
2: TLUs and vectors - simple learning rules

Kevin Gurney

Dept. Human Sciences, Brunel University

Uxbridge, Middx. UK

1 Geometric interpretation of TLU action

It is possible to interpret the functionality of a TLU geometrically. In summary, it separates

its input space into two parts divided by a hyperplane according to whether the input is

classi�ed as a `1' or a `0'. We now introduce the ideas contained here step by step.

1.1 Pattern classi�cation and input space

Consider the TLU with weights w1 = 1; w2 = 1 and threshold 1.5. The table of responses is

shown below.

x1 x2 activation output

0 0 0 0

0 1 1 0

1 0 1 0

1 1 2 1

The TLU may be thought of as classifying its input patterns into two classes: those

that give output `1' and those that give output `0'. Each input pattern has two components,

x1; x2. We may therefore represent these patterns in two-dimensional space

x1

x2

(0,1) (1,1)

(1,0)(0,0)

2-d pattern space

1

Neural Nets: 2 2

The space in which the inputs reside is referred to as the pattern space. Each pattern

determines a point in the space by using its component values as space-coordinates. In general,

for n-inputs, the pattern space will be n-dimensional. Clearly, for n > 3 the pattern space

cannot be drawn or represented in physical space. This is not a problem: we shall return to

the idea of using higher dimensional spaces later. However, the geometric insight obtained in

2-D will carry over (when expressed algebraically) into n-D.

1.2 The linear separation of classes

Since the critical condition for classi�cation occurs when the activation equals the threshold,

it is useful to examine the geometric implication of this. Putting the activation equal to the

threshold gives

nX
i=1

w
i
x
i
= � (1)

In the 2-D case we are considering

w1x1 + w2x2 = � (2)

so that

x2 = �
�
w1

w2

�
x1 +

�

w2

!
(3)

This is of the form

x2 = ax1 + b (4)

That is, a straight line with slope a and intercept b on the x2 axis. Since w1 = w2 = 1 and

a = �1, we also have b = 1:5.

x1

x2

1.5

1.5

output value

0

0 0

1

Line in 2-d pattern space

The two classes are therefore separated by the `decision' line which is de�ned by putting

the activation equal to the threshold. It turns out that it is possible to generalise this result

to TLUs with n inputs In 3-D the two classes are separated by a decision-plane. In n-D this

becomes a decision-hyperplane. (The `hyper-' is sometimes dropped even when n > 3). The

Neural Nets: 2 3

converse of this is that, any TLU is de�ned by some hyperplane in its pattern space and

any function which cannot be realised in this way cannot be realised by a TLU. Because the

de�ning equation (1) for the hyperplane, is linear, the TLU is a linear classi�er. Using some

ideas about vectors, it is possible to prove these results and to gain insight into what is going

on.

2 Vectors

Vectors� are usually introduced as representations of quantities that have magnitude and

direction. Thus the velocity of a car is de�ned by the car's speed and direction. On paper

we may draw an arrow whose length is proportional to the speed and whose direction is the

same as that of the car.

θ

2-D vector

Vectors will be denoted by bold face letters e.g. v. The magnitude of v will be denoted

by kvk. In writing vectors we can't use bold so we usually put an underline thus { v. The

length of vectors is sometimes denoted by the italic letter e.g. v. In accordance with our

geometric ideas a vector is now de�ned by the pair of numbers (kvk; �) where � is the angle

the vector makes with some reference direction.

In order to generalise to higher dimensions, and to relate vectors to the ideas of pattern

space, it is more convenient to describe vectors with respect to a cartesian coordinate system.

That is, we give the projected lengths of the vector onto two perpendicular axes

x1

x2

v2

v1

vector wrt cartesian axes

The vector is now described by the pair of numbers v1; v2. These numbers are its

components in the chosen coordinate system. Since they completely determine the vector we

may think of the vector itself as a pair of component values and write v = (v1; v2). The

�For a good introduction to vectors as required for neural nets, see chapter 9 in PDP vol. 1

Neural Nets: 2 4

vector is now an ordered list of numbers. Notice the ordering is important, since (1,3) is in a

di�erent direction from (3,1).

This de�nition immediately generalises to more than 2-dimensions. An n-dimensional

vector is simply an ordered list of n numbers, v = (v1; v2; : : : vn). Lists like this appeared on

the �rst problem sheet. They were the weight vector (w1; w2; : : : ; wn
) and the input vector

(x1; x2; : : : xn) for the node.

