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1 Neural net: A preliminary definition

To set the scene it is usetul to give a definition of what we mean by ‘Neural Net’. However,
it is the object of the course to make clear the terms used in this definition and to expand

considerably on its content.

A Neural Network is an interconnected assembly of simple processing elements,
units or nodes, whose functionality is loosely based on the animal neuron. The
processing ability of the network is stored in the inter-unit connection strengths, or
weights, obtained by a process of adaptation to, or learning from, a set of training

patterns.

In order to see how very different this is from the processing done by conventional
computers it is worth examining the underlying principles that lie at the heart of all such

machines.

2 The von Neumann machine

and the symbolic paradigm

The operation of all conventional computers may be modelled in the following way

central
processing
unit
instructions } data
and data v
memory

von-Neumann machine
The computer repeatedly performs the following cycle of events

1. fetch an instruction from memory.

2. fetch any data required by the instruction from memory.
3. execute the instruction (process the data).

4. store results in memory.

5. go back to step 1).
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What problems can this method solve easily? It is possible to formalise many problems
in terms of an algorithm, that is as a well defined procedure or recipe which will guarantee
the answer. For example, the solution to a set of equations or the way to search for an item in
a database. This algorithm may then be broken down into a set of simpler statements which
can, in turn, be reduced eventually, to the instructions that the CPU executes.

In particular, it is possible to process strings of symbols which obey the rules of some
formal system and which are interpreted (by humans) as ‘ideas’ or ‘concepts’. It was the
hope of the Al programme that all knowledge could be formalised in such a way: that is, it
could be reduced to the manipulation of symbols according to rules and this manipulation
implemented on a von Neumann machine (conventional computer).

We may draw up a list of the essential characteristics of such machines for comparison

with those of networks.

e The machine must be told in advance, and in great detail, the exact series of steps

required to perform the algorithm. This series of steps is the computer program.

e The type of data it deals with has to be in a precise format - noisy data confuses the

machine.

o The hardware is easily degraded - destroy a few key memory locations and the machine

will stop functioning or ‘crash’.

e Thereis a clear correspondence between the semantic objects being dealt with (numbers,
words, database entries etc) and the machine hardware. FEach object can be ‘pointed

to’ in a block of computer memory.

The success of the symbolic approach in Al depends directly on the consequences of
the first point above which assumes we can find an algorithm to describe the solution to the
problem. It turns out that many everyday tasks we take for granted are difficult to formalise
in this way. For example, our visual (or aural) recognition of things in the world; how do
we recognise handwritten characters, the particular instances of which, we may never have
seen before, or someone’s face from an angle we have never encountered? How do we recall
whole visual scenes on given some obscure verbal cue? The techniques used in conventional
databases are too impoverished to account for the wide diversity of associations we can make.

The way out of these difficulties that shall be explored in this course is that, by copying
more closely the physical architecture of the brain, we may emulate brain function more

closely.
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3 Real neurons: a review

efferent axon
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* only one shown
for clarity

Biological neuron

Signals are transmitted between neurons by electrical pulses (action-potentials or ‘spike’
trains) travelling along the azon. These pulses impinge on the afferent neuron at terminals
called synapses. These are found principally on a set of branching processes emerging from
the cell body (soma) known as dendrites. Each pulse occurring at a synapse initiates the
release of a small amount of chemical substance or neurotransmitter which travels across the
synaptic cleft and which is then received at post-synaptic receptor sites on the dendritic side
of the synapse. The neurotransmitter becomes bound to molecular sites here which, in turn,
initiates a change in the dendritic membrane potential. This post-synaptic-potential (PSP)
change may serve to increase (hyperpolarise) or decrease (depolarise) the polarisation of the
post-synaptic membrane. In the former case, the PSP tends to inhibit generation of pulses in
the afferent neuron, while in the latter, it tends to excite the generation of pulses. The size
and type of PSP produced will depend on factors such as the geometry of the synapse and
the type of neurotransmitter. Each PSP will travel along its dendrite and spread over the
soma, eventually reaching the base of the axon (azon-hillock). The afferent neuron sums or
integrates the effects of thousands of such PSPs over its dendritic tree and over time. If the
integrated potential at the axon-hillock exceeds a threshold, the cell ‘fires’ and generates an
action potential or spike which starts to travel along its axon. This then initiates the whole

sequence of events again in neurons contained in the efferent pathway.

4 Artificial neurons: the TLU

The information processing performed in this way may be crudely summarised as follows:
signals (action-potentials) appear at the unit’s inputs (synapses). The effect (PSP) each signal
has may be approximated by multiplying the signal by some number or weight to indicate

the strength of the synapse. The weighted signals are now summed to produce an overall
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unit activation. If this activation exceeds a certain threshold the unit produces a an output
response. This functionality is captured in the artificial neuron known as the Threshold Logic

Unit (TLU) originally proposed by McCulloch and Pitts (McCulloch and Pitts, 1943)

y
_ Y,
-

]
multiplication
Xn by w,
TLU
We suppose there are n inputs with signals zq, s, ...z, and weights wq, ws, ... w,. The

signals take on the values ‘17 or ‘0" only. That is the signals are Boolean valued. (This allows

their relation to digital logic circuits to be discussed). The activation a, is given by
4 = w1Ty + Weky + -+ Wiy (1)

This may be represented more compactly as

a = Z w;T; (2)
=1

the output y is then given by thresholding the activation

1 if a>0
y‘{o it oa<0 3)

The threshold § will often be zero. The threshold function is sometimes called a step-
function or hard-limiter for obvious reasons. If we are to push the analogy with real neurons,
the presence of an action-potential is denoted by binary ‘1’ and its absence by binary ‘0.

