The Binomial Model Exercises

Exercise 5.1. The market model is

$$
\begin{array}{lllll}
\omega & \left(S_{0}^{1} ; S_{0}^{2}\right) & \left(S_{1}^{1} ; S_{1}^{2}\right) & \left(S_{2}^{1} ; S_{2}^{2}\right) & C \\
\omega_{1} & \left(\frac{1}{1,21} ; 2\right) & \left(\frac{1}{1,1} ; 2\right) & (1 ; 2) & 0 \\
\omega_{2} & \left(\frac{1}{1,21} ; 2\right) & \left(\frac{1}{1,1} ; 2\right) & (1 ; 3) & 0 \\
\omega_{3} & \left(\frac{1}{1,21} ; 2\right) & \left(\frac{1}{1,1} ; 4\right) & (1 ; 3) & 0 \\
\omega_{4} & \left(\frac{1}{1,21} ; 2\right) & \left(\frac{1}{1,1} ; 4\right) & (1 ; 4) & 1 \\
\omega_{5} & \left(\frac{1}{1,21} ; 2\right) & \left(\frac{1}{1,1} ; 4\right) & (1 ; 6) & 3
\end{array}
$$

where $S_{t}^{1}(\omega)=$ price of a share of the riskless asset at time t, and $S_{t}^{2}(\omega)=$ price of a share of the risky asset at time t.

In general, the "true" probability measure on (Ω, \mathcal{F}) is not known. However, each market participant has its own opinion about \mathbb{P}. On2 of them believe that it is very likely that at time $t=2$, the price of the risky asset will be below 3 dollars. That is why he offers on the market a call option with strike price $K=3$, that is, the contingent claim payoff is $C(\omega)=\max \left\{S_{2}^{2}(\omega)-3 ; 0\right\}$.
a) What is the probability space ?
b) Show that this market model does not admit arbitrage opportunity.
c) Find a self-financing trading strategy ϕ that allows the option seller to hedge.
d) What is $V_{0}(\phi)$?
e) Find all martingale measures.
f) For each martingale measure, compute the expected discounted option payoff. What do you notice?

Exercise 5.2. Three assets are modeled using the stochastic process

$$
\begin{array}{ccc}
\Omega & t=0 & t=1 \\
& & \\
\omega_{1} & (1,1,1) & \left(1+r, x_{1}, y_{1}\right) \\
\omega_{2} & (1,1,1) & \left(1+r, x_{1}, y_{2}\right) \\
\omega_{3} & (1,1,1) & \left(1+r, x_{2}, y_{1}\right) \\
\omega_{4} & (1,1,1) & \left(1+r, x_{2}, y_{2}\right)
\end{array}
$$

Without loss of generality, we may assume that $x_{1}<x_{2}, y_{1}<y_{2}$ and $x_{1}<y_{1}$.
a) What are the conditions so that the market model do not admit arbitrage opportunities?
b) Is the market model complete? Justify.

Exercise 5.3. A two-period market model is formed with a risky asset $\{S(t): t=0,1,2\}$ paying dividends $\{D(t): t=0,1,2\}$ and a bank account $\{B(t): t=0,1,2\}$ such that $B(t)=$ $(1+r)^{t}$. Without loss of generality, we may assume that $s_{11}+d_{11}<s_{12}+d_{12}, s_{21}+d_{21}<$ $s_{22}+d_{22}$ and $s_{23}+d_{23}<s_{24}+d_{24}$.

$$
t=0 \quad t=1 \quad t=2 \quad \omega \quad \mathbb{Q}
$$

$$
\begin{array}{lll}
s_{24}, d_{24} \\
(1+r)^{2} & \omega_{4} & q_{4}
\end{array}
$$

a) Why should we revise the self-financing condition in that case? What should it be?
b) Construct the risk neutral measure.
c) What are the conditions for no arbitrage?
d) What is the time $t=0$ price of the contingent claim paying at time $t=1$ the amount f_{11} if ω_{1} or ω_{2} happen and f_{12} if ω_{3} or ω_{4} occur?

