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FUTURES MARKET EQUILIBRIUM WITH HETEROGENEITY

AND A SPOT MARKET AT HARVEST

1.  Introduction

This paper studies hedging and (partial) equilibrium in the futures market for a

commodity which is populated by heterogeneous producers and speculators.  The

commodity is traded in a spot market only at harvest time.  Each producer is endowed with a

non-traded private technology and trades in futures contracts in order to reduce her quantity

and price risks.  Speculators invest their initial wealth in bonds and take positions in futures

contracts written on the commodity.

The model is motivated by the observation that a spot market is open only at harvest

time for some commodities.1 In such a setting, the producer faces both a price risk and a

quantity risk.  However, most of the optimal hedging literature deals only with price risk.

Hirshleifer (1990, 1991) discusses the effects of both types of risk on the hedging decision

but does not model them simultaneously.  A simple way to represent the quantity and price

risks of each producer is to model them as a private cash flow risk, where the cash position

of a hedger is the present value of her terminal cash flows.  The difficulty in solving the

equilibrium under these conditions is that both the futures price and the cash position of a

                                                
    1  This observation is especially true for seasonal and not storable commodities such as fresh
strawberries.  Since these characteristics imply a discontinuous cash market, which is open only at
harvest time, a food processing firm or a restaurant operator using fresh strawberries as input has a
strong incentive to trade in strawberry futures contracts during the interim period in order to hedge
against price and quantity risks.  Likewise, a farmer producing strawberries might want to hedge
against price and quantity risks of her crop.



hedger are endogenous.  In more traditional models, the cash position, which is the fixed

quantity of the commodity held by the producer, is independent of the futures price.2

The optimal demand for a futures contract depends on tastes, on the resolution of

uncertainty, and on the formulation of the hedging problem.  Early contributions in the

optimal hedging literature usually assumed that hedgers were monoperiodic expected utility

maximizers (see for instance Stein (1961), Johnson (1960), Anderson and Danthine (1980)

and Losq (1982)).  A common result from most of these papers is that the optimal hedge

ratio consists of a pure hedge component, and a mean variance component.

More recent models are derived in a continuous-time framework, whereby the

hedger maximizes the expected utility of intertemporal consumption subject to a wealth-

budget or cash-budget dynamic constraint.  The cash-budget formulation has been used by

Ho (1984) in a model in which a farmer, subject to both output and price risk during the

production period, hedges a non-traded position.  The optimal demand for futures contracts

depends on the exogenous cash position (the output), and includes both a mean-variance

efficiency component and a Merton-Breeden dynamic hedging component.  The wealth-

budget formulation, initiated by Stulz (1984), is used by Adler and Detemple (1988) to solve

a problem similar to that of Ho.  The resulting demand for futures contracts depends on the

output, but also includes a mean-variance efficiency term, a dynamic hedging component,

and a minimum-variance component.  For myopic investors, both formulations yield

tractable optimal demands, similar to those obtained in the single period models.  Therefore,

investors are assumed to have logarithmic utility functions in the model developed herein.

                                                
    2  See, for example, Anderson and Danthine (1983).



The demand for futures contracts depends on the uncertainty structure of the spot

and the futures market.  A producer that hedges against price risk to protect a non-traded

position has a demand dependent on the output.  Without trade constraints, and in the

absence of frictions, the demand for futures contracts is independent of the output [see

Briys, Crouhy and Schlesinger (1990)].  In the model developed herein, a producer is

concerned with both quantity and price risks, and thus hedges against the risk of individual

cash flows.

Although equilibrium futures price and portfolio policies are determined

simultaneously, the determination herein proceeds in two stages for mathematical

convenience.  First, the demand of each agent is derived assuming that the parameters of the

futures price are known.  Then, individual demands are aggregated to obtain the equilibrium

futures price at any point in time.

The optimal demand for futures contracts by each investor is derived by assuming

temporarily that the parameters of the futures price are known, and by applying the

equivalent martingale method developed by Karatzas, Lehoczky and Shreve (1987).

