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Formulation and Settings I
Assumptions

1 The �nancial market is arbitrage-free.

There is an equivalent probability measure Q.

2 European contingent claim paying XT at time T .

1 EQ
�
X 2T
�
< ∞.

3 frt : t � 0g is the risk free spot rate process
4 CT = exp

�
�
R T
0 rsds

�
XT is the present value of the

payo¤.
5 The time t price of the claim is C0 = EQ [CT ] .
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Formulation and Settings I
Example

1 The underlying asset follows a GBM

dSt = rStdt + σStdW
Q
t

where W Q is a Q standard Brownian motion.
2 For a call option, XT = max (ST �K ; 0)
3 CT = exp (�rT )XT is the present value of the payo¤.
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Formulation and Settings I
Change of measure

1 C0 = EQ [CT ] = EQ
�
h
dQ
dQ �CT

i
1 where dQ

dQ � is the Radon-Nikodym derivative.

2 Formulation with last course�s notation:

C0 =
Z
C (s) fS (s) ds

=
Z
C (s)

fS (s)
φ (s)

φ (s) ds

= EQ
�
�
C (ST )

fS (ST )
φ (ST )

�
1 ST price of the underlying asset at time T .
2

fS (ST )
φ(ST )

is the Radon-Nikodym derivative.
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Formulation and Settings I
Variance reduction

1 The goal is to minimize the variance of the price
estimator which involves

VarQ
�
�
dQ
dQ�

CT

�
= EQ

�

"�
dQ
dQ�

CT

�2#
�
�

EQ
�
�
dQ
dQ�

CT

��2
= EQ

�

"�
dQ
dQ�

CT

�2#
� C 20

2 It is not possible to minimize the variance if we do not
restrict Q� to belong to a family of measures.
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Formulation and Settings II
Variance reduction

3 fQ (θ) : θ 2 Θg is the family of measures we consider
1 θ is the parameter
2 Θ is a compact set
3 8θ 2 Θ, Q (θ) is absolutely continuous with respect to
Q.

4 The variance reduction is then reduced to

min
θ2Θ

EQ (θ)
"�

dQ
dQ (θ)

CT

�2#
.
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Formulation and Settings I
Example

1 The underlying asset follows a GBM

dSt = rStdt + σStdW
Q
t

where W Q is a Q standard Brownian motion.
2 For a call option, XT = max (ST �K ; 0)
3 CT = exp (�rT )XT is the present value of the payo¤.
4 Let

W Q (θ)
t = W Q

t � θt.

and assume that we simulate

dSt = rStdt + σStdW
Q (θ)
t

= (r � σθ) Stdt + σStdW
Q
t

= λStdt + σStdW
Q
t

instead of
dSt = rStdt + σStdW

Q
t 7
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Formulation and Settings II
Example

5 If we use W Q (θ) instead of W Q , then the likelihood
ratio is

f (w)
φ (w)

=

1p
2π

1p
T
exp

�
� w 2
2T

�
1p
2π

1p
T
exp

�
� (w�θT )2

2T

�
= exp

�
�θw +

1
2

θ2T
�
.

Moreover, under Q (θ), CT = exp (�rT )XT is a
function of θ while it is not the case under Q.
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Formulation and Settings I
Vazquez-Abad & Dufresne

1 Vazquez-Abad & Dufresne attack the minimization
problem by applying

∂

∂θ
EQ (θ)

"�
dQ

dQ (θ)
CT

�2#
.

2 Under some technical conditions (we discuss this topic
further in this presentation),

∂

∂θ
EQ (θ)

"�
dQ

dQ (θ)
CT

�2#
= EQ (θ)

"
∂

∂θ

�
dQ

dQ (θ)
CT

�2#
.

