
Chapitre 4

LR, W ET LM en pratique.
OPEN DATA C:\T837\DAT\GNPM1.DAT

CALENDAR 47 1 4

COMPUTE NBEG=47:1 , NEND=79:3

ALLOCATE 0 NEND

*

DATA NBEG NEND GNP M1

*

COMPUTE NLAG=4

DOFOR I = GNP M1

(01.0040)  LOG I

(01.0052) END DO

DIFF(DIFFS=1) GNP / GNPD

DIFF(DIFFS=1) M1 / M1D

*

SET M1DS NBEG+NLAG+1 NEND = M1D+M1D{1}+M1D{2}+M1D{3}+M1D{4}

*

*        Le modèle non‑contraint

*

LINREG GNPD NBEG+NLAG+1 NEND RESNC

# CONSTANT M1D{0 TO NLAG}

Dependent Variable GNPD ‑ Estimation by Least Squares

Quarterly Data From 48:02 To 79:03

Usable Observations    126      Degrees of Freedom   120

Centered R**2     0.310814      R Bar **2   0.282098

Uncentered R**2   0.758477      T x R**2      95.568

Mean of Dependent Variable      0.0179479831

Std Error of Dependent Variable 0.0132357618

Standard Error of Estimate      0.0112145411

Sum of Squared Residuals        0.0150919117

Regression F(5,120)                  10.8237

Significance Level of F           0.00000001

Durbin‑Watson Statistic             1.280040

Q(31)                              53.438239

Significance Level of Q           0.00738386

   Variable                     Coeff       Std Error      T‑Stat     Signif

*******************************************************************************

1.  Constant                  0.008057822  0.001928686     4.177883  0.00005612

2.  M1D                       0.586178151  0.194609782     3.012069  0.00316501

3.  M1D{1}                    0.295423282  0.241926044     1.221131  0.22443037

4.  M1D{2}                   ‑0.008513931  0.250539813    ‑0.033982  0.97294769

5.  M1D{3}                    0.590795328  0.271395010     2.176884  0.03144717

6.  M1D{4}                   ‑0.415377588  0.211514415    ‑1.963826  0.05186258

COMPUTE RSSNC = %RSS

*

*        Test de Wald sous la forme Rb=r et estimés contraints:  méthode 1

*

RESTRICT(CREATE) 4

# 2 3

# 1 ‑1 0

# 3 4

# 1 ‑1 0

# 4 5

# 1 ‑1 0

# 5 6

# 1 ‑1 0

F(4,120)=      3.75880 with Significance Level 0.00644832

Dependent Variable GNPD ‑ Estimation by Restricted Regression

Quarterly Data From 48:02 To 79:03

Usable Observations    126      Degrees of Freedom   124

Centered R**2     0.224464      R Bar **2   0.218209

Uncentered R**2   0.728216      T x R**2      91.755

Mean of Dependent Variable      0.0179479831

Std Error of Dependent Variable 0.0132357618

Standard Error of Estimate      0.0117029184

Sum of Squared Residuals        0.0169828291

Durbin‑Watson Statistic             1.239781

Q(31)                              58.960556

Significance Level of Q           0.00178593

   Variable                     Coeff       Std Error      T‑Stat     Signif

*******************************************************************************

1.  Constant                 0.0078416886 0.0019831444      3.95417  0.00012829

2.  M1D                      0.2160175765 0.0360583856      5.99077  0.00000002

3.  M1D{1}                   0.2160175765 0.0360583856      5.99077  0.00000002

4.  M1D{2}                   0.2160175765 0.0360583856      5.99077  0.00000002

5.  M1D{3}                   0.2160175765 0.0360583856      5.99077  0.00000002

6.  M1D{4}                   0.2160175765 0.0360583856      5.99077  0.00000002

*

*        Le modèle contraint:  méthode 2

*

LINREG GNPD NBEG+NLAG+1 NEND RESC

# CONSTANT M1DS

Dependent Variable GNPD ‑ Estimation by Least Squares

Quarterly Data From 48:02 To 79:03

Usable Observations    126      Degrees of Freedom   124

Centered R**2     0.224464      R Bar **2   0.218209

Uncentered R**2   0.728216      T x R**2      91.755

Mean of Dependent Variable      0.0179479831

Std Error of Dependent Variable 0.0132357618

Standard Error of Estimate      0.0117029184

Sum of Squared Residuals        0.0169828291

Regression F(1,124)                  35.8894

Significance Level of F           0.00000002

Durbin‑Watson Statistic             1.239781

Q(31)                              58.960556

Significance Level of Q           0.00178593

   Variable                     Coeff       Std Error      T‑Stat     Signif

*******************************************************************************

1.  Constant                 0.0078416886 0.0019831444     3.954169  0.00012829

2.  M1DS                     0.2160175765 0.0360583856     5.990772  0.00000002

COMPUTE RSSC = %RSS

*

*        Test du rapport de vraisemblance

*

RATIO(DEGREES=4) NBEG+NLAG+1 NEND

# RESNC

# RESC

Log Determinants are ‑9.029878e+000 ‑8.911834e+000

Chi‑Squared(4)=     14.873523 with Significance Level 0.00497086

*

*        Test de Wald sous la forme RSSC‑RSSNC

*

COMPUTE WALD = (RSSC‑RSSNC)/(RSSNC/%NOBS)

