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ABSTRACT

This paper studies Wald-type tests in the presence of possibly rank-deficient covariance matrices, allowing
for singular covariance matrices, either in finite samples or asymptotically. Such difficulties occur in many
statistical and econometric problems, such as causality and cointegration analysis in time series, (locally)
redundant restrictions, (locally) redundant moment equations in GMM, tests on the determinant of a coeffi-
cient matrix (reduced rank hypotheses), tests of linear restrictions on Average Treatment Effects in regression
discontinuity designs, etc. Two different types of singularity are considered. First, the estimated covariance
matrix has full rank but converges to a singular covariance matrix, so the Wald statistic can be computed as
usual, but regularity conditions for the standard asymptotic chi-square distribution do not hold. Second, the
estimated covariance matrix does not have full rank but converges to a population matrix whose rank may
differ from the finite-sample rank. The proposed procedure works in all cases regardless of the finite-sample
and asymptotic ranks. To address such difficulties, we introduce a novel mathematical object: the regularized
inverse which is related to generalized inverses, although different. The regularized inverse exploits the spec-
tral decomposition of the covariance matrix; its unique representation follows from the Spectral Theorem,
see Eaton (2007, Theorem 1.2a, p.53). Results on total eigenprojections (that is the sum of eigenprojections
over a subset of the spectral set) are combined with a variance regularizing function; the latter modifies small
eigenvalues (using a threshold). The continuity property of the total eigenprojection technique ensures a valid
asymptotic theory for the regularized inverse; it always exists and is unique. The proposed class of regular-
ized inverse matrices includes both continuous and discontinuous regularized inverses; the Tikhonov-type
inverse is continuous, the spectral cut-off regularized inverse as proposed by LB(1997) is discontinuous, and
the full-rank regularized inverse we propose is continuous. Under general regularity conditions, we show that
sample regularized inverse matrices converge to their regularized asymptotic counterparts. Regularized Wald
statistics are then obtained through replacement of the usual inverse of the estimated covariance matrix (or
the generalized inverse) by a regularized inverse. Both Gaussian and non-Gaussian distributions are allowed
for the parameter estimates. Two classes of regularized Wald statistics are studied in relative detail. The first
one admits a nonstandard asymptotic distribution, which corresponds to a linear combination of chi-square
variables when the estimator used is asymptotically Gaussian. In this case, we show that the asymptotic
distribution is bounded by the usual (full-rank) chi-square distribution, so standard critical values yield valid
tests. In more general cases, we show that the asymptotic distribution can be simulated or bounded by sim-
ulation. The second class allows the threshold to vary with the sample size, but additional information is
needed. This class of test statistics includes the spectral cut-off statistic proposed by Lütkepohl and Burda
(1997, J. Econometrics) as a special case. The regularized statistics are consistent against global alternatives,
with a loss of power (in certain directions) for the spectral cut-off Wald statistic. An application to U.S. data
illustrates how the procedure works when testing for noncausality between saving, investment, growth and
foreign direct investment.

Key words: Asymptotic singularity; Regularized Wald test; Moore-Penrose inverse; spectral cut-off and
Tikhonov regularizations; Bounded distribution; Monte Carlo tests; Redundant restrictions; Noncausality
tests.
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1. Introduction
This paper examines Wald-type tests in the presence of possibly rank-deficient covariance matrices, either
in finite samples or asymptotically, so the usual regularity conditions that lead to a chi-square asymptotic
distribution (with possibly reduced rank) may not hold. The method we propose consists in regularizing the
relevant covariance matrix, so the latter has full rank both in finite samples and asymptotically. Our approach
is “rank-robust” in the sense that the rank of the covariance matrix is arbitrary in finite samples and can
converge to a matrix of any rank (which may differ from the finite-sample rank). In particular, our method
allows for a sequence of statistics for which the rank of the covariance matrix varies with the sample size,
i.e. a drifting sequence of ranks. More generally, a sequence of matrices that converges to a certain limit
but whose rank alternates could also be considered. This rules out the cumbersome task of determining the
asymptotic rank. Furthermore, we obtain valid inference under both types of singularity, in finite-sample or
asymptotic, even though we emphasize the case of asymptotic singularity in our distributional results. The
regularization method, which is simple and not computationally intensive, is valid even in the extreme case
where the covariance matrix converges to a zero matrix.

In regular setups, the regularized statistic asymptotically behaves like the standard one – though its asymp-
totic distribution is modified, unless the threshold varies with the sample size – while it is robust to rank
deficiencies in problematic cases.1 Asymptotically valid tests can thus be performed regardless of the asymp-
totic rank. More specifically, a bound is easily obtained for the full-rank regularized statistic. The bound is
appealing, because it relies on usual critical points for the full rank case and is invariant to the degree of rank
deficiency. These results only require information on the distribution of the estimated restricted parameters,
not the data generating process (DGP). The distribution of the estimator need not be Gaussian. Should the
test based on the bound be conservative, this feature can be alleviated through simulations as soon as some
information on the DGP is available.

If the covariance matrix estimator of an asymptotically normal random vector converges to a singular
matrix, using its generalized inverse (g-inverse) – rather than the g-inverse of the limit in the corresponding
normalized quadratic form that defines a Wald-type statistic – yields a statistic whose asymptotic distribution
is chi-square with a reduced number of degrees of freedom, provided the rank of the estimated covariance
matrix converges to the rank of the limit matrix with probability one; see Andrews (1987).2 Otherwise, the
asymptotic distribution of the quadratic form is typically modified.

Problems of this type are quite varied in econometrics, such as many test problems in time series, tests
involving (locally) redundant restrictions or redundant moment equations in GMM, tests on the determinant
of a coefficient matrix (for reduced rank hypotheses), etc. Situations that lead to asymptotic rank deficiencies
include: tests on impulse response coefficients in VAR models, tests of Granger non-causality in VARMA
models [Boudjellaba, Dufour and Roy (1992, 1994)], tests of noncausality at multiple horizons [Dufour and
Renault (1998), Dufour, Pelletier and Renault (2006)], tests of dynamic specification in time series [Sargan
(1980), Gouriéroux, Monfort and Renault (1989), Galbraith and Zinde-Walsh (1997)], tests for indirect effects
and mediation analysis [Sobel (1982, 1986) , MacKinnon, Lockwood, Hoffman, West and Sheets (2002),
MacKinnon, Lockwood and Williams (2006), MacKinnon (2008), Tofighi and MacKinnon (2016)], tests

1This paper does not deal with deficient ranks due to (first-order) underidentification. For those interested in such issues, see Dovonon
and Renault (2009), and Pötscher (1985). More generally, for those interested in weak identification issues in IV/GMM, see Dufour
(1997), Stock and Wright (2000), Stock, Wright and Yogo (2002), Dufour and Taamouti (2005, 2007) , Antoine and Renault (2009).
Nevertheless, we allow for situations of weak identification of θ only to the extent that the transformation ψ(θ) is identified.

2As pointed out by Andrews (1987, p. 349), the rank condition fails when the estimator of the covariance matrix has greater rank than
the limiting matrix. This can occur when sums of outer products are used to estimate the limiting matrix in the presence of polynomial
time trends, cointegrated variables, I(1) variables with innovations whose means are nonzero. Violation of the rank condition could
also occur when testing nonlinear restrictions with the Wald test for some isolated values of the parameter; the derivative matrix of the
restrictions when evaluated at a consistent unrestricted estimator will generally exceed that of the derivative matrix at the limit when the
isolated value of the parameter is true.
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of collapsibility and unions of conditional independence hypotheses in contingency tables [Glonek (1993)],
tests on tetrads and nonlinear hypotheses in graphical causal modelling and factor analysis [Drton, Sturmfels
and Sullivant (2007), Drton, Massam and Olkin (2008), Zwiernik and Smith (2012)], diagnostic tests on the
residuals of autoregressive models [Box and Pierce (1970),Li and McLeod (1981), Ljung (1986)], tests on the
coefficients of cointegrated VAR processes [Sims, Stock and Watson (1990)], tests of long-run relationships
in cointegrated systems [Gonzalo and Lee (1998)], stochastic discount factor specification tests in a GMM
framework [Marin (1996), Kan and Robotti (2009), Peñaranda and Sentana (2012)], etc.3

Finite-sample and asymptotic singularities arise naturally with redundant constraints. When dealing with
nonlinear conditional moment restrictions as in Gallant and Tauchen (1989) for the I-CAPM model, many
parametric restrictions turn out to be redundant; this creates collinearity problems for the Jacobian matrix.
Redundant moment restrictions also arise in a dynamic panel GMM setting, when linear moment conditions
imply nonlinear moment conditions under additional initial conditions on the dependent variable [Arellano
and Bond (1991), Ahn and Schmidt (1995), Blundell, Bond and Windmeijer (2000), Doran and Schmidt
(2006)] or when the number of parameters exceed the number of observations [Satchachai and Schmidt
(2008)]. In view of such difficulties, Carrasco and Florens (2000), Carrasco, Chernov, Florens and Ghysels
(2007), Carrasco, Florens and Renault (2007), and Carrasco (2012) regularize estimators when a continuum
of moments is used in a GMM/IV framework. General results on regularized estimators for high dimensional
covariance matrices can be found in Bickel and Levina (2004), Bickel and Levina (2008b, 2008a), Ledoit and
Wolf (2004b).4 On the estimation of high-dimensional covariance matrices for portfolio allocation and risk
management, see also Ledoit and Wolf (2004a), Fan, Fan and Lv (2008), Fan, Liao and Mincheva (2011),
and Carrasco and Noumon (2011).

Alternatively, in the context of polynomial restrictions, Dufour, Renault and Zinde-Walsh (2017) provide
a general characterization of the asymptotic distribution of the Wald statistic under asymptotic singularity.
They derive a wide array of asymptotic distributions for the original Wald statistic (without modification)
possibly involving nuisance parameters for a given null hypothesis; bounds are also derived. Although very
general, the characterization of the Wald statistic in irregular setups is very complicated. Indeed, as soon as
the regularity conditions fail (e.g. the Jacobian matrix of the restriction is rank deficient), one may expect
deviations from the standard asymptotic distribution. The limit distribution depends upon whether its evalua-
tion point is regular or singular. More specifically, the limit distribution under singularity is no longer pivotal;
the degree of singularity and the features of the singular point severely impact the limit distribution which
is no longer unique. In contrast, our regularization method is robust to such features, in particular does not
rely on any rank assumption (on the Jacobian matrix). In our case, the full-rank distribution still yields valid
critical values for the regularized statistic. Moreover, testing several polynomial restrictions is even worse,
that is the Wald-type statistic can diverge at a singular point even under the null hypothesis. Early detection
of divergence by examining the restrictions is a difficult and cumbersome task. Alternatively, regularizing
the statistic in the first place provides an easy remedy that rehabilitates the Wald statistic in terms of level

3Kan and Robotti (2009) note in a footnote on page 3461:

"that we should not perform a Wald test of H0 : η1 = β 1, ψ = 0K2+K3 . This is because the asymptotic variance of
√

n
[
η̂
′
1− β̂

′
1, ψ̂

′]′ is singular under H0, and the Wald test statistic does not have the standard asymptotic χ2
K1+K2+K3+1

distribution. The proof is available upon request."

4Although Bickel and Levina develop a battery of tools for regularizing high-dimensional covariance matrices in order to produce a
consistent estimator for the population covariance matrix, those regularization techniques – that also employ some thresholding tools but
in a different fashion– crucially rely on the sparsity assumption for the limiting covariance matrix as well as on the multivariate Gaussian
(or sub-Gaussian) distribution of the variables. In contrast, our approach does not restrict to Gaussian distributions neither imposes
any sparsity feature on the population matrix. Further unlike banding-type or tapering-type regularization tools that exploits natural
ordering among variables or notions of distance between variables, our regularization technique does not hinge on such assumptions.
Additionally, our regularization approach, which nests ridge-type regularization scheme, does not restrict to shrinkage estimators of
covariance matrices; for shrinkage types of well-conditioned covariance estimators see Ledoit and Wolf (2004b).
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control for testing multiple nonlinear restrictions. Thus modifying the Wald statistic as we propose, yields a
wide-range, rank-free simple solution to intricate general problems (e.g., alternate ranks, drifting sequences
of ranks). In other words, the prime appeal of our regularization approach is its universality. When further
combined with simulations (e.g., Monte Carlo tests), the bound can be enhanced, that is less conservative.

Violation of Andrews’s rank condition also appear in the estimation of a lower bound on the number of
mixture components in finite mixture models [see Kasahara and Shimotsu (2014),5 and testing linear restric-
tions on Average Treatment Effects (ATE) where the J× J covariance matrix of the ATE estimates [a sum
of two rank-one matrices] is singular [see Xu (2016)]. Within the Regression Discontinuity (RD) design,
the RD estimator is the difference of two estimators with singular asymptotic covariance matrices; thus in
this RD setting, the rank of the covariance matrix of the ATE’s depends upon whether the Jacobian of the
outcome probabilities of the two groups – treated and control groups – are linearly independent, which is
usually unknown to the econometrician. In this context, Xu (2016, section 2.4, p.10-12) points out the case
where the rank of the sample variance matrix happens to be larger than that of the population matrix, thereby
violating Andrews’s rank condition. Like Lütkepohl and Burda (1997), Duchesne and Francq (2015) study
modified Moore-Penrose inverses in order to satisfy Andrews’s rank condition. Further, asymptotic singu-
larity also arises when some components of the ATE estimates enjoy different convergence rates, with some
converging faster than others. Numerous situations may further occur in the econometric literature: when
testing nonlinear restrictions, this can happen if an asymptotic rank deficiency obtains on sets of Lebesgue
measure zero (e.g., at isolated points) in the parameter space.

In this paper, we focus on testing issues. We propose a general approach to deal with deficient rank
covariance matrices in order to conduct valid Wald-type tests in two different ways: (1) relatively simple
asymptotic bounds, and (2) a simulation-based approach that can handle non-standard distributions in the
context we consider. To overcome the problem of asymptotic singularity, Lütkepohl and Burda (1997) pro-
pose to reduce the rank of the matrix estimator in order to satisfy Andrews’s rank condition. To do so, they
set to zero the small problematic eigenvalues to produce a consistent estimator for the rank of the asymp-
totic covariance matrix. More generally within the rank testing literature Gill and Lewbel (1992), Cragg
and Donald (1996, 1997), Robin and Smith (2000) and Kleibergen and Paap (2006) focus on tests for the
rank of a matrix that is unobserved, but for which a

√
n consistent estimator is available. Unlike Cragg

and Donald (1996, 1997) , Robin and Smith (2000) and Kleibergen and Paap (2006) who assume Gaussian-
ity for the limiting distribution of the covariance matrix estimator, our methodology [based on the theory
developed by Eaton and Tyler (1994)] is more general, since the availability of a

√
n asymptotically Gaus-

sian estimator is not required for the asymptotic covariance matrix.6 Al-Sadoon (2017) describes a general
structure of rank test statistics; those are shown to be functions of implicit estimators of the null spaces of
the matrix of interest. See also Doran and Schmidt (2006) for a reduced-rank weighting matrix estimate in
highly-overidentified GMM setups; like Lütkepohl and Burda (1997), they discard the smallest eigenvalues
to improve finite-sample properties of the estimate. Further, Gouriéroux and Jasiak (2009) have shown that
the asymptotic distribution of the Wald statistic for testing the noninvertibility of a matrix A based upon the
estimated determinant is seriously affected when A = 0. Moreover, the asymptotic distribution of a reduced-
rank estimator of A is different depending upon whether A = 0 or A 6= 0; size distortions may result from
using quantiles of the standard asymptotic distribution ( i.e. those from A 6= 0).

When dealing with singular covariance matrices, usual inverses are discarded and replaced with g-inverses
[see Moore (1977), Andrews (1987) for the generalized Wald tests] or modified inverses proposed by Lütke-

5In order to satisfy Andrews’s rank condition, the authors follow the approach of Lütkepohl and Burda (1997), which employs
a reduced-rank modified Moore-Penrose pseudo-inverse in the average-rk statistic defined in Kasahara and Shimotsu (2014, Eq. 10
section 3.4, p.105).

6Estimating the rank as Lütkepohl and Burda (1997), Robin and Smith (2000) do may not be the right thing to do when it comes to
assess the finite sample distribution of such estimators. Our results somehow validate the intuition of Leeb and Pötscher (2003, 2005)
who are very critical of post-model selection estimators.
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pohl and Burda (1997) and Duchesne and Francq (2015). However, when using g-inverses, it is important
to remain aware of two difficulties. First, the continuous mapping theorem so widely used in econometrics
to derive asymptotic distributional results does not apply anymore because g-inverses are not (necessarily)
continuous [see Andrews (1987)]. Unlike eigenvalues, eigenvectors are not continuous functions of the el-
ements of the matrix. Second, when using the singular value decomposition of a matrix, the eigenvectors
corresponding to the eigenvalues with multiplicity larger than one, are not uniquely defined, which rules out
convergence in the usual sense. Ignoring these difficulties can lead to distributional results which are stricto
sensu wrong.

To address such difficulties, we introduce a class of regularized inverses whose convergence properties
exploit the technique of total eigenprojection, i.e. an eigenprojection operator taken over a subset of the
spectral set. Following Kato (1966) and Tyler (1981), we work with the total eigenprojection to overcome
the discontinuity and non-uniqueness of eigenvectors; like eigenvectors, individual eigenprojections may still
be discontinuous in the elements of the matrix. A lemma given by Tyler (1981) states the continuity property
for the total eigenprojection. As a result, the important continuity property is preserved for eigenvalues and
total eigenprojections even though eigenvectors are not continuous. We further define a perturbation function
of the inverse of the eigenvalues called the variance regularizing function (VRF). The VRF g(λ ; c) modifies
the small eigenvalues that fall below a certain threshold so that their inverse is well behaved whereas the large
eigenvalues remain unchanged. Depending on the choice of the variance regularizing function, we can pro-
duce regularized inverses that are continuous, like the full-rank regularized inverse, or discontinuous versions
of it, like the modified Moore-Penrose inverse (see Lütkepohl and Burda (1997). Under specific regularity
conditions, the regularized inverse converges to its regularized population counterpart. The distributional
theory of the test statistic resulting from the total eigenprojection technique is therefore valid.

Our contributions can be summarized as follows. First, we introduce a novel mathematical object: a
full-rank regularized inverse which employs a new regularization scheme [ i.e. g(λ ; c) = 1

c for eigenvalues
smaller than the threshold c]. This full-rank regularized inverse is contrasted with g-inverses. This new
class of inverses has full rank, and satisfies a decomposition property: a regular component based on large
eigenvalues, and a nonregular component based on small eigenvalues which may be associated with small or
zero eigenvalues of the asymptotic covariance matrix. This matrix decomposition determines a corresponding
decomposition of the regularized Wald statistic. Under simple conditions on the VRF, we show that the
regularized inverse converges to its full rank regularized counterpart; the convergence holds component by
component. Besides, the class of regularized inverses is general, including as special cases the spectral cut-
off type inverse and a Tikhonov-type inverse. Second, we define a regularized Wald statistic that relies on
a fixed value of the threshold in the VRF g(λ ; c). Another version allows the threshold to vary with the
sample size, but requires more information on the behavior of estimated eigenvalues. The first regularized
Wald statistic admits a nonstandard asymptotic distribution in the general case, which corresponds to a linear
combination of chi-square variables if the restrictions are Gaussian. A conservative bound is then obtained
for the distribution of the regularized Wald statistic. Hence, the test is asymptotically valid: usual critical
points (given by the chi-square variable with full rank) can be used, but are conservative. Interestingly, the
bound is invariant to the degree of rank deficiency of the covariance matrix. When the threshold goes to zero
with the sample size, we obtain the spectral cut-off modified Wald statistic proposed by Lütkepohl and Burda
(1997) as a special case. Under normality, the test statistic has the chi-square asymptotic distribution whose
reduced rank is given by the number of eigenvalues greater than zero. Note that Lütkepohl and Burda’s (1997)
result only holds for distinct eigenvalues whereas our result accounts for eigenvalues with multiplicity larger
than one. Third, to complement our bound, we propose three alternative ways to conduct the (regularized)
Wald test by simulation: (i) when a DGP is completely specified, the distribution of the test statistic can
be simulated by simulating the DGP; (ii) when the DGP is not available, but the asymptotic distribution
of the estimator is known (at least in large sample), the test statistic can be simulated by simulating the
estimator; (iii) when the restrictions (evaluated at the unrestricted parameter estimate) can be simulated, this
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also provides a way of simulating the test statistic. These three approaches require different amounts of
information on the model and the estimator employed, so they have different reliable properties with respect
to asymptotic error, nonlinearity and identification. For example, simulating under the law of the restrictions
may allow one to bypass identification problems raised by the presence of unidentified parameters.