2.1 The length of a vector

For our 2-D prototype, the length of a vector is just its length in the plane. In terms of its

components, this is given by pythagoras's theorem.

kvk =
q
v
2

1 + v
2

2 (5)

In n-dimensions, the length is de�ned by the natural extension of (5)

kvk =
"

nX
i=1

v
2

i

1

2

(6)

2.2 Comparing vectors - the inner product

Consider the vectors v = (1; 1) and w = (0; 2) shown below

x1

x2

v

w

(1,1)

(0,2)45°

Two vectors at 45�

The angle between them is 45�. De�ne the inner product v �w of the two vectors by

v �w = v1w1 + v2w2 (7)

The form on the right-hand side should be familiar - it is just the same as that we have

used to de�ne the activation of a TLU... Substituting the component values gives v �w = 2.

We will now try and give this a geometric interpretation.

First we note that kvk =
p
2 and kwk = 2. Next we observe that the cosine of the

angle between the vectors is 1=
p
2

45°

45°

45°√2 1

1

cos
√2
1=

Neural Nets: 2 5

diagram of cos 45

Therefore v � w = kvkkwk cos 45�. It may be shown that this is a general result; that

is, if the angle between two vectors v and w is � then the de�nition of dot-product given in

(7) is equivalent to

v �w = kvkkwk cos� (8)

(For a proof of this see ch 9 PDP vol 1). In n-dimensions the inner product is de�ned

by the natural extension of (7)

v �w =
nX
i=1

w
i
v
i

(9)

Although we cannot now draw the vectors (for n > 3) the geometric insight we obtained

for 2-D may be carried over since the behaviour must be the same (the de�nition is the same).

We therefore now examine the signi�cance of the inner product in 2 dimensions. Essentially

the inner product tells us how well `aligned' two vectors are. To see this, let v
w
be the

component of v along the direction of w, or the projection of v along w.

v

wφ
vw

Vector projection

The projection is given by kvk cos � which, by (8) gives us

v
w
=
v �w
kwk

(10)

If � is small then cos� is close to its maximal value of one. The inner product, and

hence the projection v
w
, will be close to its maximal value; the vectors `line up' quite well.

If � = 90�, the cosine term is zero and so too is the inner product. The projection is zero

because the vectors are at right angles; they are said to be orthogonal. If 90 < � < 270, the

cosine is negative and so too, therefore, is the projection; its magnitude may be large but the

negative sign indicates that the two vectors point into opposite half-planes.

v
vv

w
w

wφ
φ

v w⋅ > 0 v w⋅ < 0v w⋅ = 0
diagram of inner product cases

Neural Nets: 2 6

2.3 Inner products and TLUs

Using the ideas developed above we may express the action of a TLU in terms of the weight

and input vectors. The activation a may now be expressed as

a = w � x (11)

The vector equivalent to (1) now becomes

w � x = � (12)

If w and � are constant then this implies the projection x
w
, of x along w is constant since

x
w
=

�

kwk
(13)

In 2-D, therefore, the equation speci�es all x which lie on a line perpendicular to w.

x w

φ xw

xw = θ
w


w.x = constant

There are now two cases

1. If x
w
> �=kwk, then x must lie beyond the dotted line

x

w

φ xw

xw > θ
w


w.x > �

Using (10) we have that x
w
> �=kwk implies w �x > �; that is, the activation is greater

than the threshold

2. Conversely, if x
w
< � then x must lie below the dotted line

Neural Nets: 2 7

x
x

w w

φ
xw

xw < θ
w

φ

xw (< 0)

OR

w.x < �

Using (10) we have that x
w
< �=kwk implies w � x < �; that is, the activation is less

than the threshold

In 3-D the line becomes a plane intersecting the cube and in n-D a hyperplane inter-

secting the n-dimensional hypercube or n-cube.

3 Training TLUs

Training any unit consists of adjusting the weight vector and threshold so that the desired

classi�cation is performed. In order to place the adaptation of the threshold on the same

footing as the weights, we suppose that it is another weight which is permanently connected

to an input of -1. I shall call this the augmented weight vector, in contexts where confusion

might arise, although this terminology is by no means standard. Then for all TLUs we may

express the node function as follows

w � x � 0) y = 1

w � x < 0) y = 0 (14)

Putting w � x = 0 now de�nes the decision (hyper)plane. This plane is therefore or-

thogonal to the (augmented) weight vector and passes through the origin of the (augmented)

pattern space.

To see this consider the example below

Neural Nets: 2 8

0

0 0

1

x1

x2

(0,0) (1,0)

(1,1)(0,1)

w

A

B

AB is Decision line

Bit value

AND gate with w = (1/2, 1/2, 3/4)

The result in the augmented space is shown below

½

½

¾

(0,0,-1) (1,0,-1)

(1,1,-1)
(0,1,-1)

Part of
Decision plane

Old (2D)
decision

line

Augmented pattern space in 3D

Changing any vector (and hence the weight vector in particular) may be thought of

as adding another vector to it. Two vectors u = (u1; u2); v = (v1; v2) may be added by

summing their components to give a new vector w = (w1; w2) where

w1 = u1 + v1

w2 = u2 + v2 (15)

Subtraction may be de�ned by noting that the negative of a vector is just the same

vector pointing in the opposite direction. Then subtraction of v is just addition of �v. These
operations are shown below.

