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Abstract. For many years now on-going discussions, not to say endless
discussions, about the intrinsic definition of contexts have been at the center
stage of every single meeting of the conceptual graph community. It is our
opinion that this lack of consensus about contexts is in direct relation to its
lack of a formal definition. As a matter of fact, no formal definition of
contexts was given up to this moment, not even in John Sowa’s original
book. Being a vital issue in conceptual graph theory, this paper addresses
the problem of providing formal semantics to the definition of contexts,
when used for information packaging. It proposes a definitional framework
for contexts, based on formal concept analysis [17], bridging these two
research areas. It also presents how querying a knowledge base structured as
a lattice of contexts can be done.
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1 Introduction

Contexts are a vital notion of the conceptual graph theory. Inferences are based on the
notion of contexts; contexts are useful for packaging information. Over the years, they
were extensively used in many areas of conceptual graph related research, particularly
in knowledge definition [2, 3, 4], in knowledge structuring [13], in natural language
processing [1, 9, 12, 11], in the representation of modalities, intentional verbs and
temporal relations [9], in multi-agent systems [10] and in object systems [16]. Despite
this obvious need for contexts, there is still no consensus on their definition and usage
in the community. This is mainly due to the fact that they are ill-defined. As a matter
of fact, as surprising as this may be, there exists no formal definition of contexts so
far, not even in John Sowa’s original book. The only intuitive definition given in
Sowa’s book is that a context exists whenever some proposition is asserted: a
proposition is said to be true in a particular context. No way of defining this context is
provided, resulting in different uses for different types of applications. To our opinion,
this lack of semantics when defining contexts is its source of problems.

For inferential purposes, contexts are useful to delimit the scope of negation,
pretty much like parentheses in Peano-Russel’s notation. They introduce a notion of
subsumed (dominated) contexts that is not formally defined in the cg literature so far,
but which is useful for the mechanics of the inference process. One realizes that this
scope delimitation mechanism could be represented otherwise. However, the
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information packaging capabilities that these contexts provide proved to be useful for
other application areas such as modal logic, linguistics and multi-agent applications.
The implied notion of subsumption between contexts is useful, though it needs to be
well defined so that different worlds of assertion may exist in relation to one another,
as is required with these types of applications. When the truth value of a set of
assertions is conditional to the same set of conditions, then we say that a world of
assertion is created, and that it is defined by both the assertions which describe it and
the inherent conditions which allow its existence.

This paper presents a formal definition of contexts (when used for packaging
information1), based on the notion of intention and extension. We define a context in
terms of what propositions it allows and represents. The propositions that it represents
(a set of conceptual graphs) is said to be its extension. These graphs are conjunctively
true (asserted) in that context. Its intention will be the conditions upon which the
context exists. These conditions are the premises under which the extension of the
context is said to be true. These conditions are expressed as a set of conceptual graphs
conjunctively true in that context2. Together, the intention and extension of a context
provide a formal definition which explicitly states what is (the extension) and what
can be (according to the intention) represented in this context. They are each
represented as a set of conceptual graphs. The association of an intention set and an
extension set provides a formal definition for a context since the graphs of the
extension set have to abide by the conditions of those of the intention set; and the
graphs of the intention set are the conditions that must be enforced to allow the
extension set to exist. As will be seen below, not all such associations are possible; not
all such associations are necessary. A minimal representation of these associations is
sufficient to represent the whole knowledge base. This representation is a concept
lattice.

Concept lattices were introduced in [17]; this paper adapts these definitions
to the conceptual graph terminology and presents how they can be used to properly
structure a knowledge base defined in terms of a set of contexts. This structure, which
we named context lattice, can be used to optimize query mechanisms which can
address their queries to particular contexts, or which can now inquire about the links
between intention and extension sets, i.e., about the structure of the knowledge base
itself, which represents the relations among different worlds of assertions.