Solutions

1 Exercise 5.1

a)

$$
\begin{aligned}
\Omega & =\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}\right\} \\
\mathcal{F} & =\text { all possible subsets of } \Omega \\
\mathcal{F}_{0} & =\{\varnothing, \Omega\} \\
\mathcal{F}_{1} & =\sigma\left\{\left\{\omega_{1}, \omega\right\},\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}\right\} \\
\mathcal{F}_{2} & =\mathcal{F}
\end{aligned}
$$

b) it can be seen as several single period binomial trees. It is also possible to go back to the definition, just like in the Appendix 1.

For the period going from $t=0$ to $t=1$, it is a one-period binomial tree. The prevailing interest rate is provided by the riskless asset:

$$
r=\frac{\frac{1}{1.1}-\frac{1}{1.21}}{\frac{1}{1.21}}=0.1
$$

Since $2<2 \times(1+0.1)=2.2<4$, there is no arbitrage opportunity for that period. For the time period going from $t=1$ to $t=2$, we have to consider two cases : $\left\{\omega_{1}, \omega_{2}\right\}$ and $\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}$. On $\left\{\omega_{1}, \omega_{2}\right\}$, it is a one-period binomial model. The interest rate comes from the riskless asset :

$$
r=\frac{1-\frac{1}{1.1}}{\frac{1}{1.1}}=0.1
$$

Since $2<2 \times(1+0.1)=2.2<3$, there is no arbitrage. On $\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}$, it is a one-period trinomial model. The interest rate is

$$
r=\frac{1-\frac{1}{1.1}}{\frac{1}{1.1}}=0.1
$$

There will be arbitrage opportunities if there is a portfolio $\phi=\left(\phi_{1}, \phi_{2}\right)$ such that

$$
\begin{aligned}
& \text { (A1) } \forall \omega \in\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}, V_{\phi}(0, \omega)=0 \\
& \text { (A2) } \forall \omega \in\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}, V_{\phi}(1, \omega) \geq 0 \\
& \text { (A3) } \exists \omega \in\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}, V_{\phi}(1, \omega)>0 .
\end{aligned}
$$

The condition (A1) implies that

$$
0=V_{\phi}(0, \omega)=\frac{1}{1.1} \phi_{1}+4 \phi_{2} \Leftrightarrow \phi_{1}=-4.4 \phi_{2}
$$

For any portfolio $\phi=\left(-4.4 \phi_{2}, \phi_{2}\right)$,

$$
\begin{aligned}
V_{\phi}\left(1, \omega_{3}\right) & =-4.4 \phi_{2}+3 \phi_{2}=-1.4 \phi_{2}, \\
V_{\phi}\left(1, \omega_{4}\right) & =-4.4 \phi_{2}+4 \phi_{2}=-0.4 \phi_{2}, \\
V_{\phi}\left(1, \omega_{5}\right) & =-4.4 \phi_{2}+6 \phi_{2}=1.6 \phi_{2} .
\end{aligned}
$$

Consequently, if $\phi_{2}<0$, then $V_{\phi}\left(1, \omega_{5}\right)<0$ which is in conflict with (A2). If $\phi_{2}>0$, then the Condition $(A 2)$ is not respected since $V_{\phi}\left(1, \omega_{3}\right)<0$ and $V_{\phi}\left(1, \omega_{4}\right)<0$. If $\phi_{2}=0$, the condition $(A 3)$ is not respected since $V_{\phi}\left(1, \omega_{4}\right)=V_{\phi}\left(1, \omega_{5}\right)=V_{\phi}\left(1, \omega_{6}\right)=0$. Therefore, there is no arbitrage opportunity.
c) The answer is

$$
\begin{array}{ccc}
& \left(\phi_{1}^{1} ; \phi_{1}^{2}\right) & \left(\phi_{2}^{1} ; \phi_{2}^{2}\right) \\
\left\{\omega_{1}, \omega_{2}\right\} & \left(-\frac{14}{10} ; \frac{7}{11}\right) & (0 ; 0) \\
\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\} & \left(-\frac{14}{10} ; \frac{7}{11}\right) & (-3 ; 1)
\end{array}
$$

Indeed, we are looking for a self-financing strategy ϕ such that $V_{2}(\phi)=C$. Since ϕ_{2} is \mathcal{F}_{1}-measurable,

$$
\phi_{2}\left(\omega_{1}\right)=\phi_{2}\left(\omega_{2}\right) \text { and } \phi_{2}\left(\omega_{3}\right)=\phi_{2}\left(\omega_{4}\right)=\phi_{2}\left(\omega_{5}\right) .
$$

