
Published in the Proceedings of the Fifth International Conference on Conceptual Structures (ICCS'97)

Conceptual Graphs for

Corporate Knowledge Repositories

Olivier Gerb�e

DMR Consulting Group Inc.
1200 McGill College, Montr�eal, Qu�ebec, Canada H3B 4G7

e-mail: Olivier.Gerbe@dmr.ca

Abstract

The challenge companies will have to meet when making the leap from

the industrial era to the knowledge era is the memorization of corporate
knowledge and its dissemination to employees throughout the organiza-

tion. Developing a corporate memory is the means chosen by DMR Con-

sulting Group to capitalize on and manage its expertise in information
technology. This paper presents a study conducted to choose a formal-

ism to represent the know-how and methodologies { processes, techniques

and learning materials { in corporate memory. It compares modeling for-
malisms against speci�c requirements and demonstrates that conceptual

graphs are well suited to implement corporate memories. More speci�-

cally, we show that conceptual graphs support: (i) classi�cation and par-
tial knowledge, (ii) category or instance in relationship and (iii) category

or instance in metamodel.

1 Introduction

Nowadays there is consensus on the value of corporate knowledge. The knowl-
edge is at the center; an employee who must know a work process; a manager
who must anticipate market trends; a researcher who must know about the state
of the art. Corporate knowledge is made up of strategies, visions, rules, proce-
dures, policies, traditions and people. The knowledge assets and the learning
capacity of an organization are seen as the main source of a competitive advan-
tage [3], and the challenge the management of this corporate knowledge [12].

The challenge companies will have to meet is the memorization of knowledge,
its storage and, its dissemination to employees throughout the organization.
Knowledge may be capitalized on and managed in corporate memories in order
to ensure standardization, consistency and coherence. Knowledge management
requires the acquisition, storage, evolution and dissemination of knowledge ac-
quired by the organization [15] and computer systems are certainly the only way
to realize corporate memories [16] which meet these objectives.

1



DMR Consulting Group is one of the largest service providers in the infor-
mation technology (IT) in the world. Mastering the evolution and management
of IT is a challenge that requires methods, processes, software tools and training
programs, as well as a systematic and consistent approach to implement them.
Several products describing methods and processes, such as guides, tools, lec-
ture materials, self-learning courses, reference texts, templates and videos, have
been developed [11]. These products are stored in a corporate memory whose
data structure and functionality allow for easy consultation, adaptation to the
particular needs of an organization, and evolution at acceptable levels of cost
[8]. This corporate memory, called the Method Repository, plays a fundamen-
tal role. It captures, stores [9], retrieves and disseminates [10]throughout the
organization all the consulting and software engineering processes and the cor-
responding knowledge produced by the experts in the IT domain. During the
early stage of the development, the choice of a knowledge representation formal-
ism was identi�ed as a key issue of the development of the Method Repository.
That leaded us to de�ne speci�c requirements for corporate memories, to iden-
tify suitable knowledge representation formalisms and to compare them in order
to choose the most appropriate formalism.

This paper presents the study we conducted to choose a formalism to rep-
resent the know-how and methodologies { processes, techniques and learning
materials { for the Method Repository. It compares �ve modeling formalisms,
extended entity-relationship, object-oriented (UML), relational model, classic {
a KL-One-like formalism and conceptual graphs, against our speci�c require-
ments. This study demonstrates that conceptual graphs are particularly well
suited to implement corporate memories since they support: (i) classi�cation
and partial knowledge, (ii) category or instance in relationship and (iii) category
or instance in metamodel.

The paper is organized as follows. Section 2 de�nes speci�c requirements
for corporate memories. Section 3 compares both traditional formalisms used
in data modeling and formalisms used in knowledge representation and demon-
strates that conceptual graphs support our prede�ned requirements. Finally,
Section 4 concludes and provides some technical information about the Method
Repository we have developed.

2 Requirements

Modeling techniques aim at de�ning simpli�ed, computerized models of real or
hypothetical worlds, in order to gather and store informationabout them. De�n-
ing model starts with the identi�cation and de�nition of categories of things
and of relationships between these things. They help describe the application
domain. Things are interrelated and organized into categories according to es-
tablished similarity criteria. Models must reect the structure and present these
categories and their interrelationships.