Section 2 below presents a brief literature survey on contexts in the
conceptual graph theory. Section 3 states our proposition. Section 4 presents different

                                                          
1 This paper will not present contexts for inferential purposes, though we feel that the
work presented here will eventually permit such extensions to be defined; it only
presents its information packaging capability, used to create a lattice of subsumed
worlds of assertions. However, section 6 presents how certain characteristics of
contexts used in an inference engine for existential graphs, are also present with the
definitional framework that we propose in this paper.
2 In this paper, the intention of a context will be a unique conceptual graph, called
intention graph, stating under what condition the context exists. Section 5 shows how
this graph is produced. Other constraints on the extension of a context could be added
to intention of a context, as will be done in a forthcoming paper.
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functions which can be used to query a knowledge base structured as a context lattice.
Section 5 describes the algorithm that produces the intention graphs used in section 3
to build the context lattice. Section 6 shows how some characteristics of contexts used
for inferential purposes are present within the framework that we propose in this
paper. Section 7 concludes.

2 Literature Survey

Contexts and concepts have been largely studied in the theory of conceptual graphs [2,
4, 14, 15]. It has been proven that contexts are fundamental to existential graphs and
that the structuring of a knowledge base may benefit from using contexts for
packaging information. Even though all authors agree on C.S. Peirce’s preliminary
definition of contexts as sheets of assertions, there is no common understanding of
their underlying semantics.

[14] introduced the notion of context in the conceptual graph theory through
the formal definition of propositions. He defined a proposition p as a concept where
its concept type is PROPOSITION, and its referent, a set of conceptual graphs. These
graphs are said to be true in the context of p. In [15], Sowa analyzed the semantic
foundations of contexts through four theories. In this analysis, Sowa distinguished
three syntactic aspects of contexts: a mechanism for packaging information, the
contents of the package (a set of assertions), and the permissible operations on the
package, including importing and exporting information to and from a package. In this
study, Sowa himself points out that much of the controversy about the notion of
context results from a lack of definitional semantics.

Traditionally, conceptual graphs specialists have used contexts to represent
and partition (structure) the universe of discourse, as illustrated by [10, 11] and [1]. In
the first case, Bernard Moulin gives a pragmatic interpretation of contexts. He defines
the notion of discourse space that extends the notion of contexts by adding
information grouped in an envelope describing a context. By analyzing the cognitive
operations that human agents use when producing or understanding a discourse,
Moulin identifies different kinds of discourse spaces. Among them, temporal
discourse spaces support the representation of temporal structures, including
situations; definitional discourse spaces support the definition of concept and extends
the notion of white box proposed by Esch [2]).

In the second case, Judith Dick uses contexts to represent texts, especially
legal texts, and notes that there is little clarity about the nature of contexts and how
they ought to be used to help represent knowledge effectively. Contexts are definitely
needed to represent natural language sentences and to package information. In order
to fulfill all the requirements to successfully support this usage, it is obvious that
contexts need to be semantically well defined.

In this paper, we propose to contribute to the semantic definition of contexts
by adding a semantic dimension to the three syntactic aspects identified in [15]. This
semantic dimension completely specifies the raison d’être of contexts when
information packaging is concerned, thus bridging the gap between different points of
view concerning the theory of contexts in the conceptual graph community.
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3 Contexts: a Formal Definition

When a graph g represents a true statement, it is said to be an assertion. Except for
universal truths, the truth value of a graph often depends on other assertions; it is
conditional to these assertions which define the proper conditions under which it
applies. These other assertions define situations where the graph g can be considered
an assertion. The set of all situations in which g is an assertion is called its scope.
Consequently, no assertion can be made without reference to the situations where it
applies, i.e., to its scope; graphs are always asserted in relation to a situation. By
default, in a conceptual graph system, all assertions are done on the universal sheet of
assertion which represents universal truths, i.e., graphs whose truth value does not
depend on some conditions, which in itself, is a particular situation. Consequently,
since assertions are made in relation to some situations, there is an obvious need to
define a situation where graphs which comply to the same conditions may be asserted.
Such a situation will be called a context.