1 Requires derivatives for both CT and
dQ
dQ (θ) since CT

does depend on θ under Q (θ) .
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Formulation and Settings I
Su & Fu

1 Since

V (θ) = EQ (θ)
"�

dQ
dQ (θ)

CT

�2#

= EQ
"
dQ (θ)
dQ

�
dQ

dQ (θ)
CT

�2#

= EQ
�
dQ

dQ (θ)
C 2T

�
,

the minimization problem is numerically easier to solve
when dealing with ∂

∂θ EQ
h
dQ
dQ (θ)C

2
T

i
since C 2T does not

depend on θ under the measure Q.
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Stochastic approximation I
General context

1 Gradient-based stochastic approximation (SA) (like
Vazquez-Abad & Dufresne)

θ� = argmin
θ2Θ

V (θ)

where V (θ) = EQ
h
dQ
dQ (θ)C

2
T

i
via the following iterative

scheme
θn+1 = ΠΘ (θn � anbgn)

where

1 θn is the nth iteration,
2 bgn represents an estimate of the gradient rV (θ) ,
3 fan : n 2 f1, 2, 3, ...gg is a positive sequence of
numbers converging to zero,

4 ΠΘ is a projection on Θ.
11
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Stochastic approximation II
General context

2 The main di¤erence between Su & Fu and
Vazquez-Abad & Dufresne if the form of V (θ) used in
the in�nitesimal perturbation analysis (IPA)
estimator:

1 Vazquez-Abad & Dufresne:

V (θ) = EQ (θ)
"�

dQ
dQ (θ)

CT

�2#
.

2 Su & Fu:

V (θ) = EQ
�
dQ

dQ (θ)
C2T

�
.
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Stochastic approximation I
Technicalities

1 Assumption 1. L (θ) = dQ
dQ (θ) is piecewise di¤erentiable

on Θ.
2 Intuition. Di¤erentiation inside EQ

�
L (θ)C 2T

�
leads the

IPA estimator C 2T
∂L
∂θ (θ) .

1 that is, ∂V
∂θ (θ) =

∂
∂θ EQ

�
C2T L (θ)

�
= EQ

h
C2T

∂L
∂θ (θ)

i
De�nition
The in�nitesimal perturbation analysis (IPA) estimator
is C 2T

∂L
∂θ (θ) .

The following Theorem shows that under some suitable
conditions, the IPA estimator is unbiased (under the measure
Q).
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Stochastic approximation II
Technicalities

Theorem
Unbiasness of the IPA estimator. If
(a) Assumption 1 holds,
(b) 9M (θ) s.t. kL (θ + ∆θ)� L (θ)k < M (θ) k∆θk Q�a.s.
uniformly as ∆θ ! 0,
and either
(i) 9δ > 0, EQ

h
C 2+2δ
T

i
< ∞, and EQ

h
M (θ)1+

1
δ

i
< ∞ or

(ii) EQ
�
C 2TM (θ)

�
< ∞

then C 2T
∂L
∂θ (θ) is an unbiased estimator of

∂V
∂θ (θ) under

measure Q.

14
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Stochastic approximation I
Proof

1 The proof is based on the Dominated convergence
theorem

Theorem
Dominated convergence theorem (DCT).

1 If X1,X2, ...,X ,Y are Borel-measurable,
2 Xn ! X P�a.s.,
3 8n, jXn j < Y and
4 Y is integrable,

2 then X is integrable and
limn!∞ EP [Xn ] = EP [limn!∞ Xn ] = EP [X ] .
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Stochastic approximation II
Proof

3 Proof of the Theorem. If (ii) EQ
�
C 2TM (θ)

�
< ∞,

then

∂V
∂θ
(θ) =

∂

∂θ
EQ
�
C 2T L (θ)

�
= lim

∆θ!0

EQ
�
C 2T L (θ + ∆θ)

�
� EQ

�
C 2T L (θ)

�
∆θ

= lim
∆θ!0

EQ
�
C 2T
L (θ + ∆θ)� L (θ)

∆θ

�
= EQ

�
C 2T lim

∆θ!0

L (θ + ∆θ)� L (θ)
∆θ

�
(DCT)

= EQ
�
C 2T

∂L
∂θ
(θ)

�
.
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Stochastic approximation III
Proof

4 If (i) 9δ > 0, EQ
h
C 2+2δ
T

i
< ∞ and

EQ
h
M (θ)1+

1
δ

i
< ∞ then (ii) is satis�ed since Hölder�s

inequality1 implies that

EQ
�
C 2TM (θ)

�
=

�
EQ
h
C 2(1+δ)
T

i� 1
1+δ
�

EQ
h
(M (θ))