Notice that there is no mention of time so far - the unit responds instantaneously to its
input whereas real neurons integrate over time as well as space; how this may be this may be
remedied will be discussed later.

5 Non-binary signal communication

The signals dealt with so far (for both real and artificial neurons) take on only two values, that

is they are binary signals. In the case of real neurons the two values are the action-potential
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voltage and the axon membrane resting potential. For the TLUs these were conveniently
labelled ‘17 and ‘0’ respectively. Now, it is generally accepted that, in real neurons, information
is encoded in terms of the frequency of firing rather than merely the presence or absence of
a pulse. (Phase information may also be important but the nature of this mechanism is less
certain and will not be discussed here).

There are two ways we can represent this in our artificial neurons. First, we may extend
the signal range to be positive real numbers. This works fine at the input straight away, but
the use of a step function limits the output signals to be binary. This may be overcome by

‘softening’ the step-function to a continuous ‘squashing’ function

0

sigmoid

One convenient mathematical form for this is the sigmoid

1
1+ e—a/p (4)

Here, p determines the shape of the sigmoid: a larger value making the curve flatter.

y=ola)=

In many texts, this parameter is omitted so that it is implicitly assigned the value 1. The
activation is still given by eqn. (1) but now the output is given by (4). Units with this
functionality are sometimes called semilinear units. The threshold now corresponds to the
activation which gives y = 0.5. In (4) the threshold is zero and if we require a non-zero
threshold then it must be included by writing

1
L o=@/ (5)

As an alternative to using real (continuous or analogue) signal values, we may emulate

y =o(a)

the real neuron and encode a signal as the frequency of the occurrence of a ‘1’ in a pulse

JU I e L

stream.

N time slots N, ‘1's or pulses

Probability of a ‘1’ or pulse approx. %1

Pulse stream

Time is divided into discrete ‘slots’. If the signal level we require is p, where 0 < p <1,
then the probability of a ‘17 appearing at each time slot will be p (If we require values in some

other range then just normalise the signal first to the unit interval). The output y, is now
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interpreted as the probability of outputting a ‘1’ rather than directly as an analogue signal
value. Such units are sometimes known as stochastic semilinear units. If we don’t know p an
estimate may be made by counting the number of ‘1’s; Ny, in N time slots. The probability
estimate p* is given by p* = N;/N.

In the stochastic case it is possible to reinterpret the sigmoid in a more direct way. First
note that it is an approximation to the cumulative gaussian (normal distribution, cf zscores
in statistics). If we had, in fact used the latter then this is equivalent to modelling a ‘noisy’
threshold; that is the threshold at any time is a random variable with gaussian (normal)

distribution.

P(8)

6,

Normal distribution

Thus, the probability of firing (outputting a ‘1) if the activation is a, is just the prob-
ability that the threshold is less than a, which is just the cumulative of the gaussian up to

this value.

6 Introducing time

The artificial neurons discussed so far all evaluate their activation and output ‘instantaneously’
- there is no integration of signals over time. To introduce dependence on time, we define
the activation implicitly by its rate of change da/dt. This requires that the weighted sum of
inputs be denoted by some other quantity. Thus, put

S = Z w;x; (6)
=1
and now put

da

— = —aa 5 7

7 +5 (7)
where v and 3 are positive constants. The first term gives rise to activation decay, while

the second represents input from the other neurons and may be excitatory. To see the effect

of the decay term put s = 0. There are now two cases.

i) @ > 0. Then da/dt < 0; that is, a decreases.

ii) @ < 0. Then da/dt > 0; that is, a increases
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Decay from Decay from
positive values negative values

Decay of activation

The neuron will reach equilibrium when da/dt = 0. That is when

_Bs

a

(8)

There are several possible modifications to (7). e.g., ‘PDP’” vol 3 ch 2, and (von der
Malsburg, 1973; Hopfield and Tank, 1986). Stephen Grossberg has made extensive use of this
type of functionality - see for example (Grossberg, 1976).

a

7 Network features

Having looked at the component processors of artificial neural nets, it is time to compare
the features of such nets with the von Neumann paradigm. The validity of some of these

properties should become clearer as the operation of specific nets is described.

o Clearly the style of processing is completely different - it is more akin to signal processing
than symbol processing. The combining of signals and producing new ones is to be

contrasted with the execution of instructions stored in a memory.

o Information is stored in a set of weights rather than a program. The weights are

supposed to adapt when the net is shown examples from a training set.

e Nets are robust in the presence of noise: small changes in an input signal will not

drastically affect a node’s output.

o Nets are robust in the presence of hardware failure: a change in a weight may only affect

the output for a few of the possible input patterns.

e High level concepts will be represented as a pattern of activity across many nodes rather

than as the contents of a small portion of computer memory.
o The net can deal with ‘unseen’ patterns and generalise from the training set.

o Nets are good at ‘perceptual’ tasks and associative recall. These are just the tasks that

the symbolic approach has difficulties with.
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