2: TLUs and vectors - simple learning rules

Kevin Gurney

Dept. Human Sciences, Brunel University

Uxbridge, Middx. UK

1 Geometric interpretation of TLU action

It is possible to interpret the functionality of a TLU geometrically. In summary, it separates
its input space into two parts divided by a hyperplane according to whether the input is

classified as a ‘1’ or a ‘0’. We now introduce the ideas contained here step by step.

1.1 Pattern classification and input space

Consider the TLU with weights w; = 1,w; = 1 and threshold 1.5. The table of responses is
shown below.

x1 | X2 | activation | output
0|0 0 0
0|1 1 0
110 1 0
1|1 2 1

The TLU may be thought of as classifying its input patterns into two classes: those
that give output ‘1’ and those that give output ‘0’. Each input pattern has two components,
x1,T2. We may therefore represent these patterns in two-dimensional space

X, A

p (0,1) 1,1) e

(0,0) 1o X

y ot

2-d pattern space



Neural Nets: 2 2

The space in which the inputs reside is referred to as the pattern space. Each pattern
determines a point in the space by using its component values as space-coordinates. In general,
for m-inputs, the pattern space will be n-dimensional. Clearly, for n > 3 the pattern space
cannot be drawn or represented in physical space. This is not a problem: we shall return to
the idea of using higher dimensional spaces later. However, the geometric insight obtained in
2-D will carry over (when expressed algebraically) into n-D.

1.2 The linear separation of classes

Since the critical condition for classification occurs when the activation equals the threshold,
it is useful to examine the geometric implication of this. Putting the activation equal to the
threshold gives

i=1
In the 2-D case we are considering

W1T1 + Wy = 0 (2)

so that

me () () ®

This is of the form

To = ax;+ b (4)
That is, a straight line with slope a and intercept b on the x5 axis. Since w; = we = 1 and
a = —1, we also have b = 1.5.
X, A
AN @ output value
15 A N

(0] (0 * \15 X,

g a2

AN

\ 4

Line in 2-d pattern space

The two classes are therefore separated by the ‘decision’ line which is defined by putting
the activation equal to the threshold. It turns out that it is possible to generalise this result
to TLUs with n inputs In 3-D the two classes are separated by a decision-plane. In n-D this
becomes a decision-hyperplane. (The ‘hyper-’ is sometimes dropped even when n > 3). The



Neural Nets: 2 3

converse of this is that, any TLU is defined by some hyperplane in its pattern space and
any function which cannot be realised in this way cannot be realised by a TLU. Because the
defining equation (1) for the hyperplane, is linear, the TLU is a linear classifier. Using some
ideas about wvectors, it is possible to prove these results and to gain insight into what is going

on.

2 Vectors

Vectors™ are usually introduced as representations of quantities that have magnitude and
direction. Thus the velocity of a car is defined by the car’s speed and direction. On paper
we may draw an arrow whose length is proportional to the speed and whose direction is the
same as that of the car.

0

2-D vector

Vectors will be denoted by bold face letters e.g. v. The magnitude of v will be denoted
by [|v]|. In writing vectors we can’t use bold so we usually put an underline thus — v. The
length of vectors is sometimes denoted by the italic letter e.g. v. In accordance with our
geometric ideas a vector is now defined by the pair of numbers (||v||, ) where 6 is the angle
the vector makes with some reference direction.

In order to generalise to higher dimensions, and to relate vectors to the ideas of pattern
space, it is more convenient to describe vectors with respect to a cartesian coordinate system.

That is, we give the projected lengths of the vector onto two perpendicular axes

Xz

Xl
»
»

Vi

vector wrt cartesian axes

The vector is now described by the pair of numbers v;,v;. These numbers are its
components in the chosen coordinate system. Since they completely determine the vector we
may think of the vector itself as a pair of component values and write v = (vy,vz). The

“For a good introduction to vectors as required for neural nets, see chapter 9 in PDP vol. 1



Neural Nets: 2 4

vector is now an ordered list of numbers. Notice the ordering is important, since (1,3) is in a
different direction from (3,1).

This definition immediately generalises to more than 2-dimensions. An n-dimensional

vector is simply an ordered list of n numbers, v = (v, vs,...v,). Lists like this appeared on
the first problem sheet. They were the weight vector (wy,ws,...,w,) and the input vector
(21, 2, ... x,) for the node.

2.1 The length of a vector

For our 2-D prototype, the length of a vector is just its length in the plane. In terms of its
components, this is given by pythagoras’s theorem.

