Published in the Proceedings of OOPSLA’98 workshops, Vancouver, Canada, October 1998

Modeling and Metamodeling Requirements
for Knowledge Management

Olivier Gerbé!, Brigitte Kerhervé?

'DMR Consulting Group Inc. | 2Université du Québec & Montréal

1200 Mc Gill College Département Informatique
Montréal, Québec CP 8888, succursale centre ville
Canada H3B 4G7 Montréal, Québec, Canada H3C 3P8

e-mail: Olivier.Gerbe@dmr.ca | e-mail: Kerherve.BrigitteQugam.ca

1 Introduction

A corporate knowledge management system is an absolute necessity, regardless
of whether this involves storing information, capturing it from senior staff or
transferring it to juniors. Corporate knowledge is like a repository of a com-
pany’s know-how, that is, its business processes, procedures, policies (mission,
rules, standards) and data (sales, purchases, salaries, etc.).

Defining a data model and using a database management system, such as a
RDBMS or OODBMS, already goes a long way towards improving knowledge
management. Nevertheless, all of a company’s know-how, objects of interest,
processes, procedures or even policies vary too widely in nature to be supported
by database management systems. Too much knowledge remains implicit, texts
are not analyzed, constraints or rules are not represented.

1.1 Models

A knowledge management system must be developed around models for it to
represent all forms of knowledge. For the static or structural part of corporate
knowledge, structure models represent the company’s objects of interest and
their interrelationships. For the dynamic part, behavior models represent the
processes or procedures of the company. And regardless of whether the structure
or behavior level is involved, the constraints or rules that govern them must be
represented. Constraint models do this job efficiently.

However, besides their main functions, the different types of models do have
other uses.

Structure models, which store knowledge, can be also used as a teaching
tool to explain the models, or the knowledge they represent can even be used



to convert a model from one formalism to another (for example, to change from
an entity-relationship to an OO model).

Behavior models that represent and store processes can, in a learning con-
text, be used to teach and explain those processes. They can also provide the
information needed to simulate or perform a process (workflow manager). In
the context of an electronic performance support system, structure models can
provide the context-sensitive help needed to perform a task.

Constraint models that represent the constraints or rules governing knowl-
edge can be used to validate knowledge. When used in a context of knowledge ac-
quisition, these same models provide information for explaining the constraints,
that is, they give reasons why some knowledge is unacceptable.

1.2 Levels of Model Use

We have just seen that the different types of models needed to represent knowl-
edge can be used in different ways. More particularly, we can distinguish three
different ways or rather three levels of use: model, meta and metameta.

The model level corresponds to the use of models based on their main func-
tion, that is, to store and validate knowledge, store and validate behavior, sim-
ulate or apply behavior and store constraints. In terms of a corporate memory,
the model level provides the information employees need to perform their jobs.

The meta level corresponds to the use of models not to store knowledge but
to provide information. This level is used to explain structures, behavior and
constraints. The meta level supports the learning of tasks by an employee.

The metameta level corresponds to the use of models to provide informa-
tion on the models. This information is used to convert models, compare and
integrate models, behavior and constraints, or even validate the consistency of
a set of constraints.

All these kinds and uses of knowledge rise problem...

This document has been organized as follows. Section 2 details how the
corporate knowledge can be structured. Section 3 and Section 4 present specific
requirements for modeling and metamodeling corporate knowledge. Then we
conclude in Section 5.

2 Structuring Knowledge

Knowledge related to a company’s know-how raises a problem of volume and
complexity. One solution is to structure knowledge. This can be done along
two axes: a horizontal axis that defines knowledge types and a vertical axis that
defines modeling levels.

2.1 Knowledge Types

The horizontal axis involves three aspects: structure, which represents the static
part of knowledge; behavior, which represents to behavioral part of knowledge,



and constraints, which represents the rules that must be obeyed.

2.1.1 Structure

The structure aspect defines the basic concepts and their interrelationships.
In the case of a corporate memory, the structure aspect defines and describes
objects of interest to a company, as well as the relationships linking them.

2.1.2 Behavior

The behavior aspect defines the concepts used to represent the behavior of
knowledge objects. In the case of a corporate memory, this involves especially
the representation and description of business processes.