In order to compare modeling formalisms, we looked at the three speci�c
concerns, encountered when we began to study how to represent methods, pro-

2



cedures and techniques, and which were not obvious.

� Before gathering and storing information about things, do we need to
de�ne all the possible categories of things that exist in the application
domain?

� Is it possible to represent associations between categories and things?

� If we de�ne categories of categories, is it possible to integrate this higher-
order information in the same knowledge base?

As we shall see later in this paper above questions may be translated into
three requirements:

� Classi�cation and partial knowledge (2.2);

� Category and/or instance in relationship (2.3); and

� Category or instance in metamodel (2.4).

This section is organized to �rst introduce briey the basic notions and
terminology used in modeling techniques, and then to detail each of our three
requirements.

2.1 Basic Notions

The main elements used by modeling techniques are categories or types, in-
stances and relationships. A category represents a set of things that share the
same properties: attributes, relationships and behavior. An instance of a cate-
gory is a thing that conforms to the de�nition of the category. A relationship is
an association between things or categories.

Let Employee be a category that de�nes what an employee is. An employee
may have attributes like employee number, name, etc. An employee also has a
relationship with a company he or she is working for. Figure 1 illustrates this
example. EMPLOYEE and ORGANIZATION are categories, and instances of
these types should be John, Paul, IEEE, UNU (United Nations University), etc.
'Works for' is a relationship between the two categories.

EMPLOYEE ORGANIZATION

-works for

Figure 1: Model containing two categories and one relationship.

Inheritance and classi�cation are two other important notions used in mod-
eling techniques. Inheritance is a kind-of relationship between categories. A

3



category inherits the properties of a higher category. Classi�cation is the hi-
erarchy of categories built upon the inherited properties. For example, the
mammal classi�cation is a hierarchy that de�nes types of species.

2.2 Classi�cation and Partial Knowledge

Categories are de�ned based on common properties of their instances. There-
fore, de�ning categories corresponds to de�ning partitioning criteria that help
to distinguish one instance from another. If the number of partitioning crite-
ria increases, the number of categories may increase dramatically and rapidly
become unmanageable. Another aspect of classi�cation but rarely connected
with classi�cation is partial knowledge. How can we classify a thing if all its
properties are partially known? For instance, how is the person Brown classi�ed
if we have only two categories Male and Female and if Brown's sex is unknown?

In most modeling formalisms, a thing is an instance of one and only one
category. This limitation forces the de�nition of all the possible or conceiv-
able categories where a thing may be potentially classi�ed. For example, a
car dealer wants to classify cars to be sold. Considering the number of seats,
three categories can be de�ned: coupe, sedan and van. Considering the number
of wheels that provide propulsion, there are two categories: two-wheel drive
(2WD) and four-wheel drive (4WD). Considering the origin of cars, three cat-
egories are possible: American, European and Asian. Figure 2 illustrates the
di�erent hierarchies resulting from these three criteria.

4WD

2WD

Asian

European

American

Van

Sedan

Coupe

Vehicle

Vehicle

Vehicle

Figure 2: Di�erent vehicle hierarchies according to three criteria.

If the car dealer wants to classify all the cars according to these three criteria,
all possible combinations must be considered. In this example there are 18
possibilities, as shown in Figure 3. We can see that the number and the volume
of all the possibilities may rapidly become di�cult to manage.

Let us assume that our car dealer receives two new cars. The �rst one is a
2WD Sedan. However the dealer does not know in which category to classify it
because the car has been assembled in Europe from Asian parts. The car may
be included in the 2WD Sedan category. But if the dealer can later describe
the car's origin, what will happen? The second car he receives is an American
one. In which category may it be included?

4



Vehicle

Coupe

Sedan

Van

2WD Coupe

4WD Coupe

2WD Sedan

4WD Sedan

2WD Van

4WD Van

American 2WD Coupe

European 2WD Coupe

Asian 2WD Coupe

American 4WD Coupe

European 4WD Coupe

Asian 4WD Coupe

American 2WD Sedan

European 2WD Sedan

Asian 2WD Sedan

American 4WD Sedan

European 4WD Sedan

Asian 4WD Sedan

American 2WD Van

European 2WD Van

Asian 2WD Van

American 4WD Van

European 4WD Van

Asian 4WD Van

Figure 3: A uni�ed vehicle hierarchy comprising all three criteria.