Because $V_{2}(\phi)=C$, we have that

$$
\begin{equation*}
0=C\left(\omega_{1}\right)=V_{2}\left(\phi, \omega_{1}\right)=\phi_{2}^{1}\left(\omega_{1}\right)+2 \phi_{2}^{2}\left(\omega_{1}\right) \tag{i}
\end{equation*}
$$

(ii) $0=C\left(\omega_{2}\right)=V_{2}\left(\phi, \omega_{2}\right)=\phi_{2}^{1}\left(\omega_{2}\right)+3 \phi_{2}^{2}\left(\omega_{2}\right)=\phi_{2}^{1}\left(\omega_{1}\right)+3 \phi_{2}^{2}\left(\omega_{1}\right)$

$$
\begin{equation*}
0=C\left(\omega_{3}\right)=V_{2}\left(\phi, \omega_{3}\right)=\phi_{2}^{1}\left(\omega_{3}\right)+3 \phi_{2}^{2}\left(\omega_{3}\right) \tag{iii}
\end{equation*}
$$

(iv) $1=C\left(\omega_{4}\right)=V_{2}\left(\phi, \omega_{4}\right)=\phi_{2}^{1}\left(\omega_{4}\right)+4 \phi_{2}^{2}\left(\omega_{4}\right)=\phi_{2}^{1}\left(\omega_{3}\right)+4 \phi_{2}^{2}\left(\omega_{3}\right)$
(v) $3=C\left(\omega_{5}\right)=V_{2}\left(\phi, \omega_{5}\right)=\phi_{2}^{1}\left(\omega_{5}\right)+6 \phi_{2}^{2}\left(\omega_{5}\right)=\phi_{2}^{1}\left(\omega_{3}\right)+6 \phi_{2}^{2}\left(\omega_{3}\right)$.

The Equations (i) and (ii) imply that $\phi_{2}^{1}\left(\omega_{1}\right)=0$ and $\phi_{2}^{2}\left(\omega_{1}\right)=0$. The Equations (iii), (iv) and (v) imply that $\phi_{2}^{1}\left(\omega_{3}\right)=-3$ and $\phi_{2}^{2}\left(\omega_{3}\right)=1$. Since $\phi_{1}=\left(\phi_{1}^{1}, \phi_{1}^{2}\right)$ is \mathcal{F}_{0}-measurable, the portfolio ϕ_{1} is constant, that is,

$$
\forall \omega \in \Omega, \quad \phi_{1}(\omega)=\left(\phi_{1}^{1}, \phi_{1}^{2}\right) .
$$

Since the strategy ϕ is self-financing, it must satisfies $\forall \omega \in \Omega$,

$$
\begin{aligned}
\phi_{2}^{1}(\omega) S_{1}^{1}(\omega)+\phi_{2}^{2}(\omega) S_{1}^{2}(\omega) & =\phi_{1}^{1}(\omega) S_{1}^{1}(\omega)+\phi_{1}^{2}(\omega) S_{1}^{2}(\omega) \\
& =\phi_{1}^{1} S_{1}^{1}(\omega)+\phi_{1}^{2} S_{1}^{2}(\omega)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\forall \omega & \in\left\{\omega_{1}, \omega_{2}\right\} \\
\frac{1}{1,1} \phi_{1}^{1}+2 \phi_{1}^{2} & =\frac{1}{1,1} \phi_{2}^{1}(\omega)+2 \phi_{2}^{2}(\omega)=0 \Leftrightarrow \phi_{1}^{1}=-2,2 \phi_{1}^{2} \\
\forall \omega & \in\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\} \\
\frac{1}{1,1} \phi_{1}^{1}+4 \phi_{1}^{2} & =\frac{1}{1,1} \phi_{2}^{1}(\omega)+4 \phi_{2}^{2}(\omega)=\frac{-3}{1,1}+4=\frac{1,4}{1,1} \Leftrightarrow \phi_{1}^{1}=1,4-4,4 \phi_{1}^{2}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
-2,2 \phi_{1}^{2} & =1,4-4,4 \phi_{1}^{2} \Leftrightarrow \phi_{1}^{2}=\frac{1,4}{2,2}=\frac{7}{11} \\
\phi_{1}^{1} & =-2,2 \phi_{1}^{2}=-2,2 \frac{1,4}{2,2}=-1,4 .
\end{aligned}
$$