We investigate in a Monte Carlo experiment the finite and large-sample properties of the regularized test
statistics. Our findings can be summarized as follows. i) Regarding level control, the standard Wald statistic
( i.e., W ) suffers from severe over-rejections in small samples, or from under-rejections in large samples in
non-regular setups. Similarly, the reduced rank Wald statistic ( i.e., WLB) displays the same poor, finite sample
behavior as the standard statistic in non-regular setups, with critical size distortions when parameter values
approach the nonstationary region. However, it exhibits good size properties asymptotically. In contrast,
the full-rank regularized statistic that uses the bound is conservative. We observe that this feature can be
alleviated by using simulation-based versions of the regularized statistics. If one directly simulates the DGP,
one can control the level of the test for the full-rank regularized statistic even in small samples. Thus, it is
very important to simulate from a well-behaved statistic to produce a reliable test. ii) In terms of power, the
full-rank regularized test statistics do not entail a significant loss of power under the alternative compared to
their oversized infeasible competitors W and WLB in small samples for the asymptotic tests. Finally, the most
striking result is the severe under-performance of the reduced rank statistic WLB in a regular setup. As already
mentioned by Lütkepohl and Burda (1997), by underestimating the true rank of the covariance matrix, this
reduced rank statistic puts more weight on the first restriction that remains fulfilled in this case. A violation of
the null hypothesis coming from the second restriction will not be detected by a statistic that underestimates
the rank; a full-rank regularized statistic dominates in such a case. Thus, these results on power reinforce the
better properties of the full-rank regularized statistics over the spectral cut-off one.

iii) We finally illustrate the procedure on U.S. data by conducting noncausality tests at several horizons
to assess any causal relation between Saving, Investment, Growth and Foreign Direct Investment (FDI) (in
the presence of (locally) redundant restrictions). While most of the procedures are not able to reject the null
hypothesis that Saving does not cause Growth at all horizons, we unambiguously find that Growth causes
Saving, and that Investment causes Growth in the presence of FDI on U.S. data. Our findings support the
original literature by Houthakker (1961, 1965), and Modigliani (1970) at the cross-country level. Moreover,
our findings confirm Dufour and Renault (1998, Proposition 4.5)’s results that in a VAR(1) model, it is
sufficient to have noncausality up to horizon 2 for noncausality to hold at all horizons.

The paper is organized as follows. In Section 2 we describe a general framework with minimal assump-
tions. In Section 3, we provide specific examples in the presence of (asymptotic) singular covariance matrices.
In Section 4, we introduce the class of regularized inverses. The regularized test statistic is presented in Sec-
tion 5. In Section 6, we review and adapt some results on total eigenprojections. In Section 7, we establish the
asymptotic properties of the new regularized inverse based on a fixed threshold. In Section 8, we state new
asymptotic distributional results for the regularized Wald test statistic that uses a fixed threshold. We exploit
the decomposition of the regularized statistic to derive an upper bound. In Section 9, we obtain, as a special
case, the Lütkepohl and Burda’s (1997) result in the Gaussian case. Finally, we illustrate the procedure by
conducting noncausality tests at several horizons on U.S. data in Section 10. Concluding remarks follow
while proofs and simulation experiments on finite and large sample properties of the tests are gathered in the
appendix.

2. Framework
Consider a family of probability spaces {(L ,AL , P̄θ ) : θ ∈Θ}, where L is a sample space, AL is a σ -
algebra of subsets of L , and P̄θ is a probability measure on the measurable space (L ,AL ) indexed by
a parameter θ in Θ ⊂ R

p. The sets L ,AL , and Θ are all nonempty. Typically, we are interested in a
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transformation ψ : Θ1→Ψ , defined on a nonempty subset Θ1 of Θ on which we want to test hypotheses of
the form H0(ψ0) : ψ(θ) = ψ0. Let Γ0 be a nonempty subset of Ψ , Θ0 = {θ ∈Θ1 ⊂ Rp : ψ(θ) ∈ Γ0 ⊂ Rq}. A
usual test statistic for testing the null hypothesis is the Wald-type statistic as soon as a consistent estimator ψ̂n
of the restrictions is available. We first consider a general Wald-type statistic based on an arbitrary weighting
matrix An:

Wn(ψ̂n, An) =
[
Hn(ψ̂n−ψ0)

]′An
[
Hn(ψ̂n−ψ0)

]
, (2.1)

where ψ̂n is an unrestricted estimator of the restrictions ψ(θ). Wn ≡Wn(ψ̂n,An) is continuous with respect
to (w.r.t) the restrictions and the weighting matrix An which allows fairly weak conditions. Usually An is the
inverse of a covariance matrix estimator Σn for ψ̂n. However, this specification allows more general forms of
the weighting matrix An. More generally, this setup includes as special cases either the well-known standard
case whenever the estimator and its limit have full rank - in that case An = Σ−1

n - or deficient ranks with
An =Σ†

n . Thus, among regularity conditions usually made when conducting tests based on quadratic forms
such as Wald-type tests, is the well-known rank condition for the covariance matrix. When the population
matrix Σ and its sample analog Σn have full ranks, we are in the regular case with the q× q-weighting
matrix Σ being nonsingular, and therefore Wn has an asymptotic χ2(q) distribution. This is not necessarily
true, however, if Σ is singular. In this case, Σ does not admit a usual inverse, but can still be inverted by
means of a generalized inverse. However, when the population matrix Σ has a reduced rank, the rank of
the sample matrix has to converge almost surely (a.s.) towards the reduced rank of the population matrix
for the quadratic form to have a limiting chi-square distribution, with fewer degrees of freedom, when the
restrictions are assumed to be asymptotically Gaussian. This is the case covered by Andrews (1987); we
shall relax this assumption in this paper. In other words, the method we propose is applicable under more
general assumptions: it is valid even though the finite sample (covariance) matrix Σn is not invertible (hence
requiring a g-inverse), or is invertible but converges to a singular population matrix Σ. For notations L→

n→∞
,

a.s.→ and
p→ denote the convergence in law, the almost sure convergence and the convergence in probability

respectively, and L (X) denotes the law of X . Let ψ̂n satisfy the following assumption, where implicitly
ψ = ψ(θ).

Assumption 2.1 CONVERGENCE IN LAW OF THE RESTRICTIONS WITH DIFFERENT RATES OF CONVER-
GENCE. Let Xn and X be random vectors in Rq. Hn = (hn,i j)i, j=1,...,q is a sequence of real-valued q× q

matrices such that hn,i j→ ∞, and Xn ≡ Hn(ψ̂n−ψ)
L→

n→∞
X , where L (X) is known.

Assumption 2.1 significantly enlarges the family of admissible laws for ψ̂n; the typical Gaussian distribu-
tion for X can easily be replaced by a chi-square distribution, or a Cauchy distribution. The assumption allows
us to deviate from the typical root-n convergence rate of the estimator of the restrictions. If Hn is a diagonal
matrix with distinct elements, the rates of convergence of ψ̂n differ across components. Generally speaking,
any distribution that can be consistently estimated by simulations is admissible. Therefore, if L (X) is not
known, but can be simulated through bootstrap techniques, e.g., then the techniques proposed in this paper
can be applied to provide valid tests under nonregular conditions. More importantly, note that Assumption
2.1 only requires ψ to be identified; in other words, θ can be unidentified, but there exist transformations of
θ , i.e. ψ(θ), that can be identified. In regression problems, it is frequent to encounter situations where only
certain components of the parameter of interest θ are identified; in such a case, inference is limited to the
identified components. Whereas Lütkepohl and Burda (1997) assume the availability of an asymptotically
Gaussian estimator of θ , as in equation (2.4), that unnecessarily restricts to situations where θ is identified,
we relax this assumption here. In doing so, we allow for situations of weak identification only to the extent
that ψ(θ) is identified. Like Lütkepohl and Burda (1997), Duchesne and Francq (2015) examine the behavior
of generalized Wald tests under singular normal distributions. Note that ψ will alternately equal ψ0 under
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the null hypothesis, or ψ1 under the alternative. Of course, the distributions characterizing the null and the
alternative are distinct.

Further, a general condition given by Eaton and Tyler (1994) states the convergence result for the weight-
ing matrix An (or a set of parameters).

Assumption 2.2 EATON-TYLER CONDITION. An is a sequence of p×q real random matrices and A is a
p×q real nonstochastic matrix such that Qn = bn(An−A) L→

n→∞
Q, where bn is a sequence of real constants

such that bn→+∞, and Q a random matrix.

Note that Assumption 2.2 is less restrictive than that of Robin and Smith (2000, Assumption 2.2, p. 154)
and Kleibergen and Paap (2006, Assumption 1, p. 103). Indeed, Assumption 2.2 allows situations whose
matrix estimator is not asymptotically Gaussian, e.g., Wishart distributions. More specifically, bn may differ
from the conventional

√
n convergence rate. The Eaton-Tyler condition is stated for rectangular matrices, but

most of the time we will consider square matrices that are symmetric with real eigenvalues. Assumptions
2.1 and 2.2 will constitute the cornerstone for the validity of the distributional results developed further. In
particular, we do not require the finite-sample rank to converge to the asymptotic rank for the procedure to
be valid. Our approach is rank-robust even allowing the (finite-sample) rank to alternate. It is also important
to note that the generality of Assumption 2.2 enables a mixture of a continuous distribution and of a Delta-
Dirac distribution at an eigenvalue λ = c. Therefore, it is not superfluous to examine this case, especially
for non-continuous distributions of matrices and their eigenvalues, to provide a thorough and comprehensive
distributional theory. Note that Assumption 2.2 implies that An

p→ A. Under Assumptions 2.1 and 2.2, we can
easily obtain the distribution of the Wald statistic Wn(ψ̂n,An) given in a general form. It is worth mentioning
at this stage that under those assumptions only a Wald test can be conducted to the extent that no information
is available on the DGP. Only an estimator (of the restrictions) is assumed available to perform the test. As a
result, a LR-type test can hardly be conducted without further information.

Lemma 2.1 Under Assumption 2.1 and 2.2, the statistic Wn(ψ̂n,An) defined in equation (2.1) is such that:

Wn(ψ̂n, An)
L→

n→∞
X ′AX . (2.2)

The general form of the statistic Wn(ψ̂n,An) in equation (2.1) based on the general weighting matrix An
bypasses any issue related to the invertibility of the covariance matrix estimator Σn. As soon as a pseudo-
inverse exists, one can conduct the test, at the cost of a slightly intricate distributional theory. Most of
the time, the Wald test is implemented using the inverse of the covariance matrix of the restrictions under
normality. Indeed, if normality is assumed as in Assumption 2.4 below, the Wald statistic follows a chi-square
distribution with the number of degrees of freedom given by the rank of the asymptotic covariance matrix.
Intentionally, Hn in equation (2.1) allows situations where some components of ψ̂n, or linear combinations
of them, do not converge at the same rate. Some components might converge faster or slower than the
conventional

√
n rate; for example superconsistent estimators arise in a unit root framework, or in a simple

time trend model (see Hamilton (1994, chapter 16, page 457-460)).
While ψ = ψ(θ) in Assumption 2.1 can accommodate some identification problems on some compo-

nents of θ , it might involve some discontinuity at some specific values, e.g., {θ = (θ 1, θ 2) ∈ Ω : θ 2 = 0}
for ψ(θ) = θ 1/θ 2. In this case, one should rather work with θ and place oneself under the alternative
assumption:

Assumption 2.3 CONVERGENCE IN LAW OF THE ESTIMATOR OF THE PARAMETER WITH DIFFERENT
RATES OF CONVERGENCE. Let X̃n and X̃ be random vectors in Rp. H̃n = (h̃n,i j)i, j=1,...,q is a sequence of

real-valued p× p matrices such that h̃n,i j→ ∞, and X̃n ≡ H̃n(θ̂ n−θ)
L→

n→∞
X̃ , where L (X̃) is known.
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Finally, a data generating process (DGP) may be available in specific settings. One could exploit the DGP
(or the corresponding parametric model) to derive the distribution of θ̂ n or that of ψ(θ̂ n). The knowledge of
the parameter θ completely specifies the distribution of the data. Let us express the usual Wald statistic as a
function of the parameter θ :

Wn(θ̂ n, An) = [Hn(ψ(θ̂ n)−ψ(θ))]′An[Hn(ψ(θ̂ n)−ψ(θ))]. (2.3)

Most of the time, the weighting matrix A, as well as its sample analog An, is interpreted as a covariance
matrix. Nevertheless, such an interpretation is very restrictive and discards too many distributions, for in-
stance those whose moments do not exist, like the Cauchy distribution. Therefore, Assumptions 2.1 and 2.2
are purposely formulated to allow general distributions for nonlinear restrictions on the parameter θ . For
instance, nonlinear transformations of a Gaussian estimator of θ such as high-order polynomial transforma-
tions will not typically be Gaussian, e.g., tests on the determinant of a matrix. Also quadratic forms based on
superconsistent estimators in the unit-root literature typically involve non-Gaussian random variables.

Let us now focus on the usual case where the weighting matrix An in Assumption 2.2 is equal to Σn, i.e.,
a consistent estimator of the limiting covariance matrix Σ of the restrictions.

A special case of Assumption 2.1 that is usually encountered in the econometric literature consists in
specifying a Gaussian distribution for X whose parametrization hinges on Σ with Hn =

√
nIq as in Lütkepohl

and Burda (1997).

Assumption 2.4 ROOT-n ASYMPTOTIC NORMALITY. Let Xn and X be random vectors in R
q. Xn ≡√

n(ψ(θ̂ n)−ψ(θ))
L→

n→∞
X , where L (X) =N(0,Σ) and Σ is a fixed q×q matrix.

Note that Assumption 2.4 allows for the most degenerate case corresponding to Σ = 0. In this case,
the population eigenvalue denoted by d j is zero with multiplicity q, namely d j = 0, with m(d j) = m(0) = q.
Usually, one derives the asymptotic normality of the restrictions from the root-n asymptotic normality of the
estimator θ̂ n of the underlying parameter θ through the delta method, i.e.,

√
n(θ̂ n−θ)

L→
n→∞

N(0,Σθ ). (2.4)

This requires the continuously differentiability of the restrictions unlike Assumption 2.1. In doing so, econo-
metricians unnecessarily restrict the family of admissible restrictions to those for which the delta method is
applicable. Thus, when the delta method is applied to the Gaussian estimator given in equation (2.4), the
covariance matrix has the typical form Σ = P(θ)Σθ P(θ)′ which critically hinges on the differentiability of
the restrictions, i.e. P(θ) = ∂ψ(θ)/∂θ

′ as in Lütkepohl and Burda (1997). By contrast, Andrews (1987,
Theorem 1) does not rely on the differentiability property of the restrictions, nor on the delta method, but on
the Gaussian distribution of the random variable X , and on the consistency of the sample covariance matrix
to its population counterpart. Indeed, any weighting matrix can be used in the Wald-type statistic but only
the covariance matrix of the restrictions yields the standard chi-square distribution. If a different weighting
matrix is used instead, the resulting distribution is modified.

3. Examples
In this section, we first provide examples of rank-deficient covariance matrices, emphasizing the asymptotic
singularity case that affects the distribution of the Wald test statistic. Then we illustrate situations where the
restrictions tested are not necessarily Gaussian, thereby altering the limiting distribution of the Wald-type test
statistic.
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3.1. Multistep noncausality
As already observed by Lütkepohl and Burda (1997), when testing for noncausality with a Wald test statistic,
one may encounter asymptotically singular covariance matrices. For the sake of comparison, we examine
the example studied by Lütkepohl and Burda (1997). For simplicity, a VAR(1) process is considered for the
(3×1) vector yt = [x′t y′t z′t ]

′ as follows:xt
yt
zt

= A1

xt−1
yt−1
zt−1

+ut =

θ xx θ xy θ xz
θ yx θ yy θ yz
θ zx θ zy θ zz

xt−1
yt−1
zt−1

+
ux, t

uy, t
uz, t

 .

Suppose Y ≡ (y1, . . . , yn), B≡ (A1), Zt ≡ [yt ], Z ≡ (Z0, . . . ,Zn−1), U ≡ [ut ]t=1, ...,n = (u1, . . . , un), where
ut = [u′x, t u′y, t u′z, t ]

′ is a white noise with a 3×3 nonsingular covariance matrix Σu. Using the standard column
stacking operator vec, let θ =vec(A1) =vec(B), where B is (3× 3) and Y , Z and U are (3× n). Testing the

null hypothesis of multi-step noncausality running from y to x, i.e. H0 : yt

(∞)

6→ xt , requires to test 2 restrictions
on θ of the following form [see Dufour and Renault (1998)]:

ψ(θ) =

[
θ xy

θ xxθ xy +θ xyθ yy +θ xzθ zy

]
=

[
0
0

]
.

These restrictions are fulfilled in the following three parameter settings:

θ xy = θ xz = 0, θ zy 6= 0 , θ xy = θ zy = 0, θ xz 6= 0 , θ xy = θ xz = θ zy = 0 . (3.1)

We observe that the first-order partial derivative of the restrictions leads to a singular matrix

∂ψ

∂θ
′ =

[
0 0 0 1 0 0 0 0 0

θ xy 0 0 θ xx +θ yy θ xy θ xz θ zy 0 0

]
(3.2)

if (3.1) holds; the rank is equal to 1 instead of 2. Under such circumstances, the Wald test statistic does not
have the standard chi-square distribution under the null.

3.2. Jacobian matrix degenerate at isolated values for a stochastic volatility model
A two-step GMM-type estimator for estimating θ = (aw, rw, ry)

′ has been proposed by Dufour and Valéry
(2009) in the context of a lognormal stochastic volatility model:

yt = cyt−1 +ut , |c|< 1, ut = [ry exp(wt/2)]zt , wt = awwt−1 + rwvt , |aw|< 1 .

based on the following moment conditions: µ2(θ) = E(u2
t ) = r2

y exp[(1/2)r2
w/(1− a2

w)], µ4(θ) = E(u4
t ) =

3r4
y exp[2r2

w/(1− a2
w)], µ2,2(1|θ) = E[u2

t u2
t−1] = r4

y exp[r2
w/(1− aw)] . Testing for homoskedasticity (aw =

rw = 0) in this model can be written ψ(θ) = 0 with ψ(θ) = (aw, rw)
′; there are two restrictions, and the

derivative matrix of the restrictions

P(θ) =
∂ψ

∂θ
′ =

(
1 0 0
0 1 0

)
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has full rank two, so it is regular. However, the Jacobian of the moment conditions does not have full rank
when evaluated at a point that satisfies the null hypothesis: it is easily shown that

∂ µ

∂θ
′ =

 0 0 2ry
0 0 12r3

y
0 0 4r3

y

 (3.3)

when aw = rw = 0, so that the Jacobian ∂ µ/∂θ
′ has at most rank one (instead of three in the full-rank case).

But GMM identification requires a full-rank Jacobian; see Newey and McFadden (1994, p. 2127).
Thus, ∂ µ/∂θ

′ typically has full rank when it is evaluated at a point that does not satisfy the null hypoth-
esis, for example at an unrestricted point estimate of θ , as in Wald-type statistics. Therefore, the rank of
∂ µ/∂θ

′, when evaluated at an unrestricted point estimate of θ , generally exceeds the rank of ∂ µ/∂θ
′ eval-

uated at the true θ when aw = rw = 0 holds. This again violates the standard regularity condition entailing a
non-regular asymptotic distribution for the Wald statistic.

3.3. Tests on residual autocorrelations in time series models
In time series analysis, the adequacy of a model often involves testing the absence of serial autocorrelations
in the residuals of autoregressive models. It is well known that such statistics are often singular normal
distributions, e.g., Box and Pierce (1970), Li and McLeod (1981), Ljung (1986). For instance as pointed out
by Duchesne and Francq (2015), one might want to test whether the first q residual autocorrelations of an
AR(q0) model, with q0 < q with i.i.d stationary normally distributed observations are zero. Thus, under the
null hypothesis H0 : µ0 = (ρ(1), . . . , ρ(q))′ = 0q,

√
n
(

ρ̂
(q)
n −µ0

)
L→

n→∞
Nq(0q,Σ)

where ρ̂
(q)
n ≡ (ρ̂n(1), . . . , ρ̂(q))′ denotes the first q empirical autocorrelations of the above stationary obser-

vations and the q× q covariance matrix Σ =diag(0′q0
, 1′q−q0

), where 0′q0
and 1′q−q0

are vectors of zeros and
ones, respectively. Clearly, Σ is rank-deficient, i.e. less than q.

3.4. Deviation from Normality: the Delta method breaks down
In this section we illustrate a situation where the nonlinear transformation of a Gaussian estimator is no longer
Gaussian causing the delta method to break down. Suppose the underlying parameter θ is a q×1 vector such
as √

n(θ̂ n−θ)
L→

n→∞
N[0, Iq], (3.4)

and suppose we want to test a null hypothesis of this form:

H0(ψ0) : ψ(θ) = θ
′
θ = 0. (3.5)

The data generating process corresponding to (3.4) is:

Y = θι +u, u∼ N[0, Iq],

where Y is q× n, θ is q× 1, ι is 1× n and u is q× n. Using the multivariate least square estimator, we can
write:

θ̂ n = [(ιι
′)−1

ι⊗ Iq]y =
1
n
(ι⊗ Iq)y (3.6)
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where y = vec(Y ) is qn×1. Although the initial estimator is Gaussian according to (3.4), and the restrictions
are differentiable at the true value of the parameters θ = 0, the estimator of the restrictions are not Gaussian
anymore:

nψ(θ̂ n) = (
√

nθ̂ n)
′(
√

nθ̂ n)
L→

n→∞
χ

2(q). (3.7)

The weighting matrix used in the quadratic form is:

Σ = P(θ)Σθ P(θ)′, Σθ = Iq, with P(θ) =
∂ψ

∂θ
′ = 2θ

′ , Σ = 4θ
′
θ . (3.8)

Thus, the delta method breaks down because the distribution of the estimator of the restriction is not Gaussian
anymore, but belongs to a new family, the χ2 distribution. A consistent estimator of Σ is given by:

Σn = 4θ̂
′
nθ̂ n.