Diversity in cash flow risk leads to different hedging strategies.  The demand for futures

contracts by a producer depends on her wealth, the present value of her terminal production,

and the relative risk process of the futures contract.  This structure of demand is motivated

by a desire to diversify, and to insure the actual value of the terminal production.  Producers

are long or short in the futures contract if there is heterogeneity in cash flow risk.  A similar

result is obtained by Hirshleifer (1991) in a discrete-time model where heterogeneity in the

resolution of uncertainty leads to different hedging strategies.  In the model developed



herein, the differential in cash flow risk can also be interpreted as a differential in the

resolution of uncertainty.

Once the optimal demand for futures contracts is derived, the aggregation follows

easily.  A continuous-time equilibrium exists in the futures market when producers account

for both quantity and price risks by hedging against their individual and terminal cash flow

risks.  Stochastic cash positions and equilibrium futures price are endogenous, unlike

previous equilibrium models which ignore quantity risk.  The futures price depends only on

the volatility of the aggregate wealth.  The volatility of the futures price is stochastic and

increases, on average, as the time to maturity decreases.  This maturity effect  in the model

is consistent with Samuelson (1965).  The stochastic volatility obtained in the model is also

consistent with the recent empirical evidence on the behaviour of daily futures prices.3 The

positive mean of the instantaneous growth rate of futures prices indicates normal

backwardation in the model.  The relative risk process of futures prices is a weighted sum of

the present values of all the terminal productions of hedgers.

Aggregation is made easier by assuming a logarithmic utility function.  The relative

risk process of futures prices in the model of heterogeneous agents developed herein has a

weighted-average structure.  Detemple and Murty (1994), who appear to be the first to deal

with heterogeneity in an intertemporal production economy, obtain a similar result for the

equilibrium interest rate.4

                                                
    3  See, for example, Milonas (1986) and Anderson (1985).

    4  In the model of Detemple and Murty (1994), heterogeneity is implied by different beliefs
about the rates of return of the production technologies.  In our paper, heterogeneity
proceeds from the parameters of the production processes which differ for different
producers.



Our results show that the futures price is driven by aggregate wealth, rather than the

spot price as in other models and that the futures price process is a simple one which

depends on the relative risk process itself.  Contrary to the contango hypothesis (a futures

market dominated by risk averse commodity producers) or the normal backwardation (a

futures market dominated by commodity users), our model shows that producers could be

long or short on the futures.  Another interesting result which is consistent with that of

Anderson and Danthine (1983) and the Samuelson hypothesis, and the empirical

observations of Milonas (1986), is that volatility in futures prices increases as time to

maturity shortens.  Finally, our results are obtained while allowing for the simultaneous

resolution of both price and quantity risks.

The remainder of the paper is organized as follows.  In section 2, the economy is

described. In section 3, optimal demands for futures contracts by each type of investor are

derived. In section 4, the equilibrium futures price is derived; and in section 5, some

concluding remarks are offered.

2.  The Economy

Consider a continuous-time production economy with a Brownian uncertainty

structure that is populated with two classes of agents.  The first class consists of producers

indexed by i = 1, 2, ..., n, and the second class consists of speculators indexed by k=1,2...,m.

Consider a complete probability space (Ω, ℑ , P) and a finite time horizon [0,T].  On (Ω, ℑ ,

P), define a Brownian motion z with values in ℜ . Also assume the following:



H1. All producers grow the same commodity, and each producer is endowed

with their own specific production technology.5  The value of production in

process S satisfies:

where the constant parameter µi represents the expected instantaneous

change in the rate of production growth, and σi is the constant local variance

of the process.  S is the production at harvest time, expressed as a cash flow

in units of the numeraire.6  The only source of risk, zt, which denotes a

standard Wiener process, equally affects all production processes.7  The

production in process i
TS  is not tradeable, and .ioS i

t ∀〉

H2. Producers and speculators have free and unlimited access to a financial

market where a futures contract written on the specified commodity is

traded.  The settlement price of this contract, Ft, satisfies:

                                                
    5  The aggregate production at maturity time T is homogenous.  However, the differences in
the production technology lead to differences in the individual quantities of production at
maturity time T.

    6 The numeraire obviously is not the commodity which exists only at harvest time.  As
the model is a partial equilibrium model, such a differentiation does not pose any problems.