To ful�ll this classi�cation and partial knowledge requirement, the formalism
should support multi-classi�cation; i.e. an object may be an instance of more
than one category, or the system should dynamically migrate instances from one
category to another more specialized category.

2.3 Category and/or instance in relationship

In most modeling techniques, relationships are established between categories
and are applicable to their instances; however, this is often not su�cient.

In the previous example concerning employees and organizations, we want
to distinguish UNU employees that work for the United Nations University from
other employees. Let UNU-EMPLOYEE be a category that specializes UNU
employees. Since employees of UNU have the same properties, same attributes
and same kinds of relationships as employees, UNU-EMPLOYEE is de�ned as
a sub-category of the category EMPLOYEE (see Figure 4).

In most modeling techniques, it is very di�cult to express the fact that
any UNU employee has a relationship with the UNU organization. Modeling
techniques formulate knowledge at the category level. Relationships link cat-
egories and are applicable at the instance level. In our example, a category
UNU-ORGANIZATION, that has only one instance (UNU), has to be de�ned
to be able to link UNU-EMPLOYEE and UNU-ORGANIZATION as shown in
Figure 4.

However, what we want to express is: "Each instance of UNU Employee has

5



EMPLOYEE ORGANIZATION

-works for

UNU-EMPLOYEE UNU-ORGANIZATION

-works for

6

is a kind-of

6

is a kind-of

Figure 4: Complete Model.

a relationship 'works for' with UNU, instance of the type Organization." This
is stated by the following predicate:

8x;UNU-EMPLOYEE(x) ^ORGANIZATION(UNU ) ^works-for(x; UNU )

In most modeling techniques, this is stated by the following two expressions
where the �rst expression states that a UNU employee works for a UNU or-
ganization and the second expression states that any UNU organization is the
UNU:

8x; 9y;UNU-EMPLOYEE(x)) UNU-ORGANIZATION(y) ^works-for(x; y)

8z; UNU � ORGANIZATION (z)) z = UNU

These two formulations are equivalent. However, the �rst formulation is
simpler and therefore preferable.

To ful�ll this requirement, the formalism should support category and/or
instance in relationship; i.e. a category may be linked to an instance, or rela-
tionships may be established at the instance level.

2.4 Category or instance in Metamodel

We seek to develop models that are formal descriptions of objects or notions in
order to make sound and complete inferences from this model. This formal de-
scription uses di�erent kinds of components and di�erent kinds of relationships.
A metamodel describes these components and their relationships. Metamodels
deal with categories and categories of categories. In most cases, it is easy to
make a distinction between categories and instances. Categories give informa-
tion about instances, but categories may be seen as instances in a metamodel
that gives information about the categories themselves.

6



In the previous example, let FEDERAL-ORGANIZATION be a kind-of
ORGANIZATION. This means that FEDERAL-ORGANIZATION is a cate-
gory that is a subcategory of ORGANIZATION. But saying that FEDERAL-
ORGANIZATION is a category implies that FEDERAL-ORGANIZATION is
an instance of a model component CATEGORY. Figure 5 illustrates this sit-
uation where FEDERAL-ORGANIZATION may be seen as a category that
carries its associated semantics, or as an instance of the category CATEGORY,
depending on the perspective.

CATEGORY

super category
category label
attributes

ORGANIZATION

label
owner
suborganizations

FEDERAL

ORGANIZATION

label
government
suborganizations

is instance of

Z
ZZ

Z
Z
Z}

is a kind of

�
��

�
�
�>

Figure 5: Category or instance.

From the category perspective, FEDERAL-ORGANIZATION is a subtype
of the category ORGANIZATION and it inherits its attributes. The attributes
of ORGANIZATION are: label that names the organization, owner and sub-
organizations. The inherited attributes of FEDERAL-ORGANIZATION are:
label, owner that specializes in government, and sub-organizations.

From the instance perspective, FEDERAL-ORGANIZATION is an instance
of CATEGORY. The attributes of CATEGORY are: super category that es-
tablishes the position of the category in the classi�cation, category label that
names the category, and attributes that list the attributes of the category. These
attributes have the following values for FEDERAL-ORGANIZATION:

� super category: ORGANIZATION

� category label: FEDERAL-ORGANIZATION

� attributes: label, government, sub-organizations.