2.1.3 Constraints

The constraints aspect defines the concepts used to specify data rules. Con-
straints apply to both structure and behavior. Regarding structure, the con-
straints govern mainly potential object relationships. And regarding behavior,
they define mainly the conditions under which processes are performed or not
performed.

2.2 Modeling Levels

The bulk of the work involved in modeling and metamodeling was done by
teams from various standards organizations. The need for a common language
and for exchanging information between modeling tools led to thinking about
the modeling objects, that is, metamodels. Today a consensus has been reached
(UML, OMG, CDIF, etc.) on a four-level architecture: - metametamodel; -
metamodel; - model; and data.

METAMETAMODEL A metametamodel is the most abstract level. It is
the metamodel definition language. It defines the concepts underlying the
representation of all the other levels as well as itself. Examples are Meta-
Class, MetaAttribute and MetaOperation in the case of UML, MetaEntity with
(meta)attribute and MetaRelationship with (meta)attribute for CDIF, and con-
cept, conceptual relation and graph for conceptual graphs.

METAMODEL A metamodel is an instance of the metametamodel. It de-
fines the model representation language or formalisms. Examples are class,
attribute, operation for UML; entity, attribute, relationship for the entity-
relationship formalism; concept type and relation type for conceptual graphs.

MODEL A model is an instance of metamodel. It defines the representation
language of the domain under consideration. Examples are employee, organiza-
tion, client and mission.

DATA Data are instances of the model. They correspond to real-world
objects that are being described. Examples are Paul Martin, Hydro-Québec,
supply electricity.



3 Structure Modeling Requirements

Three specific concerns were encountered when we began to study how to rep-
resent methods, procedures and techniques, were not obvious.

- Before gathering and storing information about things, do we need to define
all the possible categories of things that exist in the application domain? - Is it
possible to represent associations between categories and things? - If we define
categories of categories, is it possible to integrate this higher-order information
in the same knowledge base?

As we shall see later above questions may be translated into three require-
ments: - Classification and partial knowledge; - Category and/or instance in
relationship; and - Category or instance in metamodel.

3.1 Classification and Partial Knowledge

Categories are defined based on common properties of their instances. There-
fore, defining categories corresponds to defining partitioning criteria that help
to distinguish one instance from another. If the number of partitioning crite-
ria increases, the number of categories may increase dramatically and rapidly
become unmanageable.

In most modeling formalisms, a thing is an instance of one and only one
category. This limitation forces the definition of all the possible or conceivable
categories where a thing may be potentially classified. For example, a car dealer
wants to classify cars to be sold. Considering the number of seats, three cate-
gories can be defined: coupe, sedan and van. Considering the number of wheels
that provide propulsion, there are two categories: two-wheel drive (2WD) and
four-wheel drive (4WD). Considering the origin of cars, three categories are
possible: American, European and Asian.

If the car dealer wants to classify all the cars according to these three criteria,
all possible combinations must be considered. In this example there are 18
possibilities.

Another aspect of classification but rarely connected with classification is
partial knowledge. How can we classify a thing if all its properties are partially
known? For instance, how is the person Brown classified if we have only two
categories Male and Female and if Brown’s sex is unknown? Let us assume that
our car dealer receives two new cars. The first one is a 2WD Sedan. However
the dealer does not know in which category to classify it because the car has
been assembled in Europe from Asian parts. The car may be included in the
2WD Sedan category. But if the dealer can later describe the car’s origin, what
will happen? The second car he receives is an American one. In which category
may it be included?

*To fulfill this classification and partial knowledge requirement, the formal-
ism should support multi-classification; i.e. an object may be an instance of
more than one category, or the system should dynamically migrate instances
from one category to another more specialized category.



3.2 Category and/or instance in relationship

In most modeling techniques, relationships are established between categories
and are applicable to their instances; however, this is often not sufficient.

In the previous example concerning employees and organizations, we want
to distinguish UNU employees that work for the United Nations University from
other employees. Let UNU-EMPLOYEE be a category that specializes UNU
employees. Since employees of UNU have the same properties, same attributes
and same kinds of relationships as employees, UNU-EMPLOYEE is defined as
a sub-category of the category EMPLOYEE.

In most modeling techniques, it is very difficult to express that any UNU em-
ployee has a relationship with the UNU organization. Modeling techniques for-
mulate knowledge at the category level. Relationships link categories and are ap-
plicable at the instance level. In our example, a category UNU-ORGANIZATION,
that has only one instance (UNU), has to be defined to be able to link UNU-
EMPLOYEE and UNU-ORGANIZATION.