    7 The unique source of technology could be, for example, meteorological conditions
which condition the strawberry crop.
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The production growth rate and the futures contract have the same

uncertainty structure, and α and δ are determined in equilibrium later [see

equation (4.3)].8

H3. An instantaneously riskless bond is available and is held by both types of

agents. The roll-over value of an investment I in the riskless rate solves:

where rt is deterministic and non-stationary. 9

H4. A producer i chooses a feasible trading strategy { }i
tN , that is, the number of

futures contracts which can be bought or sold.  This strategy is adapted to her

information set so as to maximize the expected utility of her terminal

consumption i
T

i
T

i
T XSC += .  The terminal gain from trading in the futures

contract i
TX can be written as:

where i
TX  is the terminal value of a margin account.  The position i

sN  is

credited (debited) with any gain (loss) caused by price changes.  The margin

account is also credited with interest at the continuously compounded

                                                
    8  The production in process S is not tradeable before the harvest time T because a market
for the immature commodity does not exist. However, commodity futures contracts are traded
continuously before harvest time.  This ensures the completeness of the market. The
inexistence of a cash market for the production in process precludes both the cash and carry
and the reverse cash and carry arbitrage for the pricing of the futures contract.  More
specifically, although short sales are feasible in the spot market, its price is not observable (it
does not exist) before harvest time T.  Therefore, any replication of the stock using the futures
is not feasible.

    9 rt is exogeneous in our partial equilibrium model.
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interest rate rt.  Borrowing is possible at the same interest rate if the investor

incurs losses that cause the value of the account to become negative.

Transaction costs are ignored.

H5. A producer i solves:

 (2.1) [ ])(Max i
T

T CLneE β−

     { }N t
i

where xi is the initial cash-position of producer i, and ß is a subjective

discount rate which is identical across agents.  EQ is the expectation under

the risk-neutral probability measure Q which is equivalent to P.10  Given

one source of risk in the economy and one traded asset (the futures), there

always exists a unique martingale risk-neutral measure Q which is equivalent

to P.11  Equations (2.1) and (2.2) are the static equivalents of the

maximization of terminal wealth under the wealth-budget dynamic

constraint [see Karatzas, Lehoczky, and Shreve (1987)].

                                                
     10  EQ is the expectation operator associated with a particular probability measure Q on

),( ℑΩ . This probability measure Q is equivalent to probability measure P, meaning that
both measures have the same null set, i.e. Q(A)= 0 if and only if P(A)=0.

    11 See Bensoussan (1984) or Harrison and Pliska (1981).
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H6. A speculator trades in the futures contract.  She chooses a feasible strategy

{ }k
tN , that is, the number of futures constracts which can be bought or sold,

so as to maximize his terminal wealth k
TX , which satisfies:

H7. The utility function of speculator k is logarithmic.  Thus the speculator

solves:

where xk is the initial wealth of speculator k, ß is the subjective discount rate used by

producers, and W is the terminal wealth. 12  Equations (2.3) and (2.4) are also

equivalent to the static problem of terminal wealth maximization under a dynamic

wealth-budget constraint.  EQ is the expectation under a probability measure Q

which is equivalent to probability measure P.

                                                
    12  The logarithmic utility function is used for both producers and speculators because it
allows for aggregation of wealth in a heterogeneous setting.  See Dothan (1978) for more
details.
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3.  Optimal Demands for the Futures Contract

In this section, the optimization problems for producers and speculators are solved

when a futures contract is available and the interest rate is exogenous.  Before deriving the

demands for investment, the present value of terminal production i
TS  is determined.

Lemma 1

Assume for the time being that a bounded equilibrium relative risk process









=
t

t
t δ

α
θ  exists for the futures price at time t.  The present value of the terminal

production i
tS  is:

where EQ is the expectation under the equivalent martingale measure Q.

Comment:  The relative risk process {αt /δt} is a function of the parameters of the

futures contract (i.e. the only traded asset).  The interest rate, rt, does not appear in the

expression of the relative risk process defined in Lemma 1 because no need exists for cash

(borrowing) to buy or sell a futures contract. Even if a margin must be posted to trade a

futures contract, it could be done using Treasury bills, and that results in no cost for the

trader of the futures contract.  If the commodity was a traded asset, then cash (borrowing)

would be needed and the relative risk process would be {(αt - rt)/δt}.

Proof:  See the Appendix.