To ful�ll this requirement, the formalism should support category or instance
in metamodel; i.e. an element should allow to be viewed as a category or an
instance.

7



3 Considered Formalisms

This section examines �ve formalisms we believe the most promising: three well-
known formalisms frequently used in the domain of information technology,
Extended Entity-Relationship [4], Object-Oriented [1], and Relational Model
[5] formalisms; and two formalisms frequently used in the domain of knowledge
representation, Classic: a KL-One-like language [2] and Conceptual Graphs [14].
For each of them, we introduce pertinent notions and discuss to which extent
they ful�ll our requirements.

3.1 Extended Entity-Relationship Formalism

The Extended Entity-Relationship formalismwas originally developed by Peter
Chen [4] in 1976 and was later extended [6, 7].

The Extended Entity-Relationship formalism supports categories through
entities and relationships; there is no explicit component in the formalism to
represent instances. All the knowledge is speci�ed at the entity level. Entities
are represented by boxes with the entity's name at the top, and relationships
by ovals with two lines that link the entities concerned. Figure 6 presents the
Extended E-R diagram corresponding to "employee works for organization".
This means that all employees will be said to work for some organization.

EMPLOYEE ORGANIZATION

-
�� �works for

Figure 6: Extended E-R: Employee works for organization.

Classi�cation and Partial Knowledge. There is no means to represent
knowledge about instances. In the Extended E-R formalism, an instance is
implicitly an instance of one and only one entity and there is no support for
migration of instances and partial knowledge.

Category and/or instance in relationship. As instances are not repre-

sented in the formalism, there is no possibility to specify constraints at the
instance level. The commonly used solution in this case is to de�ne an entity
that has only one instance, to express the relationship at the entity level (Figure
7), and to add an explanatory note.

Category or instance in Metamodel. The Extended E-R formalism is
applicable at one and only one level. The only way is to de�ne two diagrams,
one for each level, and to link them by an explanatory note (Figure 8).

8



UNU-EMPLOYEE UNU-ORGANIZATION

-
�� �works for

Note: UNU-ORGANIZATION has only one instance UNU

Figure 7: Extended E-R: Category and/or instance in relationship.

CATEGORY

super category
category label
attributes

Note: ORGANIZATION and
FEDERAL-ORGANIZATION

are instances of CATEGORY.

ORGANIZATION

label
owner
suborganizations

FEDERAL

ORGANIZATION

label
government
suborganizations

is a

6

Figure 8: Extended E-R: Category or instance in Metamodel.

3.2 Object Oriented Formalism

As representative of object oriented formalisms, we chose the Uni�ed Modeling
Language [1], a language for specifying, visualizing, and constructing the arti-
facts of software systems, as well as for business modeling, that was developed
by Grady Booch, Jim Rumbaugh and Ivar Jacobson from the uni�cation of the
Booch, OMT and OOSE methods.

The Uni�ed Modeling Language de�nes instances called objects and cate-
gories called classes, and supports classi�cation. In Uni�ed Modeling Language
notation, classes are represented by rectangular boxes, objects are represented
as classes with an underlined label and relationships are represented by lines.
"Employees work for organization" is represented as in Figure 9.

EMPLOYEE ORGANIZATION
works for-

Figure 9: UML: Employees works for Organization.

Classi�cation and Partial Knowledge. Although the ordinary UML se-
mantics assume multiple inheritance, no multiple classi�cation, and no dynamic
classi�cation, di�erent semantics can be permitted by identifying semantic vari-

9



ation points that users and tools could understand.

Category and/or instance in relationship. Relationships are de�ned at
the class level. Similar to the Extended E-R formalism, the solution is to de�ne
a class with only one instance as shown in Figure 10 to represent singleton
classes.

UNU-ORGANIZATIONUNU-EMPLOYEE
works for-

Note: UNU-ORGANIZATION has only one instance UNU

Figure 10: UML: Category and/or instance in relationship.

Category or instance inMetamodel. Formalisms are di�erent to represent
classes and objects and there is no means to state that an instance may also be
seen as a class. The solution is to de�ne a class and an object with the same
label as shown in Figure 11.