A Wald-type statistic can be built upon those restrictions, that is:

Wn = nψ(θ̂ n)
′[nΣn

]−1nψ(θ̂ n) = (n θ̂
′
nθ̂ n)

[
n4θ̂

′
nθ̂ n
]−1

(n θ̂
′
nθ̂ n) =

1
4

n θ̂
′
nθ̂ n

L→
n→∞

1
4

χ
2(q) . (3.9)

As a result, the asymptotic distribution of the Wald-type statistic is nonstandard, with a scale factor of 1
4 .

3.5. Tests on the determinant of a matrix
This example comes from Gouriéroux and Jasiak (2009). Suppose one wants to test the invertibility of a q×q
matrix A based on the significance of its determinant, i.e.

H0 : det(A) = 0 .

This null hypothesis is of economic interest as shown in Gouriéroux and Jasiak (2009), since it allows to
determine the autoregressive order of a multivariate ARCH model, or the hypothesis of nonpredictability of
asset returns in risk premium analysis that hinges on the condition A= 0. Suppose a consistent asymptotically
Gaussian estimator Ân of A is available.

To test the null hypothesis based on the estimated determinant det(Ân), one can deduce its asymptotic
distribution from the distribution of vec(Ân) through the delta method, where the vec(.) operator stacks the
columns of the q×q matrix A into a q2-dimensional vector. Applying the delta method onto:

√
n[vec(Ân)−vec(A)] L→

n→∞
N(0, Ω) ,

we get:
√

n[det(Ân)−det(A)] L→
n→∞

N
(

0, vec[cof(A)]′Ωvec[cof(A)]
)
,

where vec[cof(A)] = ∂ (det(A))
∂ (vec(A)) and cof(A) denotes the q× q matrix of the cofactors of A. As long as

vec[cof(A)] 6= 0, i.e., A 6= 0, the Wald statistic:

Wn = ndet(Ân)

(
vec[cof(Ân)]

′
Ω̂nvec[cof(Ân)]

)−1

det(Ân) ,
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where Ω̂n is a consistent estimator of Ω , has a standard chi-square distribution. However, when A = 0,

nq/2det(Ân)
L→

n→∞
det(A∞) .

When q≥ 2, the convergence rate is 1/(nq/2) that is greater than 1/
√

n so that the limiting distribution is not
Gaussian anymore; it is a determinant transformation (nonlinear) of a multivariate Gaussian distribution. The
asymptotic distribution of the Wald test statistic is clearly modified.

4. Regularized inverses
The methodology proposed in this paper is based on replacing the inverse of the parameter covariance ma-
trix (or the generalized inverse) by a regularized inverse. We will now define these. Let Σ be a q× q
positive-semidefinite matrix with eigenvalues λ 1(Σ) ≥ λ 2(Σ) ≥ ·· · ≥ λ q(Σ) ≥ 0, so Σ has the spectral
decomposition Σ =VΛV ′, where Λ =diag[λ 1, . . . , λ q] where λ i ≡ λ i(Σ), i = 1, . . . , q, and V is an orthog-
onal matrix whose columns are eigenvectors of Σ. Clearly, ΣV = VΛ . Let m(λ i) denote the multiplicity
of the eigenvalue λ i, i.e. exactly m(λ i) eigenvalues are equal to λ i (including itself). Although the matrix
Λ is uniquely defined, the eigenvector matrix V is not uniquely defined when there is an eigenvalue with
multiplicity larger than one [m(λ i) > 1], for the eigenvectors associated with an eigenvalue with multiplic-
ity m(λ i) > 1 are uniquely defined only up to post-multiplication by an m(λ i)×m(λ i) orthogonal matrix.
Similarly, let Σn be a consistent estimator of Σ with eigenvalues λ 1(Σn) ≥ λ 2(Σn) ≥ ·· · ≥ λ q(Σn) and
Λn =diag

[
λ 1(Σn), . . . , λ q(Σn)

]
, so that Σn =VnΛnV ′n where Vn is an orthogonal matrix of eigenvectors.

If rank(Σn) = rank(Σ) = q a.s., i.e. if both matrices are a.s. nonsingular, the inverses Σ−1 = VΛ−1V ′

and Σ−1
n =VnΛ−1

n V ′n are a.s. well defined. However, if rank(Σ)< q and/or rank(Σn)≤ q, we need to make
adjustments. For this, we consider a regularized inverse as follows. where R+

0 represents the nonnegative real
numbers.

Definition 4.1 REGULARIZED INVERSE. Let Σ be a q× q real symmetric positive semidefinite matrix
admitting the spectral decomposition Σ = VΛV ′ where Λ =diag[λ 1(Σ), . . . , λ q(Σ)], c ∈ R+

0 , g(λ ; c) a
real-valued nonnegative function of λ and c such that g(λ ; c) is bounded and non-increasing in λ , and
Λ †(c) ≡ Λ †(Σ; c) ≡diag

[
g(λ 1(Σ); c), . . . , g(λ q(Σ); c)

]
.Then a matrix of the form ΣR(c) = VΛ †(c)V ′ is

called a regularized inverse of Σ.

We will call g(λ ; c) the variance regularization function (VRF). VRF perturbs the small eigenvalues in
order to stabilize their inverse, preventing them from exploding. For c > 0, we denote q(Σ, c) the number of
eigenvalues λ i(Σ) such that λ i(Σ)> c, and q(Σn, c) the number of eigenvalues λ i(Σn) such that λ i(Σn)>
c.

******************
We now introduce a partition of the matrix Λ †(c) into three submatrices where c represents a threshold

which may depend on the sample, i.e. c = c(n,Yn):

Λ
†(c) =

Λ
†
1 [λ̄ ; c] 0 0

0 Λ
†
2 [λ̄ ; c] 0

0 0 Λ
†
3 [λ̄ ; c]

 . (4.1)

Let qi = dim(Λ †
i [λ̄ ; c]), for i = 1, 2, 3, with q1 = q(Σ, c), q2 = m(c) and q3 = q − q1 −

q2. m(c) denotes the multiplicity of the eigenvalue λ = c (if any). The three components
correspond to Λ

†
1 [λ̄ ; c] =diag

[
g(λ 1; c), . . . , g(λ q1 ; c)

]
for λ > c , Λ

†
2 [λ̄ ; c] = g(c; c)Iq2 for λ = c,
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Λ
†
3 [λ̄ ; c] =diag

[
g(λ q1+q2+1; c), . . . , g(λ q; c)

]
for λ < c. More specifically, the large eigenvalues that fall

above the threshold c may remain unchanged whereas those equal to or smaller than the threshold are (possi-
bly) modified to stabilize their inverse. Thus, the first component is "regular" and remains unmodified (except
for a ridge-type inverse), while the others may not be "regular". In particular, the third component requires a
regularization. Though our variance regularization function (VRF) does nest several regularization schemes
( i.e., variants around the Tikhonov, spectral cut-off, ridge regularization schemes), the one we advocate in
the paper and defined later produces a novel full-rank regularized inverse; we shall call it the Dufour-Valery
(DV) scheme. Indeed, because of the invertibility difficulties raised from small values of λ , we shall replace
the latter with eigenvalues bounded away from zero, i.e., 1

c ; this yields the Dufour-Valery Dufour-Valery
full-rank regularized matrix. By contrast, the modified Moore Penrose inverse (or spectral cut-off type) sets
to zero all small problematic eigenvalues, i.e. Λ

†
2 [λ̄ ; c] = Λ

†
3 [λ̄ ; c] = 0, yielding a reduced-rank matrix.

Let V1 be a q× q1 matrix whose columns are the eigenvectors associated with the eigenvalues λ > c
arranged in the same order as the eigenvalues. The eigenvectors associated with λ > c form a basis for the
eigenspace corresponding to λ . If m(λ ) = 1, these eigenvectors are uniquely defined, otherwise not. The
same holds for the q× q2 matrix V2 whose columns are the eigenvectors associated with the eigenvalues
λ = c and for the q×q3 matrix V3 whose columns are the eigenvectors associated with the eigenvalues λ < c.
Λ

†
1 [λ (Σn); c], Λ

†
2 [λ (Σn); c],Λ †

3 [λ (Σn); c], V1n, V2n and V3n denote the corresponding quantities based on the
sample analog Σn, with dim(Λ1[λ (Σn); c]) = q̂1 = card{i ∈ I : λ i(Σn) > c}, dim(Λ2[λ (Σn); c]) = q̂2 =
card{i ∈ I : λ i(Σn) = c}, dim(Λ3[λ (Σn); c]) = q̂3 = card{i ∈ I : λ i(Σn)< c}, respectively. Using (4.1), the
regularized inverse can be decomposed as follows:

ΣR(c) =VΛ
†(c)V ′ = [V1 V2 V3]

Λ
†
1 [λ̄ ; c] 0 0

0 Λ
†
2 [λ̄ ; c] 0

0 0 Λ
†
3 [λ̄ ; c]

V ′1
V ′2
V ′3

=
3

∑
i=1

ΣR
ii (c) (4.2)

where ΣR
ii (c) = ViΛ

†
i (c)V

′
i i = 1, 2, 3 and Λ

†
i (c) = Λ

†
i [λ̄ ; c] for the sake of notational simplicity. Likewise,

Σ can be decomposed as:

Σ =VΛV ′ =
3

∑
i=1

Σii(c) =
3

∑
i=1

ViΛi(c)V ′i (4.3)

where Σii(c) =ViΛi(c)V ′i ; Λ1(c) =diag(λ )λ>c, Λ2(c) =diag(λ )λ=c and Λ3(c) =diag(λ )λ<c. In the absence

of zero eigenvalues, the usual inverse can be computed as Σ−1 = VΛ−1V ′ =
3
∑

i=1
Σ−1

ii (c) =
3
∑

i=1
ViΛ

−1
i (c)V ′i .

Let us establish some useful properties for the regularized inverses, with Iq denoting a conformable identity
matrix.

Proposition 4.1 PROPERTY OF THE REGULARIZED INVERSES. Let Σ =VΛV ′ be a positive semidefinite
matrix, such that λ 1 ≥ ·· · ≥ λ q ≥ 0 . Let λg(λ ; c) ≤ 1 ∀ λ . Then, the regularized inverse ΣR(c) of Σ,
defined in 4.1, satisfies the following relations.

i) ΣΣR(c) =ΣR(c)Σ ≤ Iq ;

ii) TΣR(c)T ′ ≤ Iq , where T =VΛ 1/2V ′ is the square root of Σ ;

iii) ΣΣR(c)Σ ≤Σ ;

iv) if g(λ ; c)> 0 , then
(
ΣR(c)

)−1 ≥Σ ;

v) if λ > 0 then g(λ ; c)> 0 and rank
(
ΣR(c)

)
≥rank(Σ) .
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It is important to notice that any transformation of the original matrix Σ that diminishes the inverse ΣR(c)
satisfies relation iv). Note that the generalized inverses usually denoted by Σ− share properties i) and iii)
with the regularized inverses. By contrast, property iii) appears as a dominance relation for the regularized
inverse as opposed to g-inverses for which ΣΣ−Σ = Σ. Result v) is well known for g-inverses and is
related to the generalized inverse with maximal rank. See Rao and Mitra (1971, Lemmas 2.2.1 and 2.2.3
page 20-21)] for results iii) and v) regarding g-inverses. Finally, note that ii) is another way of formulating
i), and can be useful for sandwich estimators.

5. Regularized Wald statistic
In this section, we introduce the concept of regularized test statistic which embeds three possible cases. Case
1 corresponds to the regular setup where the estimator of the covariance matrix converges to a full-rank fixed
matrix. In this case, regularizing is useless and (relatively) innocuous, although the asymptotic distribution
is modified in the fixed threshold case. Case 2 corresponds to a sample covariance matrix that converges to
a singular limiting matrix but satisfies Andrews’s rank condition. In such a case, the limiting distribution is
modified only through an adjustment of the degree of freedom when the threshold decays to zero with the
sample size. Finally case 3 makes use of a sample covariance matrix which violates the typical rank condition.
Also, the regularized weighting matrix converges to an object that differs from the original population matrix.
This yields a valid test but at the cost of a modified asymptotic distribution with a fixed threshold.

Based on decomposition (4.3), the original Wald statistic Wn defined in equation (2.1) enjoys the following
decomposition:

Wn =W1n(c)+W2n(c)+W3n(c) , (5.1)

Win(c) =
[
Hn(ψ̂n−ψ0)

]′
Σ−1

ii,n(c)
[
Hn(ψ̂n−ψ0)

]
, with Σ−1

ii,n(c) =VinΛ
−1
in (c)V ′in for i = 1, 2, 3, and Λ

−1
in (c) =

Λ
−1
i [λ (Σn); c]. For i = 2, 3, Win(c) = 0, eventually. Note that decomposition (4.3) results in three inde-

pendent random variables. When Andrews’s rank condition does not hold, the Wald test statistic has to be
regularized to account for such irregularities as introduced next.

Definition 5.1 DEFINITION OF THE REGULARIZED WALD STATISTIC. The regularized Wald statistic is
W R

n (c) = X ′nΣ
R
n (c)Xn =

[
Hn(ψ̂n−ψ0)

]′
ΣR

n (c)
[
Hn(ψ̂n−ψ0)

]
, where ΣR

n (c) satisfies decomposition (4.2).

Using decomposition (4.2), the regularized Wald statistic can be decomposed as follows:

W R
n (c) = X ′nΣ

R
n (c)Xn =

[
Hn(ψ̂n−ψ0)

]′
ΣR

n (c)
[
Hn(ψ̂n−ψ0)

]
=
[
Hn(ψ̂n−ψ0)

]′ 3

∑
i=1

ΣR
ii,n(c)

[
Hn(ψ̂n−ψ0)

]
= W R

1n(c)+W R
2n(c)+W R

3n(c) , (5.2)

where W R
in(c) =

[
Hn(ψ̂n−ψ0)

]′
ΣR

ii,n(c)
[
Hn(ψ̂n−ψ0)

]
; ΣR

ii,n(c) = VinΛ
†
in(c)V

′
in for i = 1, 2, 3, denotes the

sample analog of the elements in decomposition (4.2).
By partitioning the inverse of the eigenvalue matrix Λ †(c) into three blocks, Λ

†
1 (c) for λ > c, Λ

†
2 (c) for

λ = c and Λ
†
3 (c) for λ < c, we have identified a convenient decomposition for the statistic into three compo-

nents: the first component builds on the "large" eigenvalues that remain unchanged; the second component
gathers the eigenvalues exactly equal to the threshold c (if any), while the third incorporates the small mod-
ified eigenvalues. This decomposition sheds light on the structure of the distribution of the regularized test
statistic. By contrast, Lütkepohl and Burda (1997) only keep the eigenvalues greater than the threshold c,
which cancels out the last two components, i.e. W R

2n(c) =W R
3n(c) = 0. Thus discarding the small eigenvalues

might reduce information. However, as Lütkepohl and Burda (1997) use a χ2 distribution with fewer degrees
of freedom, a deeper investigation is required to gauge power. More importantly, in finite samples it will be
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difficult to disentangle the estimates that really correspond to λ = c from those close to but distinct from c.
This complicates the asymptotic distribution and the estimation procedure. Note that W1n(c) =W R

1n(c) for this
is the regular component common to both statistics. Moreover, when there is no eigenvalues exactly equal to
c, m(c) = 0, and the second component vanishes.

6. Eigenprojections

6.1. Discontinuities of eigenvectors: an illustration
We now discuss some non-uniqueness and discontinuity issues regarding the eigenvectors of a given matrix.
It is well-known in spectral theory that eigenvectors corresponding to multiple eigenvalues are not uniquely
defined (only up to the post multiplication by an m(λ )×m(λ ) orthogonal matrix with m(λ ) indicating the
multiplicity of the eigenvalue). However, econometricians are not always aware of such technical details
that could jeopardize asymptotic results. Further, whereas eigenvalues are generally known to be continuous
functions in the elements of the matrix, eigenvectors not. The main pitfall consists of deriving convergence
results for the estimates of the eigenvectors based on the consistency of the sample matrix; this critically
hinges on the continuity assumption of eigenvectors (w.r.t. the elements of the matrix). Even in the determin-
istic case, eigenvectors are not necessarily continuous functions of the elements of the matrix. We illustrate
such a discontinuity in a simple counter-example.7

Example 6.1 Let A(x) be the matrix function defined as:

A(x) = 1{x≥0}

[
1 x
x 1

]
+1{x<0}

[
1+ x 0

0 1− x

]
(6.1)

where 1A = 1 if x ∈ A and 1A = 0 otherwise. This matrix function is clearly continuous at x = 0, with
A(0) = I2. However, for x < 0, the spectral decomposition of A(x) is:

A(x) = (1+ x)
[

1
0

][
1 0

]
+(1− x)

[
0
1

][
0 1

]
(6.2)

with (1+x) and (1−x) being the eigenvalues and (1, 0)′ and (0, 1)′ the eigenvectors, P(1+x)=
[

1
0

][
1 0

]
=[

1 0
0 0

]
and P(1− x) =

[
0
1

][
0 1

]
=

[
0 0
0 1

]
the eigenprojections, while for x > 0, it is

A(x) =
1√
2
(1+ x)

[
1
1

][
1 1

]
+

1√
2
(1− x)

[
1
−1

][
1 −1

]
(6.3)

with (1+ x) and (1− x) being the eigenvalues and 1√
2
(1, 1)′ and 1√

2
(1,−1)′ the eigenvectors, P(1+ x) =

1
2

[
1
1

][
1 1

]
= 1

2

[
1 1
1 1

]
and P(1−x) = 1

2

[
1
−1

][
1 −1

]
= 1

2

[
1 −1
−1 1

]
the eigenprojections. Clearly, the

eigenvalues (1+x) and (1−x) are continuous at x = 0 whereas the eigenvectors and the eigenprojections are
not the same whether x→ 0+ or x→ 0−.

Being unaware of this caveat may lead to wrong distributional results by mistakenly applying the contin-
uous mapping theorem to objects that are not continuous. Nevertheless, there exist functions of eigenvectors

7We are grateful to Russell Davidson for this example.
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that are continuous w.r.t. the elements of the matrix. Specifically, for an eigenvalue λ , the projection matrix
P(λ ) that projects onto the space spanned by the eigenvectors associated with λ - the eigenspace V (λ ) - may
still be not continuous in the elements of the matrix, but the total eigenprojection that corresponds to the sum
of the individual eigenprojections over a subset of the spectral set, will share the nice continuity property with
the eigenvalues. For further discussion of this important property, see Rellich (1953), Kato (1966) and Tyler
(1981).

6.2. Continuity properties of eigenvalues and total eigenprojections
In order to derive the asymptotic distribution of the regularized test statistics, it will be useful to review and
adapt some results on spectral theory used in Tyler (1981). Let S (Σ) denote the spectral set of Σ, i.e. the
set of all eigenvalues of Σ. The eigenspace of Σ associated with λ is defined as all the linear combinations
from a basis of eigenvectors xi, i = 1, . . . ,m(λ ), i.e.

V (λ ) = {xi ∈ Rq|Σxi = λxi} . (6.4)

Clearly, dimV (λ ) = m(λ ) . Since Σ is a q× q matrix symmetric in the metric of a real positive definite
symmetric matrix T, i.e. TΣ is symmetric [see Tyler (1981, p.725)], we have:

R
q = ∑

λ∈S (Σ)

V (λ ) . (6.5)

The eigenprojection of Σ associated with λ , denoted P(λ ), is the projection operator onto V (λ ) w.r.t. de-
composition (6.5) of Rq. For any set of vectors xi in V (λ ) such that x′iTx j = δ i j, where δ i j denotes the
Kronecker’ s delta, P(λ ) has the representation

P(λ ) =
m(λ )

∑
j=1

x jx′jT . (6.6)

P(λ ) is symmetric in the metric of T. This yields

Σ = ∑
λ∈S (Σ)

λP(λ ) , Σn = ∑
λ (Σn)∈S (Σn)

λ (Σn)P[λ (Σn)] . (6.7)

If v is any subset of the spectral set S (Σ), then the total eigenprojection for Σ associated with the eigen-
values in v is defined to be ∑λ∈v P(λ ). Below we report a lemma given by Tyler (1981, Lemma 2.1, p. 726)
that states an important continuity property for eigenvalues and total eigenprojections (i.e., the sum of the
eigenprojections over a subset of the spectral set) on eigenspaces for non-random symmetric matrices from
which consistency of sample regularized inverses will follow.

Lemma 6.1 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONS. Let Σn be a q× q real matrix
symmetric in the metric of a real positive definite symmetric matrix Tn with eigenvalues λ 1(Σn)≥ λ 2(Σn)≥
·· · ≥ λ q(Σn). Let Pk, t(Σn) represent the total eigenprojection for Σn associated with λ k(Σn) . . .λ t(Σn) for
t ≥ k. If Σn→Σ as n→ ∞, then:

i) λ k(Σn)→ λ k(Σ) ;

ii) Pk, t(Σn)→ Pk, t(Σ) provided λ k−1(Σ) 6= λ k(Σ) and λ t(Σ) 6= λ t+1(Σ) .

This lemma tells us that the eigenvalues are continuous functions in the elements of the matrix. The
same continuity property holds for the total eigenprojection. Thus, no matter what the multiplicity of the
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eigenvalues, this continuity property holds for the total eigenprojection Pk, t(Σ) provided that one can find
one eigenvalue before and one after that are distinct. It will be useful to extend Lemma 6.1 to random
symmetric matrices. To the best of our knowledge, these results are not explicitly stated elsewhere.