A context is a sheet of assertion whose existence depends on some graphs
which describe the premises of its existence. All graphs in a context comply to the
same premises. For example, modalities may be represented using such contexts. The
assertion: “Mary thinks that Peter loves her” is universally true3: “Mary does think
that Peter loves her”, but does Peter really love Mary or not? We could not assert
anything about that, except that “Peter loves Mary” in Mary’s thoughts. So Mary’s
thoughts form a context under which the statement: “Peter loves Mary” becomes true.
The graph of Figure 1 shows how this assertion would be represented as a conceptual
graph4.

PERSON: Mary thinks STATEMENT:

PERSON: Peter loves PERSON: Mary

Fig. 1. The statement: “Mary thinks that Peter loves her”.

As another example, we could have the following statement: “Mary thinks that Peter is
handsome” (see Figure 2). Also, we could have embedded contexts as shown in Figure
3, where the following statement is represented: “Mary thinks that Peter thinks that he
is handsome”. As a shorter notation, Figure 4 may be used to represent all previous
statements. In this figure, the set of statements instantiating the concept
STATEMENT represents a sheet of assertion created by Mary’s thoughts.

Analyzing the graphs reveals that the three statements of Figure 4 are all related to
what Mary thinks. So the following context (see Figure 5) exists de facto. A context
will be defined by both the conditions from which it is created, and the set of graphs
asserted under it. Similarly with embedded contexts, the context of Figure 6 is implied
by the graph of Figure 3; it represents what Mary thinks that Peter thinks. This latter

                                                          
3 Provided that the vocabulary is well defined and the instances Peter and Mary do
exist.
4 In this article, proper names such as Mary and Peter are used as unique identifiers.
Consequently, they can be used where referents normally appear.
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context is obviously part of the former one, as represented by the embodiment
structure of the graph of Figure 3.

PERSON: Mary thinks STATEMENT:

PERSON: Peter attr BEAUTY: handsome

Fig. 2. The statement: “Mary thinks that Peter is handsome”.

PERSON: Mary thinks STATEMENT:

PERSON: Peter thinks STATEMENT:

PERSON: Peter attr

BEAUTY: handsome

Fig. 3. The statement: “Mary thinks that Peter thinks that he is handsome”.

PERSON: Mary thinks STATEMENT: Dist{

PERSON: Peter attr BEAUTY: handsome

PERSON: Peter thinks STATEMENT:

PERSON: Peter loves PERSON: Mary
,

,

PERSON: Peter attr

BEAUTY: handsome

}

Fig. 4. A shorter notation for representing sets of statements in the same context.

As illustrated in Figures 5 and 6 below, a context is defined as two parts: an
intention, a set of conceptual graphs which describe the conditions which make the
asserted graphs true, and an extension, which is composed of all the graphs true under
these conditions. Of course, a graph can appear in the extension of more than one
context. For example, if Peter thinks that he loves Mary, this would imply the
existence of the context of Figure 7, where the graph in the extension of this context
already appears in some other context (in the extension set of the context shown in
Figure 5).

Formally, a context Ci can be described as a tuple of two sets of conceptual
graphs, Ti and Gi. Ti defines the conditions under which Ci exists, represented for
now by a single intention graph; Gi is the set of conceptual graphs true in that context.
So, for a context Ci, Ci = <Ti,Gi> = <I(Ci), E(Ci)>, where I(Ci) is a single conceptual
graph, the intention graph of Ci, and E(Ci), the set of graphs conjunctively true in Ci,
called the extension graphs. At this point, the reader should notice that a graph g may
be true in E(Ci) without having been explicitly asserted in that context. For instance, if
g is asserted in some other context but is a generalization of a graph asserted in Ci,
than g is considered to be part of E(Ci). We define E(Ci) as the transitive closure of
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the asserted graphs of Ci under the subsumption relation that exists among all graphs
of the knowledge base.