FEDERAL-ORGANIZATION:CATEGORY

ORGANIZATION

6

FEDERAL-ORGANIZATION

Figure 11: UML: Category or instance in Metamodel.

3.3 Relational Model Formalism

The relational model [5] is probably the simplest and most exible formalism
of the compared formalisms, but unfortunately its current implementations in
database management systems reduce its power.

The relational model de�nes tuples (instances) and tables (categories). Most
relational database management systems use the same formalism to describe tu-
ples and tables, and the table descriptions are stored in a set of tables generally
identi�ed as system tables or metabase. Relationships are expressed by using
join attributes that link tables. "Employees work for organizations" is repre-
sented in Figure 12 by two tables, and in the Employee table the attribute OrgId
is a foreign key that establishes the relationship between an employee and the
organization he or she works for provided that no null values are allowed to
ensure referential integrity.

Classi�cation and Partial Knowledge. A tuple is a row of one and only
one table and there is no speci�c means to implement partial knowledge, but the
relational view mechanism and the use of null values may be used to implement
partial knowledge management though they introduce other problems.

10



Organization OrgId Name ... Employee EmpId Name OrgId

Figure 12: Relational Model: Tables and Join Attributes.

Category and/or instance in relationship. Relationships are de�ned at
the instance level and implemented using join attributes. For the UNU example,
the solution is to de�ne a UNU Employee table with a join attribute, OrgId,
always equal to the organization identi�er of UNU as shown in Figure 13.

Organization OrgId Name ...

123 UNU

UNU Employee OrgId

123
123

Figure 13: Relational Model: Category and/or instance in relationship.

Category or instance in Metamodel. The descriptions of tables created in
a relational database management system are normalized and stored in system
tables (Figure 14). Like any other tables, system tables may be manipulated
using SQL statements, and using a SELECT clause in a FROM clause like in
SELECT Government FROM (SELECT TableName FROM Attribute WHERE
AttributeName='Government') would be a solution, but current implementa-
tions do not authorize such SQL statement.

Table Name ... ...

Organization
Federal Organization

Attribute TableName AttributeName AttributeType

Federal Organization Name String
Federal Organization Government String

... ... ...

Federal Organization Name Government ...

Figure 14: Relational Model: Category or instance in Metamodel.

11



3.4 Classic: A KL-One-like Language

Classic [2] is a KL-One-like system; it is a frame-based knowledge representa-
tion system. Knowledge is represented by describing objects using frames, as
opposed to asserting arbitrary logical sentences. Classic de�nes instances called
individuals and categories called concepts. Relationships between individuals
are implemented using attributes, called roles in Classic. Figure 15 shows the
de�nition of the concept EMPLOYEE that represents "employee works for an
organization". EMPLOYEE is de�ned as a subtype of PERSON that has an
attribute works-for which represents the relationship with the concept ORGA-
NIZATION.

EMPLOYEE , (AND PERSON(ALL works-for ORGANIZATION))

Figure 15: Classic: Concepts and relationships.

Classi�cation and Partial Knowledge. Classic supports multiple classi�-
cation. An individual can satisfy more than one concept. Classic also supports
partial knowledge through dynamic classi�cation. When a new individual is
introduced into the system, classi�cation is invoked to �nd all the concepts that
are satis�ed by the individual.

Category and/or instance in relationship. Relationships between indi-
viduals are implemented using roles. Operators have been de�ned to express
restrictions on roles. One of these operators, FILLS, speci�es that a role is
�lled by some speci�ed individual. Figure 16 shows the de�nition of the con-
cept EMPLOYEE as a person who works for a company, and the de�nition of
UNU-EMPLOYEE as an employee that works for UNU.

EMPLOYEE , (AND PERSON(ALL works-for ORGANIZATION))

EMPLOYEE-UNU , (AND EMPLOYEE(FILLS works-for UNU))

Figure 16: Classic: Category and/or instance in relationship.

Category or instance in Metamodel. Classic distinguishes individuals
from concepts and does not support the notion of metaconcept. Therefore,
the system is not suitable in situations where some individual may be viewed
as a class with instances.