Therefore $\phi_{1}^{1}=-1,4$ and $\phi_{1}^{2}=(1,4) /(2,2)=7 / 11 \cong 0,63636$.
d)

$$
V_{0}(\phi)=\phi_{1}^{1} S_{0}^{1}+\phi_{1}^{2} S_{0}^{2}=\frac{-1,4}{1,21}+\frac{7}{11} 2=\frac{14}{121} \cong 0,1157
$$

e) Depending on you free variable, the answer is

$$
\begin{array}{cccc}
\omega & \mathbb{Q} & \mathbb{Q} & \mathbb{Q} \\
\omega_{1} & 0,72 & 0,72 & 0,72 \\
\omega_{2} & 0,18 & 0,18 & 0,18 \\
\omega_{3} & 0<\mathbb{Q}\left\{\omega_{3}\right\}<\frac{4}{75} ; & =\frac{4}{75}-\frac{2}{3} \mathbb{Q}\left\{\omega_{4}\right\} & =2 \mathbb{Q}\left\{\omega_{5}\right\}-0,04 \\
& \mathbb{Q}\left\{\omega_{4}\right\} & 0<\mathbb{Q}\left\{\omega_{4}\right\}<\frac{8}{100} & =0,14-3 \mathbb{Q}\left\{\omega_{5}\right\} \\
\omega_{4} & =0,08-\frac{3}{2} \mathbb{Q}\left\{\omega_{3}\right\} & 0 & \mathbb{Q}\left\{\omega_{4}\right\} \\
& \mathbb{Q}\left\{\omega_{5}\right\} & \mathbb{Q}\left\{\omega_{5}\right\} & 0,02<\mathbb{Q}\left\{\omega_{5}\right\}<\frac{14}{300}
\end{array}
$$

Indeed, we must verify that $\mathrm{E}^{\mathbb{Q}}\left[\left.\frac{S_{i}^{2}}{S_{i}^{1}} \right\rvert\, \mathcal{F}_{0}\right](\omega)=\frac{S_{i-1}^{2}(\omega)}{S_{i-1}^{1}(\omega)}$ for $i=1,2$. Hence, the first constraint is

$$
\begin{aligned}
& \forall \omega \in \Omega, \mathrm{E}^{\mathbb{Q}}\left[\left.\frac{S_{1}^{2}}{S_{1}^{1}} \right\rvert\, \mathcal{F}_{0}\right](\omega)=\frac{S_{0}^{2}(\omega)}{S_{0}^{1}(\omega)} \\
\Leftrightarrow & 2,2 \mathbb{Q}\left\{\omega_{1}, \omega_{2}\right\}+4,4 \mathbb{Q}\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}=2,42 \\
\Leftrightarrow & 2,2 \mathbb{Q}\left\{\omega_{1}, \omega_{2}\right\}+4,4\left(1-\mathbb{Q}\left\{\omega_{1}, \omega_{2}\right\}\right)=2,42 \\
\Leftrightarrow & \mathbb{Q}\left\{\omega_{1}, \omega_{2}\right\}=0,9 \text { and } \mathbb{Q}\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}=1-\mathbb{Q}\left\{\omega_{1}, \omega_{2}\right\}=0,1 .
\end{aligned}
$$

The second constraint is

$$
\begin{aligned}
& \forall \omega \in\left\{\omega_{1}, \omega_{2}\right\}, \mathrm{E}^{\mathbb{Q}}\left[\left.\frac{S_{2}^{2}}{S_{2}^{1}} \right\rvert\, \mathcal{F}_{1}\right](\omega)=\frac{S_{1}^{2}(\omega)}{S_{1}^{1}(\omega)} \\
\Leftrightarrow & 2 \frac{\mathbb{Q}\left\{\omega_{1}\right\}}{\mathbb{Q}\left\{\omega_{1}, \omega_{2}\right\}}+3 \frac{\mathbb{Q}\left\{\omega_{2}\right\}}{\mathbb{Q}\left\{\omega_{1}, \omega_{2}\right\}}=2,2 \\
\Leftrightarrow & 2 \frac{\mathbb{Q}\left\{\omega_{1}\right\}}{\mathbb{Q}\left\{\omega_{1}, \omega_{2}\right\}}+3\left(1-\frac{\mathbb{Q}\left\{\omega_{1}\right\}}{\mathbb{Q}\left\{\omega_{1}, \omega_{2}\right\}}\right)=2,2 \\
\Leftrightarrow & \mathbb{Q}\left\{\omega_{1}\right\}=0,8 \mathbb{Q}\left\{\omega_{1}, \omega_{2}\right\}=0,8 \cdot 0,9=0,72 \\
& \text { et } \mathbb{Q}\left\{\omega_{2}\right\}=\mathbb{Q}\left\{\omega_{1}, \omega_{2}\right\}-\mathbb{Q}\left\{\omega_{1}\right\}=0,9-0,72=0,18 .
\end{aligned}
$$