Lemma 6.2 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONS: ALMOST SURE CONVERGENCE.
Let Σn be a q× q real random matrix symmetric in the metric of a real positive definite symmetric ran-

dom matrix Tn and with eigenvalues λ 1(Σn) ≥ λ 2(Σn) ≥ ·· · ≥ λ q(Σn). Let Pk, t(Σn) represent the total
eigenprojection for Σn associated with λ k(Σn) . . .λ t(Σn) for t ≥ k. If Σn

a.s.→Σ as n→ ∞ , then:

i) λ k(Σn)
a.s.→ λ k(Σ) ;

ii) Pk, t(Σn)
a.s.→ Pk, t(Σ) provided λ k−1(Σ) 6= λ k(Σ) and λ t(Σ) 6= λ t+1(Σ) .

We can now show that the continuity property of the eigenvalues and eigenprojections established in the
a.s. case, remain valid in the case of convergence in probability .

Lemma 6.3 CONTINUITY OF EIGENVALUES AND EIGENPROJECTIONS: CONVERGENCE IN PROBABIL-
ITY. Let Σn be a q× q real random matrix symmetric in the metric of a real positive definite symmetric
random matrix Tn with eigenvalues λ 1(Σn) ≥ λ 2(Σn) ≥ ·· · ≥ λ q(Σn). Let Pk, t(Σn) represent the total
eigenprojection for Σn associated with λ k(Σn), . . . , λ t(Σn) for t ≥ k. If Σn

p→Σ as n→ ∞ , then:

i) λ k(Σn)
p→ λ k(Σ) ;

ii) Pk, t(Σn)
p→ Pk, t(Σ) provided λ k−1(Σ) 6= λ k(Σ) and λ t(Σ) 6= λ t+1(Σ) .

7. Asymptotic properties of the regularized inverse
In this section, we derive asymptotic results for the regularized inverse that hold for a general variance reg-
ularization function (VRF) family. More specifically, in Subsection 7.1, we introduce a family of general
variance regularization functions that exploits a threshold. This VRF family is general as it embeds both
cases, continuous VRFs (see equation (7.3)), or discontinuous VRFs (see equation (7.2) with c > 0). Such a
regularization approach based on a cut-off point to disentangle large eigenvalues from small eigenvalues en-
ables us to recover an important strand of the statistical literature that estimates the rank of a matrix; see Gill
and Lewbel (1992), Cragg and Donald (1996, 1997) , Robin and Smith (2000) and others. In the same vein,
the approach introduced by Lütkepohl and Burda (1997) yields a modified reduced-rank estimator for the
covariance matrix; we generalize it to non-Gaussian estimators in the presence of possible multiple eigenval-
ues.Lütkepohl and Burda (1997) propose to reduce the rank of the matrix estimator to satisfy Andrews’s rank
condition. The asymptotic rank is meaningful, especially if one wants to recover the asymptotic chi-square
distribution for the test statistic. Basically, we wanted to be ecumenical by allowing all rank possibilities,
from reduced ranks to full ranks. Besides, the threshold method is attractive because it leads to a genuine
bound for the nonstandard distribution. Finally, Subsection 7.2 reviews well-known continuous regularization
schemes extensively used in ill-posed inverse problems. Such continuous VRFs do not make use of a thresh-
old, hence the resulting distributional theory is easier. Those regularization tools can be cast into the Gc VRF
family for a specific choice of the threshold. See Carrasco, Florens and Renault (2007) for a comprehensive
review on regularization tools in ill-posed inverse problems in structural econometrics.
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7.1. The family of admissible Variance Regularization Function (VRF)
We now define the VRF family, and provide a few examples.

Definition 7.1 THE FAMILY OF ADMISSIBLE VRF. Gc is the class of admissible scalar VRFs, such as for
a real scalar c≥ 0 :

g(., c) : R+ → R+

λ → g(λ ; c)

g(λ ; c) is continuous almost everywhere (a.e.) w.r.t. λ , except possibly at λ = c, (w.r.t. the Lebesgue
measure); g is a function that takes bounded values everywhere; g is non-increasing in λ ; lim

c→ 0+
g(λ ; c) =

g(λ ; 0)

Note that we allow a discontinuity at λ = c to precisely embed a spectral cut-off type regularization such
as a modified Moore-Penrose inverse that is clearly not continuous around λ = c for c > 0, see (7.2). Some
possible choices for the VRF could be:

g(λ ; c) =
{ 1

λ+ε1
if λ > c

1
ε2+γ(c−λ ) if λ ≤ c

(7.1)

with γ ≥ 0. This VRF can be viewed as a modified Hodges’ estimator applied to the eigenvalues. See Hodges
and Lehmann (1950), LeCam (1953). Interesting special cases include:

1. ε1 = 0, γ = ∞, c≥ 0, hence

g(λ ; c) =
{ 1

λ
if λ > c

0 if λ ≤ c
(7.2)

and therefore Λ †(c) = Λ+(c), where

Λ
+(c) = diag[1/λ 1I(λ 1 > c), . . . , 1/λ q1 I(λ q1 > c), 0, . . . , 0 ]

corresponds to a spectral cut-off regularization scheme [see Carrasco (2012), Carrasco, Florens and
Renault (2007) and the references therein]; I(s) is equal to 1 if the relation s is satisfied. In particular,
Λ+(c) is a modified version of the Moore-Penrose inverse of

Λ = diag[λ 1I(λ 1 > 0), ..., λ q1 I(λ q1 > 0), λ q1+1I(λ q1+1 > 0), . . . , λ qI(λ q > 0)]

used by Lütkepohl and Burda (1997). We also consider the case where some eigenvalues may be
smaller than the threshold c, with c 6= 0.

2. ε1 = 0, γ = 0 and ε2 = c, with c 6= 0, hence

g(λ ; c) =
{ 1

λ
if λ > c

1
c if λ ≤ c .

(7.3)

We shall call this regularization scheme, the Dufour-Valery (DV) regularization scheme, which will
define the full-rank regularized inverse. We advocate this method in the paper and use it in the simula-
tions. This method is more refined than the following ridge-type one.
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3. γ = 0 and ε2 = λ + ε1, with ε1 ≥ 0 and c≥ 0, hence

g(λ ; c) =
{ 1

λ+ε1
if λ > c

1
λ+ε1

if λ ≤ c .
(7.4)

This regularization corresponds to a uniform (ridge-type) regularization (see e.g., Hoerl and Kennard
(1970)); uniformity means that all eigenvalues are being modified regardlessly. Thus, this regulariza-
tion scheme is somewhat crude because it does not distinguish the large eigenvalues from the small
ones. Usually this type of regularization is applied to the estimator of the regression coefficients in
ridge regressions, not to covariance matrices, i.e., ΣR(c) = (Σ+ ε1Id)−1. Note that this case embeds
the standard inverse when ε1 = 0. This ridge-type regularization of the covariance matrix corresponds
to a non-optimal linear shrinkage estimator of the covariance matrix; see Ledoit and Wolf (2004b) for
optimal linear shrinkage estimators of high-dimensional covariance matrices.8

4. ε1 = 0, γ > 0 with γ = α

λ (c−λ ) , α > 0, and ε2 = λ , with c 6= 0, hence

g(λ ; c) =
{ 1

λ
if λ > c

λ

λ
2+α

if λ ≤ c , (7.5)

which corresponds to a variation around the Tikhonov regularization since 1
λ+γ(c−λ ) =

1
λ+α/λ

= λ

λ
2+α

.

Based on the spectral decomposition defined in equation (6.7), we immediately deduce a spectral decom-
position for the regularized inverses:

ΣR(c) =VΛ
†(c)V ′ = ∑

λ∈S (Σ)

g(λ ; c)P(λ ) , ΣR
n (c) =VnΛ

†
n (c)V

′
n = ∑

λ (Σn)∈S (Σn)

g
[
λ (Σn); c

]
P
[
λ (Σn)

]
.

(7.6)
Thus, the dependence on c of the regularized inverses comes from the VRF g(λ ; c). The threshold c may be
size-dependent, i.e., g(λ , cn). This is a special case of c fixed and will be studied in Section 9.

7.2. The Variance Regularization Functions: the continuous case without threshold
Well-known continuous regularization schemes that do not use any threshold are the Tikhonov regularization
and the Landweber Fridman iterative regularization. For readers interested in regularization tools in ill-posed
inverse problems in structural econometrics, see Carrasco, Florens and Renault (2007), Carrasco (2012).The
Tikhonov regularization scheme is closely related to the ridge regression. In this case, ḡ(λ ) = λ

λ
2+α

,α > 0.

For the Landweber Fridman iterative regularization scheme, ḡ(λ ) =
1−
(

1−γλ
2
)1/α

λ

λ
, γ > 0, α > 0. This class

of VRF that does not make use of a threshold can be recast into the Gc family by selecting the threshold c
such that c > λ max, where λ max denotes the largest eigenvalue of Σ, i.e. ḡ(λ ) = g(λ ; c̄) with c̄ > λ max.

Without a threshold, the convergence of the regularized inverse is straightforward; it follows from the
continuity property of ḡ(·) and of the total eigenprojection technique. However, there is a trade-off between

8For readers interested in ridge regressions, and more generally in Bridge and Lasso-type regressions see Tibshirani (1996), Knight
and Fu (2000), Knight (2008); see also Luo (2010) and Luo and Zuo (2011) for tests in the context of large dimensional regression
coefficients with ridge estimators. More specifically, Knight and Fu (2000) derive the asymptotic behavior of Lasso-type estimators in
regression settings, including asymptotics for "nearly singular" designs, an alternative terminology for asymptotic singularity. Thus,
Knight and Fu (2000), Knight (2008) have tackled the asymptotic singularity problem – or nearly singular design – by working on the
null space of the singular matrix on which there exists a positive definite matrix. Under the nearly-singular design, the authors show that
collinearity slows down the rate of convergence of Bridge estimators relatively to

√
n. See also Caner (2008) for the sample behavior of

(2)LS estimators, GMM estimators under nearly-singular design.
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the simplicity of the continuous regularization schemes above - that simplifies the asymptotic theory - and
the maintained hypothesis of a chi-square distribution with reduced rank. Indeed, the threshold allows us to
disentangle the large eigenvalues from the small problematic ones. This observation enables us to still exploit
the chi-square distribution, especially when the rank of the limiting matrix is reduced. Estimating the reduced
rank of a matrix is a tricky problem that has drawn much attention in the statistical and econometric literature.
Our approach is general as it encompasses the two limiting cases: the reduced rank statistic that still follows
a chi-square distribution and the modified full-rank statistic that has a nonstandard distribution (a linear
combination of chi-squares). A simple alternative in between is to use the standard chi-square distribution
(with full rank) as an upper bound: thus one can use the standard critical point instead. Although the chi-
square upper bound is conservative, it enjoys good power properties as shown later on in the simulations.

7.3. Asymptotic properties of the regularized inverse when c is fixed
Because the random objects considered here are matrices, we must choose a norm suitable to matrices. For
this reason, we consider the finite dimensional inner product space (Sq, < ·, · >), where Sq is the vec-
tor space of q× q symmetric matrices. Sq is equipped with the inner product < Σ1,Σ2 >= tr[Σ′1Σ2],
where tr denotes the trace operator. Let ‖ · ‖F denote the Frobenius norm induced by this inner product, i.e.
‖Σ‖2

F = tr[Σ′Σ]. The notion of consistency for matrix estimators will be defined relative to the Frobenius
norm. Recall that AR(c) denote the regularized inverse of a q× q symmetric matrix A. In the sequel, let
I = {1, 2, . . . , q} denote the set of indices such that λ 1 ≥ λ 2 ≥ ·· · ≥ λ q, and J = {1, 2, . . . , k} the subset of I
corresponding to the indices associated with the distinct eigenvalues of Σ, i.e. d1 > d2 > · · ·> d j > · · ·> dk,

so that
k
∑
j=1

m(d j) = q≥ 1 and 1≤ k ≤ q, with m(d j) denoting the multiplicity of d j. Let us define a partition

of I, denoted P(I) such that:

P(I) = {I j ⊂ I, j ∈ J : I j
⋂

Il
j 6=l

= /0,
k⋃

j=1

I j = I} , I = {1, . . . , q}, (7.7)

with
I j = {i ∈ I : λ i = d j} , card I j = m(d j) (7.8)

and
I(c) = {i ∈ I : λ i = d j = c} , , card I(c) = m(c) (7.9)

We adopt the convention that I(c) = /0, if there is no eigenvalues equal to c. Recall that if Σv = d jv for
some v 6= 0, then d j is an eigenvalue of Σ, and v an eigenvector of Σ associated with d j, v ∈ Rq. The
eigenspace of Σ associated with d j is V (d j) = {v ∈ Rq, | Σv = d jv} . The dimension of V (d j) is given
by the multiplicity of d j, i.e. m(d j). See Tyler (1981, Section 2, Preliminaries, page 726) for a review of
spectral theory results. The vector space Rq can be decomposed as Rq = V (d1)⊕·· ·⊕V (d j)⊕·· ·⊕V (dk) .
Each u ∈ Rq can be expressed in the form u = u1 + · · ·+ u j + · · ·+ uk, with u j ∈ V (d j), j ∈ J in a unique
way. The operator Pj = P(d j) is such that: Pju = u j is the eigenprojection operator that projects onto the
eigenspace V (d j) along N j = V (d1)⊕·· ·⊕V (d j−1)⊕V (d j+1)⊕·· ·⊕V (dk) . Thus, Pj(Σ) = P(d j)(Σ) ,
projects Σ onto the eigenspace V (d j) along N j. For all j = 1, . . . , k, with 1≤ k ≤ q, the B(d j)’s, such that
B(d j) = [v(d j)l ]l=1, ...,m(d j) form an orthonormal basis for the eigenspace V (d j) = {v ∈ Rq, | Σv = d jv} .
Let

Pj(Σ) = P(d j)(Σ) = B(d j)B(d j)
′ , (7.10)

when it is expressed in the Euclidean metric. The Euclidean metric specified here implies that the metric
T in equation (6.6) is equal to the identity matrix, that is P(λ ) = ∑

m(λ )
j=1 x jx′jT , with T = Id. Furthermore,
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∑
k
j=1 Pj = Iq, PkPj = δ jkPj , with δ jk = 0 for j 6= k and δ jk = 1 for j = k. There is a one-to-one mapping

from J to P(I) such that:
j 7−→ I j , (7.11)

where the total eigenprojection operator PI j(•) applied to Σn, with Σn
p→Σ, yields by Lemma 6.3 ii)

PI j(Σn)
p→ Pj(Σ) = P(d j)(Σ) (7.12)

and

dim PI j = dim Pj = m(d j) = dim V (d j) with 1 =
k

∑
j=1

Pj =
k

∑
j=1

PI j . (7.13)

Proposition 7.1 UNIQUE REPRESENTATION OF THE REGULARIZED INVERSE. For a given VRF g(., c)
in the Gc family, the regularized inverse ΣR(c) =VΛ †(c)V ′ of a symmetric matrix Σ and its sample analog
ΣR

n (c) =VnΛ †
n (c)V

′
n admit an unique representation of the form:

ΣR(c) =
k

∑
j=1

g(d j; c)Pj(Σ) (7.14)

and

ΣR
n (c) =

k

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i; c) (7.15)

where the d j’s denote the distinct eigenvalues of Σ with multiplicity m(d j), λ̂ i = λ i(Σn); PI j(Σn) and
Pj(Σ) are defined at equations (7.10)-(7.13) with I j defined at equation (7.8). If Σ = 0, P(0)(Σ) = Iq, and
ΣR(c) = g(0; c)P(0)(Σ) = g(0; c)Iq .

The uniqueness of the representation of the regularized inverse immediately follows from the uniqueness
of the decomposition involving only distinct eigenvalues. In particular, this representation exploits the Spec-
tral Theorem; see Eaton (2007, Theorem 1.2a, p.53), and the references therein. Thus, there is a one-to-one
relation between the regularized inverse and the VRF g(., c) in the Gc family. An interesting case producing
a nonstandard asymptotic distribution corresponds to a fixed threshold c; an upper bound can be derived in
the Gaussian case (see Corollary 8.3).

Let us first define a superconsistent estimator of the eigenvalues at c. The estimator λ̂ (c) = (λ̂ i(c))i=1, ...,q
of the eigenvalues of a q×q positive semidefinite matrix Σ satisfies:

λ̂ i(c) =
{

λ̂ i if |λ̂ i− c|> ν
en
bn

c if |λ̂ i− c| ≤ ν
en
bn

,
(7.16)

for each i = 1, . . . , q where bn is the speed of convergence of the sample eigenvalues as defined in Theorem
A.2; en is chosen such that en → ∞ with en

bn
→ 0 as n grows to infinity, and ν is an arbitrary strictly pos-

itive constant. λ̂ i(c) corresponds to a Hodges estimator; see Hodges and Lehmann (1950), LeCam (1953),
Lehmann and Casella (1998), Leeb and Pötscher (2008).

Assumption 7.1 REGULARITY CONDITIONS FOR THE CONVERGENCE OF THE REGULARIZED INVERSE.
The VRF g ∈ Gc , and for i = 1, . . . , q, λ i = λ i(Σ) are the eigenvalues of a q×q positive semidefinite matrix
Σ. At least, one of the following conditions holds:

i) the VRF g is continuous at λ i = c;
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ii) @ λ i : λ i = c;

iii) the estimator λ̂ i(c) of λ i defined in equation (7.16) is superconsistent at c, i.e. P
[
λ̂ i(c) = c

]
→

n→∞
1 .

As long as one of the above conditions holds, both convergence results of the regularized inverse (Propo-
sitions 7.2 and 7.3) will hold, otherwise they may break down. Let us now state the a.s. convergence for the
regularized inverse when c is fixed.

Proposition 7.2 ALMOST SURE CONVERGENCE OF THE REGULARIZED INVERSE. Let g ∈ Gc with c
fixed. Suppose Σ and Σn are q×q symmetric matrices with rank(Σ) = r ≤ q . Let the regularized inverses
satisfy equations (7.14) and (7.15). Let Assumption 7.1 hold. If Σn

a.s.→Σ, then

ΣR
n (c)

a.s.→ΣR(c) . (7.17)

Proposition 7.3 CONVERGENCE IN PROBABILITY OF THE REGULARIZED INVERSE. Suppose Σ and Σn
are q× q symmetric matrices such that rank(Σ) = r ≤ q . Suppose Assumption 2.2 holds with p = q, and
Assumption 7.1 holds and c is fixed. Let the regularized inverses satisfy equations (7.14) and (7.15), and
decomposition (4.2). Then

ΣR
n (c) =ΣR

11,n(c)+ΣR
22,n(c)+ΣR

33,n(c)
p→ΣR(c) (7.18)

where

ΣR
11,n(c) =

k1

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i; c)
p→

k1

∑
j=1

g(d j; c)Pj(Σ)≡ΣR
11(c) , (7.19)

ΣR
22,n(c) = PI(c)(Σn)

1
m(c) ∑

i∈I(c)
g(λ̂ i; c)

p→ g(c; c)1{d j=c}Pj(c)(Σ)≡ΣR
22(c) , (7.20)

ΣR
33,n(c) =

k

∑
j=k1+1{d j=c}+1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i; c)
p→

k

∑
j=k1+1{d j=c}+1

g(d j; c)Pj(Σ)≡ ΣR
33(c) , (7.21)

k1 =
k
∑
j=1

1{d j>c}, k is the number of distinct eigenvalues of Σ, and Pj(c)(Σ) = P(d j)(Σ) for d j = c, where

Pj(Σ) = P(d j)(Σ) is defined at equation (7.10). I j and I(c) are defined in (7.8) and (7.9). m(d j) and m(c)
denote the multiplicity of d j and c respectively.

The problematic component for the convergence of the regularized inverse is the second one involving
the eigenvalue λ i = d j = c. If the VRF g is continuous at λ i = d j = c, equation (7.20) holds; if there are no
eigenvalues λ i = d j = c, I(c) = /0, 1{d j=c} = 0, and the convention adopted is to set ΣR

22,n(c) =ΣR
22(c) = 0;

if there exists a superconsistent estimator of the eigenvalue at c, (7.20) holds. Otherwise, ΣR
n (c) may not

converge to ΣR(c) . In other words, the conditions stated in Assumption 7.1 are necessary conditions for
(7.17) and (7.18) to hold.

8. Asymptotic distribution of the regularized Wald tests with a fixed
threshold

In this section, we characterize the asymptotic distribution of the regularized Wald statistic for general distri-
butions, before presenting the Gaussian case. More specifically, we characterize the asymptotic distribution
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of the regularized Wald statistic for the class of VRFs defined in 7.1. In particular, this sheds light on the
(relatively unknown) inferential properties of ridge-type regularization techniques, which are instead applied
to regression coefficients’ estimation. Further, the decomposition of the regularized statistic into three inde-
pendent components provides an insight on the structure of the distribution; an upper bound can easily be
derived in the Gaussian case. Power and consistency properties of the test are next established.