CDF CHISQUARED WALD NLAG

Chi‑Squared(4)=     15.786972 with Significance Level 0.00331875

*

*        Test de Lagrange sous forme RSSC‑RSSNC

*

COMPUTE LM = (RSSC‑RSSNC)/(RSSC/%NOBS)

CDF CHISQUARED LM NLAG

Chi‑Squared(4)=     14.029205 with Significance Level 0.00720243

*

*        Test de Lagrange sous la forme TR2

*

LINREG(NOPRINT) RESC NBEG+NLAG+1 NEND

# CONSTANT M1DS M1D{1 TO NLAG}

CDF CHISQUARED %TRSQ NLAG

Chi‑Squared(4)=     14.029205 with Significance Level 0.00720243

Tendances, changements structurels et tests de Chow selon LR, W et LM
A.  Estimation des modèles contraint et non‑contraint
CAL 1947 1 4

ALL 0 89:1

COMPUTE NBEG = 47:1,  NEND = 89:1

OPEN DATA C:\T837\DAT\USAQ.DED

DATA(FORMAT=RATS) NBEG NEND RGNP

*

SET RGNP  NBEG NEND = LOG(RGNP)

SET TREND NBEG NEND = T

*

COMPUTE SHOCK = 73:1

SET DU NBEG NEND = T>73:1

SET DTS NBEG NEND = TREND*DU

PRINT(DATE) SHOCK‑1 SHOCK+3 TREND DU DTS

 ENTRY         TREND             DU             DTS

 1972:04  104.00000000000 0.0000000000000   0.00000000000

 1973:01  105.00000000000 0.0000000000000   0.00000000000

 1973:02  106.00000000000 1.0000000000000 106.00000000000

 1973:03  107.00000000000 1.0000000000000 107.00000000000

 1973:04  108.00000000000 1.0000000000000 108.00000000000

*

*        Le modèle contraint:  H0:  une seule régression, q=2

*

COMPUTE Q = 2

LINREG RGNP NBEG NEND RESC

# CONSTANT TREND

Dependent Variable RGNP ‑ Estimation by Least Squares

Quarterly Data From 1947:01 To 1989:01

Usable Observations    169      Degrees of Freedom   167

Centered R**2     0.987431      R Bar **2   0.987356

Uncentered R**2   0.999969      T x R**2     168.995

Mean of Dependent Variable      7.6835707562

Std Error of Dependent Variable 0.3848665254

Standard Error of Estimate      0.0432770524

Sum of Squared Residuals        0.3127748453

Regression F(1,167)               13119.6108

Significance Level of F           0.00000000

Durbin‑Watson Statistic             0.062974

Q(36)                             887.964367

Significance Level of Q           0.00000000

   Variable                     Coeff       Std Error      T‑Stat     Signif

*******************************************************************************

1.  Constant                 7.0192080525 0.0066876653   1049.57527  0.00000000

2.  TREND                    0.0078160318 0.0000682379    114.54087  0.00000000

COMPUTE RSSC = %RSS

PRJ RGNP_C

*

*        Le modèle non‑contraint:  H1:  deux régressions séparées

*

LINREG RGNP NBEG SHOCK RESNC1

# CONSTANT TREND

Dependent Variable RGNP ‑ Estimation by Least Squares

Quarterly Data From 1947:01 To 1973:01

Usable Observations    105      Degrees of Freedom   103

Centered R**2     0.984080      R Bar **2   0.983925

Uncentered R**2   0.999979      T x R**2     104.998

Mean of Dependent Variable      7.4407108281

Std Error of Dependent Variable 0.2698574614

Standard Error of Estimate      0.0342141610

Sum of Squared Residuals        0.1205727079

Regression F(1,103)                6366.7934

Significance Level of F           0.00000000

Durbin‑Watson Statistic             0.104593

Q(26)                             624.416539

Significance Level of Q           0.00000000

   Variable                     Coeff       Std Error      T‑Stat     Signif

*******************************************************************************

1.  Constant                 6.9748367853 0.0067259061   1037.01073  0.00000000

2.  TREND                    0.0087900763 0.0001101621     79.79219  0.00000000

COMPUTE RSSNC1 = %RSS

COMPUTE NOBS1 = %NOBS

*

LINREG RGNP SHOCK+1 NEND RESNC2

# CONSTANT TREND

Dependent Variable RGNP ‑ Estimation by Least Squares

Quarterly Data From 1973:02 To 1989:01

Usable Observations     64      Degrees of Freedom    62

Centered R**2     0.951990      R Bar **2   0.951216

Uncentered R**2   0.999989      T x R**2      63.999

Mean of Dependent Variable      8.0820128258

Std Error of Dependent Variable 0.1232851311

Standard Error of Estimate      0.0272302483

Sum of Squared Residuals        0.0459721580

Regression F(1,62)                 1229.3940

Significance Level of F           0.00000000

Durbin‑Watson Statistic             0.146715

Q(16)                             236.138175

Significance Level of Q           0.00000000

   Variable                     Coeff       Std Error      T‑Stat     Signif