Finally, the third constraint is

$$
\begin{aligned}
& \forall \omega \in\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}, \mathrm{E}^{\mathbb{Q}}\left[\left.\frac{S_{2}^{2}}{S_{2}^{1}} \right\rvert\, \mathcal{F}_{1}\right](\omega)=\frac{S_{1}^{2}(\omega)}{S_{1}^{1}(\omega)} \\
& \Leftrightarrow 3 \frac{\mathbb{Q}\left\{\omega_{3}\right\}}{\mathbb{Q}\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}}+4 \frac{\mathbb{Q}\left\{\omega_{4}\right\}}{\mathbb{Q}\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}}+6 \frac{\mathbb{Q}\left\{\omega_{5}\right\}}{\mathbb{Q}\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}}=4,4 \\
& \begin{array}{ll}
& 3 \frac{\mathbb{Q}\left\{\omega_{3}\right\}}{\mathbb{Q}\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}}+4 \frac{\mathbb{Q}\left\{\omega_{4}\right\}}{\mathbb{Q}\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}} \\
+6\left(1-\frac{\mathbb{Q}\left\{\omega_{4}\right\}}{\left.\mathbb{Q}\left\{\omega_{3}, \omega_{4}\right\}, \omega_{5}\right\}}-\frac{\mathbb{Q}\left\{\omega_{4}\right\}}{\mathbb{Q}\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}}\right)
\end{array}=4,4 \\
& \Leftrightarrow 3 \mathbb{Q}\left\{\omega_{3}\right\}+2 \mathbb{Q}\left\{\omega_{4}\right\}=1,6 \mathbb{Q}\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}=1,6 \cdot 0,1=0,16 \\
& \Leftrightarrow \quad 0<\mathbb{Q}\left\{\omega_{3}\right\}<\frac{4}{75} ; \mathbb{Q}\left\{\omega_{4}\right\}=0,08-\frac{3}{2} \mathbb{Q}\left\{\omega_{3}\right\} \\
& \Leftrightarrow \quad \text { and } \mathbb{Q}\left\{\omega_{5}\right\}=0,02+\frac{1}{2} \mathbb{Q}\left\{\omega_{3}\right\} \\
& \Leftrightarrow \mathbb{Q}\left\{\omega_{3}\right\}=\frac{4}{75}-\frac{2}{3} \mathbb{Q}\left\{\omega_{4}\right\} ; 0<\mathbb{Q}\left\{\omega_{4}\right\}<\frac{8}{100} \\
& \Leftrightarrow \quad \text { and } \mathbb{Q}\left\{\omega_{5}\right\}=\frac{14}{300}-\frac{1}{3} \mathbb{Q}\left\{\omega_{4}\right\} \\
& \begin{array}{l}
\Leftrightarrow \quad \mathbb{Q}\left\{\omega_{3}\right\}=2 \mathbb{Q}\left\{\omega_{5}\right\}-0,04 ; \mathbb{Q}\left\{\omega_{4}\right\}=0,14-3 \mathbb{Q}\left\{\omega_{5}\right\} \\
\quad \text { and } 0,02<\mathbb{Q}\left\{\omega_{5}\right\}<\frac{14}{300} .
\end{array}
\end{aligned}
$$

f)

$$
\begin{aligned}
\mathrm{E}^{\mathbb{Q}}\left(\frac{C}{1,21}\right) & =\frac{1}{1,21} \mathbb{Q}\left\{\omega_{4}\right\}+\frac{3}{1,21} \mathbb{Q}\left\{\omega_{5}\right\} \\
& =\frac{0,14-3 \mathbb{Q}\left\{\omega_{5}\right\}+3 \mathbb{Q}\left\{\omega_{5}\right\}}{1,21} \\
& =\frac{14}{121} \cong 0,1157
\end{aligned}
$$

The option price does not depend on the risk neutral measure and corresponds to the initial value of the replicating investment strategy (see Question 4).