Proposition 8.1 CHARACTERIZATION OF THE REGULARIZED WALD STATISTIC WHEN THE THRESHOLD
IS FIXED. Suppose Σ and Σn are q×q symmetric matrices such that rank(Σ) = r ≤ q . Suppose Assump-
tions 2.1 with ψ = ψ0, 2.2 with p = q, and 7.1 hold. Let the regularized inverses satisfy equations (7.14) and

(7.15), decomposition (4.2), and the eigenprojection is expressed as in equation (7.10). Let k1 =
k
∑
j=1

1{d j>c}

be the number of distinct eigenvalues of Σ larger than c, and W R
n (c) is defined in 5.1. Then W R

n (c) L→ W R(c),
where

W R(c) = X ′ΣR(c)X =
k

∑
j=1

g(d j; c)X ′B(d j)B(d j)
′X =W R

1 (c)+W R
2 (c)+W R

3 (c) , (8.1)

W R
1 (c) = X ′ΣR

11(c)X =
k1

∑
j=1

g(d j; c)X ′B(d j)B(d j)
′X , (8.2)

W R
2 (c) = X ′ΣR

22(c)X = g(c; c)1{d j=c}X
′B(c)B(c)′X , (8.3)

W R
3 (c) = X ′ΣR

33(c)X =
k

∑
j=k1+1{d j=c}+1

g(d j; c)X ′B(d j)B(d j)
′X . (8.4)

Interestingly when Σ = 0 the distribution of W R(c) can still be characterized; the regularized weighting
matrix is given by ΣR(c) = g(0; c)Iq, so the regularized Wald statistic simplifies to g(0; c)X ′X in the general
case. In the Gaussian case, when Σ = 0, d j = 0 with multiplicity q, the limiting statistic is equal to zero
(see equation (8.5), where W R(c) = 0). Note also that the components are independent due to the specific
decomposition of the regularized weighting matrix. We can now easily consider the special case where
X is Gaussian, with the Lütkepohl and Burda (1997)’s result obtained as a special case of Corollary 8.2.
Besides, if there is no eigenvalues such that λ i = d j = c, W R

2 (c) = 0 due to the indicator function, and
W R(c) =W R

1 (c)+W R
3 (c) for all the subsequent results stated in this section.

Corollary 8.2 THE REGULARIZED WALD STATISTIC WITH A FIXED THRESHOLD: THE GAUSSIAN CASE.
Suppose Σ and Σn are q× q symmetric matrices such that rank(Σ) = r ≤ q . Under Assumptions 2.2

with p = q, 2.4 with ψ(θ) = ψ0, and 7.1, let the regularized inverses satisfy equations (7.14) and (7.15),

decomposition (4.2), and the eigenprojection is expressed as in equation (7.10). Let k1 =
k
∑
j=1

1{d j>c} be the

number of distinct eigenvalues of Σ larger than c, and W R
n (c) is defined in (5.1). Let B(d j)

′X = x j, where
x j ∼ N[0, d jIm(d j)], for j = 1, . . . , k, or equivalently x j =

√
d ju j, with u j ∼ N[0, Im(d j)].

(i) If Σ = 0, d j = 0 with m(0) = q, then

W R
n (c) L→ W R(c) = X ′ΣR(c)X = d ju′jg(0; c)Iqu j = 0 . (8.5)
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(ii) If Σ 6= 0, then W R
n (c) L→ W R(c), where

W R(c) = X ′ΣR(c)X =
k

∑
j=1

g(d j; c)d jv j =W R
1 (c)+W R

2 (c)+W R
3 (c) , (8.6)

W R
1 (c) = X ′ΣR

11(c)X =
k1

∑
j=1

g(d j; c)d jv j , W R
2 (c) = X ′ΣR

22(c)X = g(c; c)1{d j=c}cv j(c) , (8.7)

W R
3 (c) = X ′ΣR

33(c)X =
k

∑
j=k1+1{d j=c}+1

g(d j; c)d jv j , (8.8)

and v j ∼ χ2
(
m(d j)

)
,v j(c) ∼ χ2

(
m(c)

)
.

We can see from this corollary that the three components can be interpreted as a linear combination of
chi-square variables with the degree of freedom given by the multiplicity of the distinct eigenvalues. Note
that when Σ has rank r < q, the last component W R

3 (c) contains a zero eigenvalue, i.e. dk = 0, when c 6= 0.
When c = 0, in this case W R

2 (0) = W R
3 (0) = 0 and W R

1 (0) = W+(0); we obtain the Lütkepohl and Burda
(1997) result as a special case. Note that their result only holds for distinct eigenvalues.

Corollary 8.3 CHARACTERIZATION OF THE BOUND: THE GAUSSIAN CASE. Suppose Σ and Σn are
q×q symmetric matrices such that rank(Σ) = r ≤ q . Under Assumptions 2.2 with p = q, 2.4 with ψ(θ) =
ψ0, and 7.1, let the regularized inverses satisfy equations (7.14) and (7.15), decomposition (4.2), and the

eigenprojection is expressed as in equation (7.10). Let k1 =
k
∑
j=1

1{d j>c} be the number of distinct eigenvalues

of Σ larger than c, and W R
n (c) is defined in (5.1). Let B(d j)

′X = x j, where x j ∼N[0, d jIm(d j)], for j = 1, . . . , k,
. Let g(.; c) ∈ Gc, with a fixed threshold c such that

g(d j; c)d j ≤ 1 ∀ j = 1, . . . , k

then
W R

1 (c)≤ χ
2(q1) , W R

2 (c)≤ χ
2(m(c)), W R

3 (c)≤ χ
2(q3)

and

W R(c)≤
k

∑
j=1

v j ∼ χ
2(q)

where v j ∼ χ2
(
m(d j)

)
, q1 =

k1
∑
j=1

m(d j), q3 = q−q1−m(c), and q =
k
∑
j=1

m(d j).

In the Gaussian case we obtain a chi-square as an upper bound for the regularized statistic, when c is
fixed. Each component is distributed as a chi-square variable with the degree of freedom given by the sum
of the multiplicities of the distinct eigenvalues involved in the sum. As the decomposition involves three
independent chi-square variables, the resulting distribution for the overall statistic is also chi-square due to its
stability; the degree of freedom is then given by the sum of the degrees of freedom of each component. As a
result, the critical point given by the standard chi-square distribution (if X is Gaussian) can be used to provide
an asymptotically valid test. However, improved power over this conservative bound could be achieved by
simulations. For comparison, the bound provided by Dufour et al. (2017) is not applicable in general (e.g.,
the case of several polynomial restrictions is excluded), except for the restrictive case of a single polynomial
restriction. In the specific latter case, they provide a tight bound (i.e., one fourth of the standard chi-square
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distribution) for the original Wald statistic. In contrast, we derive an upper bound for the modified Wald
statistic that works through multiple nonlinear restrictions. In this respect, the bound we derive is universal.

We shall now show that the regularized statistic is consistent against a global alternative when Xn follows
a general distribution.

Proposition 8.4 CONSISTENCY PROPERTY OF THE TEST. Suppose Σ and Σn are q× q symmetric ma-
trices such that rank(Σ) = r ≤ q . Suppose Assumptions 2.2 with p = q and 7.1 hold. Let the regularized
inverses satisfy Property 7.1, decomposition (4.2), and the eigenprojection is expressed as in equation (7.10).

Let k1 =
k
∑
j=1

1{d j>c} be the number of distinct eigenvalues of Σ larger than c, and W R
n (c) is defined in 5.1.

Suppose also that there exist some eigenvalues of the limiting matrix Σ such that d j 6= 0 under the alterna-
tive. Suppose further Xn = Hn (ψ̂n−ψ1) satisfies Assumption 2.1, with ψ = ψ1. If ψ1−ψ0 = ∆ 6= 0, and
∆ ′ΣR(c)∆ > 0, then

W R
n (c) →

n→∞
∞ , (8.9)

which means that for any positive values of ε as large as possible, we have P
[
W R

n (c)> ε
]
→

n→∞
1.

We also characterize the behavior the regularized Wald statistic under local alternatives as in the next
proposition.

Proposition 8.5 LOCAL POWER CHARACTERIZATION. Suppose Σ and Σn are q×q symmetric matrices
such that rank(Σ) = r≤ q . Under Assumption 2.2 with p = q, and under Assumption 7.1, let the regularized

inverses satisfy Property 7.1. Let k1 =
k
∑
j=1

1{d j>c} be the number of distinct eigenvalues of Σ larger than c, and

W R
n (c) is defined in 5.1. Suppose there exist some eigenvalues of the limiting matrix Σ such that d j 6= 0 under

the alternative. Suppose further Xn = Hn(ψ̂n−ψ1n) satisfies Assumption 2.1. If Hn(ψ1n−ψ0)→ ∆ 6= 0,
and ∆ ′ΣR(c)∆ > 0, then

W R
n (c) L→

n→∞
X ′ΣR(c)X +2X ′ΣR(c)∆ +∆

′ΣR(c)∆ . (8.10)

We can observe from this result that the limiting quantity involves three components: the first component
is still a quadratic form in X in accordance with the null hypothesis; the second component is a linear form
in X ; the third one represents a noncentrality parameter. Only the last two components will contribute to
power. Note that in the Lütkepohl and Burda (1997) case, the noncentrality parameter based on the modified
Moore-Penrose inverse ∆ ′Σ+

c ∆ is expected to be smaller than the noncentrality parameter ∆ ′ΣR(c)∆ , which
may entail a loss of power even though the chi-square distribution with reduced degrees of freedom yields
a smaller critical point. Indeed, there may exist some directions for the alternative, where a spectral cut-off
type Moore-Penrose inverse that sets to zero the small eigenvalues, may destroy power as shown in the next
corollary.

Corollary 8.6 LOCAL POWER CHARACTERIZATION: DELTA IN THE NULL EIGENSPACE. Suppose the
assumptions of Proposition 8.5 are satisfied. Suppose further that ∆ ∈ V (0), then

W R
n (c) L→

n→∞
X ′ΣR(c)X +2g(0; c)X ′∆ +g(0; c)∆ ′∆ . (8.11)

We do not expect the test to be consistent against all types of alternatives. There may exist some directions
where power is reduced or eventually destroyed, whether ∆ lies in the eigenspace V (0) associated with the
null eigenvalue or not. In such a case, the choice of g(0; c) is critical for power considerations. By setting
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g(0; c) = 0, the spectral cut-off Moore Penrose inverse used by Lütkepohl and Burda (1997) will destroy
power.

9. The case with a varying threshold cn

We shall now present the convergence results for the regularized inverse based on a varying threshold as well
as the regularized test statistic. In this section, we concentrate on the modified Moore-Penrose inverse ( i.e.,
spectral cut-off) and exclude the DV scheme. Let λ i = λ i(Σ) and λ̂ i = λ i(Σn) for notational simplicity.
First when designing the VRF g(λ ; cn), the varying threshold cn must be selected so that

P
[
|λ̂ i−λ i|> cn

]
= P

[
|bn(λ̂ i−λ i)|> bncn

]
→

n→∞
0 (9.1)

with cn→ 0 and bncn→∞ as n grows to infinity. Thus, cn declines to 0 slower than 1/bn, and bncn→∞ slower
than bn. Indeed, the threshold must not decline to zero either too fast, or too slow. Selecting cn in this way
ensures that the nonzero eigenvalues of the covariance matrix will eventually be greater than the threshold,
while the true zero eigenvalues will fall below the threshold and are set to zero at least in large samples.
In most cases, a natural choice for bn =

√
n and a suitable choice for cn is cn = n−1/3. This convergence

rate plays a crucial role in Proposition 9.1 below. For a deeper insight on the limiting distribution of the
sample eigenvalues, please refer to Appendix A where we summarize some general results from Eaton and
Tyler (1994). Note, however, the knowledge of the entire limiting distribution of the sample eigenvalues is
unnecessary for our purpose; only the convergence rate bn plays an important role in the asymptotic properties
of the regularized covariance matrices based on a varying threshold cn. Thus, a varying threshold requires
more information.

Proposition 9.1 CONVERGENCE OF THE REGULARIZED INVERSE WHEN THE THRESHOLD VARIES WITH
THE SAMPLE SIZE. Let Σ be a q× q real symmetric positive semidefinite nonstochastic matrix and Σn a
sequence of q×q real symmetric random matrices. Let Σ and Σn satisfy Assumption 2.2 with p = q and let
g ∈ Gc, with g(0; 0) = 0. Let λ i = λ i(Σ) and λ̂ i = λ i(Σn), with λ i+1 ≥ λ i ≥ 0, i = 1, . . . , q and d j’s denote
the distinct eigenvalues of Σ. Suppose further that cn →

n→∞
0 and bncn →

n→∞
∞. If ΣR(0) and ΣR

n (cn) have the

representations (7.14) and (7.15) respectively, then

ΣR
n (cn)

p→ ΣR(0) . (9.2)

In other words, if Σn→ Σ in probability, then the regularized inverse of Σn will converge towards the
regularized inverse of Σ. In the following, we establish a characterization of the asymptotic distribution of
the regularized test statistic in the general case. This characterization makes use of the decomposition of the
regularized statistic into a regular component and a regularized one.

Proposition 9.2 ASYMPTOTIC CHARACTERIZATION OF THE REGULARIZED WALD STATISTIC WITH
VARYING THRESHOLD. Let Σ be a q× q real symmetric positive semidefinite nonstochastic matrix and
Σn a sequence of q× q real symmetric random matrices. Let Σ and Σn satisfy Assumption 2.2 with p = q
and g ∈ Gc, with g(0; 0) = 0. Let g(λ ; c) be defined in equation 7.2. Suppose cn →

n→∞
0 and bncn →

n→∞
∞.

Let ΣR(0) and ΣR
n (cn) have the representations (7.14) and (7.15) respectively. Suppose also Assump-

tion 2.1 holds, and rank(Σ) = q1. Let k1 be the number of non-zero distinct eigenvalues d j of Σ, i.e.,
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k1
∑
j=1

m(d j) = q1 ≥ 1, g(d j; 0) = 0, ∀ j ≥ k1 +1, and λ̂ i = λ i(Σn). Then, under H0(ψ0) : ψ(θ 0) = ψ0 ,

W R
n (cn) = X ′nΣ

R
n (cn)Xn

L→ X ′ΣR(0)X =W R(0) (9.3)

W R
n (cn) =W R

1n(cn)+W R
2n(cn) (9.4)

W R
1n(cn) = X ′nΣ

R
11,n(cn)Xn

L→ X ′ΣR
11(0)X ≡W R

1 (0) (9.5)

W R
2n(cn) = X ′nΣ

R
22,n(cn)Xn such that P

[
W R

2n(cn) = 0
]
→ 1 . (9.6)

Thus, when the threshold cn converges to zero at an appropriate rate, based on the sample eigenvalues’
convergence rate, the limiting regularized inverse boils down to the modified Moore-Penrose inverse, which
cancels the nonregular component W R

2 (0). Moreover, if we restrict the convergence in law above to the sole
standard Gaussian distribution, i.e.,

[
Xn = an(ψ̂n−ψ0) =

√
n[ψ(θ̂)−ψ0]→ N[0,Σ]

]
, we obtain the result

given by Lütkepohl and Burda (1997, Proposition 2, page 318) as a special case (see Corollary 9.3). In this
case, the regularized Wald test is asymptotically distributed as a χ2(q1) variable with q1 < q. Further, note
that Lütkepohl and Burda (1997, Proposition 2, page 318)’s result only holds for distinct eigenvalues, unlike
Proposition 9.2 that is valid for multiple eigenvalues.

Corollary 9.3 ASYMPTOTIC DISTRIBUTION OF THE REGULARIZED WALD STATISTIC IN THE GAUSSIAN
CASE WITH VARYING THRESHOLD. Let Σ be a q× q real symmetric positive semidefinite nonstochastic
matrix and Σn a sequence of q× q real symmetric random matrices. Suppose Assumption 2.1 holds, and
rank(Σ) = q1. Suppose also that Assumptions 2.2 with p = q, and 2.4 hold. Let g ∈ Gc, with g(0; 0) = 0,
and g(λ ; c) be defined in equation 7.2. Suppose cn →

n→∞
0 and bncn →

n→∞
∞. Let ΣR(0) and ΣR

n (cn) have the

representations (7.14) and (7.15) respectively. Let the eigenprojection be expressed as in equation (7.10).

Let k1 be the number of non-zero distinct eigenvalues d j of Σ, i.e.,
k1
∑
j=1

m(d j) = q1 ≥ 1, g(d j; 0) = 0, ∀ j ≥

k1 +1, and λ̂ i = λ i(Σn). Let B(d j)
′X = x j, with x j ∼ N

[
0, d jIm(d j)

]
for all j, or equivalently x j =

√
d ju j ,

u j ∼ N
[
0, Im(d j)

]
. Let g(d j; 0) = 1

d j
, ∀ j ≤ k1 and 0 otherwise. Then, under H0(ψ0) : ψ(θ 0) = ψ0

W R
n (cn) = n[ψ(θ̂)−ψ0]

′ΣR
n (cn)[ψ(θ̂)−ψ0] =W R

1n(cn)+W R
2n(cn) ,

with
W R

1n(cn) = n[ψ(θ̂)−ψ0]
′ΣR

11,n(cn)[ψ(θ̂)−ψ0] , (9.7)

W R
2n(cn) = n[ψ(θ̂)−ψ0]

′ΣR
22,n(cn)[ψ(θ̂)−ψ0] , (9.8)

and
W R

1n(cn)
L→W R

1 (0) ∼ χ
2(q1) and P

[
W R

2n(cn) = 0
]
→ 1 . (9.9)

When the threshold goes to zero at the appropriate speed, the limiting regularized statistic has a standard
chi square distribution with the degree of freedom given by the multiplicity of the nonzero eigenvalues.
Meanwhile, the nonregular component collapses to zero due to the spectral cut-off Moore-Penrose inverse.
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10. Empirical application to Multistep noncausality: saving-to-
growth causation

In this section, we conduct noncausality tests to assess any causal relation between investment, saving and
growth. Indeed, there is no consensus in the literature whether higher saving results in higher growth or
the other way around in cross-country data. Especially, East Asian economies had experienced high growth
rates long before they had high saving rates. Levine and Renelt (1992) argue that the investment rate is the
key variable that is correlated with growth. They claim that the saving-to-growth causation reflects the same
causal channel, but with the additional linkage that high saving leads to high investment. We shall investigate
this relation in a single-country data set, focusing on U.S. data. The data come from the World Development
Indicator’s database (WDI), and are yearly observations spanning from 1972 to 2012. The data have been
differenced once to account for the presence of unit roots since the Augmented Dickey-Fuller tests detected
the presence of unit roots at a 0.05 significance level. We use Saving that represents the gross domestic saving
(in % of GDP), Investment that corresponds to gross capital formation (in % of GDP) and GDP growth (in
annual %). The gross capital formation consists of additions to the fixed assets of the economy plus net
changes in the level of inventories. We also use Foreign direct Investment (FDI) (in % of GDP); FDI are the
net inflows of investment to acquire 10% or more of voting stocks in an enterprise operating in an economy
other than that of the investor.

In this section, we conduct noncausality tests of the form:

H0 : ψ(θ) = 0 , (10.1)

for several horizons, i.e., at horizons H = 1, 2, 3, 4 and 5. Dufour and Renault (1998, Proposition 4.5)
state that in a VAR(1) model it is sufficient to have noncausality up to horizon 2 for noncausality to hold
at all horizons; therefore testing for noncausality at horizons 3, 4 and 5 is superfluous and adds redundancy
uselessly.

The Monte Carlo tests are simulated under the null of noncausality using N = 99 simulated statistics.
The estimate of the parameters are based on the real data; we then construct an ad-hoc restricted estimate by
zeroing the corresponding parameters such that ψ(θ̂) = 0. Using an unrestricted estimator vec(θ̂), we built
the restricted version of the estimator, i.e., vec(θ̃) = (θ̂ 1, θ̂ 2, θ̂ 3, 0, θ̂ 5, 0, 0, θ̂ 8, θ̂ 9)

′. We use this ad-hoc
restricted estimate to simulate the distribution of the test statistic under the null hypothesis. Recall that the
Wald test employs an unrestricted estimator, although its distribution is simulated under the null in the Monte
Carlo procedure. The nominal level used in the test has been fixed at α = 0.05.

In addition to Panels A and B of Table 1, in which no redundant restrictions are added to the genuine
restrictions, we purposely add redundant restrictions to assess their effect on the testing procedures; see
panels C, D and E. More specifically, Panel A only tests ψ1(θ) = θ xy = 0 while Panel B focuses on testing
two restrictions:

ψ2(θ) =

[
θ xy

θ xxθ xy +θ xyθ yy +θ xzθ zy

]
=

[
0
0

]
(10.2)

which corresponds to the case of no redundant restrictions with the following Jacobian

∂ψ2
∂θ
′ =

 0 0 0 1 0 0 0 0 0
θ xy 0 0 θ xx +θ yy θ xy θ xz θ zy 0 0

 .
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In the trivariate VAR(1) model, in whichxt
yt
zt

=

 Growth
Saving

Investment

 ,

the corresponding unrestricted estimates of the parameters and their estimated standard deviation are the
following:

θ̂ =

 θ̂ xx θ̂ yx θ̂ zx θ̂ xy θ̂ yy θ̂ zy θ̂ xz θ̂ yz θ̂ zz
−0.1466 −0.8969 −0.4203 0.3928 0.3176 0.5392 −0.4411 −0.4741 −0.3438


σ̂ =

[
σ̂1 σ̂2 σ̂3 σ̂4 σ̂5 σ̂6 σ̂7 σ̂8 σ̂9

2.149 3.2311 2.5876 0.6313 0.9505 0.7612 1.8284 2.7531 2.2048

]
.