PERSON: Mary thinks STATEMENT: #

PERSON: Peter attr BEAUTY: handsome

PERSON: Peter loves PERSON: Mary

PERSON: Peter thinks STATEMENT:

PERSON: Peter attr

BEAUTY: handsome

Context: Mary's thoughts

i

g

g

g

1

3

2

1

Fig. 5. The context of what Mary thinks.

PERSON: Peter attr BEAUTY: handsome

PERSON: Mary thinks STATEMENT:

PERSON: Peter thinks

STATEMENT: #

Context: Mary's thoughts about Peter's thoughts

g2

i 2

Fig. 6. The context of what Mary thinks that Peter thinks.

PERSON: Peter thinks STATEMENT: #

Context: Peter's thoughts

PERSON: Peter loves PERSON: Mary

i 3

g1

Fig. 7. The context of what Peter thinks.

Also, since a graph may appear in more than one context, if two contexts Ci

and Cj are such that their respective intention graphs are related in a subsumption
relation such that I(Cj) < I(Ci), then the graphs true in Cj, i.e., the graphs of E(Cj), are
true in Ci as well, that is, E(Cj) ⊆ E(Ci). So, we will compute E(Ci) as the union of the
graphs originally asserted in Ci and in Cj for all j such that I(Cj) < I(Ci). After E(Ci) is
computed for all contexts, we say that g is asserted in Ci if g belongs to E(Ci), no
matter if it was originally asserted in that context or not. Knowing that E(Ci) is
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computed using the subsumption relation that exists between the intentions graphs of
all contexts, and using the subsumption relation that exists between the asserted
graphs of the whole knowledge base, we now can give the following definitions using
the intersection and union operations as done in [17].

First, let us define the scope S of a set of graphs G, i.e., the set of all contexts
where the elements of G are conjunctively asserted. The scope of G is formally
defined as: S(G) = {Ci | G ⊆ E(Ci)}. The scope of a single graph g could be computed
as S({g}). I*(G) will be defined as the set of the intention graphs of S(G) (see
equation 1 below).

Equation 1: I*(G) = ∪i I(Ci) | G ⊆ E(Ci)

Conversely, one could compute the set of graphs G conjunctively asserted in all
contexts designated by T, a set of intention graphs. Equation 2 below introduces the
function E* which computes the graphs conjunctively asserted in all contexts
identified by the intention graphs of T.

Equation 2: E*(T) = ∩i E(Ci) | I(Ci) ⊆ T

Queries about graphs asserted in different contexts may be as interesting as queries
about graphs conjunctively asserted in the same context; links between different
contexts may be explored through these queries. Consequently, it is useful to relate
sets of contexts to sets of asserted graphs, providing a structure for the whole
knowledge base. In order to achieve that, we now introduce the notion of a formal
context, named Ci*, defined as a tuple <Ti,Gi>, where Gi = E*(Ti) and Ti = I*(Gi) at
the same time (see equation 3 below). Because two partial orders of inclusion defined
respectively over the sets I*(Gi) and E*(Ti) exist, the set of all formal contexts form a
lattice structure L, i.e., all formal contexts are part of a partial order ≤. In effect, C2* <
C1* iff C 2* ≠ C1* and E(C2*) ⊂ E(C1*), or conversely, iff C2* ≠ C1* and I(C1*) ⊂
I(C2*). Assuming the completion of E(Ci) for all contexts Ci under both subsumption
relations (of the intention graphs and of the extension graphs), we can adapt the
notions presented here from those presented in [17]. Equations 3 and 4 below remind
the reader of essential definitions used to develop the query mechanism presented in
the next section.