Appendix 1

A strategy ϕ is an arbitrage opportunity if

$$
\begin{equation*}
V_{0}(\phi)=0 \tag{i}
\end{equation*}
$$

(ii) $\exists t, V_{t}(\phi) \geq 0$ and $P\left(V_{t}(\phi)>0\right)>0$.

Therefore, the model do not admit arbitrage if all self-financing trading strategies ϕ satisfying $V_{0}(\phi)=0$ are such that

$$
\forall t, \exists \omega \in \Omega \text { such that } V_{t}(\phi, \omega)<0 \text { or } \mathbb{P}\left(V_{t}(\phi)>0\right)=0
$$

which is equivalent to

$$
\forall t, \exists \omega \in \Omega \text { such that } V_{t}(\phi, \omega)<0 \text { or } \forall \omega \in \Omega, V_{t}(\phi, \omega)=0
$$

Let ϕ, be a self-financing trading strategy with $V_{0}(\phi)=0$. Since $\phi(1)=\left(\phi_{1}^{1}, \phi_{1}^{2}\right)$ is \mathcal{F}_{0}-measurable, the portfolio $\phi(1)$ is constant, that is

$$
\forall \omega \in \Omega, \phi_{1}(\omega)=\left(\phi_{1}^{1}, \phi_{1}^{2}\right) .
$$

Hence,

$$
0=V_{0}(\phi)=\frac{1}{1,21} \phi_{1}^{1}+2 \phi_{1}^{2} \Leftrightarrow \phi_{1}^{1}=-2,42 \phi_{1}^{2}
$$

At $t=1$, the portfolio market value is

$$
\begin{aligned}
\forall \omega & \in\left\{\omega_{1}, \omega_{2}\right\}, \\
V_{1}(\phi, \omega) & =\frac{1}{1,1} \phi_{1}^{1}+2 \phi_{1}^{2}=-\frac{2,42}{1,1} \phi_{1}^{2}+2 \phi_{1}^{2}=-0,2 \phi_{1}^{2} \\
\forall \omega & \in\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}, \\
V_{1}(\phi, \omega) & =\frac{1}{1,1} \phi_{1}^{1}+4 \phi_{1}^{2}=-\frac{2,42}{1,1} \phi_{1}^{2}+4 \phi_{1}^{2}=1,8 \phi_{1}^{2} .
\end{aligned}
$$

Therefore, if $\phi_{1}^{2} \neq 0$ then $\exists \omega \in \Omega$ such that $V_{1}(\phi, \omega)<0$ (assuming that $\mathbb{P}\left(\left\{\omega_{1}, \omega_{2}\right\}\right)>0$ and $\left.\mathbb{P}\left(\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\}\right)>0\right)$ which means that there is no arbitrage. What about $\phi_{1}^{2}=0$? The trading strategy can be revised. Recall that ϕ_{2} is \mathcal{F}_{1}-measurable, which implies that

$$
\phi_{2}\left(\omega_{1}\right)=\phi_{2}\left(\omega_{2}\right) \text { and } \phi_{2}\left(\omega_{3}\right)=\phi_{2}\left(\omega_{4}\right)=\phi_{2}\left(\omega_{5}\right) .
$$

Since ϕ must be self-financing, the new portfolio ϕ_{2} must satisfy

$$
\phi_{2} S_{1}=\phi_{1} S_{1}=V_{1}(\phi)=0
$$

Therefore,

$$
\begin{aligned}
\forall \omega & \in\left\{\omega_{1}, \omega_{2}\right\} \\
\frac{1}{1,1} \phi_{2}^{1}(\omega)+2 \phi_{2}^{2}(\omega) & =0 \Rightarrow \phi_{2}^{1}(\omega)=-2,2 \phi_{2}^{2}(\omega)=-2,2 \phi_{2}^{2}\left(\omega_{1}\right) \\
\forall \omega & \in\left\{\omega_{3}, \omega_{4}, \omega_{5}\right\} \\
\frac{1}{1,1} \phi_{2}^{1}(\omega)+4 \phi_{2}^{2}(\omega) & =0 \Rightarrow \phi_{2}^{1}(\omega)=-4,4 \phi_{2}^{2}(\omega)=-4,4 \phi_{2}^{2}\left(\omega_{3}\right) .
\end{aligned}
$$