3.5 Conceptual Graphs

Conceptual graphs are a formalism whereby the universe of discourse can be
modeled by concepts and conceptual relations. A concept represents an object
of interest or knowledge. A conceptual relation makes it possible to associate

12



these concepts. Conceptual graphs were developed by John Sowa in the early
80s [14]. They are a system of logic based on the existential graphs of C.S. Peirce
[13] and semantic networks. Conceptual graphs de�ne knowledge both at the
type and instance levels. Concepts are represented by boxes and relationships
by circles with arrows that link the concepts associated. Figure 17 represents
the sentence "There exists an employee that works for an organization"

EMPLOYEE ORGANIZATION- -works-for&%
'$

[EMPLOYEE]->(WORKS-FOR)->[ORGANIZATION]

Figure 17: Conceptual Graphs: Concepts and Relationships.

Concepts may be categorized based on the type of conceptual relations they
have with other concepts. Concept types de�ne these categories. A concept
type is de�ned by a de�nition graph to which any instance of that concept type
must comply with. Figure 18 presents the de�nition graph of EMPLOYEE that
means that all employees are persons that work for some organization.

Type EMPLOYEE(x) is

[PERSON:*x]->(WORKS-FOR)->[ORGANIZATION].

Figure 18: Conceptual Graphs: Type De�nition.

Classi�cation and Partial Knowledge. Conceptual graph theory de�nes
one type hierarchy; this hierarchy is a lattice with the universal type > at the
top and the absurd type ? at the bottom. Multiple inheritance and multiple
classi�cation are supported by conceptual graph theory. Multiple inheritance is
often di�cult to use in a practical way, especially when dealing with hundreds of
concepts. Multiple classi�cation allows multiple perspectives, each perspective
with its own vocabulary.

If we go back to the car dealer example, we do not need multiple inheritance.
This situation corresponds to multiple perspectives: number of seats, propulsion
and origin, and the use of multi-classi�cation is certainly better. For example,
if car #123 is an American 4WD Sedan, then we will create three concepts
[SEDAN:#123], [4WD:#123], [AMERICAN:#123] each of them corresponding to the
perspectives, number of seats, propulsion and origin. For partial knowledge,
known information is stated according to its relevant perspective independently
of other information.

Category and/or instance in relationship. Instances must conform the
de�nition of the concept type to which they are associated. For instance, in the
case of UNU employees, the de�nition graph of UNU-EMPLOYEE is:

13



Type UNU-EMPLOYEE(x) is

[EMPLOYEE:*x]->(WORKS-FOR)->[ORGANIZATION:UNU].

Figure 19: Conceptual Graphs: Category and/or instance in relationship.

Category or instance in Metamodel. A concept is the association of two
markers: one for type and one for instance. Changing the position of an instance
marker from left to right promotes it to a type marker. Figure 20 illustrates
how an individual may be seen either as a type or as an instance.

When the marker is on the left side [CONCEPT-TYPE:FEDERAL-ORGANIZATION],
it represents an instance of the right side type, and when the marker is on the
right side, it represents a category as in [FEDERAL-ORGANIZATION:ENV-AGENCY].

[CONCEPT-TYPE:FEDERAL-ORGANIZATION]-

(SUBTYPE)->[CONCEPT-TYPE:ORGANIZATION]
(SYMB)<-[CATEGORY-LABEL:'federal-organization']

(DEFINED-BY)<-[GRAPH: Type FEDERAL-ORGANIZATION(x) is

[ORGANIZATION:*X]-

(SYMB)<-[LABEL:*]

(ATTR)<-[GOVERNMENT:*]

(MEMBER)<-[FEDERAL-ORGANIZATION:*] ].

[FEDERAL-ORGANIZATION:ENV-AGENCY]-
(SYMB)<-[LABEL:'environment agency']

(ATTR)<-[GOVERNMENT:'Canada'

(MEMBER)<-[FEDERAL-ORGANIZATION:AIR-AGENCY].

Figure 20: CG Formalism: Category or instance in Metamodel.

3.6 Summary

Table 1 presents a summary of the formalisms compared.

Classi�cation Category or instance Category or instance

Partial Knowledge in Relationship in Metamodel

E-R No No No

OO Yes Using Composite Using Same Label

Relational Using View Yes No

Classic Yes Yes No

CG Yes Yes Yes

Table 1: Summary.