*******************************************************************************

1.  Constant                 7.1936844822 0.0255630370    281.40962  0.00000000

2.  TREND                    0.0064605698 0.0001842575     35.06271  0.00000000

COMPUTE RSSNC2 = %RSS

COMPUTE NOBS2 = %NOBS

*

*        Le modèle non‑contraint:  H1:  une seule régression

*                                       avec variables muettes

*

LINREG RGNP NBEG NEND

# CONSTANT TREND DU DTS

Dependent Variable RGNP ‑ Estimation by Least Squares

Quarterly Data From 1947:01 To 1989:01

Usable Observations    169      Degrees of Freedom   165

Centered R**2     0.993307      R Bar **2   0.993186

Uncentered R**2   0.999983      T x R**2     168.997

Mean of Dependent Variable      7.6835707562

Std Error of Dependent Variable 0.3848665254

Standard Error of Estimate      0.0317704709

Sum of Squared Residuals        0.1665448659

Regression F(3,165)                8162.9028

Significance Level of F           0.00000000

Durbin‑Watson Statistic             0.119086

Q(36)                             891.750577

Significance Level of Q           0.00000000

   Variable                     Coeff       Std Error      T‑Stat     Signif

*******************************************************************************

1.  Constant                  6.974836785  0.006245519   1116.77450  0.00000000

2.  TREND                     0.008790076  0.000102294     85.92957  0.00000000

3.  DU                        0.218847697  0.030472179      7.18189  0.00000000

4.  DTS                      ‑0.002329507  0.000238076     ‑9.78471  0.00000000

PRJ RGNP_NC1

B. Tests d'hypothèse
*        Test de WALD sous la forme Rb = r

*

EXCLUDE

# DU DTS

Null Hypothesis : The Following Coefficients Are Zero

DU

DTS

F(2,165)=     72.43678 with Significance Level 0.00000000

*

*        Test de WALD sous la forme RSSC‑RSSNC (Pindyck, p.115)

*

COMPUTE WALD = ( (RSSC‑RSSNC1‑RSSNC2)/Q ) / ( (RSSNC1+RSSNC2)/(%NOBS‑4) )

CDF FTEST WALD Q %NOBS‑4 

F(2,165)=     72.43678 with Significance Level 0.00000000

*

COMPUTE WALD = ( RSSC‑RSSNC1‑RSSNC2 ) / ( (RSSNC1+RSSNC2)/(%NOBS‑4) )

CDF CHISQUARED WALD Q

Chi‑Squared(2)=    144.873554 with Significance Level 0.00000000

*

*        Test du RV sous la forme T[log SIG(H0) ‑ log SIG(H1) ]

*

COMPUTE LR = %NOBS*( LOG(RSSC)‑LOG(RSSNC1+RSSNC2) )

CDF CHISQUARED LR Q

Chi‑Squared(2)=    106.506986 with Significance Level 0.00000000

*

*        Test du RV sous la forme RSSC‑RSSNC

*

COMPUTE RSSNC = RSSNC1+RSSNC2

COMPUTE LR =  (RSSC‑RSSNC) / ( SQRT(RSSC/%NOBS)*SQRT(RSSNC/%NOBS) )

CDF CHISQUARED LR Q

Chi‑Squared(2)=    108.278340 with Significance Level 0.00000000

*

*        Test de LAGRANGE sous la forme RSSC‑RSSNC

*

COMPUTE LM =  (RSSC‑RSSNC) / (RSSC/%NOBS)

CDF CHISQUARED LM Q

Chi‑Squared(2)=     79.011682 with Significance Level 0.00000000

*

*        Test de LAGRANGE sous la forme TR2

*

LINREG RESC NBEG NEND

# CONSTANT TREND DU DTS

Dependent Variable RESC ‑ Estimation by Least Squares

Quarterly Data From 1947:01 To 1989:01

Usable Observations    169      Degrees of Freedom   165

Centered R**2     0.467525      R Bar **2   0.457843

Uncentered R**2   0.467525      T x R**2      79.012

Mean of Dependent Variable      ‑0.000000000

Std Error of Dependent Variable  0.043148059

Standard Error of Estimate       0.031770471

Sum of Squared Residuals        0.1665448659

Regression F(3,165)                  48.2912

Significance Level of F           0.00000000

Durbin‑Watson Statistic             0.119086

Q(36)                             891.750577

Significance Level of Q           0.00000000

   Variable                     Coeff       Std Error      T‑Stat     Signif

*******************************************************************************

1.  Constant                 ‑0.044371267  0.006245519     ‑7.10450  0.00000000

2.  TREND                     0.000974044  0.000102294      9.52201  0.00000000

3.  DU                        0.218847697  0.030472179      7.18189  0.00000000

4.  DTS                      ‑0.002329507  0.000238076     ‑9.78471  0.00000000

CDF CHISQUARED %TRSQ Q ;*  Test de Lagrange:  exclusion des variables dummy

Chi‑Squared(2)=     79.011682 with Significance Level 0.00000000

C. Estimation du modèle avec changement de pente et point d'attache
*        Changement de pente avec point d'attache (Pindyck, 1998, section 5.4)