1+δ
δ

i� δ
1+δ
. �

1E [jXY j] �
�

E
h
jX j

1
p

i�p �
E
h
jY j

1
q

i�q
, p, q > 0, p + q = 1. 18
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Stochastic approximation I
Convexity

1 The use of the �rst derivative to �nd an optimum is OK
if the function is convex.

2 That is the goal of the second theorem.

Theorem
Convexity. If
(a) L (θ) and CT satisfy the conditions of the previous
theorem and, in addition,
(b) ∂2L

(∂θ)2
(θ) > 0 Q�a.s. and

(c) 9G (θ) such that
 ∂L

∂θ (θ + ∆θ)� ∂L
∂θ (θ)

 < G (θ) k∆θk
Q�a.s. uniformly as ∆θ ! 0, and
(d) EQ

�
C 2TG (θ)

�
< ∞ (I think there is a typo in the paper)

then V (θ) is a convex function for θ.
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Stochastic approximation II
Convexity

Proof. From Theorem 1,

∂

∂θ
EQ
�
C 2T L (θ)

�
= EQ

�
C 2T

∂L
∂θ
(θ)

�
.

20
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Stochastic approximation III
Convexity
Therefore,

∂2

∂θ2
EQ
�
C 2T L (θ)

�
= lim

∆θ!0

∂
∂θ EQ

�
C 2T L (θ)

����
θ=θ+∆θ

� ∂
∂θ EQ

�
C 2T L (θ)

�
∆θ

= lim
∆θ!0

EQ
h
C 2T

∂L
∂θ (θ + ∆θ)

i���� EQ
h
C 2T

∂L
∂θ (θ)

i
∆θ

= lim
∆θ!0

EQ
"
C 2T

∂L
∂θ (θ + ∆θ)� ∂L

∂θ (θ)

∆θ

#

= EQ
"
C 2T lim

∆θ!0

∂L
∂θ (θ + ∆θ)� ∂L

∂θ (θ)

∆θ

#
(by DCT)

= EQ
"
C 2T

∂2L

(∂θ)2
(θ)

#
> 0. �

21
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Stochastic approximation I
Practical consideration

1 Although derived under the measure Q, implementation
of the gradient estimator can also be carried out under
an alternative measure such as Q (θ).

2 In this case, the IPA estimator C 2T
∂L
∂θ (θ) becomes

C 2T
∂L
∂θ (θ) L (θ) since

∂V
∂θ
(θ) =

∂

∂θ
EQ
�
C 2T L (θ)

�
= EQ

�
C 2T

∂L
∂θ
(θ)

�
(Theorem 1)

= EQ (θ)
�
C 2T

∂L
∂θ
(θ)

dQ
dQ (θ)

�
= EQ (θ)

�
C 2T

∂L
∂θ
(θ) L (θ)

�
.
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Stochastic approximation II
Practical consideration

3 This is likely to be advantageous in the same situation
in which the change of measure for estimating the price
itself is bene�cial, since the gradient estimator also
contains the term C 2T .

De�nition

IPA-Q (θ) estimator is C 2T
∂L
∂θ (θ) L (θ).

Since EQ (θ)
h
C 2T

∂L
∂θ (θ) L (θ)

i
= ∂V

∂θ (θ), then the IPA-Q (θ)

estimator C 2T
∂L
∂θ (θ) L (θ) is unbiased for

∂V
∂θ (θ) under Q (θ) .

23
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Application to di¤usion I
1 The underlying asset price process follows

dSt = µ (St , t) dt + σ (St , t) dW
Q
t

where W Q is a Q�Brownian motion.
2 Set W Q (θ)

t = W Q
t � θt

3 By Girsanov�s theorem,

1 there is a measure Q (θ) under which WQ (θ) is a
Brownian motion,

2

L (θ) =
dQ

dQ (θ)

= exp
�
�θWQ (θ)

T � 1
2

θ2T
�

= exp
�
�θWQ

T +
1
2

θ2T
�

24



Su & Fu

Introduction

Stochastic
approximation

Application to
di¤usion process

Convergence

Algorithm

Computational
experiments

References

Application to di¤usion II

4 Intuitively, according to the notation of previous
presentation,

C0 = EQ [C (WT )]

=
Z
C (w) f (w) dw

=
Z
C (w)

f (w)
φ (w)

φ (w) dw

= EQ (θ)

24C �W Q (θ)
T

� f �W Q (θ)
T

�
φ
�
W Q (θ)
T

�
35 .