The futures contract is a continuously traded asset in an economy with only one

source of uncertainty. Therefore, the market is complete, and the present value, V, of each
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terminal production, S, is unique.  The volatility of V is of interest because of its relevance to

the hedging decision of the producer.  Since the exact form of the relative risk process is not

yet known, the volatility of the present value of terminal production is:13

where Dt is the Malliavin derivative operator at time t, and ][~
u

t

o
ut dzduz +∫= θ  is the

Brownian motion under the equivalent martingale measure Q, and is thus translated from the

Brownian motion zt under probability measure P.14  The second expression on the right hand

side (RHS) of equation (3.1) is justified by the uncertainty about the future evolution of the

relative risk process at time t. If the relative risk process is deterministic, the Malliavin

derivatives are equal to zero.
                                                

    13 Note that i
tV can be rewritten as:
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For more details, please see the Appendix.

    14  The Malliavin derivative Dt θs of the functional θs represents the effect on θs of a
perturbation in the Brownian motion zt at time t.  Such a perturbation affects the whole path of
zt from t on, and of the functional θs accordingly.  The Malliavin derivative arises in our model
since the present value of the terminal production depends on the path of the futures relative
risk function θs.  For a detailed introduction to Malliavin calculus, see Ocone (1988).  For
previous financial applications of Malliavin calculus, see Ocone and Karatzas (1991) for the
optimal portfolio problem, and Detemple and Zapatero (1991) for the asset pricing problem.
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The allocation problem of the individual agent given that the  relative risk process of

futures price is known is now solved.  The demands for the futures contract by producers

and by speculators are given below in propositions 1 and 2, respectively.

Proposition 1

Consider the problem described by equations (2.1) and (2.2).  The optimal demand for the

futures contract by producer i at time t is:

where i
t

i
t

i
t VXW +=  (wealth) is the absolute risk tolerance of investor i's utility function,

and V is the present value of the cash flows generated by the position in the commodity at

time T.15

Proof:  See the Appendix.

The first and second terms on the RHS of equation (3.2) are the demand for mean

variance efficiency and the hedge ratio, respectively.  The present value of the non-traded

position in the commodity is insured.  The producer uses futures contracts to offset

variations in the present value i
tV  of the cash flow i

TS received from her non-traded position

at maturity.  The diversity in initial endowments and technologies implies that some

producers might be short in the futures contract at any time t, whereas others are long in the

futures contract.  The net position of a producer in futures contracts is determined by the

                                                
    15 Detemple and Murty (1994) obtain similar results in a model with heterogeneous
beliefs about the rates of return of production technologies.  In our paper, the source of
heterogeneity arises from the parameters of the specific production processes.
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difference between the volatility of her wealth and the volatility of the present value of her

terminal production.  Producers with highly (un)certain terminal cash flows smooth their

terminal consumptions by buying (selling) futures contracts.  The fact that some producers

are long when others are short in the futures contract is a consequence of heterogeneity.

Hirshleifer (1991) obtains a similar result for a discrete time model in which heterogeneity

concerns the resolution of uncertainty for producers.  In contrast, heterogeneity is part of the

equilibrium in the present model, and the hedging position of the producer is determined by

the relative volatility of her production process.  In the Hirshleifer model, arrival of

information is independent of the equilibrium futures price, and the assumption of additively

separable preferences, complete markets, and a non-random endowment of the numeraire

are required to obtain a martingale property for the futures price.  This martingale property

of the futures price is instrumental in deriving the demand for futures contracts.  No

restriction on the futures or the spot price of the commodity are needed to solve for the

equilibrium in the next section of the paper.

Before doing so, the optimal demand for investment by speculators is derived.  The

difference between a speculator and a producer herein is only in the position in the non-

traded technology.



Proposition 2

For the problem described by equations (2.3) and (2.4) the optimal demand for futures

contracts by speculator k is:

where k
tW (wealth) is the absolute risk tolerance of the speculator's utility function.

Demands for futures contracts by speculators depend on the mean and the variance of the

instantaneous changes in the futures price.

Proof:  See the Appendix.