In Table 1, we test for noncausality between Saving, Investment and Growth. In panel A, the results for
W , WDV (bound) and WLB coincide regardless of the procedure used, asymptotic or simulated, since regular-
ization is unnecessary in this case. We next observe that when redundant restrictions are added, the reported
determinant of the estimated covariance matrix diminishes. The behavior of the standard Wald test statistic
W seriously deteriorates. This poor behavior is striking in Panel E about the Investment-Growth causation;
the value of the statistic jumps from 3.2388 (Panel D: Investment-Growth causation) to 11.7251 (Panel E:
Investment-Growth causation) forcing the standard statistic to erroneously reject the null of noncausation.
Similarly, the standard Wald test statistic W steadily misbehaves as the determinant approaches zero in the
Growth-Saving causality analysis. While the asymptotic standard test still rejects the null of noncausation
from Growth to Saving with a value of 40.5742 (Panel E: Growth-to-Saving), its simulated counterpart fails
to reject the null with a p-value of 0.12 (Panel E: Growth-to-Saving). Thus, simulating from a misbehaved
statistic does not produce reliable inference; a severe contradiction arises between the decision based on the
asymptotic critical value and the simulated procedure. Further, the discrepancy between the standard Wald
statistic W and the full-rank regularized Wald statistic WDV (bound) widens with the number of redundant
restrictions added (Panel E: Investment-to-Growth, Growth-to-Saving). Note also the puzzling conclusion
produced by the simulated test based on the spectral cut-off statistic WLB. When redundant restrictions are
added, the simulated procedure inverts the decision of the test when one moves from Panel B to panel C and
so on in the Saving-to-Growth causation.

While most of the procedures are not able to reject the null hypothesis that Saving does not cause Growth
at all horizons, we unambiguously find that Growth causes Saving for U.S. data. Our findings support the
original literature by Houthakker (1961, 1965), and Modigliani (1970) at the cross-country level. However,
our single-country results on U.S. data do not support Levine and Renelt (1992)’s cross-country findings that
high investment causes high growth. Importantly, in the presence of redundant restrictions the simulated
version of the full-rank regularized test statistic WDV (bound) steadily produces results consistent with those
obtained without redundant restrictions. These results confirm those predicted from the theory: as stated
in Dufour and Renault (1998, Proposition 4.5), in a VAR(1) model it is sufficient to have noncausality up
to horizon 2 for noncausality to hold at all horizons. In other words, our findings at horizons 3,4 and 5
corroborate the results obtained at horizon 2.

Next, when replacing Saving by FDI in Table 2, all tests fail to reject the null that FDI does not cause
Growth, nor that Growth does not cause FDI. Nevertheless, all tests regardless of the approach used, asymp-
totic or simulated, unambiguously reject the null that Investment does not cause Growth at all horizons; this
finding does support that Investment is crucial for fostering Growth. As predicted by the theory in a VAR(1)
model, decisions obtained at horizon 2 are not reversed at higher horizons. Again, singularity critically im-
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pacts the behavior of the standard Wald statistic, triggering an erroneous rejection of the null that FDI does
not cause Growth in panel E.

11. Conclusion
In this paper, we examine and propose Wald-type tests statistics that deal with asymptotic singular covariance
matrices. To do so, we introduce a new class of regularized inverses, as opposed to generalized inverses,
that embeds the spectral cut-off and Tikhonov regularized inverses known in the statistical literature. We
propose a regularized Wald statistic that produces valid inference under fairly weak assumptions: the full-
rank statistic relies on a fixed value for the threshold in the VRF g(λ ; c) and does not require the knowledge
of the asymptotic rank nor the Gaussianity distribution. In contrast, the reduced rank Wald statistic that
lets the threshold vary with the sample size requires more information about the sample behavior of the
eigenvalues. By exploiting eigenprojection techniques, we show that the first regularized Wald statistic admits
a nonstandard asymptotic distribution in the general case, which corresponds to a linear combination of
χ2 variables if the restrictions are Gaussian. An upper bound, which is invariant to the degree of rank
deficiency, is then derived for the full-rank regularized statistic that corresponds to a χ2 variable with full
rank under Gaussianity. Hence, the test is asymptotically valid, meaning that the usual critical point can
be used, but is conservative. Instead of using the asymptotic bound, we propose three ways to conduct the
regularized Wald test by simulations through the technique of Monte Carlo tests: one may simulate under
the DGP if available, or from the distribution of the estimator of the parameters (or of the restrictions) to
correct for size distortions. One can also simulate from the linear combination of chi-square variables to
produce an asymptotically valid test for the full-rank regularized statistic. Finally, when the threshold goes
to zero with the sample size, we obtain the spectral cut-off modified Wald statistic of Lütkepohl and Burda
(1997) as a special case. Under normality, the test has the usual asymptotic distribution whose reduced rank
is given by the number of eigenvalues greater than zero. Note that Lütkepohl and Burda (1997)’s result
only holds for distinct eigenvalues whereas our result accounts for multiple eigenvalues. We also show that
the regularized statistics are consistent against global alternatives, but the spectral cut-off Wald statistic has
reduced power in some directions of the alternative. Besides, our approach is easy to implement: it only
requires to compute eigenvalues and eigenvectors. It is therefore simple, systematic, and robust to all kinds
of setups. More generally, the regularization techniques developed in this paper to deal with asymptotic
singularity and deficient rank problems are not restricted to the sole Wald statistic, but can easily be applied
to other statistics such as the Lagrange multiplier statistic, or score-type test statistics.
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A. Appendix: Asymptotic distribution of eigenvalues
In this section, we summarize general results on the sample eigenvalue behavior established by Eaton and
Tyler (1991, 1994) . Before establishing convergence results for the regularized covariance matrices and the
regularized tests statistics, we shall first study the convergence rate of the eigenvalues in the general case
where the covariance matrix may be singular with (possibly) multiple eigenvalues. To do so, we shall apply
a general result given by Eaton and Tyler (1994) where they generalize classical results due to Anderson
(1963, 1987) on the behavior of the sample roots (of a determinantal equation). Specifically under relatively
weak conditions, Eaton and Tyler (1994) show the following: if a sequence of random (p×q)−matrices Σn

satisfies the condition bn(Σn−Σ)
L→

n→∞
Q where Σ is a nonstochastic matrix, then the sample eigenvalues

will have the same convergence rate, with bn[Ψ(Σn)−Ψ(Σ)]
L→

n→∞

[
HD
( 1

2 [Q
′
11 +Q11]

)
, Ψ(Q22)

]′ . HD(.)

and Ψ(.) are vector-valued functions stacking the eigenvalues of the corresponding objects. A more detailed
definition of those vectors will follow. For our purpose, the convergence rate bn of the sample eigenvalues
is the only thing we need in deriving the convergence property of the regularized covariance matrices that
employ a varying threshold cn.

Let d1 > d2 > · · · > dk denote the distinct eigenvalues of a q× q symmetric matrix C and let mi be the
multiplicity of di, i = 1, . . . , k, 1 ≤ k ≤ q. Given the eigenvalue multiplicities of C, it is possible to partition
the matrix C into blocks such as Cii is the mi×mi diagonal block of C and Ci j the mi×m j off-diagonal blocks,
i, j = 1, . . . , k. Thus, a function H on q×q symmetric matrices can be defined by

H(C) =


ρ(C11)
ρ(C22)

...
ρ(Ckk)

 (A.1)

H(C) takes values in Rq and ρ(Cii) consists of the mi-vector of ordered eigenvalues of the diagonal block Cii,
i = 1, . . . , k. Let Γ be an orthogonal matrix such that

Γ AΓ
′ = D, (A.2)

where the diagonal matrix D consists of the ordered eigenvalues of a nonrandom symmetric matrix A. Eaton
and Tyler (1991) first establish the distributional theory for symmetric matrices before extending it to general
p×q matrices.

Lemma A.1 DISTRIBUTION OF THE EIGENVALUES OF A SYMMETRIC SQUARE MATRIX. Let Sn be a
sequence of q×q random symmetric matrices. Suppose there exists a nonrandom symmetric matrix A and a
sequence of constants bn→+∞ such that

Wn = bn(Sn−A) L→
n→∞

W . (A.3)

Then
bn
(
ρ(Sn)−ρ(A)

) L→
n→∞

H
(
ΓWΓ

′) . (A.4)

For any p×q real matrix Σ, the Ψ(.) function is a vector-valued function that stacks the eigenvalues of
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the corresponding object as defined below:

Ψ(Σ) = f (ρ(Σ′Σ)) =


√

ξ 1
...√
ξ q

 with f (x) =


√

x1
...√xq

 (A.5)

where ξ 1 ≥ ·· · ≥ ξ q > 0 are the eigenvalues of Σ′Σ. Let

T =
(
d f (ξ )

)
=

1
2

diag(ξ−1/2
1 , . . . , ξ

−1/2
q ) . (A.6)

In the first part of the theorem below, we gather the special cases where the matrix Σ may have rank r = 0
or r = q before giving the general result in the second part. In the second part of the theorem, write the p×q
matrix Σ in the form

Σ = Γ
′

1

(
D 0
0 0

)
Γ
′

2 (A.7)

where Γ1 (Γ2) is a p× p (resp. q×q) orthogonal matrix, and D is a r× r diagonal matrix. D consists of the
strictly positive singular values of Σ. Partition the matrix Σn as

Σn =

(
Σn11 Σn12
Σn21 Σn22

)
(A.8)

where Σn11 is r×r, Σn12 is r×(q−r), Σn21 is (p−r)×r and Σn22 is (p−r)×(q−r). Partition the random
limit matrix Q accordingly. The r×r diagonal matrix D =diag(ξ 1/2

1 , . . . , ξ
1/2
r ) defines a function HD on r×r

symmetric matrices. Let TD = 1
2 diag(ξ−1/2

1 , . . . , ξ
−1/2
r ). The general case 1≤ r < q can be thought as gluing

together the two special cases r = 0 and r = q.

Theorem A.2 DISTRIBUTION OF THE EIGENVALUES OF RECTANGULAR MATRICES IN THE GENERAL
CASE. Let Ψ(·) be defined as in (A.5), and suppose Assumption 2.2 holds with An =Σn and A =Σ.

i) If Σ = 0, then
bn
(
Ψ(Σn)−Ψ(Σ)

) L→
n→∞

Ψ(Q) . (A.9)

ii) If Σ has full rank q, then

bn
(
Ψ(Σn)−Ψ(Σ)

) L→
n→∞

T H
(
Γ
[
Σ′Q+Q′Σ

]
Γ
′) (A.10)

where H, Γ and T are defined in (A.1),(A.2) and (A.6).

iii) If rank(Σ) = r, 1≤ r < q, then

bn
[
Ψ(Σn)−Ψ(Σ)

] L→
n→∞

[
HD
( 1

2 [Q
′
11 +Q11]

)
Ψ(Q22)

]
(A.11)

where Q =

[
Q11 Q12
Q21 Q22

]
is a well-defined random element, with Q11 being an r× r matrix and Q22 a

(p− r)× (q− r) matrix. The r× r diagonal matrix D =diag(ξ 1/2
1 , . . . , ξ

1/2
r ) consisted of the strictly
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positive singular values of Σ defines a function HD on r× r symmetric matrices as H is defined in (A.1)
on q×q symmetric matrices.

Note the generality of the theorem that allows for general convergence rates rather than the standard root-
n one; it does not critically hinge upon the normal limiting distribution for the sample eigenvalues, a desirable
feature for positive eigenvalues. For our purposes, we do not need to know the whole distribution but only the
convergence rate bn of the sample eigenvalues to establish the convergence property of the regularized inverse
when c varies with the sample size. Again, the knowledge of the sample convergence rate is unnecessary for
the regularized inverse based upon the fixed threshold case. See Eaton and Tyler (1994, Propositions 3.1 and
3.4 and Theorem 4.2) for a proof of the theorem.

The rare cases where the asymptotic distribution of the empirical eigenvalues could be uniform would
correspond to situations where all the population eigenvalues are greater than zero (Theorem A.2, case ii),
or all are equal to zero (Theorem A.2, case i). Otherwise, the distribution cannot be uniform: the inspection
of Theorem A.2 case iii that examines a strictly positive but incomplete rank shows that the structure of the
distribution is different on the first r singular values than on the last q− r ones. Similarly, the finite-sample
distribution of the sample eigenvalues will depend on the rank of the sample matrix; if the sample matrix has
full rank, the probability to have a zero sample eigenvalue is zero. Yet, the number of the sample eigenvalues
greater than the threshold (c or cn) will vary with the sample size.

B. Appendix: Proofs

PROOF OF LEMMA 2.1 By Assumption 2.2,
(
bn(An−A) L→

n→∞
Q
)
⇒ ( An

p→
n→∞

A ) and by Assumption
2.1 we have:

Wn(ψ0) =
[
Hn(ψ̂n−ψ0)

]′
(An−A)

[
Hn(ψ̂n−ψ0)

]
+
[
Hn(ψ̂n−ψ0)

]′A[Hn(ψ̂n−ψ0)
]

L→
n→∞

X ′0X +X ′AX .

PROOF OF PROPOSITION 4.1 Using Definition 4.1 and (4.3), we have ΣΣR(c) = VΛV ′VΛ †(c)V ′ =
VΛΛ †(c)V ′ since the Vi’s are orthogonal. For all λ , 0 ≤ λg(λ ; c) ≤ 1 , so that ΣΣR(c) =
V diag

[
λ jg(λ j; c)

]
j=1, ··· ,qV ′ ≤ Iq . Regarding ii), we have:

TΣR(c)T ′ =VΛ
1/2V ′VΛ

†(c)V ′VΛ
1/2V ′ =VΛ

1/2
Λ

†(c)Λ 1/2V ′ =V diag
[
λ jg(λ j; c)

]
j=1, ...,qV ′ ≤ Iq

since 0≤ λg(λ ; c)≤ 1 for all λ . Regarding iii), we have:

Σ−ΣΣR(c)Σ ≥ 0 ⇔ Σ
(
Iq−ΣR(c)Σ

)
≥ 0 ⇒ Iq−ΣR(c)Σ ≥ 0

since Σ is semidefinite positive. The last implication holds by i). As for iv), for all λ ≥ 0, g(λ ; c) is

bounded; if g(λ ; c)> 0, we have
(
λg(λ ; c)≤ 1

)
⇒
(
0 < g(λ ; c)≤ 1

λ
≤ ∞

)
⇒
(
[g(λ ; c)]−1−λ ≥ 0

)
.

Hence,
(
ΣR(c)

)−1−Σ = V diag
[(

g(λ j; c)
)−1− λ j

]
j=1, ··· ,qV ′ ≥ 0 . Finally for v), the rank is given by

the number of eigenvalues greater than zero (which accounts for multiplicity by repeating the eigenvalue as
many times as its multiplicity). As ΣR(c) = V diag

[
g(λ j; c)

]
j=1, ··· ,qV ′, hence

(
λ > 0 ⇒ g(λ ; c) > 0

)
⇒(

rank
(
ΣR(c)

)
≥rank(Σ)

)
.
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PROOF OF LEMMA 6.2 If Σn
a.s.→ Σ, then the event A = {ω : Σn(ω) →

n→∞
Σ} has probability one, i.e.

P(A) = 1. For any ω ∈ A , we have by Lemma 6.1:

[Σn(ω) →
n→∞

Σ] ⇒ [λ j(Σn(ω))→ λ j(Σ), j = 1, . . . , J] .

Denoting B = {ω : λ j(Σn(ω)) →
n→∞

λ j(Σ)}, we have A⊆ B, hence we have with probability one result i).

By the same argument, we have result ii) for the eigenprojections.

PROOF OF LEMMA 6.3 If Σn
p→ Σ with eigenvalues {λ j(Σn)}, then every subsequence {Σnk} with

eigenvalues {λ (Σnk)}, also satisfies Σnk

p→ Σ. By Lukacs (1975, theorem 2.4.3, page 48), there exists
{Σml} ⊆ {Σnk} such that Σml

a.s.→Σ. Hence by Lemma 6.2, we have:

1. λ j(Σml )
a.s.→ λ j(Σ);

2. Pj, t(Σml )
a.s.→ Pj, t(Σ) provided λ j−1(Σ) 6= λ j(Σ) and λ t(Σ) 6= λ t+1(Σ) .

As {Σml} ⊆ {Σnk} ⊆ {Σn} with the corresponding eigenvalues {λ j(Σml )} ⊆ {λ j(Σnk)} ⊆ {λ j(Σn)} , by
Lukacs (1975, theorem 2.4.4 page 49) it suffices that every subsequence {λ j(Σnk)} of {λ j(Σn)} contains
a subsequence {λ j(Σml )} which converges a.s. to get λ j(Σn)

p→ λ j(Σ) . By the same argument, we have
Pj, t(Σn)

p→ Pj, t(Σ) .

PROOF OF PROPOSITION 7.2 If Σn
a.s.→ Σ, then by Lemma 6.2 i), we have λ̂ i

a.s.→ d j, ∀i ∈ I j , where
I j = {i ∈ I : λ i = d j}. Under the additional Assumption 7.1, and the a.e. continuity of g(., c), we have
g(λ̂ i; c) a.s.→ g(d j; c) ∀i ∈ I j . Moreover, by Lemma 6.2 ii), we have PI j(Σn)

a.s.→ Pj(Σ) . Hence,

ΣR
n (c) =

k

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i; c) =
k

∑
j=1

PI j(Σn)

[
g(d j; c)−g(d j; c)+

1
m(d j)

∑
i∈I j

g(λ̂ i; c)
]

=
k

∑
j=1

PI j(Σn)g(d j; c)+
k

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

[
g(λ̂ i; c)−g(d j; c)

] a.s.→
k

∑
j=1

Pj(Σ)g(d j; c)

since g(d j; c) = 1
m(d j)

×m(d j)g(d j; c) = 1
m(d j)

∑i∈I j g(d j; c) and g(λ̂ i; c) a.s.→ g(d j; c) ∀i ∈ I j , and PI j(Σn) =

Op(1).

PROOF OF PROPOSITION 7.3 Using decomposition (4.2) and equation (7.15), we have:

ΣR
n (c) =

3

∑
i=1

ΣR
ii,n(c) =

k

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i, c) where

ΣR
11,n(c) =

k1

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i, c) for d j > c, k1 =
k

∑
j=1

1{d j>c}

ΣR
22,n(c) = PI(c)(Σn)

1
m(c) ∑

i∈I(c)
g(λ̂ i, c), for d j = c

ΣR
33,n(c) =

k

∑
j=k1+1{d j=c}+1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i, c) for d j < c .
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Note that Assumption 2.2 implies Σn
p→ Σ, hence by Lemma 6.3 i) and ii), eigenvalues and to-

tal eigenprojections are continuous; together with Assumption 7.1, we have: ∀ i ∈ I j , g(λ̂ i, c)
p→

g(d j; c), and PI j(Σn)
p→ Pj(Σ) . Also,

ΣR
11,n(c) =

k1

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i; c) =
k1

∑
j=1

PI j(Σn)

[
g(d j; c)−g(d j; c)+

1
m(d j)

∑
i∈I j

g(λ̂ i; c)
]

=
k1

∑
j=1

PI j(Σn)g(d j; c)+
k1

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

[
g(λ̂ i; c)−g(d j; c)

] p→
k1

∑
j=1

g(d j; c)Pj(Σ)≡ ΣR
11(c)

since g(d j; c) = 1
m(d j)

×m(d j)g(d j; c) = 1
m(d j)

∑i∈I j g(d j; c) , and PI j(Σn) = Op(1). Again by Lemma 6.3 i)

and ii, and under Assumption 7.1, if λ i = d j = c, with multiplicity m(c), g(λ̂ i, c)
p→ g(c; c), hence ΣR

22,n(c)=

PI(c)(Σn)
1

m(c) ∑
i∈I(c)

g(λ̂ i, c)
p→ g(c; c)1{d j=c}Pj(c)(Σ)≡ ΣR

22(c) . The proof for ΣR
33,n(c) is similar to that of

ΣR
11,n(c) . Hence, ΣR

n (c)
p→ ΣR(c) =ΣR

11(c)+ΣR
22(c)+ΣR

33(c) .

PROOF OF PROPOSITION 8.1 By Proposition 7.3, we have ΣR
n (c)

p→ ΣR(c) and under Assumption 2.1,

Xn
L→

n→∞
X , hence W R

n (c) = X ′nΣ
R
n (c)Xn

L→
n→∞

X ′ΣR(c)X =W R(c) . Using representation (7.14) for ΣR(c) ,

and the form Pj(Σ) = B(d j)B(d j)
′, we can write:

W R(c) = X ′ΣR(c)X = X ′
( k

∑
j=1

g(d j; c)Pj(Σ)

)
X =

k

∑
j=1

g(d j; c)X ′Pj(Σ)X =
k

∑
j=1

g(d j; c)X ′B(d j)B(d j)
′X .

We can further decompose the overall statistic into three blocks depending on whether the eigenvalues are

larger (or smaller) than c, with k1 =
k
∑
j=1

1{d j>c}, i.e.,

W R
1 (c) = X ′ΣR

11(c)X =
k

∑
j=1

g(d j; c)1{d j>c}X
′Pj(Σ)X

=
k1

∑
j=1

g(d j; c)X ′Pj(Σ)X =
k1

∑
j=1

g(d j; c)X ′B(d j)B(d j)
′X .

Similarly, W R
2 (c) = X ′ΣR

22(c)X = g(c; c)1{d j=c}X ′Pj(c)(Σ)X = g(c; c)1{d j=c}X ′B(c)B(c)′X . And

W R
3 (c) = X ′ΣR

33(c)X =
k

∑
j=1

g(d j; c)1{d j<c}X
′Pj(Σ)X =

k

∑
j=k1+1{d j=c}+1

g(d j; c)X ′B(d j)B(d j)
′X .