Therefore, L (θ) =
f (W Q

T )
φ(W Q

T )
is the ratio of two densities,

f being the density of W Q
T under Q and φ being its

density under Q (θ) .

25
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Application to di¤usion III

Since, W Q
T

Q� N (0,T ) and W Q
T

Q (θ)� N (θT ,T ), then

L (θ) =

1p
2π

1p
T
exp

�
� 1
2
(W Q

T )
2

T

�
1p
2π

1p
T
exp

�
� 1
2
(W Q

T �θT )
2

T

�

= exp

0B@�1
2

�
W Q
T

�2
T

+
1
2

�
W Q
T � θT

�2
T

1CA
= exp

�
�θW Q

T +
1
2

θ2T
�
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Application to di¤usion IV

5 Note that

∂L
∂θ
(θ) =

∂

∂θ
exp

�
�θW Q

T +
1
2

θ2T
�

=
�
�W Q

T + θT
�
exp

�
�θW Q

T +
1
2

θ2T
�

=
�
�W Q

T + θT
�
L (θ)

= �W Q (θ)
T L (θ) .
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Application to di¤usion V

6

∂2L

∂θ2
(θ) =

∂

∂θ

�
�W Q

T + θT
�
L (θ)

= T exp
�
�θW Q

T +
1
2

θ2T
�

+
�
�W Q

T + θT
�2
exp

�
�θW Q

T +
1
2

θ2T
�

=

�
T +

�
�W Q

T + θT
�2�

L (θ)

> 0 Q � a.s. (Assumption of Theorem 2)
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Stochastic approximation I
IPA-Q(theta)

1 As discussed before, it is usually preferable to use the
IPA-Q(θ) estimator C 2T

∂L
∂θ (θ) L (θ) for the gradient.

2 Example. For deep out-of-the-money options, CT will
be zero most of the time under the measure Q, and this
could lead to a large variance when estimating the
gradient.
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Stochastic approximation II
IPA-Q(theta)

3 For the Brownian motion setting, since

1 L (θ) = exp
�
�θWQ (θ)

T � 1
2 θ2T

�
and

2
∂L
∂θ (θ) = �W

Q (θ)
t L (θ),

then the IPA-Q(θ) estimator is

C 2T
∂L
∂θ
(θ) L (θ)

= C 2T
�
�W Q (θ)

T L (θ)
�
L (θ)

= �C 2TW
Q (θ)
T

�
exp

�
�θW Q (θ)

T � 1
2

θ2T
��2

= �C 2TW
Q (θ)
T exp

�
�2θW Q (θ)

T � θ2T
�
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Stochastic approximation I
Convergence

Theorem
Convergence (Fu 1990). If
(a) θ 2 Θ,
(b) ∂V

∂θ is continuous in θ,
(c) V is convex and therefore as a unique minimum in
θ� 2 Θ where Θ is a compact set,
(d) θn+1 = θn � angn (θn)
(e) supθ2ΘE

�
g2n (θ)

�
< K < ∞

(f) E [gn (θn)j Fn ] = ∂V
∂θ (θn) + βn

(g) where ∑∞
i=n jai βi j < ∞, ∑∞

n=1 an = ∞, ∑∞
n=1 a

2
n < ∞

then θn ! θ� a.s.
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Stochastic approximation I
Algorithm

1 Optimization stage - �nd θ�

1 Initialization: set θ = θ0 and ε > 0
2 Loop: for n = 1 to N1

1 (N1 is the maximal number of iterations to determine
θ�)

3 Loop: for i = 1 to N2
1 N2 is the sample size required to estimate the gradient
2 Generate a sample according to

dSt = (µ (St , t) + θnσ (St , t)) dt + σ (St , t) dW
Q (θn)
t .

3 End of the inner loop.

4 The IPA-Q (θn) estimator:
gn (θn) =
1
N2 ∑N2i=1 �C2T ,iW

Q (θn)
T ,i exp

�
�2θWQ (θn)

T ,i � θ2nT
�
.