*

SET DSHOCK = T==73:1

SET DTS SHOCK+1 NEND = DTS‑SHOCK

*

LINREG RGNP NBEG NEND

# CONSTANT TREND DTS

Dependent Variable RGNP ‑ Estimation by Least Squares

Quarterly Data From 1947:01 To 1989:01

Usable Observations    169      Degrees of Freedom   166

Centered R**2     0.993045      R Bar **2   0.992961

Uncentered R**2   0.999983      T x R**2     168.997

Mean of Dependent Variable      7.6835707562

Std Error of Dependent Variable 0.3848665254

Standard Error of Estimate      0.0322896251

Sum of Squared Residuals        0.1730749014

Regression F(2,166)               11850.6572

Significance Level of F           0.00000000

Durbin‑Watson Statistic             0.111984

Q(36)                             923.580796

Significance Level of Q           0.00000000

   Variable                     Coeff       Std Error      T‑Stat     Signif

*******************************************************************************

1.  Constant                  6.979667049  0.006047024   1154.23173  0.00000000

2.  TREND                     0.008653371  0.000088459     97.82385  0.00000000

3.  DTS                      ‑0.002570165  0.000222037    ‑11.57538  0.00000000

PRJ RGNP_NC2

D. Représentation graphique des 2 modèles avec changement structurel
OPEN PLOT C:\t837\GRA\DEV292.GSP

GRPARM HEADER 16 AXISLABELING 14

GRAPH(PATTERNS) 2

# RGNP_NC1 NBEG NEND 1

# RGNP_NC2 NBEG NEND 7

Chow et les modèles périodiques. 
A. Oui, ces deux modèles sont semblables.  Dans le cas de Chow, le ou les coefficients changent à partir d'une certaine date.  Dans le cas des modèles périodiques, le changement ne se fait pas à une date fixe mais à chaque période avec un va et vient d'un modèle à l'autre.

B. Il faut créer deux variables muettes P1 et P2.  P1 est égal à 1 si la période est impaire et 0 autrement.  P2 est égal à 1 si la période est paire et 0 autrement.  On crée deux nouvelles variables explicatives y1 = P1*y et y2 = P2*y.  On estime ensuite la régression   

LINREG Y

# Y1{1} Y2{1}

et nous aurons un estimé de a et b.

C. Le test de Lagrange fonctionne de la façon suivante. On estime à l'aide de toutes les observations un modèle AR(1) avec un seul paramètre pour toutes les observations.  À l'aide des résidus estimés, on conduit une autre régression où les résidus sont régressés par rapport à la variable explicative du premier modèle (y retardé)  mais aussi la variable y1 définie plus haut.  Si TR2 est important, on saura que la variable y1 a un pouvoir explicatif et que le carcan d'un seul coefficient n'est pas approprié.

On y va: oui ou non?.
A. Il faut régresser les résidus par rapport à yt-1 et ajouter yt-2 .  Si TR2 de la régression est petit par rapport à une valeur critique (2 (1), on garde le modèle AR(1).

B. On régresse les résidus par rapport à yt-1 et on ajoute une constante.  On vérifie ensuite le TR2.

C. On régresse les résidus par rapport à yt-1 et on ajoute la variable yt-1 multipliée par une variable muette appropriée qui tient compte des périodes paires ou impaires. 

En l'honneur de Robert E. Jr. Lucas prix Nobel d'économie 1995
A.  On demande la moyenne et la variance pour toute la période.  Nous n'avons pas directement cette information mais les résultats joints présentent les estimés d'un AR(1).   Selon les formules usuelles, la moyenne est donnée par (2,023)/(1-0,512)=4,145 et la variance par 4,032/(1-0,5122) = 22,11.

B.  Avant de répondre à cette question, il fallait constater que DU_1 et DU_2 sont des variables muettes qui prennent la valeur 1 quand t est respectivement supérieur à 72:12 et 80:12; ces variables captent les changements de niveau observés à ces périodes.  Ceci est bien documenté dans le programme GRAPH.PRG.  Le modèle contraint contient une seule constante (en plus du paramètre phi) et est estimé sur toute la période (RSS_C=8479,43).  Le modèle non-contraint est plus flexible et comprend la constante, les deux variables muettes et le paramètre phi (RSS_NC=7546,75).  

Le test de rapport de vraisemblance est donné par T*log(VAR_C/VAR_NC)=522*log(16,24/14,45) = 522*log(1,7248)=60,96

Les tests de WALD et LAGRANGE sont donnés par (RSS_C-RSS_NC) divisé par la variance estimée sous le modèle contraint (8479,43/522=16,24) ou le modèle non-contraint (7546,75/522 = 14,45).  Le numérateur est égal à 932,68 et les tests sont respectivement égaux à 57,43 et 64,54.  Dans les trois cas, la statistique est supérieure à la valeur critique d'une X2(2 degrés de liberté) égale à 5,99.  On rejette évidemment les contraintes.  À noter que W>RV>L comme la théorie le prédit.

C.  Le modèle AR(1) estimé sous la période 73:1-80:12 n'est pas approprié.  Le seuil critique du test de Ljung-Box (0,004) est de loin inférieur à 0,05 et on peut donc rejeter l'hypothèse bruit blanc des résidus.  Les résidus sont correlés, ce qui indique une spécification incomplète.  Le test de LAGRANGE (régression des résidus sur les variables explicatives et trois autres retards) égal à 13,97 (seuil critique égal à 0,0029) montre que le R2 de cette régression est relativement élevé et que ces variables omises sont importantes car elles ont un pouvoir explicatif.  Les autocorrélations égales à 0,35 (délai 1), 0,48 (délai 2), 0,30 (délai 3) sont d'ailleurs incompatibles avec une décroissance exponentielle caractéristique d'un tel processus.  

