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Assumptions

Introduction

@ The financial market is arbitrage-free.
e There is an equivalent probability measure Q.
@ European contingent claim paying X7 at time T.
0 ECQ [X2] <.
© {r::t > 0} is the risk free spot rate process
Q Cr=exp (— fOT rsds> X7 is the present value of the
payoff.
@ The time t price of the claim is G = E€ [Cr].
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Example

Introduction

@ The underlying asset follows a GBM
dS, = rS;dt + oS, dWQ

where W@ is a Q standard Brownian motion.
@ For a call option, X7 = max (St — K;0)
© (7 =exp(—rT) Xt is the present value of the payoff.
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Change of measure

Introduction

@ G =E?[Cr] =EY [jg* CT}

@ where j—gx is the Radon-Nikodym derivative.

@ Formulation with last course's notation:
G = /C(s) fs () ds
— /C(s) fs (5)q7(5) ds

- 7 e i)

@ St price of the underlying asset at time T.

@ T is the Radon-Nikodym derivative.
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Variance reduction

Introduction

@ The goal is to minimize the variance of the price
estimator which involves

o | dQ
Var [dQ*CT

 |(2e) |- (e [s2a])
_ g9 [(:3 )]—cg

@ It is not possible to minimize the variance if we do not
restrict @* to belong to a family of measures.
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Variance reduction

Introduction

Q {Q(0):0 € O} is the family of measures we consider

@ 0 is the parameter

@ O is a compact set

@ V0 € O, Q(0) is absolutely continuous with respect to
Q.

@ The variance reduction is then reduced to

2
Qo) | (99
o [(do ®) CT> ] '
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Example

Introduction

@ The underlying asset follows a GBM
dS; = rS;dt + oS, dW2
where W@ is a Q standard Brownian motion.
@ For a call option, X7 = max (St — K;0)
@ (7 =exp(—rT) X7 is the present value of the payoff.

Q Let
wl® = we — ot

and assume that we simulate
dS; = rSidt+ oS, dw
= (r—08) Sidt + S dW?
= AS:dt + oS, dWQ

instead of

dS; = rS;dt + oS, dW2 7
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Example

Introduction

@ If we use WQ®) instead of WQ, then the likelihood
ratio is

11 w?
f(w) vrvree (¥
w 1 1 (W79T)2
IRy
= exp <—9W—|— %92 T> :

Moreover, under Q (), Cr =exp (—rT) Xt is a
function of 6 while it is not the case under Q.
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Vazquez-Abad & Dufresne

Introduction

@ Vazquez-Abad & Dufresne attack the minimization
problem by applying

) dQ 2
a2 [(dQ 5 CT> ] .

@ Under some technical conditions (we discuss this topic
further in this presentation),

aagEow) [(dqc)l((pf)) CT>2] — EQO) [aae <d5/(<39) CT>2] |

® Requires derivatives for both Cy and #%) since Ct
does depend on 6 under Q (0).
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Introduction

@ Since

V() — Eow)[(dé’?)&f

B dQ (0) [ dQ 2
= EQ[ 40 <dQ(9) CT> ]

- =[G

the minimization problem is numerically easier to solve

when dealing with a EQ [ d?)Cz} since C2 does not

depend on 6 under the measure Q.
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General context

Stochastic

@ Gradient-based stochastic approximation (SA) (like >paroimation
Vazquez-Abad & Dufresne)

6" = arg min (0)

where V () = E@ [% C%} via the following iterative

scheme
6n+1 = H@ (Qn - angn)

where

@ 0, is the nth iteration,

@ g, represents an estimate of the gradient VV (),

@ {an:ne{1,2,3, ..}}is a positive sequence of
numbers converging to zero,

@ Ilg is a projection on @.
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General context

Stochastic
approximation

@ The main difference between Su & Fu and
Vazquez-Abad & Dufresne if the form of V (8) used in
the infinitesimal perturbation analysis (IPA)
estimator:

® Vazquez-Abad & Dufresne:

2
Vv (9) =EQ® l(dg%)q) ] .

@ Su & Fu:
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Technicalities

Introduction

@ Assumption 1. L (0) = dg%) is piecewise differentiable omosmatin
on ©. e

@ Intuition. Differentiation inside E€ [L (9) C%] leads the [EENErne
IPA estimator C%g—é (9). Algorithr

Computational

@ thatis, 2 (6) = ZEQ [C2L(6)] = EQ [C%% (9)} G

Definition

The infinitesimal perturbation analysis (IPA) estimator
: 2 dL

IS CT@ (9) o

The following Theorem shows that under some suitable
conditions, the IPA estimator is unbiased (under the measure

Q).
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Technicalities

Introduction

Stochastic
approximation

Theorem

Unbiasness of the IPA estimator. /f

(a) Assumption 1 holds,

(b) AM (0) s.t. ||[L(6+A0)—L ()] < M(0) A8 Q—a.s.
uniformly as AG — 0,

and either .

(i) 36 > 0, EQ [C%”(s} < o0, and E9 [M (G)HE] < 00 or
(ii) EQ [C2M ()] < o0

then C29% () is an unbiased estimator of %% (6) under
measure Q.
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Proof

Stochastic
approximation

@ The proof is based on the Dominated convergence
theorem

Theorem
Dominated convergence theorem (DCT).

@ If X1, X5,..., X, Y are Borel-measurable,
@ X, — X P—-as,,

@ Vn, | Xy <Y and

Q Y is integrable,

@ then X is integrable and
limp—e EP [Xs] = EF [limy—o X,] = EP [X].
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Proof
@ Proof of the Theorem. If (i) ES [C2M ()] < oo, oo
then
Vv d

3 € = E°[GLE)]
EQ [C2L(6+ A0)] —EQ [C2L(0)]
N A6

. L(6+A0)—L(6)
Q|2
A|9|TO E [CT AB

- {c% o L(0+20)—L(6)

A8—0 AB ] (bCT)

= E° {C%gé (9)] .
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Stochastic
approximation
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Proof

Stochastic
approximation

Q If (i) 36 > 0, E9 [C%“ﬂ < 0 and
EC {M (9)1+%] < oo then (ii) is satisfied since Holder's
inequality! implies that

B9 [C3M (0)]
- () (e [ ¥]) o

(xy) < (E[IxP ) (E[vie D) pg>0 ptg=1.
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Convexity

@ The use of the first derivative to find an optimum is OK
if the function is convex.

@ That is the goal of the second theorem.

Theorem
Convexity. If

(a) L(0) and Ct satisfy the conditions of the previous
theore;m and, in addition,
(b) g L > (0) >0 Q—a.s. and

(©) ac( ) such that H 0+ AG) — H < G(8) |28
Q—a.s. uniformly as A@ — 0, and

(d) EQ [C2G (0)] < oo (I think there is a typo in the paper)
then V (8) is a convex function for 6.

Su & Fu

Introduction

Stochastic
approximation

Application to

diffusion process
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Convexity

Stochastic
approximation

Proof. From Theorem 1,

;GEQ [C2L(0)] =E° [c%gé (9)} :
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Convexity
Therefore,

Stochastic

a approximation
—_EQ[C2L(0
892 [ T ( )]
B IGLON,,,, $E (GLO)
= Ao AB
_ 2350+ 80))| B [235 (0)]
= o A6
o BQ |2 9% (0 + A0) — 9% (6)
- AIQITOE Cr A6
JL JL
w0 |2 o 98 (0+A0) —55(6)
= E [CT AIGITO A0 (by DCT)

= E° lc% (ZZ; (6)] > 0.0
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Practical consideration
O Although derived under the measure @, implementation  [Ratsien.
of the gradient estimator can also be carried out under
an alternative measure such as Q (0).
@ In this case, the IPA estimator C29% (9) becomes
2 9L -
C555 (8) L(0) since

1% d )
Wio) = JEO[CEL(9)]
= E¢ [C%gé (9)} (Theorem 1)

= EQ®) [C%gé (6) L(G)] :
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Practical consideration

Stochastic
approximation

© This is likely to be advantageous in the same situation
in which the change of measure for estimating the price
itself is beneficial, since the gradient estimator also
contains the term C2.