5 θn+1 = θn � angn (θn) .
32
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Stochastic approximation II
Algorithm

6 stopping criterion: if jangn (θn)j < ε, then exit the
loop.

2 Set θ� = θn+1
3 Pricing stage - under Q (θ�)

1 For i = 1 to N3
1 N3 is the sample size for the pricing purpose.

2 Generate a sample according to

dSt = (µ (St , t) + θ�σ (St , t)) dt + σ (St , t) dW
Q (θ�)
t .

3 The point estimator for the price is

bC0 =
1
N3

N3

∑
i=1

C (ST ,i ) L (θ
�, i)

=
1
N3

N3

∑
i=1

C (ST ,i ) exp
�
�θ�WQ (θ�)

T ,i � 1
2
(θ�)2 T

�
33
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Stochastic approximation III
Algorithm

4 The estimator of the variance of the price estimator is

dVar
Q (θ�) hbC0i =  1

N3

N3

∑
i=1
C 2 (ST ,i ) exp

�
�2θ�W Q (θ�)

T ,i � (θ�)2 T
�!

� bC 20
5 The margin of error is

Margin = z α
2

vuutdVar
Q (θ�)

hbC0i
N3

34
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Computational experiments I
Asian Option

1 The underlying asset price process:
dSt = rStdt + σStdW

Q
t

2 Asian option: CT = exp (�rT )max (AT �K ; 0)
AT = 1

N�N0 ∑N
i=N0+1 Si TN

3 Set θ = λ�µ
σ

1 Under Q (θ), dSt = λStdt + σStdW
Q (θ)
t

35
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Computational experiments II
Asian Option

4 The two estimator that are compared:

1 Vazquez-Abad & Dufresne:

V (θ) = EQ (θ)
h
(L (θ)CT )

2
i
which implies that the

IPA estimator is
∂
∂θ (L (θ)CT )

2 = 2L (θ)CT
�
CT

∂L
∂θ (θ) + L (θ)

∂
∂θCT

�
.

2 Fu & Su: V (θ) = EQ
�
L (θ)C2T

�
which implies that

the IPA estimator is ∂L
∂θ (θ)C

2
T and the IPA-Q (θ)

estimator is L (θ) ∂L
∂θ (θ)C

2
T .
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Computational experiments III
Asian Option

1 No optimization on the θ

2 N3 = 50 000

Table I, p.40: Asian call option
IPA-VD IPA-Q (λ)

∂V
∂λ CI ∂V

∂λ CI VR

0.2 -175.5 15.7 -178,8 4.28 13
0.3 -93.4 9.2 -96.2 2.06 20
0.4 -38.7 7.3 -40.6 1.44 26
0.5 3.89 8.3 3.83 1.89 19
0.6 45.44 12.0 48.39 3.46 12
0.7 94.88 22.2 104.97 7.41 9
0.8 168.82 41.6 190.81 16.86 6
S0 = 50, K = 50, σ = 0.2, r = 0, 05, T = 1 daily average
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Computational experiments IV
Asian Option

1 Initial value: λ0 satis�es S0 = exp (�λ0T )K so that
the expected terminal stock price would be at the strike
price.

2 N1 = 20 is the maximal number of iterations to
determine θ�

3 N2 = 50 is the sample size required to estimate the
gradient

4 ε = 0.001 (stopping criteria)

1 There is at most 1000 paths devoted to the
determination of the optimal measure Q (θ)

5 an = a0n�0.75, a0 =
��� 1
g0(λ0)

���
6 Ad hoc restriction: j∆λj � 0.2
7 N3 = 10 000
8 S0 = 50, σ = 0.2, r = 0, 05, T = 1
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Computational experiments V
Asian Option

9 Optimal λ� is taken from Vazquez-Abad & Dufresne
obtained by an extensive brute-force search

Table II, p.41: Asian call option
IS via SA/IPA-Q (λ) IS via optimal λ�

K Price CI λ N�1 Price CI λ�

30 20.407 0.134 0.26 15 20.407 0.135 0.25
45 8.320 0.114 0.43 20 8.318 0.115 0.40
50 5.675 0.096 0.53 19 5.672 0.096 0.50
55 3.713 0.076 0.55 20 3.718 0.076 0.60
75 0.575 0.022 0.79 18 0.574 0.022 0.80
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