VIl = o + 3 (5)

In n-dimensions, the length is defined by the natural extension of (5)

Ivll = [Z] (©

2.2 Comparing vectors - the inner product
Consider the vectors v = (1,1) and w = (0,2) shown below

X, A

4 (1.1)

45° w 0.2 x,
P»—>

Two vectors at 45°

The angle between them is 45°. Define the inner product v - w of the two vectors by

VW = vwy + VaWs (7)

The form on the right-hand side should be familiar - it is just the same as that we have
used to define the activation of a TLU... Substituting the component values gives v - w = 2.
We will now try and give this a geometric interpretation.

First we note that ||v] = V2 and |lw|| = 2. Next we observe that the cosine of the
angle between the vectors is 1/v/2

45°

0o = ﬂ'
V2 1 ©0s45°=

45° f




Neural Nets: 2 5

diagram of cos 45

Therefore v - w = ||v|||[w| cos 45°. Tt may be shown that this is a general result; that
is, if the angle between two vectors v and w is ¢ then the definition of dot-product given in

(7) is equivalent to

v-w = [[v]|lw]cos ¢ (8)

(For a proof of this see ch 9 PDP vol 1). In n-dimensions the inner product is defined
by the natural extension of (7)

=1

Although we cannot now draw the vectors (for n > 3) the geometric insight we obtained
for 2-D may be carried over since the behaviour must be the same (the definition is the same).
We therefore now examine the significance of the inner product in 2 dimensions. Essentially
the inner product tells us how well ‘aligned’ two vectors are. To see this, let v, be the

component of v along the direction of w, or the projection of v along w.

4

¢

V,

w

w

'

Vector projection
The projection is given by ||v|| cos ¢ which, by (8) gives us

(10)

If ¢ is small then cos ¢ is close to its maximal value of one. The inner product, and

U,y = ———
T lwl]

hence the projection v,,, will be close to its maximal value; the vectors ‘line up’ quite well.
If ¢ = 90°, the cosine term is zero and so too is the inner product. The projection is zero
because the vectors are at right angles; they are said to be orthogonal. If 90 < ¢ < 270, the
cosine is negative and so too, therefore, is the projection; its magnitude may be large but the
negative sign indicates that the two vectors point into opposite half-planes.

w

w
) Wy
viw >0 viv=0 viv <0
diagram of inner product cases



Neural Nets: 2 6

2.3 Inner products and TLUs

Using the ideas developed above we may express the action of a TLU in terms of the weight
and input vectors. The activation a may now be expressed as

a=Ww-X (11)

The vector equivalent to (1) now becomes

w-x=10 (12)
If w and € are constant then this implies the projection z,,, of x along w is constant since

0
= — 13
T w (13)

In 2-D, therefore, the equation specifies all x which lie on a line perpendicular to w.

w.X = constant

There are now two cases

1. If z,, > 6/||w||, then x must lie beyond the dotted line

w.x >0

Using (10) we have that z,, > 8/||w|| implies w - x > 6; that is, the activation is greater
than the threshold

2. Conversely, if ,, < 6 then x must lie below the dotted line



Neural Nets: 2 7

w.x < 0

Using (10) we have that z,, < 0/||w| implies w - x < 0; that is, the activation is less
than the threshold

In 3-D the line becomes a plane intersecting the cube and in n-D a hyperplane inter-
secting the n-dimensional hypercube or n-cube.

3 Training TLUs

Training any unit consists of adjusting the weight vector and threshold so that the desired
classification is performed. In order to place the adaptation of the threshold on the same
footing as the weights, we suppose that it is another weight which is permanently connected
to an input of -1. I shall call this the augmented weight vector, in contexts where confusion
might arise, although this terminology is by no means standard. Then for all TLUs we may
express the node function as follows

w-x>0 = y=1
w-x <0 = y=0 (14)

Putting w - x = 0 now defines the decision (hyper)plane. This plane is therefore or-
thogonal to the (augmented) weight vector and passes through the origin of the (augmented)
pattern space.

To see this consider the example below



Neural Nets: 2 8

0,1) (1,1)
[0 AR (1

\ AB is Decision line

______________ N @ sitvaie
AN

0.
(0.0 (1.0)
AND gate with w = (1/2, 1/2, 3/4)

0

The result in the augmented space is shown below

Part of
Decision plane

1,1,-1)

Old (2D)
decision
line

(0.0.-1) (1.0.-1)

Augmented pattern space in 3D

Changing any vector (and hence the weight vector in particular) may be thought of
as adding another vector to it. Two vectors u = (ug,uz), v = (v1,v2) may be added by
summing their components to give a new vector w = (wy, wy) where

wy = U+ v

Wy = Uz + V2 (15)

Subtraction may be defined by noting that the negative of a vector is just the same
vector pointing in the opposite direction. Then subtraction of v is just addition of —v. These
operations are shown below.