Definition
IPA-Q () estimator is C295 (6) L (0).

Since EQ(©) [c%% (0) L (9)} = 3V (9), then the IPA-Q (6)
estimator C235 (9) L (0) is unbiased for %% (8) under Q (6) .
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@ The underlying asset price process follows

dS: = (St, t) dt + O'(St, t) thQ

Application to
diffusion process

where W@ is a Q—Brownian motion.
@ Set W2 = wQ gt
© By Girsanov's theorem,
@ there is a measure Q (6) under which WQ®) is a

Brownian motion,
(2]
dQ

LO) = 0@

I
3

—ow X\ — 92T)

= exp< GWQ—i- 92 )
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@ Intuitively, according to the notation of previous
presentation,

G = E9[C(Wy)] osion rocess
= /C w) f (w)
_ /c ;(Vm‘i)(p( w) dw
F (WQ®
- w0 e(wen) T
F(w?)

Therefore, L (6) =

<

(W?) is the ratio of two densities,

f being the density of W7Q under Q and ¢ being its
density under Q (0) .
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Since, W$ L N (0, T) and W7Q Qf(ve) N (6T, T), then

( Q)Z C?_l:fp“.Ca‘tion to
1 1 1 w. iffusion process
V2= VT P (‘2 T >

L(o) = L,

11 o <_1(WT9T) >
VaryT P\ T2 T
2
(030707
= exp —— T + 5 T




Application to diffusion IV

@ Note that o oross
oL ) o, 1,
30 0) = %exp <—0WT + 59 T>

- (-Wf.‘) +9T> exp <—9W7Q + ;92T>
_ (_W$+9T)L(9)
= —wf% ().
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Application to
diffusion process

aag (~w@+oT)L(0)

T exp <—9W7Q + %92 T)
2 1 5
+(—WE+0T) exp (—9W$ + 50 T)

<T+ (—wg +9T>2> L(8)

0 Q — a.s. (Assumption of Theorem 2)

28
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IPA-Q(theta)

Application to

diffusion process

@ As discussed before, it is usually preferable to use the
IPA-Q(6) estimator C%g—é (0) L(0) for the gradient.

@ Example. For deep out-of-the-money options, Ct will
be zero most of the time under the measure @, and this
could lead to a large variance when estimating the
gradient.
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IPA-Q(theta)

© For the Brownian motion setting, since

0 L(B) =exp (—9 W-,C—P(e) — %92 T) and Application to

diffusion process

@ %) =-w2L),
then the IPA-Q(6) estimator is

G O)LO)

= G (-w?L®) L)

2
= —aw? <exp (—QWS(") ~ %92 T>>

= W% exp (—20WP® —°T)
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Convergence

Theorem

Convergence (Fu 1990). /f

(a)f € O,

(b) %—‘g is continuous in 6,

(c) V is convex and therefore as a unique minimum in
0" € © where © is a compact set,

(d) 9n+1 =0, — an8n (Gn)

(e) supgeeE [g7 (0)] < K < o0

(f) El&n (0n)| o] = 55 (60) + B,

(g) where Y72 |aiB;| < 00, Y37 1 ap = 09, Y17 aj < 00
then 8, — 0* a.s.

Su & Fu

Api
dif

fusion process

Convergence
Algorithm
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Algorithm

@ Optimization stage - find 6"

@ Initialization: set 8 =6y and ¢ > 0
@ Loop: forn=1to N;
@ (N is the maximal number of iterations to determine Algorithm
0%)
® Loop: fori=1to N»
@ Ns is the sample size required to estimate the gradient
@ Generate a sample according to
dSe = (4 (St t) + 0,0 (St t)) dt + o (St t) dW2 ).
© End of the inner loop.
@ The IPA-Q (0,) estimator:
&n (Gn) =
1 N 2 Q(6n) Q(0n) _ 2
1 Ty =3 WR O exp (20w — 027 ).