Equation 3: Ci* = <Ti,Gi> where Gi = E*(Ti) = E(Ci*) and Ti = I*(Gi) = I(Ci*)

Equation 4: L = < { Ci*}, ≤ >

The context lattice L can be computed automatically without needing the knowledge
engineer to intervene, providing an explanation and access structure to the knowledge
base, and relating different worlds of assertions to one another. As explained earlier,
all E(Ci) sets are automatically computed from the sets of graphs originally asserted in
each Ci. As will be shown in section 5, the intention graphs of each context Ci, i.e,
I(Ci), can also be automatically extracted from the graphs asserted in the system. Since
all of this is automatic, the context lattice is built, i.e., the knowledge base is
structured according to the semantics of the graphs it contains, without involving the
knowledge engineer. With our example, the context lattice L of Figure 8 below would
be produced.
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<{i },{g , g , g }>3211

<{i , i , i }, {}>321

<{i , i },{g }>221 <{i , i },{g }>131

C  =  1

C  =  2 C  =  3

C  =  4

Fig. 8. The Hasse diagram of the context lattice produced from our example5.

4 Querying a Knowledge Domain Structured as a Context Lattice

As mentioned earlier, queries about the truth value of any graph must always be
computed according to a designated sheet of assertion, a context. The query
mechanism then must include the information about the scope of its query graph. For
that purpose, we now define a query mechanism which is based on formal contexts.
Queries will be required to specify two parameters, one designating the appropriate
context C* of the query, the other being the query graph itself. Since contexts are built
from two types of information: an intention and an extension, two queries mechanisms
will be devised. The first one will query the extension of a context; while the second
one will query the intention of a context. The corresponding functions are introduced
as Equations 5 and 6.

Equation 5: δE*(C*,q) = {g ∈ E(C*) | g ≤ q}

Equation 6: δI* (C*,q) = {g ∈ I(C*) | g ≤ q}

Because queries can be embedded, i.e., the result of a query being the object of the
next query, and because we may want to use the structure of L to navigate, explore,
and query the structure of the knowledge base, we now introduce two functions which
identify a context based on a set of graphs G representing a subset of some extension
set (Equation 7), or based on a set of graphs T representing a subset of some intention
set (Equation 8).

Equation 7: CE(G) = <I*(G), E*(I*(G))>

Equation 8: CI(T) = <I*(E*(T)), E*(T)>

Combined together, the functions of Equations 5 and 7, and of Equations 6 and 8, are
useful to change contexts based on the result of some previous query. When querying
a knowledge base, going from one context to the next (navigating) can be done as
illustrated in Figure 9, where we show how a change of context can be done based on
the result of query q1, prior to the evaluation of query q2 (sent to a potentially different
context)6.

                                                          
5 Please notice that the graph identifiers in this figure, are those found in Figures 5, 6
and 7.
6 Embedded queries can involve intention sets as well. We only show one simple
example here to shorten the presentation.
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δE*( CE(δE*(C*,q1)) , q2)

Fig. 9. Embedded queries.

As a shorter notation, we could define two functions ctxE* and ctxI* , shown in
Equations 9 and 10, which produce a new context based on a previous context and a
query. The appropriate subscript indicates to which part of the context the query q is
sent to. Please notice that since ctxE*(C*,q) and ctxI* (C*,q) each identify a single
formal context, because the knowledge base is structured as a lattice, one could use
either one of them as parameters for the functions I and E in order to extract the
intention set or the extension set of the new context, respectively.

Equation 9: ctxE*(C*,q) = CE(δE*(C*,q))

Equation 10: ctxI* (C*,q) = CI(δI* (C*,q))

Also, it is often the case that the result Q of a query q sent to the extension set of a
context E(C*) is a subset of the extension set of the new context, i.e., Q ⊂
E(ctxE*(C*,q)) ⊆ E(C*). In that case, subsequent queries may need to consider only
this subset Q and not the whole extension set of the new context, for obvious
efficiency reasons. To accommodate that need, we now introduce variations on
previous functions, where the set to which a query is sent may be smaller than the one
to which the query would normally be sent to.