D.  Par substitutions successives ou par l'utilisation de la formule dérivée en classe, la prévision est égale à 8,91, ce qui est très loin de la vraie valeur égale à 4,25.  On pouvait aussi utiliser la moyenne estimée de la période égale à 5,67/(1-0,363)= 8,90 car les prévisions d'horizon 12 avec un petit coefficient phi tendent rapidement vers la moyenne. Ce modèle AR(1) a manqué le bateau du changement de niveau à la baisse survenu en 81:1 et n'est donc pas approprié.

E.  Les autocorrélations estimées sur cette période (0,50; 0,22 ; 0,11; 0,02) adoptent le pattern caractéristique de la décroissance exponentielle d'un AR(1), ce qui n'était pas le cas pour les autocorrélations estimées sous la période 73:1-80:12.

F.  Un processus AR(1) simple ne permet pas de capter les changements de niveau souvent occasionnés par des changements de politique, comme l'arrivée du Gouverneur Volker aux États-Unis à la fin de 1989. Lucas a suggéré des processus plus compliqués où les agents utilisent des modèles prévisionnels qui utilisent toute l'information disponible, pas seulement l'inflation passée comme dans un AR(1).

Les graphiques et les chiffres?

A. Oui et non.  Il est difficile de se prononcer de façon certaine mais on note un certain changement de comportement (tendance vers le haut) à partir de l'observation 100.  

B. Les auto-corrélations donnent habituellement des indications sur la stationnarité des séries :  dans le cas d'une série non stationnaire, elles tendent très lentement vers zéro.  Ceci n'est pas le cas pour la série étudiée ici :  les auto-corrélations sont égales à 0,06 pour les délais 4 et 5, ce qui est très faible surtout si on tient compte de l'écart-type asymptotique de 0,07.  Notons cependant que l'auto-corrélation de délai 14 égale à 0,21, une valeur relativement élevée compte tenu des circonstances.

C. La régression constitue un test de WALD car elle présente des estimés d'un modèle non contraint.  Plus précisément, nous évaluons l'hypothèse suivante : H0 : DU=DU_Y{1}=0 vs H1 : DU=DU_Y{1}( 0.  Autrement dit, le test cherche à vérifier si la constante (donc la moyenne ) et le coefficient autorégressif ont changé à partir de l'observation 100 (Note :  il faut bien connaître les observations muettes qui prennent des valeurs 1 ou 0 selon le cas).  Les deux tests t indiquent que les deux variables supplémentaires sont statistiquement différentes de zéro (-2,54 et 1,99) à des seuils critiques inférieurs à 5%.  La série a donc vraisemblablement connu un changement de constante et de coefficient autorégressif.  Avant l'observation 100, le modèle est donné par yt = 2,02 + 0,48yt-1 + et.  Après l'observation 100, le modèle s'écrit yt = (2,02-0,68) + (0,48+0,2)yt-1 + et.   Fait intéressant, les moyennes avant et après le changement (3,84 et 4,12) sont très semblables. 

D. La série étudiée n'est pas stationnaire.  Il s'agit toutefois d'un cas intéressant car nous sommes en présence d'un changement de comportement (le coefficient autorégressif) et non pas d'un changement de moyenne comme c'est souvent le cas.  Ceci explique la difficulté à détecter le changement de façon visuelle.  De façon technique, on dira que les auto-corrélations de cette série dépendent du temps.

Retour sur le taux d'inflation

A. Le graphique joint montre clairement un changement de moyenne à partir de 1982 où le taux d'inflation se stabilise à un niveau oscillant autour de 3%.  L'estimation d'un modèle AR(1) sur toute la période donne une moyenne de 5% (1/1-0,8), ce qui tranche nettement avec les observations récentes.  Un tel modèle n'est donc pas approprié.

B. Les instructions ont pour objectif d'estimer une série de modèles AR(1) avec changement de moyenne de façon à trouver celui qui serait le plus approprié.  La boucle DO opère sur la période 80:1-82:4 :  elle crée une variable muette, estime un modèle AR(1) avec changement de moyenne, imprime les résultats puis reprend les mêmes calculs une période plus tard.  Manifestement, il faut choisir le modèle AR(1) avec changement de moyenne qui aura la somme des erreurs au carré (RSS) la plus faible possible.  Le minimum est obtenu à la période 81:3 (320,5) et correspond au modèle yt = (4,47-2,82 DU) + (0,5)yt-1 + et. 

C. Les prévisions s'obtiennent en utilisant le bon modèle i.e. yt = 1,65 + 0,5yt-1 + et.  Ainsi, on a P_D97:03=1,65+0,5(1,58)=2,44 et P_D97:04 = 1,65+0,5(2,44)=2,87.

D. La prévision pour P_D99:04 correspond à la moyenne implicite du modèle i.e. 1,65/(1-0,5)=3,3.

Une batterie de tests

A.  Le modèle non contraint est donné par le modèle initial yt = ( + (1yt-1 + (2yt-2  + (3yt-3 + et  tandis que le modèle contraint correspond à yt = ( + ((yt-1 +yt-2 +yt-3 )+ et.  Pour évaluer cette hypothèse avec un test de Lagrange,  il faut premièrement estimer la version contrainte, garder les résidus que l'on régressera

 sur les trois retards de la façon suivante :

SET Y_S = Y{1}+Y{2}+Y{3}

LINREG Y RES

# CONSTANT Y_S

LINREG RES 

# CONSTANT Y_S Y{1} Y{2} Y{3}

TR2 de la dernière régression suit une (2 (3).  