The market value of $\phi(2)$ at $t=2$ is

$$
\begin{aligned}
V_{2}\left(\phi, \omega_{1}\right) & =\phi_{2}^{1}\left(\omega_{1}\right)+2 \phi_{2}^{2}\left(\omega_{1}\right) \\
& =-2,2 \phi_{2}^{2}\left(\omega_{1}\right)+2 \phi_{2}^{2}\left(\omega_{1}\right)=-0,2 \phi_{2}^{2}\left(\omega_{1}\right) \\
V_{2}\left(\phi, \omega_{2}\right) & =\phi_{2}^{1}\left(\omega_{2}\right)+3 \phi_{2}^{2}\left(\omega_{2}\right) \\
& =\phi_{2}^{1}\left(\omega_{1}\right)+3 \phi_{2}^{2}\left(\omega_{1}\right) \\
& =-2,2 \phi_{2}^{2}\left(\omega_{1}\right)+3 \phi_{2}^{2}\left(\omega_{1}\right)=0,8 \phi_{2}^{2}\left(\omega_{1}\right) \\
V_{2}\left(\phi, \omega_{3}\right) & =\phi_{2}^{1}\left(\omega_{3}\right)+3 \phi_{2}^{2}\left(\omega_{3}\right) \\
& =-4,4 \phi_{2}^{2}\left(\omega_{3}\right)+3 \phi_{2}^{2}\left(\omega_{3}\right)=-1,4 \phi_{2}^{2}\left(\omega_{3}\right) \\
& \\
V_{2}\left(\phi, \omega_{4}\right) & =\phi_{2}^{1}\left(\omega_{4}\right)+4 \phi_{2}^{2}\left(\omega_{4}\right) \\
& =\phi_{2}^{1}\left(\omega_{3}\right)+4 \phi_{2}^{2}\left(\omega_{3}\right) \\
& =-4,4 \phi_{2}^{2}\left(\omega_{3}\right)+4 \phi_{2}^{2}\left(\omega_{3}\right)=-0,4 \phi_{2}^{2}\left(\omega_{3}\right) \\
V_{2}\left(\phi, \omega_{4}\right) & =\phi_{2}^{1}\left(\omega_{4}\right)+6 \phi_{2}^{2}\left(\omega_{4}\right) \\
& =\phi_{2}^{1}\left(\omega_{3}\right)+6 \phi_{2}^{2}\left(\omega_{3}\right) \\
& =-4,4 \phi_{2}^{2}\left(\omega_{3}\right)+6 \phi_{2}^{2}\left(\omega_{3}\right)=1,6 \phi_{2}^{2}\left(\omega_{3}\right)
\end{aligned}
$$

Therefore, is $\phi_{2}^{2}\left(\omega_{1}\right) \neq 0$ then $\exists \omega \in \Omega$ such that $V_{2}(\phi, \omega)<0$ (assuming that $\mathbb{P}\left(\omega_{1}\right)>0$ and $\left.\mathbb{P}\left(\omega_{2}\right)>0\right)$, which means that there is no arbitrage. If $\phi_{2}^{2}\left(\omega_{1}\right)=0$ but $\phi_{2}^{2}\left(\omega_{3}\right) \neq 0$ then $\exists \omega \in \Omega$ such that $V_{2}(\phi, \omega)<0$ (assuming that $\mathbb{P}\left(\omega_{3}\right)>0$ or $\mathbb{P}\left(\omega_{4}\right)>0$ and $\left.\mathbb{P}\left(\omega_{5}\right)>0\right)$, which also means that there is no arbitrage. Finally, if $\phi_{2}^{2}\left(\omega_{1}\right)=0$ and $\phi_{2}^{2}\left(\omega_{3}\right)=0$, then $\forall \omega \in \Omega, V_{2}(\phi, \omega)=0$. Hence, once again, no arbitrage.