PROOF OF COROLLARY 8.2 In the Gaussian case, we have: B(d j)
′X = x j, where x j ∼ N

[
0, d jIm(d j)

]
, or
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equivalently x j =
√

d ju j with u j ∼ N
[
0, Im(d j)

]
, hence

W R(c) = X ′ΣR(c)X = X ′
( k

∑
j=1

g(d j; c)Pj(Σ)

)
X =

k

∑
j=1

g(d j; c)X ′B(d j)B(d j)
′X =

k

∑
j=1

g(d j; c)d ju′ju j

with the three blocks corresponding to

W R
1 (c) = X ′ΣR

11(c)X =
k1

∑
j=1

g(d j; c)X ′B(d j)B(d j)
′X =

k1

∑
j=1

g(d j; c)d ju′ju j ,

W R
2 (c) = X ′ΣR

22(c)X = g(c; c)1{d j=c}X
′B(c)B(c)′X = g(c; c)1{d j=c}cu′ju j ,

and W R
3 (c) = X ′ΣR

33(c)X =
k
∑

j=k1+1{d j=c}+1
g(d j; c)X ′B(d j)B(d j)

′X =
k
∑

j=k1+1{d j=c}+1
g(d j; c)d ju′ju j .

PROOF OF PROPOSITION 8.4 The quantity Hn
[
ψ̂n−ψ0

]
can be written as:

Hn
[
ψ̂n−ψ0

]
= Hn

[
ψ̂n−ψ1 +ψ1−ψ0

]
= Hn[ψ̂n−ψ1

]
+Hn

[
ψ1−ψ0

]
. (B.1)

As Xn = Hn[ψ̂n−ψ1
]

satisfies Assumption 2.1, we have

W R
n (c) =

[
Hn(ψ̂n−ψ1)+Hn(ψ1−ψ0)

]′
ΣR

n (c)
[
Hn(ψ̂n−ψ1)+Hn(ψ1−ψ0)

]
=

[
Hn(ψ̂n−ψ1)

]′
ΣR

n (c)
[
Hn(ψ̂n−ψ1)

]
+
[
Hn(ψ̂n−ψ1)

]′
ΣR

n (c)
[
Hn(ψ1−ψ0)

]
+
[
Hn(ψ1−ψ0)

]′
ΣR

n (c)
[
Hn(ψ̂n−ψ1)

]
+
[
Hn(ψ1−ψ0)

]′
ΣR

n (c)
[
Hn(ψ1−ψ0)

]
= X ′nΣ

R
n (c)Xn +X ′nΣ

R
n (c)(Hn∆)+(Hn∆)′ΣR

n (c)Xn +(Hn∆)′ΣR
n (c)(Hn∆)

L→
n→∞

X ′ΣR(c)X +X ′ΣR(c)(Hn∆)+(Hn∆)′ΣR(c)X +(Hn∆)′ΣR(c)(Hn∆) → ∞

(B.2)

since Xn
L→

n→∞
X , ΣR

n (c)
p→ ΣR(c), and the typical (i, j)-element of (Hn∆)′ΣR(c)(Hn∆) is given by:

∆ jhn,i jΣ
R
i j(c)hn, ji∆i = hn,i j ∆ jΣ

R
i j(c)∆i︸ ︷︷ ︸

O(1)

hn, ji →
n→∞

∞ as hn,i j grows to infinity for i, j = 1, ...,q. Since this

quantity hn,i j∆ jΣ
R
i j(c)∆ihn, ji →

n→∞
∞ with probability 1, hence W R

n (c) converges to infinity with probability
1. The quantity

X ′ΣR(c)X +2X ′ΣR(c)(Hn∆)+(Hn∆)′ΣR(c)(Hn∆)

is asymptotically equivalent to X ′ΣR(c)X + (Hn∆)′ΣR(c)(Hn∆) due to the dominance principle of
(Hn∆)′ΣR(c) over 2X ′ΣR(c), i.e., X ′ΣR(c)X + 2X ′ΣR(c)(Hn∆) + (Hn∆)′ΣR(c)(Hn∆) = X ′ΣR(c)X +[
2X ′ΣR(c)+(Hn∆)′ΣR(c)

]
(Hn∆) .

PROOF OF PROPOSITION 8.5 As Xn = Hn(ψ̂n−ψ1n), under the local alternative Hn(ψ1n−ψ0)→ ∆ 6= 0,
then

W R
n (c) = [Hn(ψ̂n−ψ1n)

]′
ΣR

n (c)[Hn(ψ̂n−ψ1n)
]
+2[Hn(ψ̂n−ψ1n)

]′
ΣR

n (c)
[
Hn(ψ1n−ψ0)

]
+
[
Hn(ψ1n−ψ0)

]′
ΣR

n (c)
[
Hn(ψ1n−ψ0)

]
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= X ′nΣ
R
n (c)Xn +2X ′nΣ

R
n (c)

[
Hn(ψ1n−ψ0)

]
+
[
Hn(ψ1n−ψ0)

]′
ΣR

n (c)
[
Hn(ψ1n−ψ0)

]
L→

n→∞
X ′ΣR(c)X +2X ′ΣR(c)∆ +∆

′ΣR(c)∆ (B.3)

since Xn
L→

n→∞
X , ΣR

n (c)
p→ ΣR(c) .

PROOF OF COROLLARY 8.6 From Proposition 8.5, we have:

W R
n (c) L→

n→∞
X ′ΣR(c)X +2X ′ΣR(c)∆ +∆

′ΣR(c)∆ .

As ∆ ∈ V (0), P(0)(Σ)∆ = ∆ , and we have: ΣR(c)∆ = ∑
d j

g(d j; c)Pj(Σ)∆ = g(0; c)P(0)(Σ)∆ = g(0; c)∆

since Pj(Σ)∆ = 0 for all eigenprojections on the eigenspaces different from V (0). Hence,

W R
n (c) L→

n→∞
X ′ΣR(c)X +2g(0; c)X ′∆ +g(0; c)∆ ′∆ .

PROOF OF PROPOSITION 9.1 We need to show that limn→∞P
[
‖ΣR

n (cn)−ΣR(0)‖ ≥ ε
]
= 0 for every ε >

0. Let r denote the rank of the matrix of interest Σ. Three possible cases will be considered in the proof: r = q,
r = 0 and 1≤ r < q. Let I = {1, 2, . . . , q} such that λ 1 ≥ λ 2 ≥ ·· · ≥ λ i ≥ ·· · ≥ λ q ≥ 0, and J = {1, 2, . . . , k}
the subset of I corresponding to the indices of the distinct eigenvalues of Σ: d1 > d2 > · · ·> d j > · · ·> dk ≥ 0

where the multiplicity of the distinct eigenvalue d j is denoted m(d j), so that
k
∑
j=1

m(d j) = q≥ 1 and 1≤ k≤ q.

For j ∈ J, let I j denote the subset of I such that I j = {i ∈ I : λ i = d j}, hence the I j’s are disjoint sets such as
k⋃

j=1
I j = {1, . . . , q}. If zero is an eigenvalue, then dk = 0. Let Pj(Σ) = P(d j)(Σ) represent the eigenprojection

operator projecting onto the eigenspace V (d j) associated with d j. First we show that

lim
n→∞

P[|g(λ̂ i; cn)−g(d j; 0)| ≥ ε] = 0 ∀ i ∈ I j , ∀ ε > 0 (B.4)

as it is used later on in the proof. By Lemma 6.3 i), we have for all i ∈ I j, λ̂ i
p→ d j. Besides, as cn →

n→∞
0, we

have
P
[
|λ̂ i−d j|> cn

]
= P

[
|bn(λ̂ i−d j)|> bncn

]
→

n→∞
0 (B.5)

since bncn→ ∞ and bn
(
λ̂ i− d j

)
converges in distribution by Theorem A.2. Note that for λ̂ i = λ i(Σn), we

can write

lim
n→∞

P[|g[λ i(Σn); cn]−g(d j; 0)|> ε] = lim
n→∞, m→∞

P[|g[λ i(Σn); cm]−g(d j; 0)|> ε] . (B.6)

It is equivalent to write

|g[λ i(Σn); cm]−g(d j; 0)| = |g[λ i(Σn); cm]−g[λ i(Σn); 0]+g[λ i(Σn); 0]−g(d j; 0)|
≤ |g[λ i(Σn); cm]−g[λ i(Σn); 0]|+ |g[λ i(Σn); 0]−g(d j; 0)| .

(B.7)
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Hence, lim
n→∞, m→∞

P{|g[λ i(Σn); cm] − g[λ i(Σn); 0]| > ε} = 0 since lim
c→ 0+

g(λ ; c) = g(λ ; 0) . Further,

lim
n→∞

P{|g[λ i(Σn); 0]− g[d j; 0]| > ε} = 0 , since λ̂ i = λ i(Σn)
p→ d j, ∀ i ∈ I j and g ∈ Gc is continuous a.e.

w.r.t. λ , hence (B.4 ) follows.
Consider first the case where the limiting matrix Σ has full rank, i.e. rank(Σ) = r = q. For all

j ∈ J : d j > 0 since r = q, then by (B.4) and by Lemma 6.3 i) and ii), we have:

g(λ̂ i; cn)
p→ g(d j; 0) , and PI j(Σn)

p→ Pj(Σ) ,

provided λ i−1 6= λ i and λ j 6= λ j+1 . Since g(d j; 0) = 1
m(d j)

×m(d j)g(d j; 0) = 1
m(d j)

∑i∈I j g(d j; 0) , we have

after adding and substracting the quantity
k
∑
j=1

PI j(Σn)g(d j; 0) simultaneously:

ΣR
n (cn) =

k

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i; cn)

=
k

∑
j=1

PI j(Σn)

[
g(d j; 0)−g(d j; 0)+

1
m(d j)

∑
i∈I j

g(λ̂ i; cn)

]

=
k

∑
j=1

PI j(Σn)

[
g(d j; 0)+

1
m(d j)

∑
i∈I j

[
g(λ̂ i; cn)−g(d j; 0)

]] p→
k

∑
j=1

Pj(Σ)g(d j; 0) =ΣR(0) ,

since PI j(Σn)
p→ Pj(Σ), PI j(Σn) = Op(1) and |g(λ̂ i; cn)−g(d j; 0)| p→ 0 by (B.4).

Second, consider the case where d1 = 0 with multiplicity m(0) = q. In this case, Σn
p→ Σ = 0, i.e.

Σn converges to a zero matrix so that the range of Σ is R(Σ) = {0} and its null-space is N(Σ) = R
q. Let

P1(Σ) denote the eigenprojection operator of Σ associated with its zero eigenvalue (d1 = 0) which projects
onto the corresponding eigenspace V (0), with dim

[
V (0)

]
= q. After adding and substracting the quantity

PI1(Σn)g(0; 0) simultaneously, we have:

ΣR
n (cn) = PI1(Σn)

1
m(d1)

∑
i∈I1

g(λ̂ i; cn) = PI1(Σn)
[
g(0; 0)−g(0; 0)+

1
m(0) ∑

i∈I1

g(λ̂ i; cn)
]

= PI1(Σn)g(0; 0)+PI1(Σn)
1

m(0) ∑
i∈I1

[
g(λ̂ i; cn)−g(0; 0)

]
p→ g(0; 0)P1(Σ) =ΣR(0) , (B.8)

since by Lemma 6.3 ii), we have PI1(Σn)
p→ P1(Σ), PI1(Σn) = Op(1) and by (B.4), we have with d1 = 0:

|g(λ̂ i; cn)−g(0; 0)| p→ 0 ,∀ i ∈ I1 .
Finally, suppose dk = 0 and d1 6= 0. Then

‖ΣR
n (cn)−ΣR(0)‖= ‖

k

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i; cn)−
k

∑
j=1

Pj(Σ)g(d j; 0)‖

= ‖
k

∑
j=1

PI j(Σn)

[
g(d j; 0)−g(d j; 0)+

1
m(d j)

∑
i∈I j

g(λ̂ i; cn)

]
−

k

∑
j=1

Pj(Σ)g(d j; 0)‖
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= ‖
k

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

[
g(λ̂ i; cn)−g(d j; 0)

]
+

k

∑
j=1

PI j(Σn)g(d j; 0)−
k

∑
j=1

Pj(Σ)g(d j; 0)‖

≤ ‖
k

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

[
g(λ̂ i; cn)−g(d j; 0)

]
‖+‖

k

∑
j=1

g(d j; 0)
[
PI j(Σn)−Pj(Σ)

]
‖

≤ ‖
k

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

[
g(λ̂ i; cn)−g(d j; 0)

]
‖+

k

∑
j=1
|g(d j; 0)|‖PI j(Σn)−Pj(Σ)‖

≤
k

∑
j=1
‖PI j(Σn)‖

1
m(d j)

∑
i∈I j

|g(λ̂ i; cn)−g(d j; 0)|‖+
k

∑
j=1
|g(d j; 0)|‖PI j(Σn)−Pj(Σ)‖

(B.9)

since PI j(Σn) =Op(1), |g(λ̂ i; cn)−g(0; 0)| p→ 0 ,∀i∈ I j by (B.4), g(d j; 0) =O(1) and ‖PI j(Σn)−Pj(Σ)‖ p→
0, by Lemma 6.3 ii). We can finally conclude that:

lim
n→∞

P
[
‖ΣR

n (cn)−ΣR(0)‖ ≥ ε
]
= 0 .

PROOF OF PROPOSITION 9.2 By Proposition 9.1, we have ΣR
n (cn)

p→ ΣR(0) and by Assumption 2.1,

Xn
L→

n→∞
X , hence

W R
n (cn) = X ′nΣ

R
n (cn)Xn

L→
n→∞

X ′ΣR(0)X . (B.10)

The statistic can be decomposed as:

W R
n (cn) =W R

1n(cn)+W R
2n(cn)

where W R
in(cn) = X ′nΣ

R
ii,n(cn)Xn , for i = 1, 2 and

ΣR
n (cn)=

k

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i, cn)=
k1

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i, cn)+ ∑
j≥k1+1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i, cn) .

Let’s focus on the first component:

ΣR
11,n(cn) =

k1

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

g(λ̂ i, cn) =
k1

∑
j=1

PI j(Σn)

[
g(d j; 0)−g(d j; 0)+

1
m(d j)

∑
i∈I j

g(λ̂ i, cn)

]
(B.11)

=
k1

∑
j=1

PI j(Σn)g(d j; 0)+
k1

∑
j=1

PI j(Σn)
1

m(d j)
∑
i∈I j

[
g(λ̂ i; cn)−g(d j; 0)

]
(B.12)

since g(d j; 0) = 1
m(d j)

∑i∈I j g(d j; 0). Using the continuity property of the eigenvalues and total eigenpro-
jections given in Lemma 6.3 i) and ii) provided we can find distinct eigenvalue before and after, we have
PI j(Σn)

p→ Pj(Σ), PI j(Σn) = Op(1), and by (B.4) ∀ε > 0, lim
n→∞

P
[
|g(λ̂ i; cn)− g(d j; 0)| ≥ ε

]
= 0 ∀i ∈ I j.
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Hence, we have:

ΣR
11,n(cn)

p→
k1

∑
j=1

g(d j; 0)Pj(Σ)≡ΣR
11(0) , with

k1

∑
j=1

m(d j) = q1 = rank
[
ΣR

11(0)
]
= dimV (q1) (B.13)

and,
W R

1n(cn) = X ′nΣ
R
11,n(cn)Xn

L→
n→∞

X ′ΣR
11(0)X ≡W R

1 (0) .

For the second part of the statistic, the q× q matrix Σ is such that rank(Σ) = q1, so dk1+1 = 0 with multi-
plicity m(dk1+1) = q−q1. The regularization operates such that:

g(λ̂ i; cn) =

{ 1
λ̂ i

if λ̂ i > cn

0 if λ̂ i ≤ cn
(B.14)

If λ i = dk1+1 = 0, then

P
[
g(λ̂ i; cn) = 0

]
= P

[
bn|λ̂ i| ≤ bncn

]
→

n→ ∞
1 ∀ i ∈ Ik1+1 , card(Ik1+1) = q−q1 < ∞ ,

since bn(λ̂ i−λ i) = Op(1) ∀i, and bncn →
n→ ∞

∞. A fortiori, it still holds for P
[

∑
i∈Ik1+1

g(λ̂ i, cn) = 0
]
→

n→ ∞
1 .

W R
2n(cn) = X ′nΣ

R
22,n(cn)Xn with ΣR

22,n(cn) = PIk1+1(Σn)
1

m(dk1+1)
∑

i∈Ik1+1

g(λ̂ i, cn)

Since PIk1+1(Σn) = Op(1), then P
[
PIk1+1(Σn) ∑

i∈Ik1+1

g(λ̂ i; cn) = 0
]
→

n→ ∞
1 ; this implies that P

[
ΣR

22,n(cn) =

0
]
→

n→ ∞
1 , hence, we have: P

[
W R

2n(cn) = 0
]
→

n→ ∞
1 .

PROOF OF PROPOSITION 9.3 Apply the results of Proposition 9.2 with Xn =
√

n
[
ψ(θ̂ n)−ψ0

] L→
n→∞

N
[
0,Σ

]
=X . Following equation (7.10), Pj(Σ) =B(d j)B(d j)

′ and B(d j)
′X = x j, where x j ∼N

[
0, d jIm(d j)

]
,

or equivalently x j =
√

d ju j, with u j ∼ N(0, Im(d j)) . Recall that lim
n→ ∞

g(λ̂ i; cn) = g(d j; 0) by definition of g in
the Gc family (see 7.1) and lim

n→ ∞
cn = 0. Hence, we can write:

W R
1 (0) = X ′ΣR

11(0)X = X ′
( k1

∑
j=1

g(d j; 0)Pj(Σ)
)
X =

k1

∑
j=1

g(d j; 0)X ′Pj(Σ)X

=
k1

∑
j=1

g(d j; 0)X ′B(d j)B(d j)
′X =

k1

∑
j=1

g(d j; 0)x′jx j =
k1

∑
j=1

1
d j

d ju′ju j =
k1

∑
j=1

u′ju j ,

where u j ∼ N(0, Im(d j)) . Hence, u′ju j ∼ χ(m(d j)). As
k1
∑
j=1

m(d j) = q1, hence W R
1 (0)∼ χ(q1).
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C. Appendix: Alternative simulation-based approaches
In this section, we propose three alternative simulation-based approaches that rely on the technique of Monte
Carlo tests to enhance the performance of the (regularized) Wald test; see Dufour (2006) and the references
therein for a detailed presentation of the technique of Monte Carlo tests. To test the null hypothesis H0 :
ψ(θ) = ψ0 , we consider different ways of simulating the asymptotic distribution of the (regularized) Wald
statistic. The approaches differ through the strength of the assumptions made on the asymptotic distribution.
They can be described as follows.

1. Simul-R approach: This approach requires the minimal assumption, and relies on the asymptotic dis-
tribution of the restrictions without the need to specify that of the parameter θ . By focusing on the
restrictions, this approach can accommodate situations where some components of θ are not iden-
tified but whose transformations are. Thus, we simulate from the distribution of the restrictions, i.e.,
√

n(ψ̂n−ψ0)
L→

n→∞
N(0,Σ) , with ψ̂n = ψ0+

1√
nÛ ′ψ× ṽ , where ṽ∼N[0, I]. Ûψ refers to the Cholesky

decomposition of the estimate of Σ, namely Σn = Û ′ψ ×Ûψ . We can then easily build the regularized
Wald statistic as:

Sn(ψ̂n) =
√

n[ψ̂n−ψ0]
′ΣR

n (c)
√

n[ψ̂n−ψ0] ,

where ΣR
n (c) denotes the regularized inverse of Σn.

2. Simul-E approach: This approach is more restrictive than Simul-R to the extent that it requires the
identification of the whole parameter vector θ and situations for which the delta method applies.
Nevertheless, it can accommodate some discontinuities in the restrictions (e.g., ratios of parameters
with null values in the denominator). Thus, we simulate from the distribution of the estimator of
θ :
√

n(θ̂ n − θ 0)
L→

n→∞
N(0,Σθ ) , using θ̂ n = θ 0 +

1√
nÛ ′ × ṽ and the Cholesky decomposition Û :

Û ′×Û =Σθ ,n, where Σθ ,n is an estimator of Σθ , and ṽ∼ N[0, I]. Applying the delta method, we can

deduce the distribution of the restrictions, i.e.
√

n(ψ(θ̂ n)−ψ(θ 0))
L→

n→∞
N(0,Σ), with Σ = ΓΣθ Γ ′ ,

and Γ corresponds to the derivative of the restrictions w.r.t. θ . Using consistent estimators of the above
quantities, we can then easily build the regularized Wald statistic statistic as:

Sn(θ̂ n) =
√

n[ψ(θ̂ n)−ψ(θ 0)]
′ΣR

n (c)
√

n[ψ(θ̂ n)−ψ(θ 0)] .