B.   Le modèle non contraint est donné par le modèle initial yt = ( + (1yt-1 + (2yt-2  + (3yt-3 + et  tandis que le modèle contraint correspond à yt = ( + (1yt-1 + (3yt-3 + et.  Pour évaluer cette hypothèse avec un test du rapport de vraisemblance, il faut tout simplement estimer les deux modèles et comparer leur fit respectif à l'aide de RATIO.

LINREG Y RESNC

# CONSTANT Y{1} Y{2} Y{3}

LINREG Y RESC

# CONSTANT Y{1} Y{3}

RATIO(DEGREES=1)

# RESNC

# RESC

Le résultat de RATIO suit une (2 (1).  

C.  Le modèle non contraint est donné par le modèle initial yt = ( + (1yt-1 + (2yt-2  + (3yt-3 + et tandis que le modèle contraint s'écrit plus simplement en deux étapes : la première correspond au modèle initial non contraint et la deuxième à la restriction Rb=r (il existe une façon d'écrire le modèle contraint mais sa formulation dépasse les objectifs de la question).  Pour évaluer cette hypothèse avec un test de WALD, il faut tout simplement estimer le modèle non contraint et vérifier la validité des restrictions avec la commande RESTRICT.  Ainsi : 

LINREG Y

# CONSTANT Y{1} Y{2} Y{3}

RESTRICT 1

# 2 3 4

# 1 1 1 1

Le résultat de RESTRICT suit une distribution F(1,NOBS-NPAR).   Note : Nous verrons plus loin que ce dernier test correspond à un test de Dickey-Fuller.  Dans ce cas, la procédure du test est différente et les lois de distribution aussi.

Un modèle avec observation aberrante additive
A. Ce modèle implique que les chocs ne se répercutent pas sur les autres périodes. 

B. Le graphique montre qu’il y a deux couples qui se démarquent.  Les deux mettent en présence la même observation aberrante : en fois en t, l’autre en t-1.

C. Le test (0,8-0,5633)/0,083=2,85.  On peut donc rejeter HO : (=0,8 quand cette hypothèse est vraie.  ceci s’explique par l’observation aberrante qui biaise les estimés.

D. Il s’agit d’un test de Lagrange qui montre que les deux variables ajoutées IND et IND{1} sont très importantes et captent l’effet de l’observation aberrante.  Il faut inclure deux variables indicatrices (en t et t-1) à cause du modèle AR(1) :  si l’observation aberrante est à la période 50, il faut tenir compte du lien entre 51 vs 50 et 50 vs 49.
Le bon modèle?

Le modèle AR(1) estimé a des coefficients significatifs.  Pris individuellement, les résidus ne semblent pas corrélés 0,112 (vs écart-type de 0,058) sauf peut être les 5e et  9e coefficients.  Le test de Ljung-Box est toutefois plus indicatif et montre que l’on peut rejeter l’hypothèse nulle de bruit blanc au seuil de 5% (on peut aussi rejeter à 1%). Les résidus ont aussi un comportement ARCH.  L’ajout d’une variable muette (=1 si T>149) est très significatif si on se fie au test t, ce qui pointe vers un changement de moyenne à partir de l’observation 150.  Ceci est confirmé par l’analyse graphique des résidus qui ont une propension à être positifs à partir de la période 150.  Le dernier test de Lagrange sur les RES2 n’apporte pas d’information additionnelle et doit être interprété avec prudence compte tenu du fait que les résidus ont été générés à partir d’un modèle mal spécifié.  En fait, il est tout à fait possible que l’effet ARCH soit fictif et provienne seulement de la mauvaise estimation.

Stationnarité, corrélation et ...
A. Une série est stationnaire si ses deux premiers moments ne dépendent pas du temps :  i.  la moyenne ne dépend  as du temps;  ii. la variance ne dépend pas du temps;  iii. la co-variance ne dépend pas du temps.  Selon le graphique, il est difficile d’identifier spécifiquement si une de ces trois conditions n’est pas respectée.  Cependant, on a vaguement l’impression d’une brisure de moyenne et de comportement au milieu de l’échantillon

B. Les auto-corrélations d’une série stationnaire décroissent progressivement vers zéro.  Comme l’écart type asymptotique est donné par (1/T)½ = 0,07, on peut dire que globalement les douze premières auto-corrélations respectent cette condition mais que les estimés des périodes 13, 14, 15 et 17 se démarquent en étant statistiquement différents de zéro.  Selon cette approche, la série en présence ne semble pas stationnaire.

C. Notons tout d’abord la présence de la variable muette DU qui permet de capter un changement de régime possible pour la période 101-200.   La régression effectuée teste l’hypothèse suivante :

H0 :  Les paramètres du modèle AR(1), constante et coefficient auto-régressif, sont stables sur la période

H1 : Les paramètres du modèle AR(1), constante et coefficient auto-régressif, ont changé à partir de la période 101.

Les seuils critiques des tests t des paramètres estimés (approche de Wald) des variables  DU et DU_Y{1} nous permettent de rejeter l’hypothèse nulle au seuil de 5%.  La constante et le paramètre auto-régressif  ont changé.