14



4 Conclusion

This paper has compared �ve knowledge representation formalisms. Our aim is
to develop corporate knowledge repositories. This comparison has shown how
conceptual graphs are a response to the speci�c requirements involved in the
development of corporate knowledge repositories.

Using this formalism, a corporate knowledge repository [8] is developed and
implemented at the Research & Development Department of DMR Consulting
Group Inc. in order to memorize the methods, know-how and expertise of its
consultants. This corporate knowledge repository, called Method Repository, is
a complete authoring environment used to edit, store and display the methods
used by the consultants of DMR. The Method Repository has three components:
a Method Knowledge Acquisition facility, a Conceptual Graph Knowledge Base
and a Knowledge Dissemination engine. Method Knowledge Acquisition is an
ad hoc module based on the method metamodel that allows method developers
to create, maintain and adapt methods. The CG Knowledge Base is the core
of the environment; it is a knowledge engineering system based on conceptual
graphs. The Knowledge Dissemination facility provides view mechanism [10]
using available technologies such as HTML �les, SGML �les and RTF �les,
among others.

In June 1996, �ve methods were commercially delivered: Information Sys-
tems Development, Architecture, Bene�ts, Technical Infrastructure and Esti-
mating, in hypertext format generated from conceptual graphs. From about
80,000 conceptual graphs, we generated more than 100,000 HTML pages that
can be browsed using commercial Web browsers. The power of conceptual
graphs in terms of expressiveness and exibility for corporate knowledge model-
ing has been demonstrated through the development of the Method Repository
now being used in the �eld by thousands of consultants at DMR.

References

[1] G. Booch, J. Rumbaugh, and Jacobson I. Uni�ed Modeling Language,
Version 1.0. Rational Software Corporation, 1997.

[2] R. J. Brachman and al. Living with classic: When and how to use a kl-
one-like language. In John Sowa, editor, Principles of Semantic Networks:
Exploration in the Representation of Knowledge, pages 401{456. Morgan
Kaufmann, 1991.

[3] Prahalad C. and Hamel G. The core competence of the organization. Har-
vard Business Review, pages 79{91, 1990.

[4] P. Chen. The entity-relationship model - toward a uni�ed view of data.
ACM Transactions on Database Systems, 1(1):9{36, 1976.

[5] E. F. Codd. A relational model of data for large shared data banks. Com-
munications of ACM, 13(6):377{387, 1970.

15



[6] R. Elmasri and S. Navathe. Fundamentals of Database Systems. The
Benjamin/Cummings Publishing Company Inc., Redwood City, California,
1989.

[7] G. Engels, M. Gogolla, U. Hohenstein, H�ulsmann K., L�ohr-Richter P.,
Saake G., and Ehrich H.-D. Conceptual modelling of database applications
using an extended er model. Data & Knowledge Engineering, 9(2):157{204,
1992.

[8] O. Gerb�e et al. Macroscope Architecture: Architecture of DMR Repository.
DMR Group Inc., Montr�eal, Qu�ebec, 1994.

[9] O. Gerb�e, B. Guay, and M. Perron. Using conceptual graphs for methods
modeling. In Proceedings of the 4th International Conference on Concpetual
Structures, Sydney, 1996.

[10] O. Gerb�e and M. Perron. Presentation de�nition language using conceptual
graphs. In Peirce Workshop Proceedings, Santa Cruz, California, 1995.

[11] DMR Consulting Group. DMR Macroscope. DMR Consulting Group Inc.,
1996.

[12] C. Havens. Enter, the chief knowledge o�cer. CIO Canada, 4(10):36{42,
1996.

[13] C. S. Peirce. Collected Papers of C.S. Peirce. Harvard University Press.

[14] J. F. Sowa. Conceptual Structures: Information Processing in Mind and
Machine. Addison-Wesley, 1984.

[15] E. W. Stein. Organizational memory: Review of concepts and recommenda-
tions for management. International Journal of Information Management,
15(1):17{32, 1995.

[16] G. van Heijst, R. van der Spek, and E. Kruizinga. Organizing corporate
memories. In KAW 96 Proceedings, Ban�, 1996.

16