4.  Equilibrium with Heterogenous Agents

The equilibrium value, θt, of the relative risk process of the futures price at any time

t is derived in this section.  The market clearing solution is straightforward if producers

hedge only against the price risk.  In the model developed herein, producers hedge against

fluctuations in the present values of their respective terminal cash flows, which depend on

the equilibrium value of the relative risk process for futures price.  This equilibrium value

depends on the present values of the terminal cash flows of all producers.  Thus, the present

values of the terminal cash flows and the relative risk process are endogenous to the model

developed herein.

Proposition 3

(3.3) t
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t
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t
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δ



For the economy described in section 2, a unique equilibrium relative risk process of

the futures price exists at each time which satisfies:

where:
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Proof:  See the Appendix.

i
tb  is the contribution of producer i to the aggregate wealth of the economy, WGt,

expressed as the current value of his production i
tV . θt is the relative risk process expressed

in an alternative form which more directly relates to the volatilities of the production values,

i
tσ . Equation (4.1) characterizes the relative risk process in equilibrium, and is obtained by

observing that a zero net supply of the futures contract exists in equilibrium.  The

equilibrium value of the relative risk process depends on the ratios bi's, and the volatilities

i
vtσ which are also determined endogenously.  This weighted-average characterization

follows from a structural property of linear technologies with logarithmic utility [for another

example, see Detemple and Murty (1994)].
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Proposition 4

The equilibrium futures price process for the delivery of a unit of the commodity at time T is

described by:

Proof:  See the Appendix.

The futures price process is relatively simple since it is strictly dependent on the

relative risk process.  The drift term is equal to the square of the relative risk process. The

futures price is an increasing (decreasing) function of time, if the relative risk is greater

(smaller) than one.  The volatility term of the futures price is the relative risk process itself,

which implies that volatility depends on time.  Equation (4.3) characterizes an arbitrage free

futures price which depends only on the volatility structure of aggregate wealth.  A similar

result is obtained by Heath, Jarrow and Morton (1992) who constrain the drifts of forward

prices to get arbitrage-free bond prices.  Their constraint leads to a unique equivalent

martingale probability measure, as is the case for our model.  Proposition 4 simply states

that the futures price is driven by the volatility of aggregate wealth, and not by spot prices as

in other models.  The premium paid by the short side to the long side of the contract

diminishes with increasing aggregate risk tolerance (that is, increasing aggregate wealth),

which is consistent with logarithmic utilities.  The higher the aggregate wealth the less

producers are willing to pay for insurance.  This wealth effect on insurance confirms a well-

known result due to Mossin (1968) under decreasing absolute risk aversion.  Price changes

per unit of time are stochastic, and have conditional variances that increase with time as the

(4.3) tttt dzdtdF θθ += 2



present values of terminal production increase.  An alternative expression for the

instantaneous volatility of the futures price change at time t is:

The instantaneous conditional volatility at time t of the futures price change at time  t+j,

dFt+j, for all j > 0, is denoted by:

This conditional volatility increases with the time index j.16   This behaviour is consistent

with the Samuelson hypothesis, which states that changes per unit of time in the volatility of

futures prices increase as the time to maturity decreases.  The non- tradeness of production

technologies also contributes to the increase of futures price volatility. To see this, observe

that:

                                                
    16 It can be noted that b is a P-martingale and that, consequently, the first term of the

RHS of (4.4), i
i

i
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Gt

i
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b
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decreases with j, and the second term on the RHS of (4.4) thus increases with j.  The final
result is an increase of the conditional volatility in (4.5) with j.
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The first part of the volatility of dFt is stationary, and the second part of the volatility tends

to zero as t tends to T.  Therefore, the volatility of dFt is negatively correlated to time to

maturity. This increasing volatility property is explained by the fact that a non-traded

position held by a producer cannot be changed before time T. So, at any time t, the time

remaining before the next trade in the production technology is equal to the time to maturity

of the futures contract.  As time to maturity decreases, so does the time until the next trade in

the production technology. This increases the resolution rate of production uncertainty, and

is consistent with results by Anderson and Danthine (1983), who establish an explicit link

between the time pattern of the volatility of futures prices and the resolution of production

uncertainty.

The futures price dynamics described by proposition 4 also appear to be consistent

with the empirical evidence.  Although the behaviour of futures prices is still an open

question, several studies have uncovered a maturity effect in the volatility of futures price

series. Anderson (1985) reports a maturity effect in the daily prices for commodities.