Equation 11: δE(C*,G,q) = {g ∈ G | G ⊆ E(C*) and g ≤ q}

Equation 12: δI(C*,T,q) = {g ∈ T | T ⊆ I(C*) and g ≤ q}

These definitions are equivalent to their previous counter-parts if G = E(C*) and T =
I(C*) (see Equations 13 and 14). The user now has the possibility of restraining the set
to which the query is sent to, even though the context may change as the result of the
query, by using either δE or δE*, or similarly, either δI or δI* .

Equation 13: δE(C*,E(C*),q) = δE*(C*,q)

Equation 14: δI(C*,I(C*),q) = δI* (C*,q)

Embedded queries could then be expressed using variables representing sets of graphs
obtained by previous queries. This way, long algebraic formulas can be broken down
into shorter and more comprehensible ones. As such, these queries are much easier to
write and read. An example is given in Figure 10. With such a framework, at any
moment i in time, the set of graphs retrieved so far is si, and the current context is
given by CE(si) (or by CI(si)).

s1 = δE*(C*, q1)
s2 = δE( CE(s1) , s1 , q2)
s3 = δE( CE(s2) , s2 , q3)

s4 = δI* (CE(s3), q4)

 Fig. 10. An example of embedded and consecutive queries.

Given the context lattice of Figure 8, the graph of Figure 1 as the first query q1 and the
graphs of Figures 11 and 12 as subsequent queries q2 and q3, the embedded
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formulation of Figure 13 (explained below) would result in the navigation illustrated
in Figure 14. This embedded query aims at determining if Mary thinks that Peter is
aware of his love for her.

PERSON: ? thinks STATEMENT: #

Fig. 11.  Who thinks (the same thing)? (q2)

PERSON: Mary thinks STATEMENT:

PERSON: Peter thinks

STATEMENT: #

Fig. 12. Does Mary think that Peter shares her thought that he loves her? (q3)

s1 = δE*(C1, q1)
s2 = δI* (CE(s1), q2)

q3 ∈ I(CI(s2))?

Fig. 13. The three consecutive queries q1, q2 and q3.

<{i },{g , g , g }>3211

<{i , i , i }, {}>321

<{i , i },{g }>221 <{i , i },{g }>131

C  =  1

C  =  2 C  =  3

C  =  4

s1

s2

Fig. 14. The navigation resulting from the queries of Figure 13.

The first query, the graph of Figure 1 (q1), could be sent as such to the universal sheet
of assertion7, or the context to which the most embedded assertion is made can be
automatically determined (in our example, it is context C1) before a simple graph (the
most embedded graph in q1, being the graph g1 in Figure 5) can be sent for evaluation
to the extension set of context C1. This simplified query graph matches graph g1 in the
extension of C1. So the answer to this query graph would be true, the set s1 = {g1}
being non-empty: Mary does think that Peter loves her. That gives us a starting point
(a current context) in L, to navigate from. The computation of the most specific

                                                          
7 The universal sheet of assertion has not been modeled in our paper in order to
simplify our example. However, it could be described using an intention and an
extension set, as any other context, and could be part of the context lattice
representing the knowledge base. However, it would introduce redundancy for graphs
containing STATEMENT concepts, as the asserted information is then represented in
some other context.
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context containing the elements of s1 as part of their extension set results in a
downward move of the current context from C1 to C3 (when CE(s1) is evaluated, see
Figure 14). The second query q2 is then sent to the intention set of C3: “who shares
this thought?”. The answer would be Peter and Mary, the two referents instantiating
the ? symbol in both graphs of s2. Finally, we update the current context using the CI

function before testing if q3 belongs to the intention set of the potentially new context.
In our example, the current content does not change and the final answer is no, since i2
is not part of the intention set of the current context. So, under a closed world
assumption, Mary does not think that Peter is aware of his love for her.