However, what we want to express is: ”Each instance of UNU Employee has
a relationship 'works for” with UNU, instance of the type Organization.”

*To fulfill this requirement, the formalism should support category and/or
instance in relationship; i.e. a category may be linked to an instance, or rela-
tionships may be established at the instance level.

3.3 Category or instance in Metamodel

Models are formal descriptions of objects or notions. This formal description
uses different kinds of components and different kinds of relationships. A meta-
model describes these components and their relationships. Metamodels deal
with categories and categories of categories. In most cases, it is easy to make a
distinction between categories and instances. Categories give information about
instances, but categories may be seen as instances in a metamodel that gives
information about the categories themselves.

In the previous example, let FEDERAL-ORGANIZATION be a kind-of OR-
GANIZATION. This means that FEDERAL-ORGANIZATION is a category
that is a subcategory of ORGANIZATION. FEDERAL-ORGANIZATION as a
category may be seen as an instance of a model component CATEGORY.

From the category perspective, FEDERAL-ORGANIZATION is a subtype
of the category ORGANIZATION and it inherits its attributes. The attributes
of ORGANIZATION are: label that names the organization, owner and sub-
organizations. The inherited attributes of FEDERAL-ORGANIZATION are:
label, owner that specializes in government, and sub-organizations.

From the instance perspective, FEDERAL-ORGANIZATION is an instance
of CATEGORY. The attributes of CATEGORY are: super category that es-
tablishes the position of the category in the classification, category label that
names the category, and attributes that list the attributes of the category. These
attributes have the following values for FEDERAL-ORGANIZATION: - super
category : ORGANIZATION - category label : FEDERAL-ORGANIZATION



- attributes : label, government, sub-organizations.

*To fulfill this requirement, the formalism should support category or in-
stance in metamodel; i.e. an element should allow to be viewed as a category
or an instance.

4 Process Modeling Requirements

This section presents the two main requirementswe encounterd when modeling
business processes: representation of processes sharing activities and manage-
ment of instances that are involved in a process.

4.1 Sharing Activities

Let us consider the case of two processes that share a same activity. The exam-
ple deals with the fabrication of a product which is made out of two components:
a software component and a hardware component, as in a cellular phone, a mi-
crowave oven or a computer. The first process describes the development of the
software component. It is composed of Design Software, Validate Specifications,
and Write Software Code. The second process describes the development, of the
hardware component. It is composed of activities Design Hardware, Validate
Specifications, and Build Hardware. The activity Validate Specifications is an
activity of synchronization and is shared by the two processes.

The problem in this example is the representation and identification of the
two processes. Each process is composed of three activities, with one of them
being in common. Therefore the formalism must offer reuse of parts of process
definitions or support some kind of shared variable mechanism.

*To support the representation of business processes in corporate memory, a
formalism must offer features to represent processes sharing the same activities.

4.2 Instance Management

To illustrate the problem of instance management, let us assume the example
of a window manufacturer who has a special department for building non stan-
dard size windows. A fabrication order is established from a client order. A
fabrication order defines the size and material of the frame and the size and
thickness of the glasses to insert into the frame. The fabrication order is sent
to the frame builder and glass cutter teams which execute the order. Then the
frame and glasses are transmitted to the window assembly team which insert
the glasses into the frame. The problem of this team is to insert the right glasses
(size and thickness) into the right frames (size and material). Some frames take
more time to build than others, so the frames may be finished in a different
order than the glasses are. This problem can be solved by the assembly team
by assembling the frame and glasses in conformity with the fabrication order.
At the notational level, this requires the possibility of specifying instances of
input and output participants.



*To support representation of business processes in corporate memory, the
formalism must offer features to represent and manage the related instances
needed by different processes.

5 Conclusion

In order to fulffill these requirements we chose conceptual graph formalism.
Using this formalism, a corporate memory has been developed at the Research
& Development Department of DMR, Consulting Group where are memorized
methods, know-how and expertise of DMR, consultants.

About two hundred business processes have been modeled and from about
80,000 conceptual graphs, we generated more than 20,000 HTML pages in both
English and French that can be browsed using commercial Web browsers.



