Appendix 1: The CHAID Algorithm

In this appendix we describe the steps in the CHAID algorithm by applying it to a simple data set consisting just of a categorical response variable ALWPRIM (Y) and two explanatory variables ETHNIC (X1) and WELSH (X2). The variable Y has four categories, Y = 1,2,3,4; the variable X1 has four categories, X1 = 1,2,3,4; the variable X2 has three categories, X2 = 0,1,2. The steps in the CHAID algorithm are then:

1. Calculate the distribution of the response variable Y in the "root" node.

Cat.	%	n
1	35.00	35
2	8.00	8
3	35.00	35
4	22.00	22
Total	(100.00)	100

- 2. For each explanatory variable X, find that pair of categories of X that are least significantly different (that is has the largest p-value) with respect to the distribution of Y within this node. The method use to calculate this p-value depends on the measurement level of Y. In this example Y is categorical, and so a series of chisquare tests are performed:
 - i. The relationship between the explanator ETHNIC (X1) and the response ALWPRIM (Y) within the node is given by the following crosstabulation:

X1/Y	1	2	3	4	RowTotl
1	23	5	19	4	51
2	12	2	15	13	42
3	0	1	0	1	2
4	0	0	1	4	5
Coltotl	35	8	35	22	100

Chi² = 25.63559 d.f.= 9 (p=0.002342955)

Since X1 has four categories, there are six 2×4 sub-crosstabulations to consider

X1/Y	1	2	3	4	RowTotl
1	23	5	19	4	51
2	12	2	15	13	42
Coltotl	35	7	34	17	93

Chi^2 = 9.193281 d.f.= 3 (p=0.02682849)

X1/Y	1	2	3	4	RowTotl
1	23	5	19	4	51
3	0	1	0	1	2
Coltotl	23	6	19	5	53

X1/Y	1	2	3	4	RowTotl
1	23	5	19	4	51
4	0	0	1	4	5
Coltotl	23	5	20	8	56

Chi² = 19.72078 d.f.= 3 (p=0.0001939266)

X1/Y	1	2	3	4	RowTotl
2	12	2	15	13	42
3	0	1	0	1	2
Coltotl	12	3	15	14	44

Chi^2 = 7.23356 d.f.= 3 (p=0.0648145)

X1/Y	1	2	3	4	RowTotl
2	12	2	15	13	42
4	0	0	1	4	5
Coltotl	12	2	16	17	47

Chi^2 = 4.962482 d.f.= 3 (p=0.1745651)

X1/Y	2	3	4	RowTotl
3	1	0	1	2
4	0	1	4	5
Coltotl	1	1	5	7

Chi² = 3.08 d.f.= 2 (p=0.2143811)

ii. The algorithm then identifies the pair of categories of X1 with largest p-value above and compares this p-value to a prespecified alpha level, α_{merge} (= 0.05, default value). In this example, this is the pair defined by categories 3 and 4 of X1. Since the p-value

for this pair (0.2143) is greater than α_{merge} , the two categories are merged to form a single compound category. As a result, a new set of categories of X1 is formed, and the sub-crosstabulation analysis of (i) is repeated. There are now three such sub-crosstabulations:

X1/Y	1	2	3	4	RowTotl
1	23	5	19	4	51
3,4	0	1	1	5	7
Coltotl	23	6	20	9	58

Chi² = 20.25577 d.f.= 3 (p=0.0001502343)

X1/Y	1	2	3	4	RowTotl
2	12	2	15	13	42
3,4	0	1	1	5	7
Coltotl	12	3	16	18	49

Chi^2 = 6.408565 d.f.= 3 (p=0.09333908)

X1/Y	1	2	3	4	RowTotl
1	23	5	19	4	51
2	12	2	15	13	42
Coltotl	35	7	34	17	93

Chi^2 = 9.193281 d.f.= 3 (p=0.02682849)

- iii. Again, the pair that results in the largest p-value greater than $\alpha_{merge} = 0.05$ is merged. Here this corresponds to merging category 2 with the compound category 3,4. If further mergers were possible, this process would continue. However, since there are now only two (merged) categories remaining for X1, the merging process stops.
- iv. The algorith now calculates an adjusted p-value for the set of merged categories of X1 and the categories of Y using a Bonferroni adjustment.

X1/Y	1	2	3	4	RowTotl
1	23	5	19	4	51
2,3,4	12	3	16	18	49
Coltotl	35	8	35	22	100

Chi^2 = 13.08861 d.f.= 3 (p=0.004448843)

The chisquare p-value above is adjusted using a Bonferroni multiplier. Since X1 is nominal, the Bonferroni multiplier is calculated as follows:

$$B_{free} = \sum_{i=0}^{r-1} (-1)^i \frac{(r-i)^c}{r!(r-i)!}$$

where c = number of original categories of X1 (4) and r = number of merged categories (2). This leads to an adjusted p-value of 0.0311 (= 0.00448843 × 7).

- 3. Steps (i) to (iv) above are now repeated, replacing X1 by X2 (WELSH).
 - i. The crosstabulation of X2 by Y for the root node is

X2/Y	1	2	3	4	RowTotl
0	33	8	34	22	97
1	1	0	1	0	2
2	1	0	0	0	1
Coltotl	35	8	35	22	100

Chi² = 2.768778 d.f.= 6 (p=0.8372577)

ii. X2 has three categories, so there are only three 2×4 sub-crosstabulations:

X2/Y	1	2	3	4	RowTotl
0	33	8	34	22	97
1	1	0	1	0	2
Coltotl	34	8	35	22	99

Chi^2 = 0.8881097 d.f.= 3 (p=0.8282962)

X2/Y	1	2	3	4	RowTotl
0	33	8	34	22	97
2	1	0	0	0	1
Coltotl	34	8	34	22	98

Chi² = 1.901759 d.f.= 3 (p=0.5930452)

X2/Y	1	3	RowTotl
1	1	1	2
2	1	0	1
Coltotl	2	1	3

 $Chi^2 = 0.75 d.f. = 1 (p=0.3864762)$

- iii. Here, the pair of categories of X2 with largest p-value are categories 0 and 1 with a p-value of 0.8283. We therefore merge categories 0 and 1 to form a single compound category. The merging process for this variable now stops since there are just two categories left.
- iv. The final p-value for the crosstabulation of X2 and Y is then calculated:

X2/Y	1	2	3	4	RowTotl
0,1	34	8	35	22	99
2	1	0	0	0	1
Coltotl	35	8	35	22	100

Chi^2 = 1.875902 d.f.= 3 (p=0.5985587)

The adjusted p-value in this case is 1 (since 0.5985587×3 is greater than 1).

- 4. The final step is to split the node on the basis of that "merged" explanator with smallest adjusted p-value less than asplit = 0.05. Here this means we split the root node into two subnodes on the basis of the merged categories of X1. That is, one subnode contains the 35 cases with X1 = 1 while the other contains the remaining 65 cases with X1 = 2, 3 or 4.
- 5. Continue to grow the tree until the stopping criteria are satisfied. Figure A1 shows the (two branch) tree constructed by CHAID in steps 1 4.

Figure A1

ALWPRIM

ETHNIC P-value=0.0311; Chi-square=13.0886; df=3

	1			2;3;4	
Cat.	%	n	Cat	. %	1
1	45.10	23	1	24.49	1
2	9.80	5	2	6.12	
3	37.25	19	3	32.65	1
4	7.84	4	4	36.73	1
Total	(51.00)	51	Tota	1 (49.00)	4