3. Simul-DGP approach: This approach is the most restrictive since it requires the highest level of infor-
mation. Thus, when the full DGP is specified, one can simulate from it; y can be expressed as a function
of θ , i.e. y j = f (θ , ṽ j), j = 1, . . . , n where ṽ j is a random variable and yn

1 = (y1, . . . , yn). For instance,
one can simulate from a parametric Gaussian model under the null (as we do in the next section, see
equation (D.1)) and build the statistic such as:

Sn(yn
1, θ̂ n) = n[ψ(θ̂ n(yn

1))−ψ(θ 0)]
′ΣR

n (c)[ψ(θ̂ n(yn
1))−ψ(θ 0)]

In the following, we shall denote S(i) the i-th replication of the simulated statistic associated with the i-th
random vector ṽ(i), for i = 1, . . . ,N. Please note that n refers to the sample size while N to the number of
replications of the Monte Carlo test. For i = 0, let S(0) = S(0)(ψ0) refer to the test statistic computed from
observed data when the true parameter vector is ψ(θ 0) = ψ0. Note that the technique of Monte Carlo tests
does not require the number of replications N to be large, and the validity of the procedure holds for N fixed;
for example N = 19 is sufficient to control the level of the test irrespective of the sample size. In other words,
if one simulates from the exact distribution of the test statistic instead of the asymptotic approximation, the
Monte Carlo test would yield an exact test.
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In the Simul-R approach, we draw for i = 1, . . . ,N, ṽ(i) ∼N(0, I) such that:

ψ̂
(i)
n = ψ0 +

1√
n

Û ′ψ ṽ(i) or equivalently
√

n[ψ̂(i)
n −ψ0] = Û ′ψ ṽ(i)

with Σn = Û ′ψÛψ = V ′nΛ [λ (Σn)]Vn based on its spectral decomposition. Using its regularized counterpart,
i.e. ΣR

n (c) =V ′nΛ †[λ (Σn); c]Vn, we get N replications of the regularized Wald statistic under the null,

S(i)n (ψ̂n) =
√

n[ψ̂(i)
n −ψ0]

′ΣR
n (c)
√

n[ψ̂(i)
n −ψ0] , i = 1, . . . , N .

The i.i.d. assumption usually made for (S(1)n (ψ), . . . , S(N)
n (ψ)) can be relaxed to the exchangeability as-

sumption. Let Sn(N,ψ) = (S(1)n (ψ), . . . , S(N)
n (ψ)), and the sample p-value functions be defined as:

ĜnN(x|ψ)≡ ĜnN [x; Sn(N, ψ)] =
1
N

N

∑
i=1

1(S(i)n (ψ)≥ x) (C.1)

p̂nN(x|ψ) =
NĜnN(x|ψ)+1

N +1
. (C.2)

Recall that S(0)n refers to the test statistic that is computed from observed data. The test rejects the null
hypothesis at level α if p̂nN(S

(0)
n |ψ̂n)≤ α .

The asymptotic validity of bootstrap p-values based on a consistent point estimate (of the parameter ψ)
is established in Dufour (2006, Proposition 6.1, p.464). The proposition also states the validity of bootstrap
p-values for general sequences of random variables with (possibly discrete) distributions (when ties may
have nonzero probability). Under appropriate conditions that can be found in Dufour (2006), let the random
variables S(0)n and ψ̂n be independent of Sn(N,ψ). If ψ̂n

p→ ψ0 then for 0≤ α ≤ 1,

lim
n→∞
{P
[
p̂nN(S

(0)
n |ψ̂n)≤ α

]
−P
[
p̂nN(S

(0)
n |ψ0)≤ α

]
}= 0 . (C.3)

D. Appendix: Simulation results: Multi-step noncausality
In this section, we perform Monte Carlo experiments to assess the empirical behavior of the (regularized)
Wald statistics in the presence of asymptotic singularity. We consider the following VAR(1) processxt

yt
zt

= A1

xt−1
yt−1
zt−1

+ut =

θ xx θ xy θ xz
θ yx θ yy θ yz
θ zx θ zy θ zz

xt−1
yt−1
zt−1

+ut , (D.1)

for t = 1, . . . , n, where ut = [ux, t uy, t uz, t ]
′ is a Gaussian noise with a (3× 3) nonsingular covariance matrix

Σu. We are interested in testing for multi-step noncausality i.e.,

H0 : ψ(θ) =

[
θ xy

θ xxθ xy +θ xyθ yy +θ xzθ zy

]
=

[
0
0

]
. (D.2)

using three different versions of the Wald statistic, i.e., W R
n (c) = nψ(θ̂ n)

′ΣR
n (c)ψ(θ̂ n). As pointed out in

Section 3.1, singularity problems arise under parameter setting (3.1). Let yt = [xt yt zt ]
′ , Y ≡ (y1, . . . , yn) ,

B≡ (A1) Zt ≡ [yt ], Z ≡ (Z0, . . . ,Zn−1) , U ≡ [ut ]t=1, ...,n = (u1, . . . , un) Using the standard column stacking
operator vec, let θ =vec(A1) =vec(B), where B is (3×3) and Y , Z and U are (3×n). We use the multivariate
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LS estimator of θ . Applying the column stacking operator vec on:

Y = BZ +U (D.3)

we have:

vec(Y ) = vec(BZ)+vec(U) (D.4)

y =
(
Z′⊗ I3

)
vec(B)+vec(U) (D.5)

y =
(
Z′⊗ I3

)
θ +u (D.6)

where E(uu′) = In⊗Σu. The multivariate LS estimator θ̂ n is given by:

θ̂ n =

(
(ZZ′)−1Z⊗ I3

)
y , (D.7)

such that: √
n(θ̂ n−θ 0)

L→ N
(
0,Σθ

)
(D.8)

where Σθ = Ω−1⊗Σu; see Lütkepohl (2005, Proposition 3.1 p. 74, eq. (3.2.15)). Provided the delta method
applies, the restrictions are also asymptotically Gaussian:

√
n(ψ(θ̂ n)−ψ(θ 0))

L→ N
(
0,Σ

)
(D.9)

where

Σ =
∂ψ

∂θ
′ (θ)Σθ

∂ψ ′

∂θ
(θ) . (D.10)

A consistent estimator of Σ is easily obtained as:

Σn =
∂ψ

∂θ
′ (θ̂ n)Σθ ,n

∂ψ ′

∂θ
(θ̂ n) (D.11)

by plugging in a consistent estimator of Σθ , i.e., Σθ ,n = Ω̂−1⊗Σ̂u with Ω̂ = 1
n ZZ′ and Σ̂u =

1
n ∑

n
t=1 ût û′t =

1
nY
[
In− Z′(ZZ′)−1Z

]
Y ′ . We examine three different parameter settings for the VAR(1) coefficients A1 =θ xx θ xy θ xz

θ yx θ yy θ yz
θ zx θ zy θ zz

 . The first two parameter setups correspond to:

A1 = A10 =

−0.99 θ xy θ xz
0 −0.99 0.5
0 0 −0.99

 , A1 = A20 =

−0.9 θ xy θ xz
0 −0.9 0.5
0 0 −0.9

 ,
where the problem of singularity is obtained for θ xy = θ xz = θ zy = 0. The key parameter to disentangle
between the regularity point and singularity point under this setup is θ xz, with θ xz = 0 corresponding to a
singularity point, and θ xz 6= 0 to a regularity point. A third parameter setup is examined, i.e., A1 = A11 =0.3 θ xy θ xz

0.7 0.3 0.25
0.5 0.4 0.3

 where θ xy = θ xz = 0, and θ zy = 0.4 6= 0 yields a regular setup. The first two parameter

settings involve parameters close to the nonstationary region, whereas the third one falls inside the stationary
region. ut = [ux, t uy, t uz, t ]

′ is a Gaussian noise with nonsingular covariance matrix Σu, whose values have
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Table 3. Notations of the statistics

Notations of the statistics
Notations Definition
W Standard Wald statistic using the standard critical point
WDV (bound) Full-rank regularized Wald statistic using the asymptotic bound and a fixed threshold
WLB LB Reduced-rank Wald statistic based on the modified Moore-Penrose inverse and a threshold that varies with the sample size
WNoise Modified Wald statistic resulting from adding a noise to the restrictions; using the the standard critical point
WRidge Wald statistic whose covariance matrix is regularized by adding 0.1×Identity matrix.
Simul-R Monte Carlo tests - simulated version of the corresponding statistic using the distribution of the restrictions
Simul-E Monte Carlo tests - simulated version of the corresponding statistic using the distribution of the estimator of the parameter
Simul-DGP Monte Carlo tests - simulated version of the corresponding statistic using a specified DGP

Simul-Mixt Simulated version of the linear combination of modified chi-square variables as in eq. (ii):
2
∑

j=1
g(λ̂ j;c)λ̂ jv j, where the v j’s are independent

and random draws from a χ2(1) .

been set to

Σu =

 1.5 −0.7 0.3
−0.7 0.5 −0.4
0.3 −0.4 1


in the simulation design. Its determinant is different from zero, i.e., det(Σu) = 0.143. The threshold values
have been set to cn = λ̂ 1n−1/3 in the case of a varying threshold and to c = 0.1 for the fixed threshold.
We also use cn = λ̂ 1n−1/2 sporadically; it performs better in the regular setup in terms of power because it
regularizes less often. Note that the choice of cn = λ̂ 1n−1/3, (or cn = λ̂ 1n−1/2) only applies to the spectral cut-
off regularized Wald statistic recommended by Lütkepohl and Burda (1997), whereas we propose the fixed
value of c = 0.1 for the full-rank regularized statistic. Concerning cn, it has been normalized by the largest
eigenvalues to account for scaling issues of the data. We use 5000 replications in all simulation experiments.
The nominal size to perform the tests has been fixed to 0.05, with critical points for the chi-square distribution
with full rank given by χ2

95%(2) = 5.99, or with reduced rank given by χ2
95%(1) = 3.84 for the spectral cut-off

regularized Wald statistic. In the tables below, W denotes the standard Wald statistic, WDV (bound) the full-
rank regularized Wald statistic that uses the bound and the fixed threshold c; WLB denotes the spectral cut-off
Wald statistic that uses the varying threshold cn. For comparison purposes, we also report the modified Wald
statistic that results from adding noise to the restrictions to make them less efficient; it is denoted Wnoise.
See Lütkepohl and Burda (1997, Proposition 1, page 317) for its form. Note that WLB and WNoise are the
two modified Wald statistics proposed by Lütkepohl and Burda (1997). We propose to implement the LB
reduced-rank statistic through Monte Carlo tests (Simul-R, simul-E, Simul-DGP) that help to reduce size
distortions in finite samples.

D.1. Level assessment
We study the empirical behavior of the test statistics under the null hypothesis:

H0 : ψ(θ) =

[
θ xy

θ xxθ xy +θ xyθ yy +θ xzθ zy

]
=

[
0
0

]
,

first in irregular setups (see Table 4, panels A : A1 = A10 and B : A1 = A20), then in a regular setup (see Table
4, panel C : A1 = A11). It is clear from Table 4, panels A and B that the standard Wald statistic, W , does
not have its usual asymptotic distribution in non-regular setups, either suffering from severe over-rejections
in small samples, or from under-rejections in large samples. Its behavior gets worse when parameter values
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approach the nonstationary region (Table 4, Panel A). Similarly, the reduced rank Wald statistic, WLB, dis-
plays the same finite sample behavior as W in non-regular setups, with severe size distortions when parameter
values get close to the nonstationary region, but exhibits good size properties asymptotically. In contrast, the
full-rank regularized statistic that uses the bound, WDV (bound), does not suffer from over-rejection under the
null hypothesis, but under-rejects instead. Nevertheless, if one simulates directly from the DGP provided
it is specified, one can mitigate the underrejection of the bound by using the Simul-DGP approach. The
Simul-DGP approach for WDV remarkably dominates its competitors W and WLB particularly in small sam-
ples (see Table 4, panel A : A1 = A10, n = 50). Thus, it is crucial to simulate from a well-behaved statistic
to produce a reliable test. To the extent that all testing procedures are asymptotically justified, including the
version of the Monte Carlo tests used here, it is not surprising that all tests approach the nominal level of
0.05 for sufficiently large sample sizes. In particular, the level is controlled for all three simulation-based
approaches in large samples. Further, for the sake of comparison, we have also implemented the uniform
(ridge-type) regularization scheme defined in equation (7.4). Unlike the DV scheme defined in equation
(7.3) that only modifies the small problematic eigenvalues, the uniform (ridge-type) regularization scheme
modifies all eigenvalues regardless of their magnitude. By modifying the large eigenvalues uselessly, this
regularization scheme tends to exacerbate the conservative feature of the asymptotic bound relative to the
DV one, especially in small samples. This pattern is even more striking in the regular setup; this sheds light
on the lack of robustness (to regular settings unlike the DV scheme) of this crude regularization scheme.
Regarding the regular setup shown in panel C of Table 4, all statistics display the correct expected level of
0.05. Note also that we have tried different values for the fixed threshold c, and we recommend c = 0.1. Its
impact on power will be examined next. Thus, the less one regularizes, i.e. one chooses c = 0.01 instead
of c = 0.1, the more the full-rank regularized statistic behaves like the standard Wald statistic. Selecting a
fixed value for the threshold in an optimal way – that might enhance power – could be considered through
data-driven procedures, e.g., cross-validation methods. As for the reduced rank statistic, the asymptotic WLB
test statistic behaves slightly differently depending on the choice of the varying threshold cn in regular setups;
in nonregular setups, regardless of cn, i.e., cn = λ̂ 1n−1/3 or cn = λ̂ 1n−1/2, the results are identical. How-
ever, the threshold cn = λ̂ 1n−1/3 that exploits the convergence rate of the sample eigenvalues towards their
population analogs permits to control the level of the test (that relies on the WLB statistic) in the simulation-
based approach. More specifically, in the simulation-based approaches of WLB, using cn = λ̂ 1n−1/2 leads
to over-rejections in small-to-moderately large sample sizes relative to cn = λ̂ 1n−1/3; see Table 4, panel C.
Also, power will differ markedly w.r.t. cn in the regular setup as shown in the power exercise. Note also
the correct asymptotic level of the simulated version of the linear combination of chi-square variables as in

Corollary 8.2(ii):
2
∑
j=1

g(λ̂ j; c)λ̂ jv j, where the v j’s are independent and random draws from a χ2
(
1
)
. In the

regular setup, the level of the corresponding procedure is controlled for all sample sizes. Finally, although
WNoise enables us to control size under the null, this procedure is not recommendable from the viewpoint of
power as shown next.

D.2. Power assessment
We also study the empirical power for alternatives close to a singularity point θ xz = 0:

H1 : ψ(θ) =

[
δ

(θ xx +θ yy)δ

]
6=
[

0
0

]
,

with θ xy = δ , (δ = 0.1264 or δ = 0.04) whose empirical power is reported in panels A and B of Table 5.
We also consider a second type of alternative for a violation of the second restriction only, while maintaining
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fulfilled the first restriction as in Lütkepohl and Burda (1997), i.e.

H1 : ψ(θ) =

[
0

(θ xz×θ zy)

]
6=
[

0
0

]
,

with θ xz = δ = 0.1264, θ zy = 0.4 and θ xy = 0, under a regular design:

A1 = A11 =

0.3 0 θ xz
0.7 0.3 0.25
0.5 0.4 0.3

 ;

see panel C of Table 5. First of all, all power frequencies reported in Table 5 have been locally corrected for
level distortions (only for over-rejections). See Table 6 in appendix E for level correction.

First note that panels A and B of Table 5 correspond to parameter values on the nonstationary region,
i.e. A1 = A10. In Table 5, though conservative, the full-rank regularized test statistic that uses the bound,
i.e., WDV (bound) exhibits higher power than its oversized competitors W and WLB for alternatives sufficiently
far from the null, i.e. for values of δ sufficiently different from zero (see Table 5, panel A, n = 50 that
corresponds to δ = 0.1264). However, when δ is close to zero, power is reduced for WDV (bound) (see
Table 5, panel B, n = 50 with δ = 0.04). Indeed for alternatives close to the null, WLB benefits from a
reduced critical point. Nevertheless, the simulated versions of the full rank statistic, especially the Simul-
DGP version of WDV has as much power as WLB as soon as the sample size reaches n = 100 (see Table 5,
panel B, n = 100 with δ = 0.04). In particular for WDV , we can observe as of n = 100 that power tends to
increase when moving from Simul-R to Simul-E to Simul-DGP, with the highest power achieved for Simul-
DGP which is the most demanding procedure in terms of information. More importantly, the locally-level
corrected performance of the statistics W and WLB corresponds to infeasible tests in practice, because this level
correction requires the knowledge of the true, unknown parameter values unlike WDV (bound) whose level is
controlled in all scenarios. The superiority of the simulated version of WDV over the simulated version of the
standard Wald statistic in small samples ( i.e., n = 50, 100 in panels A and B) is remarkable. Furthermore,
the asymptotic test based upon WDV (bound), which uses a more refined regularization scheme than the crude
uniform (ridge-type) regularization has more power than Wridge−type in small samples (see panel B, n =
50, 100 for alternatives close to the null). In other words, the uniform (ridge-type) regularization scheme tends
to be overly conservative over the regularization we recommend (the DV-type one) and amplifies power loss in
small samples. In the same vein, Bühlmann (2013) has emphasized that the ridge-type regularization – usually
encountered in regression settings for coefficients’ estimation – is not theoretically rate optimal in terms of
power. Nonetheless, the conservativeness of the asymptotic tests – which is more acute for Wridge−type than
for WDV (bound) – can be mitigated using simulations to increase power. Further, the behavior of the modified
Wald statistic that results from adding noise to the restrictions to make them less efficient, as suggested by
Lütkepohl and Burda (1997, Proposition 1, page 317), displays correct level under the null. However, such
a noise tends to destroy power under the alternative and is not the approach we would recommend; compare
Wnoise’s performance in panel B, for n=50,..., 1000 relative to its competitors. Finally, the most striking
result is the severe under-performance of the reduced rank statistic WLB in a regular setup (panel C) when
cn = λ̂ 1n−1/3. As already mentioned by Lütkepohl and Burda (1997), by underestimating the true rank of the
covariance matrix, this reduced rank statistic puts more weight on the first restriction that remains fulfilled
in this case. A violation of the null hypothesis coming from the second restriction will not be detected by a
statistic that underestimates the rank; a full-rank regularized statistic dominates in this respect. Thus, these
results on power reinforce the better properties of the full-rank regularized statistics over the spectral cut-off
type. However, when cn = λ̂ 1n−1/2, power is restored for WLB in regular setups. Indeed, in regular setups
where regularization is unnecessary, dropping some restrictions might damage power significantly. Thus, the
choice of cn is critical in regular setups because it can diminish power substantially. The contrasting results
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displayed for WLB in panel C highlights the superiority of full-rank statistics over reduced-rank ones. Overall,
we recommend WDV (bound) along with the Simul-DGP version of WDV , as both procedures control level
while achieving reasonably good power in small samples under both setups (regular and irregular).

E. Appendix: Rejection rules to correct size distortions
Insert Table 6 that is displayed below here.
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Table 6. Empirical levels of Multistep noncausality tests H0 : ψ(θ) = 0 and modified rejection rules.

H0 : ψ(θ) = 0 ; nominal size= 0.05, cn = λ̂ 1n−1/3, c = 0.1;
Panel A: irregular setup

H0 : ψ(θ) = 0 with with θ xy = θ xz = θ zy = 0 and θ xx = θ yy = θ zz =−0.99 , A1 = A10, cn = λ̂ 1n−1/3, c = 0.1;
n = 50

Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/4.13 when pv. ≤ 0.01 0.0499 1/1.81 when pv. ≤ 0.01 0.0499 0.0515
WDV 1/2.11 when pv. ≤ 0.01 0.0499 1/1.67 when pv. ≤ 0.01 0.0500 0.0430
WLB 1/ 2.10 when pv. ≤ 0.01 0.0500 1/ 2.108 when pv. ≤ 0.01 0.0500 0.0358

n = 100
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/2.88 when pv. ≤ 0.01 0.0500 1/1.503 when pv. ≤ 0.01 0.0499 0.0527
WDV 1/1.34 when pv. ≤ 0.01 0.0500 1/1.245 when pv. ≤ 0.01 0.0499 0.0476
WLB 1/ 1.335 when pv. ≤ 0.01 0.0500 1/ 1.49 when pv. ≤ 0.01 0.0500 0.0486

n = 500
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/1 when pv. ≤ 0.03 0.0502 1/1 when pv. ≤ 0.02 0.0342 0.0486
WDV 1/1 when pv. ≤ 0.02 0.0238 1/1 when pv. ≤ 0.02 0.0290 0.0340
WLB 1/ 1 when pv. ≤ 0.02 0.0238 1/ 1 when pv. ≤ 0.02 0.0302 0.0436

n = 1000
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/1 when pv. ≤ 0.05 0.0506 1/1 when pv. ≤ 0.03 0.0418 0.0436
WDV 1/1 when pv. ≤ 0.04 0.0496 1/1 when pv. ≤ 0.03 0.0370 0.0318
WLB 1/1 when pv. ≤ 0.04 0.0496 1/1 when pv. ≤ 0.03 0.0372 0.0470

n = 2000
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/1 when pv. ≤ 0.05 0.0300 1/1 when pv. ≤ 0.04 0.0440 -
WDV 1/1 when pv. ≤ 0.04 0.0414 1/1 when pv. ≤ 0.04 0.0414 -
WLB 1/1 when pv. ≤ 0.04 0.0414 1/1 when pv. ≤ 0.04 0.0418 -

n = 5000
Statistics Rejection Rule Simul-R Rejection Rule Simul-E Simul-DGP
W 1/1 when pv. ≤ 0.05 0.0142 1/1 when pv. ≤ 0.05 0.0384 -
WDV 1/1 when pv. ≤ 0.05 0.0368 1/1 when pv. ≤ 0.05 0.0378 -
WLB 1/1 when pv. ≤ 0.05 0.0368 1/1 when pv. ≤ 0.05 0.0380 -

See Table 3 for the definition of the acronyms.
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