Milonas (1986) concludes that a strong maturity effect exists in 10 out of 11 futures price

series examined (including agricultural, financial and metal series).

5 Concluding Remarks

Hedging and equilibrium are studied herein for a setting in which: (1) heterogeneous

producers hedge to reduce their respective terminal cash flow risks, which emanate from

non-traded production technologies, by trading in futures contracts written on the

commodity they grow, and (2) speculators invest their initial wealth in bonds and trade in

futures contracts.  The distinctive feature of the model is that cash flow (and not price) risk



drives trades in futures contracts.  Consequently, the futures price and the cash position are

endogenous.  Furthermore, equilibrium prices are derived when both quantity and price risks

can be hedged simultaneously.

This theoretical framework yields some interesting insights.  First, the net position in

futures contracts depends on the relative volatility of the producers' cash flows.  Producers

with cash flow uncertainty, which are resolved less rapidly than the aggregate, will tend to

go short in order to smooth their terminal consumption, or alternatively, will hold futures

contracts.  This result differs from that obtained in traditional models in which producers sell

futures contracts to hedge their non-traded positions against spot price fluctuations.  This

result is consistent with the casual observation that the distinction between hedgers and

speculators is ambiguous, and thus producers can be both on the long and the short sides.

Second, changes in the equilibrium futures price depend on wealth and the relative

risk process.  The futures price dynamics resulting from this model are consistent with

empirical evidence (Milonas, 1986) for commodity futures price, where trading is absent.

Specifically, the model predicts an inverse relation between volatility of futures price

increments and maturity (the Samuelson hypothesis):  Volatility increases as time to

maturity shortens.

An interesting avenue for future research would be to study a similar model in an

incomplete market setting.  This might account better for the ARCH behaviour reported in

studies of futures prices.17

                                                
    17  Yang and Brorsen (1993) report ARCH/GARCH behaviour of commodity futures prices.



Appendix

Proof of lemma 1

Assume that an equilibrium bounded relative risk process θt exists.  The terminal

production S obtained by a producer i from her non-traded technology can be attained by

using bond and futures contracts.  For the admissible strategy Nt, the following must be

verified:

Equation (A1) means that the instantaneous return on a production process can be achieved

using the strategy N t
im r   which involves trading the futures contract and the riskless bond.

Integrating (A1), one obtains:
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Taking expectations on both sides of (A2) under Q gives:

Therefore the time t value of the production process i is:
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Proof of proposition 1

Consider the optimal consumption of a producer i at time T, *i
TC .  Since the futures

price has the same uncertainty structure as the non-traded technology, it can be used to

obtain the terminal consumption of producer i.  It is known that:

where X represents the terminal payoff of the investment in futures contracts by the producer

i.  Define:

and

where 
τ

τ
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θ =  for τ  in [0,T] denotes the relative risk process of the traded technology

correlated to the non-traded position of producer i.  According to Karatzas, Lehoczky and
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Shreve (1987), the optimal terminal consumption can be written as )( **
T

i
T yIC ξ= , where

I(.) is a strictly decreasing function and y* is the Lagrange multiplier.  From equation (A4),

where EQ is the expectation under the measure Q.  From equation (A5),

The first part on the right-hand side (RHS) of (A6) is the present value of the optimal

wealth *i
tW  at time t, which is also the optimal consumption.  In this model, consumption

occurs at the terminal date, and therefore CT = WT, and at any date t before T, Ct = Wt , and

Ct is the present value of CT.  The second part of the RHS of equation (A6) is the present

value, Vt
i  , of the final production, St

i , at time t.  This value is derived in lemma 1.  The

instantaneous volatility of i
tV  is i

vtσ  i
tV   .  To witness this, write:
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The transformation 11 −−= ttt
i

t dMV η  allows us to do the derivation in the original probability

space P.  Since we want to obtain the stochastic part of i
tV  , we apply Itô's rule for a product

of stochastic functions, while noting that dt is deterministic.  Doing such:

[ ]ttttttttt
i

t dzdzMdV γηθηη 121 )( −−− +−−=

where  γ ηt o tS= E { e
r duu

o

−z

exp[( ½ ( ) ) ~ ½ ]µ σ σ θ θ− + − +zi i
T u u u

o

T

T z du dz2 2

[ ~ ]− − + ℑz D dzt u u
t

t
i

tθ θ σ }

   can be reduced to:






∫ +−=
t

o
uuut dzdu θθη 2

2
1

exp









∫−= durd
t

o
ut exp

( )
















ℑ

∫
=

+





 −−

t

ZT

oT

dur

t

T
ii

T

o
u

eSeEM
σσµ

η
2

2

1



Hence, the volatility of i
tV is:
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To derive the volatility of *i
tW  for an investor with a logarithmic utility function, first note
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the optimal demand for futures contracts by producer i is obtained by equating the

instantaneous volatility of the RHS of equation (A7) with the instantaneous volatility of the

RHS of equation (A6) to get:

Therefore, the optimal demand for the futures contract by producer i is:

Proof of proposition 2

The demand for investment by a speculator is obtained by setting V  to zero in

equation (A8) and then solving.

Proof of proposition 3

The relative risk process of the futures price is obtained by setting the aggregate

demand for futures contracts by producers and speculators to zero, because the futures

contracts are in zero net supply.  The existence and the uniqueness of this process is shown

by first assuming that the conditions of proposition 3 are respected.  Then, the aggregate

production at time t can be written as a function of the relative risk process θt. Doing this

yields:
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where:

Equation (A10) means simply that at the harvest (terminal) time T, the aggregate production

process is equal to the marketable production.  The instantaneous variation of aggregate

production is:

Using the market clearing condition 0
1

=∑
+

=

mn

j

j
tN  , and propositions 1 and 2, we have

∑=
i

i
vt

i
tt b σθ  and setting  ∑ ∑ =+

=

+

+=

n

i

mn

nk
t

k
t

i
t lWX

1 1
the following process is obtained for ~At  (the

value of At under equilibrium condition):

This is equivalent to:
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lt depends only on the interest rate and the initial cash position of agents, both of which are

exogeneous.  The system of equations (A9)-(A13) is consistent if and only if:

Thus, at each point in time t, ~At and θt should be such that .~
TT AA =  The above problem

can be viewed as a design problem in which ~At  and θt are chosen at each time t such that

the terminal condition is met. This is equivalent to solving a backward stochastic differential

equation of the type studied  by Pardoux and Peng (1990), namely:

where x(t) denotes an Itô process;

y(t) is a state variable;

f[t, x(t), y(t)] and g[t, x(t), y(t)]  are some known functions;

zs is a standard Wiener process; and

X is the terminal condition.

The conditions for the existence of a unique solution to equation (A15) are:

a) f(., 0, 0) and g(., 0, 0) belong to M2(0, 1, R), the set of integrable and progressively

measurable functions relative to the information set.

b) c > 0 exists such that:
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for all x1, x2, y1, y2 ε R, and for all couples (t, W) a.e.

c) There exists a constant a such that:
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for all x, y1, y2 ε R and for all couples (t, W) a.e.

In the case of ~At :
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Condition a) obviously holds for the differential equation of ~At .  Condition b) is the

Lipschitz condition.  Since θt is bounded, the Lipschitz condition holds for the differential

equation of ~At .  Condition c) also holds for the differential equation of ~At .  This is apparent

after setting [ ]






 ∈= T

t

l
a t ,0min , and knowing that lt is always positive.  When these three

conditions are respected, a unique couple ( ~At ,θt) which solves the differential equation

(A11) with the terminal condition (A4) exists at each time t.  The solution to the system

(A11)-(A14) is equivalent to an optimal allocation made by a central planner.

That the solution is compatible with equilibrium in the initial decentralised economy

is now shown.  If a unique couple ( ~At ,θt) solution exists to the system of (A11)-(A14) at

each time t, then:
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However, from equation (A12), the volatility of t
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Equating the two volatilities leads to the equilibrium condition of the decentralised

economy:
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Proof of proposition 4

The futures price, FGt, for the delivery of aggregate production is obtained by setting the

instantaneous volatility of dFGt at time t, δ t, to Vt
i

vt
i

i
σ∑  , and then, the relation αt/δt = θt is

used to determine the optimal αt .  The futures price for delivery of one unit of production

follows.
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