D. La série Y n’est pas stationnaire car les paramètres du modèle AR estimé ne sont pas stables, ce qui nous laisse croire que les deux premiers moments de la série dépendent du temps.  Note : Comme la moyenne est égale à (/(1-() et que la variance est égale à (2/(1-(2), il n’est pas possible de se prononcer formellement sur la stabilité de la moyenne et de la variance mais on peut affirmer sans l’ombre d’un doute que la structure d’auto-corrélation qui déprend uniquement du paramètre ( a changé.  La série n’est donc pas stationnaire ... ce qui apporte une confirmation statistique à notre analyse graphique préliminaire.

Encore et toujours ... le taux d’inflation

A.  Le graphique du taux d’inflation U.S. montre clairement un changement de moyenne à partir de 1982.  L’estimation d’un modèle AR(1) unique pour la période 73:01-97:02 n’est donc pas approprié.  La moyenne estimée égale à  1,01/(1-0,80)=5 ne peut pas représenter adéquatement une série qui a connu deux paliers distincts. 

B.  La boucle DO examine la possibilité d’un changement de la constante sur la période 80 :01-82 :04.   En fait, on estime un ensemble de modèles AR(1) qui différent uniquement par la période à laquelle on permet un changement de constante DU.  Pour le premier modèle, le changement de constante se fait à la période 80 :1;  pour le deuxième, à la période 80 :2, etc.  On affiche ensuite les coefficients estimés et surtout le RSS obtenu.  En s’inspirant du principe de balayage dans la maximisation de la vraisemblance, on devrait choisir la période de rupture qui permet de minimiser le RSS.  Ceci se produit à la période 81 :3 où RSS=320,50 ;  le modèle AR(1) est égal à P_Dt = (4,47-2,82) + 0,5074 P_Dt-1 = 1,65 + 0,5074 P_Dt-1.

C.

P_D97 :3 = 1,65 + 0,5074 (1,58) =  2,45

P_D97 :4 = 1,65 + 0,5074 (2,45) =  2,89

D. La prévision pour la période 2000:4 est égale à la moyenne estimée, 1,65/(1-0,5074)=3,35.
Le modèle AR(1) bis!

A. E(t = E[(* + ( ((t-1 - (*) + wt]

E(t = (* + ( (E(t-1 - (*) + 0

car E(*=(* et Ewt=0

E(t = (* + ( (E(t - (*)

car E(t = E(t-1 par l'hypothèse de stationnarité

(1-()E(t = (1-()(* 

E(t = (*.

B. On peut réécrire l'équation comme (t = (1-()(* + ((t-1 + wt.  On peut voir plus aisément que la condition |(|<1  doit être respectée si le processus (t est stationnaire.

C. (t suit un processus AR(1) stationnaire de moyenne (*.  (t doit nécessairement être quelques fois supérieur à (*, quelques fois inférieur (*.   Les valeurs successives de yt auraient donc des liens étroits quand le coefficient  (t est grand  (supérieur à la moyenne (*) et des liens faibles quand ce même coefficient est petit (inférieur à la moyenne (*).  Le modèle AR(1) habituel a toujours les mêmes liens entre les valeurs successives.  Dans le cas du AR(1) bis, ces liens varient selon la valeur de (t.

D. Est-ce que le modèle AR(1) habituel est approprié?  Selon les informations disponibles, la constante et le coefficient auto-régressif sont significativement différents de zéro.  De plus, les auto-corrélations estimées des erreurs ne semblent pas indiquer des anomalies :  aucune n’est supérieure à 2 fois l’écart type asymptotique de 0,10.   Les seuils critiques des trois tests de Ljung-Box (0,65, 0,34, 0,15) sont supérieurs à 0,05 et on ne peut donc pas rejeter l’hypothèse nulle de termes d’erreur bruit blanc au seuil de 5%.  Cependant, la question stipule que la vraie variance des erreurs est égale à 1 :  la variance estimée est égale à (1.6366)2=2,6784, ce qui est passablement élevé. Dans le modèle (2) et (3), (t = (1-()(* + ((t-1 + wt multiplie yt-1 et on s’attend à ce que wt introduise une variabilité additionnelle dans l’évolution de yt.  C’est ce que nous avons capté dans l’estimation de la  variance du AR(1) ordinaire qui n’est probablement pas approprié même si nous avons pas été en mesure de le détecter.  Des tests plus appropriés seraient en mesure de le faire (voir votre manuel RATS).

E. La première régression RATS montre que ( est égal à 0,53 sur toute la période.  Dans la deuxième régression, la variable Y1_DU est égale à -0,13 et permet de capter si le coefficient ( a changé pour les périodes 71 à 100.  Notons H0:  le coefficient ( est demeuré constant  (la première régression avec un seul coefficient autorégressif) vs H1 :  le coefficient ( a changé à partir de l'observation 70 (la deuxième régression avec Y{1} et Y1_DU).  Comme nous n'avons pas le test -t de Y1_DU (notons que le test peut être associé à un test de WALD car il n'utilise que les estimés non contraints), il nous faut précéder de façon différente.  En fait, on peut utiliser le test de rapport de vraisemblance ou le test de Wald ou de Lagrange sous la forme  (RSS0 - RSS)/(RSS/T).  Dans notre cas, on a (257,14-251,81)/(251,81/98)=5,33/2,56=2,08<que x2(1)=3,89.  On aurait pu aussi utiliser la formulation Lagrange (RSS0 - RSS)/(RSS0/T) i.e. on aurait divisé par un estimé de la variance sous H0.  Dans ce cas, on a 5,33/2,62=2.03.  Notons ici que W>LM, ce qui est toujours le cas, par construction i.e. la variance sous H0 est toujours plus grande que la variance sous H1. Le test proposé ne permet pas de rejeter l’hypothèse nulle mais ce résultat était prévisible dans le cas où ( change continuellement.