This example should emphasize two advantages of our approach: 1) queries
can be simplified (in some cases even flattened) by identifying a context to which a
simpler query can be sent to, 2) the structure of the knowledge base itself can be
queried by allowing queries to be sent to either the intention or extension set of a
context. The process used to automatically identify a context when a graph is acquired
(see section 5 below) is used once more when a query graph is sent to the knowledge
base: the context where the query graph should be sent to is identified; the query is
thus simplified; its evaluation is much simpler than it would normally be if sent to the
universal sheet of assertion where a graph matching procedure must be applied
recursively on embedded parts (which are graphs).

5 The Extraction of an Intension Graph

The intension graphs associated with the existence of contexts can be automatically
extracted from the conceptual graphs acquired by the system. In fact, the extraction
procedure given below is adaptable to different applications; the only requirement is
that it must be used when the knowledge base is both acquired and queried. What is
important is that intension graphs must be produced in a uniform manner. The
example of Figure 15 below is used to show how this procedure works.

PERSON: Mary STATEMENT: g1believes

wishes

STATEMENT: g3

thinkslikes

JAZZ: *x1 PERSON: *x2

Fig. 15. An asserted graph on the universal sheet of assertion.

Step 1: Make sure that each generic concept is identified by a unique referent variable
with regard to any other concept in the knowledge base, unless the concept should be
in coreference with an already existing concept. In that case, it should be identified
using the referent variable of this existing concept8. With our example, we suppose

                                                          
8 In this paper, we assume global coreference. As a matter of fact, all cg system
developers know that global coreference is mandatory to distinguish concepts
belonging to different graphs and to allow the coreference of concepts belonging to
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that this step was already carried out, and that g1 and g3 refer to the graphs of
Figure 5.

Step 2: Duplicate (copy) every STATEMENT concept so that they are used with only
one relation, either as input or output parameter. Notice that a set of graphs may result
from this step. With our example, we get the two graphs shown in Figure 16.

PERSON: Mary STATEMENT: g1believes

STATEMENT: g1wishes

STATEMENT: g3

thinkslikes

JAZZ: *x1 PERSON: *x2

Fig. 16. The graph of Figure 15 after step 2.

Step 3: From the set of graphs produced by step 2, extract the relations which use a
STATEMENT concept, either as input or output parameter. With our example, we
would get the graphs of Figure 17.

PERSON: Mary STATEMENT: g3thinks

PERSON: Mary STATEMENT: g1believes

PERSON: *x2 STATEMENT: g1wishes

Fig. 17. The relations extracted by step 3.

Step 4: For each graph g produced by step 3, replace the referent r of g by the #
symbol. With our example, we would get the graphs of Figure 18.

Step 5: For each graph produced by step 4, called g’, if the corresponding graph in
step 3 g was asserted in a context, use the intention graph of this context and replace
its # symbol by g’, producing the intension graph designating the context where the
referent of g, r, should be asserted. Since the graph of Figure 15 was asserted on the
universal sheet of assertion, this step does not apply to the first iteration of our
example, and the intention graphs produced with our example are the ones shown in
Figure 18. However, this step would apply to the second iteration of the procedure.

Step 6: Select the graphs of step 3 where the referent of the STATEMENT concept is
an individual referent, that is, a conceptual graph, where a STATEMENT concept
appears. Reapply steps 1 thru 6 to these graphs. With our example, only the first graph

                                                                                                                                          
graphs asserted independently. This may seem to be a philosophical difference from
what is currently done in any cg system, but in fact, considering the iteration rule, it is
not (see section 6 for more details).
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of Figure 17 would be kept. From it, the procedure would produce the intention graph
of the context shown in Figure 6.

