi) = 0$. Since $\phi(1) = (\phi_1^1, \phi_1^2)$ is \mathcal{F}_0 -measurable, the portfolio $\phi(1)$ is constant, that is

$$\forall \omega \in \Omega, \ \phi_1(\omega) = \left(\phi_1^1, \phi_1^2\right).$$

Hence,

$$0 = V_0(\phi) = \frac{1}{1,21}\phi_1^1 + 2\phi_1^2 \Leftrightarrow \phi_1^1 = -2,42\phi_1^2.$$

At t = 1, the portfolio market value is

$$\begin{aligned} \forall \omega &\in \{\omega_1, \omega_2\}, \\ V_1(\phi, \omega) &= \frac{1}{1, 1} \phi_1^1 + 2\phi_1^2 = -\frac{2, 42}{1, 1} \phi_1^2 + 2\phi_1^2 = -0, 2\phi_1^2 \\ \forall \omega &\in \{\omega_3, \omega_4, \omega_5\}, \\ V_1(\phi, \omega) &= \frac{1}{1, 1} \phi_1^1 + 4\phi_1^2 = -\frac{2, 42}{1, 1} \phi_1^2 + 4\phi_1^2 = 1, 8\phi_1^2. \end{aligned}$$

Therefore, if $\phi_1^2 \neq 0$ then $\exists \omega \in \Omega$ such that $V_1(\phi, \omega) < 0$ (assuming that $\mathbb{P}(\{\omega_1, \omega_2\}) > 0$ and $\mathbb{P}(\{\omega_3, \omega_4, \omega_5\}) > 0$) which means that there is no arbitrage. What about $\phi_1^2 = 0$? The trading strategy can be revised. Recall that ϕ_2 is \mathcal{F}_1 -measurable, which implies that

$$\phi_2(\omega_1) = \phi_2(\omega_2)$$
 and $\phi_2(\omega_3) = \phi_2(\omega_4) = \phi_2(\omega_5)$.

Since ϕ must be self-financing, the new portfolio ϕ_2 must satisfy

$$\phi_2 S_1 = \phi_1 S_1 = V_1(\phi) = 0.$$

Therefore,

$$\begin{aligned} \forall \omega &\in \{\omega_1, \omega_2\}, \\ \frac{1}{1, 1} \phi_2^1(\omega) + 2\phi_2^2(\omega) &= 0 \Rightarrow \phi_2^1(\omega) = -2, 2\phi_2^2(\omega) = -2, 2\phi_2^2(\omega_1) \\ \forall \omega &\in \{\omega_3, \omega_4, \omega_5\}, \\ \frac{1}{1, 1} \phi_2^1(\omega) + 4\phi_2^2(\omega) &= 0 \Rightarrow \phi_2^1(\omega) = -4, 4\phi_2^2(\omega) = -4, 4\phi_2^2(\omega_3). \end{aligned}$$

The market value of $\phi(2)$ at t = 2 is

$$V_{2}(\phi, \omega_{1}) = \phi_{2}^{1}(\omega_{1}) + 2\phi_{2}^{2}(\omega_{1})$$

= $-2, 2\phi_{2}^{2}(\omega_{1}) + 2\phi_{2}^{2}(\omega_{1}) = -0, 2\phi_{2}^{2}(\omega_{1})$

$$V_{2}(\phi, \omega_{2}) = \phi_{2}^{1}(\omega_{2}) + 3\phi_{2}^{2}(\omega_{2})$$

$$= \phi_{2}^{1}(\omega_{1}) + 3\phi_{2}^{2}(\omega_{1})$$

$$= -2, 2\phi_{2}^{2}(\omega_{1}) + 3\phi_{2}^{2}(\omega_{1}) = 0, 8\phi_{2}^{2}(\omega_{1})$$

$$V_{2}(\phi, \omega_{3}) = \phi_{2}^{1}(\omega_{3}) + 3\phi_{2}^{2}(\omega_{3})$$

= -4, 4\phi_{2}^{2}(\omega_{3}) + 3\phi_{2}^{2}(\omega_{3}) = -1, 4\phi_{2}^{2}(\omega_{3})

$$V_{2}(\phi, \omega_{4}) = \phi_{2}^{1}(\omega_{4}) + 4\phi_{2}^{2}(\omega_{4})$$

$$= \phi_{2}^{1}(\omega_{3}) + 4\phi_{2}^{2}(\omega_{3})$$

$$= -4, 4\phi_{2}^{2}(\omega_{3}) + 4\phi_{2}^{2}(\omega_{3}) = -0, 4\phi_{2}^{2}(\omega_{3})$$

$$V_{2}(\phi, \omega_{4}) = \phi_{2}^{1}(\omega_{4}) + 6\phi_{2}^{2}(\omega_{4})$$

= $\phi_{2}^{1}(\omega_{3}) + 6\phi_{2}^{2}(\omega_{3})$
= $-4, 4\phi_{2}^{2}(\omega_{3}) + 6\phi_{2}^{2}(\omega_{3}) = 1, 6\phi_{2}^{2}(\omega_{3})$

Therefore, is $\phi_2^2(\omega_1) \neq 0$ then $\exists \omega \in \Omega$ such that $V_2(\phi, \omega) < 0$ (assuming that $\mathbb{P}(\omega_1) > 0$ and $\mathbb{P}(\omega_2) > 0$), which means that there is no arbitrage. If $\phi_2^2(\omega_1) = 0$ but $\phi_2^2(\omega_3) \neq 0$ then $\exists \omega \in \Omega$ such that $V_2(\phi, \omega) < 0$ (assuming that $\mathbb{P}(\omega_3) > 0$ or $\mathbb{P}(\omega_4) > 0$ and $\mathbb{P}(\omega_5) > 0$), which also means that there is no arbitrage. Finally, if $\phi_2^2(\omega_1) = 0$ and $\phi_2^2(\omega_3) = 0$, then $\forall \omega \in \Omega, V_2(\phi, \omega) = 0$. Hence, once again, no arbitrage.