Neural Nets: 2 9

Xl
A -
»
r Vl ul
Vector addition
X A
wW=u-V
u
w \"
7 Xy

Subtraction of a vector

3.1 Adjusting the weight vector

We require the weight vector to be orthogonal to the decision plane and that the plane must
pass through the origin.

origin of
coordinates in
pattern space

Orthogonal/origin requirement

The training set for the TLU will consist of a set of pairs {v,t}, where v is an input
vector and ¢ is the target class or output (‘1’ or ‘0’) that v belongs to. This type of training
is known as supervised training, since we tell the net what output is expected for each vector.
Suppose we present a training vector v to the TLU whose current weight vector is w. Further,
suppose that ¢ = 1 but that, with the weight vector as it is, it produces an output of y = 0.
To produce a ‘0’ the activation must have been negative when it should have been positive.
The situation is shown below.



Neural Nets: 2 10

¢ > 90

\Y

Misclassification 1 - 0

In order to correct the situation we need to rotate w so that it points more in the
direction of v. At the same time, we don’t want to make too drastic a change as this might
upset previous learning. We can achieve both goals by adding a fraction of v to w to produce
a new weight vector w'; that is

w =w+av (16)
where 0 < a < 1

increment made to weight vector in case 1

Suppose now instead, that ¢t = 0 but y = 1. This means the activation was positive
when it should have been negative.

Y
¢ <90

Misclassification 0 - 1

We now need to rotate w away from v which may be effected by subtracting a fraction
of v from w; that is

(17)

Increment made to weight vector in case 2



Neural Nets: 2 11

Both (16) and (17) may be written as a single rule as follows

w =w+a(t —y)v (18)

This may be written in terms of the change in the weight vector! Aw or in terms of the

components

Aw; = ot — y)y; (19)

This is our first example of a training rule or learning rule. The parameter « is called
the learning rate. The learning rule may be incorporated into a training algorithm for TLUs
as follows

repeat
for each training vector pair (v, )
evaluate the output y when v is input to the TLU
if y # t then
form a new weight vector w' according to (18)
else
do nothing
end if
end for
until y = ¢ for all vectors

This is usually known as the Perceptron learning algorithm because it was used exten-
sively with an extension of the TLU known as the perceptron described in the next section.
We now look at an example of using this method with an ordinary TLU.

3.2 Example

A TLU has weights 0, 0.4 and threshold 0.3. Tt has to learn the logical AND function; [all
outputs ‘0’ except with input (1,1)]. The learning rate is 0.25. Using the above algorithm,

the following sequence of events takes place.

4 The Perceptron

This is an enhancement of the TLU introduced by Rosenblatt (Rosenblatt, 1962). It consists
of a TLU whose inputs come from a set of preprocessing association units (A-units).

fIn general, a change in a quantity is denoted by the by the Greek letter ‘delta’; either upper case A or
lower case ¢



Neural Nets: 2 12

wy | we 0 |z |z | a |yl|t]|alt—y)| dw | dws 50
00| 04103 ]01|0O0 0 0|0 0 0 0 0
0.0 04 ] 03 |0 1 04 (110 -0.25 0 -0.25 | 0.25
0.0 [0.15[0.55 ] 1 0 0 010 0 0 0
0.0 [0.15[055] 1 1 1015101 0.25 0.25 | 0.25 | -0.25
0251 04 | 03| 0]0 0 010 0 0 0 0
025|104 (03] 0 1104 |10 -0.25 -0.25 | 0.25
0.25]10.15]0.55| 1 0]1025|101]0 0 0 0 0
0.2510.15] 055 1 1 04 (0|1 0.25 0.25 | 0.25 | -0.25
0.5 041030710 0 010 0 0 0 0
0.5 04 ] 03 |0 1 04 (110 -0.25 0 -0.25 | 0.25
05 0150551 |0 05 ]|0|0 0 0 0 0

:

. Z _yL:a._L’

threshold

IR

——— weights
Association
_ units
input
pattern
Perceptron

The A-units can be assigned any arbitrary Boolean functionality but are fixed - they do
not learn. The rest of the node functions just like a TLU and may be therefore be trained in
exactly the same way. Rosenblatt was the first to use the training algorithm described here -
hence the name ‘perceptron training’.

References

Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan Books.