F. y101 = ( + (101y100
y101 = 2 + (1013,75

(101 = 0,33+0,4(0,54-0,33)=0,33+0,4(0,21)=0,414

y101 = 2 + 0,414 (3,75) = 3,55

y102 = ( + (102y101
y102 = 2 + (1023,55

(102 = 0,33+0,4(0,414-0,33)=0,33+0,4(0,084)=0,363

y102 = 2 + 0,363 (3,55) = 3,28

G. On sait que ( converge tranquillement vers 0,33.  De plus, dans le cas AR(1) habituel, on sait que la prévision de  y200 tend vers la moyenne de la série.  Dans notre cas, par analogie, cette moyenne de long terme est donnée par  2/(1-0,33) = 3.03. 

Note :  Instructions RATS qui ont servi à générer le problème
ALL 100

ZERO Y; ZERO PHI

SEED 4

COMPUTE NBEG=3, NEND=100

EQUATION 1 PHI

# CONSTANT PHI{1}

ASSOCIATE(VARIANCE=.1) 1

# .2 .4

SIMULATE 1 NEND-1 2

# 1 PHI

*

EQUATION 2 E

# CONSTANT

ASSOCIATE(VARIANCE=1) 2

# 0

SIMULATE 1 NEND-1 2

# 2 E

*

ZERO Y

DO I=2,100

  COMPUTE Y(I)=2.0 + PHI(I)*Y(I-1) +E(I)

END DO I

Maximum de vraisemblance

On estime ici le modèle 

yt =  ( + et 
où et suit une N(0, (2)

à l’aide de la méthode du maximum de vraisemblance.  Pour des raisons non explicités, on suppose ici que  (=2 et la recherche du maximum se fait par balayage sur le paramètre (2 seulement sur l’intervalle [0,2, 1,6].  Dans un programme similaire, le balayage s’était fait sur  ( en supposant cette fois que (2 =1.  La vraisemblance est maximisée au point (2=1.0.  On peut tester H0 : (2 = 1,2 en faisant un test du Rapport du maximum de vraisemblance en comparant le modèle contraint (H0) au modèle non contraint (H1).  On sait que LR = 2[logL((1)-logL((0)] suit X2(q) où q est le nombre de restrictions.  Dans notre cas, 

2[-419.46604+422.85020] = 6,76 >  X2(1) au seuil de 5% est égale à  3,84.  On rejette H0 : la variance est différente de 1,2.

Encore et toujours la stationnarité 
A.  Il est difficile de porter un jugement à l’aide du graphique.  Une série est stationnaire au sens faible si les deux premiers moments ne dépendent pas du temps : i.  la moyenne semble constante; ii. le corridor (variance) aussi si on exclut l’épisode entre la période 150 et 200; iii.  le comportent de la série semble un peu plus lent et lisse sur la deuxième portion du graphique, ce qui laisse présager que les covariances ne sont pas constantes.  Il est toutefois difficile de porter un jugement aussi catégorique à l’aide d’outils graphiques.

B.  On est à la recherche d’une statistique pour tester H0 :  ( est constant vs H1 :  ( n’est pas constant sur toute la période.  La régression  Y sur constant et DU permet justement de tester cette hypothèse à l’aide de l’approche de Wald car cette régression constitue le modèle H1 non contraint, i.e. nous avons deux constantes.  La constante de la régression capte la moyenne et DU le changement de moyenne possible. Le test-t de DU montre que cette variable n’est pas significativement différente de zéro, i.e. on ne rejette pas H0.  La moyenne non conditionnelle est constante.

C.  Nous avons d’autres résultats qui vérifient si la constante et le paramètre autorégressif sont stables sur toute la période.  Notons ici que le modèle contraint (une seule constante et un seul paramètre autorégressif) est tout d’abord estimé sur la période.  Par la suite, selon l’approche de Lagrange, on régresse les résidus obtenus sur les variables initiales plus les variables DU et DU_Y1 pour vérifier la stabilité.  TR2 suit un X2(2).  On obtient alors 399*0,012258=4,89, ce qui est inférieur à la valeur critique à 5% égale 5,99.  On ne rejetterait pas la constante à 5% mais on la rejette à 10% car  4,89 est supérieur à la valeur critique de 4,61.  Au seuil de 10%, on peut rejeter H0 qui postule que la constante et le coefficient autorégressif sont stables.  Il semblerait que la constante ait diminué sur la deuxième période mais que le coefficient autorégressif lui ait augmenté.

D.  Au seuil de 10%, la série n’est pas stationnaire.  Bien que la moyenne ne dépende pas du temps (B.), nous avons trouvé que le coefficient autorégressif qui est relié à la covariance dépende du temps (C.).  Pour la variance, nous n’avons pas été en mesure de faire un test précis.  Note : la stabilité de la moyenne s’explique par sa formule (/(1-().  Si ( diminue et ( augmente, la moyenne peut quand même demeurer constante.
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