PERSON: Mary STATEMENT: #thinks

PERSON: Mary STATEMENT: #believes

PERSON: *x2 STATEMENT: #wishes

Fig. 18. The three intention graphs produced from the graph of Figure 15.

6 Using a Context Lattice for Inference Purposes

This paper proposes a way to automatically structure a knowledge base using a
context lattice. Each context can be seen as a world of assertion. The extension of this
work will lead to the definition of inference capabilities within each context. For that
purpose, contexts used to delimit the scope of negation with regard to sets of
propositions, called basic contexts, could be used within each of these worlds. In that
case, their use is almost purely syntactical, and it is hard to find a mapping between
them and the contexts described in this article. However, there exist similarities in the
functionnalities that both types of contexts provide, which may lead to a mapping
from one to the other. For instance, the “lifting” and “pushing” rules allowing the
propagation of information between subsumed contexts could probably be defined
using basic contexts. The iteration rule associated with basic contexts would be
represented by a propagation mechanism based on the subsumption relation between
contexts. The deiteration rule would be just the inverse process; it would imply that
inheritance would be used in order to conduct inferences and avoid redundancy. The
double negation rule would be an assertion rule with regard to some context. The
insertion and erasure rules, however, need negation to be represented within these
contexts in order to have their counter-part in what we propose in this article. Our
work remains to be extended in that direction. However, one may think that an
information propagation mechanism between contexts, coupled with inferential
capabilities, could erase the need for basic contexts as used so far in the cg literature.
Of course, that remains to be seen, as the burden of proof is still ours.

7 Conclusion and Future Developments

This paper proposes a definitional framework for defining contexts formally; we hope
that with regard to the information packaging facilities that it offers, that it makes a
consensus among the CG community. We explained how contexts could be
automatically abstracted from a set of graphs; we presented query mechanisms useful
to explore not only the asserted graphs, but also the structure of the contexts
themselves, i.e., the way they relate to one another. The framework that we propose in
this paper is based on formal concept analysis [17]; it links the intention and extension
of a knowledge base in a single unique representation paradigm since both the
intention and extension of a context are described using conceptual graphs. The
knowledge base, structured as a context lattice, represents how the different sets of
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assertions are partitioned and shared among different agents who believe them. To our
opinion, this structuring will prove to be useful for many application areas,
particularly for natural language processing, modal logic and multi-agent systems.
However, even though section 6 identified some trails as to how a context lattice may
be used to fully implement an inferential mechanism based on these contexts, more
research in that area is definitely needed. Still, we believe that the contexts used in an
inference system for existential graphs should be defined with sufficient semantics to
allow their full mapping to some other packaging constructs whose existence could be
formally defined. We hope that this paper starts a discussion in that direction.

Implementation issues concerning lattices and lattice-based data structures
have been on our research agenda for many years now. We have developed very
efficient batch and incremental algorithms that create and maintain a lattice structure
[6, 8]. We have been particularly concerned with the feasibility of our approach for
large knowledge bases. As a result, we proposed in [5] a wide spectrum of lattice-
based data structures useful for organizing and structuring large knowledge bases. We
will soon address the problem of computing the E(Ci) sets effectively. As mentioned
before, there are a lot of interesting work about computing subsumption relations at
the lowest cost possible, that could be adapted for our needs. All algorithmic and
implementation aspects of that task will be a major concern of ours at least for the
next year.

Meanwhile, we are currently extending the work presented in this paper to
allow extension sets to be infinite. That way, contexts will not only represent sheets of
assertions, but complete worlds of inferences. Agents in multi-agent systems need the
capability to infer more than what they were originally told. It is our opinion that this
possibility of distributing and partitioning inference capabilities will allow the
conceptual graph formalism to be considered for distributed applications.
Furthermore, we feel that there are application domains for which this distribution of
inference capabilities will result in a gain of efficiency for the whole system, as
mentioned in [7]. At this point in time, this remains to be seen; and we certainly plan
to explore in that direction in the near future.
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