© 0py1 =04 — angn (Gn) .
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Algorithm

O stopping criterion: if |a,g, (0,)] < €, then exit the
loop.

@ Set 0" = 0,1
O Pricing stage - under Q (6")
@ Fori=1to N3 Hertim
@ N3 is the sample size for the pricing purpose.

® Generate a sample according to

dSe = (4 (Se.t) + 0% (St t)) dt + o (St t) dWS).
@ The point estimator for the price is

_ 1N .
G = ﬁ; (ST,i)L(0%, )

1 & @) 12
= E;C(STI exp( GWT,,' —5(6) T)

33
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Algorithm

O The estimator of the variance of the price estimator is
@Q(Q*) {/C\ ] - i %3: c? (St.1)ex (_29* WQ(G*) _ (9*)2 7') g Algorithm

0 N3 = T.i p T
@ The margin of error is

@0(9*) {60}
Margin = Z\| —————

34



Su & Fu

Computational experiments |
Asian Option

© The underlying asset price process:
dS; = rS;dt + oS, dW2

e Asian Option: CT = exp (_rT> max <AT _ K' 0) experiments
_ 1 N
AT = Fomy LizNo+1 9T

@ Set 6= 2k

Computational

© Under Q(0), dS; = AS;dt + o S;dw3®
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Asian Option

@ The two estimator that are compared:

@ Vazquez-Abad & Dufresne:
V (6) = EQ®) [(L () CT)Q} which implies that the
IPA estimator is
an (L(8) Cr)® =2L(0) Cr (Cr 35 (0) +L(8) Cr).
@ Fu & Su: V (0) = E? [L(0) C2] which implies that
the IPA estimator is 95 (9) CZ and the IPA-Q (8)
estimator is L (0) % (0) C2.

Computational
experiments
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Asian Option

@ No optimization on the 6

@ N; =50 000
Table I, p.40: Asian call option
IPA-VD IPA-Q (M)
Vv v
a d a VR oo

0.2 -1755 157 -178,8 4.28 13

0.3 -93.4 9.2 -96.2  2.06 20
0.4 -387 7.3 -40.6  1.44 26
05 3.89 8.3 3.83 1.89 19
0.6 4544 12.0 48.39  3.46 12
0.7 9488 222 104.97 7.41 9

0.8 168.82 41.6 190.81 16.86 6
So =050, K=50,0=0.2, r=0,05 T =1 daily average
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Asian Option
@ Initial value: A satisfies Sy = exp (—AoT) K so that
the expected terminal stock price would be at the strike
price.
@ N; = 20 is the maximal number of iterations to
determine 6*

© N, =50 is the sample size required to estimate the Computational

experiments

gradient
Q ¢ =0.001 (stopping criteria)

@ There is at most 1000 paths devoted to the
determination of the optimal measure Q (6)

Q@ a,=an %7, ag = m

@ Ad hoc restriction: |AA] < 0.2

@ N3 =10 000

Q@ S5=50,0=02r=005T=1
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Asian Option

@ Optimal A" is taken from Vazquez-Abad & Dufresne
obtained by an extensive brute-force search

Table I, p.41: Asian call option

IS Via SA/IPA_Q (/\) IS Via Optlmal A* Comp.utational
K Price Cl A Nl* Price Cl /\* experiments

30 20.407 0.134 0.26 15 20.407 0.135 0.25
45 8320 0.114 043 20 8.318 0.115 0.40
50 5.675 0.096 053 19 5.672 0.096 0.50
55 3.713 0.076 055 20 3.718 0.076 0.60
75 0.575 0.022 0.79 18 0.574 0.022 0.80

39



Su & Fu

References |

@ Su, Y and C. Fu (2002). Optimal Importance Sampling
in Securities Pricing, Journal of Computational Finance
vol. 5, no. 4 27-50.

@ Vazquez-Abad, F. and D. Dufresne (1998). Accelerated KSEEES
Simulation for Pricing Asian Options, Proceedings of
the Winter Simulation Conference, 1493-1500.




	Introduction
	Stochastic approximation
	Application to diffusion process
	Convergence
	Algorithm
	Computational experiments
	References