Neural Nets: 2 9

x1

x2

u
u

v

w

w = u + v

u2

v2

v1 u1

Vector addition

x1

x2

u

u

v

-v

w

w = u - v

Subtraction of a vector

3.1 Adjusting the weight vector

We require the weight vector to be orthogonal to the decision plane and that the plane must

pass through the origin.

decision plane

origin of
coordinates in
pattern space

W

X

Orthogonal/origin requirement

The training set for the TLU will consist of a set of pairs fv; tg, where v is an input

vector and t is the target class or output (`1' or `0') that v belongs to. This type of training

is known as supervised training, since we tell the net what output is expected for each vector.

Suppose we present a training vector v to the TLU whose current weight vector is w. Further,

suppose that t = 1 but that, with the weight vector as it is, it produces an output of y = 0.

To produce a `0' the activation must have been negative when it should have been positive.

The situation is shown below.

Neural Nets: 2 10

φ φ > 90

w

v

Misclassi�cation 1 - 0

In order to correct the situation we need to rotate w so that it points more in the

direction of v. At the same time, we don't want to make too drastic a change as this might

upset previous learning. We can achieve both goals by adding a fraction of v to w to produce

a new weight vector w0; that is

w0 = w+ �v (16)

where 0 < � < 1

φ
φ > 90

w

w′

v

αv

increment made to weight vector in case 1

Suppose now instead, that t = 0 but y = 1. This means the activation was positive

when it should have been negative.

φ
φ < 90

w

v

Misclassi�cation 0 - 1

We now need to rotate w away from v which may be e�ected by subtracting a fraction

of v from w; that is

w0 = w � �v (17)

φ φ < 90

w

w′
v

-αv

Increment made to weight vector in case 2

Neural Nets: 2 11

Both (16) and (17) may be written as a single rule as follows

w0 = w + �(t � y)v (18)

This may be written in terms of the change in the weight vectory �w or in terms of the

components

�w
i
= �(t � y)v

i
(19)

This is our �rst example of a training rule or learning rule. The parameter � is called

the learning rate. The learning rule may be incorporated into a training algorithm for TLUs

as follows

repeat

for each training vector pair (v; t)

evaluate the output y when v is input to the TLU

if y 6= t then

form a new weight vector w0 according to (18)

else

do nothing

end if

end for

until y = t for all vectors

This is usually known as the Perceptron learning algorithm because it was used exten-

sively with an extension of the TLU known as the perceptron described in the next section.

We now look at an example of using this method with an ordinary TLU.

3.2 Example

A TLU has weights 0, 0.4 and threshold 0.3. It has to learn the logical AND function; [all

outputs `0' except with input (1,1)]. The learning rate is 0.25. Using the above algorithm,

the following sequence of events takes place.

4 The Perceptron

This is an enhancement of the TLU introduced by Rosenblatt (Rosenblatt, 1962). It consists

of a TLU whose inputs come from a set of preprocessing association units (A-units).

yIn general, a change in a quantity is denoted by the by the Greek letter `delta'; either upper case � or

lower case �

Neural Nets: 2 12

w1 w2 � x1 x2 a y t �(t � y) �w1 �w2 ��

0.0 0.4 0.3 0 0 0 0 0 0 0 0 0

0.0 0.4 0.3 0 1 0.4 1 0 -0.25 0 -0.25 0.25

0.0 0.15 0.55 1 0 0 0 0 0 0 0 0

0.0 0.15 0.55 1 1 0.15 0 1 0.25 0.25 0.25 -0.25

0.25 0.4 0.3 0 0 0 0 0 0 0 0 0

0.25 0.4 0.3 0 1 0.4 1 0 -0.25 0 -0.25 0.25

0.25 0.15 0.55 1 0 0.25 0 0 0 0 0 0

0.25 0.15 0.55 1 1 0.4 0 1 0.25 0.25 0.25 -0.25

0.5 0.4 0.3 0 0 0 0 0 0 0 0 0

0.5 0.4 0.3 0 1 0.4 1 0 -0.25 0 -0.25 0.25

0.5 0.15 0.55 1 0 0.5 0 0 0 0 0 0

y

y

a
θB Σ

input
pattern

Association
units

weights

threshold

Perceptron

The A-units can be assigned any arbitrary Boolean functionality but are �xed - they do

not learn. The rest of the node functions just like a TLU and may be therefore be trained in

exactly the same way. Rosenblatt was the �rst to use the training algorithm described here -

hence the name `perceptron training'.

References

Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan Books.

