
Published in the Proceedings of the Sixth International Conference on Conceptual Structures (ICCS'98)

Conceptual Graphs for Representing

Business Processes in Corporate Memories

Olivier Gerb�e1, Rudolf K. Keller2, and Guy W. Mineau3

1 DMR Consulting Group Inc.
1200 McGill College, Montr�eal, Qu�ebec, Canada H3B 4G7

Olivier.Gerbe@dmr.ca
2 Universit�e de Montr�eal

C.P. 6128 Succursale Centre-Ville, Montr�eal, Qu�ebec, Canada H3C 3J7
keller@IRO.UMontreal.ca

3 Universit�e Laval
Qu�ebec, Qu�ebec, Canada G1K 7P4

mineau@ift.ulaval.ca

Abstract. This paper presents the second part of a study conducted at
DMR Consulting Group during the development of a corporate memory.
It presents a comparison of four major formalisms for the representation
of business processes: UML (Uni�ed Modeling Language), PIF (Process
Interchange Format), WfMC (Work
ow Management Coalition) frame-
work and conceptual graphs. This comparison shows that conceptual
graphs are the best suited formalism for representing business processes
in the given context. Our ongoing implementation of the DMR corporate
memory { used by several hundred DMR consultants around the world
{ is based on conceptual graphs, and preliminary experience indicates
that this formalism indeed o�ers the
exibility required for representing
the intricacies of business processes.

1 Introduction

Charnel Havens, EDS (Electronic Data Systems) Chief Knowledge OÆcer, pre-
sents in [5] the issues of knowledge management.

With a huge portion of a company's worth residing in the knowledge of
its employees, the time has come to get the most out of that valuable
corporate resource { by applying management techniques.

The challenge companies will have to meet is the memorization of knowledge as
well as its storage and its dissemination to employees throughout the organiza-
tion. Knowledge may be capitalized on and managed in corporate memories in
order to ensure standardization, consistency and coherence. Knowledge manage-
ment requires the acquisition, storage, evolution and dissemination of knowledge
acquired by the organization [14], and computer systems are certainly the only
way to realize corporate memories [15] which meet these objectives.

2 Olivier Gerb�e, Rudolf K. Keller, and Guy W. Mineau

DMR Consulting Group Inc. has initiated the IT Macroscope project [7],
a research project that aims to develop methodologies allowing organizations:
i) to use IT (Information Technology) for increasing competitiveness and in-
novation in both the service and product sectors; ii) to organize and manage
IT investments; iii) to implement information system solutions both practically
and e�ectively; and iv) to ensure that IT investments are pro�table. In paral-
lel with methodology development, tools for designing and maintaining these
methodologies, designing training courses, and for managing and promoting IT
Macroscope products were designed. These tools implement the concept of cor-
porate memory. This corporate memory, called the Method Repository, plays a
fundamental role. It captures, stores [3], retrieves and disseminates [4] through-
out the organization all the consulting and software engineering processes and
the corresponding knowledge produced by the experts in the IT domain.

During the early stage of the development of the Method Repository, the
choice of a knowledge representation formalism was identi�ed as a key issue. That
lead us to de�ne speci�c requirements for corporate memories, to identify suitable
knowledge representation formalisms and to compare them in order to choose
the most appropriate formalism. We identi�ed two main aspects: knowledge
structure and dynamics { business processes, together with activities, events,
and participants. The �rst part of the study [2] lead us to adopt the conceptual
graph formalism for structural knowledge. Uniformity of the formalism used in
the Method Repository was one issue but not the all-decisive one in adopting
conceptual graphs for the dynamic aspect, too. Rather, our decision is based on
the comparison framework presented in this paper.

In our comparison, we studied four major business modeling formalisms or
exchange formats, UML (Uni�ed Modeling Language), PIF (Process Interchange
Format), WfMC (Work
ow Management Coalition) framework, and conceptual
graphs, against our speci�c requirements. Choosing these four formalisms for our
study has been motivated by the requirement for building our solution on exist-
ing or de facto standards. Our study demonstrates that conceptual graphs are
particularly well suited for representing business processes in corporate memories
since they support: (i) shared activities, and (ii) management of instances.

The paper is organized as follows. Section 2 introduces the basic notions of
business processes as used in this paper. Section 3 de�nes speci�c requirements
for the representation of business processes in corporate memories. Section 4
compares the four formalisms. Finally, Section 5 reports on the on-going imple-
mentation of the Method Repository and discusses future work.

2 Basic Notions

In this section, we present basic notions relevant to the representation of busi-
ness processes. Main notions of representation of the dynamics in an enterprise
are processes, activities, participants (input, output, and agent), events (precon-
ditions and postconditions), and notions of sequence and parallelism of activity

Conceptual Graphs for Representing Business Processes 3

executions. These notions build upon some commonly used de�nitions in enter-
prise modeling, as summarized in the following paragraph.

A process is seen as a set of activities. An activity is a transformation of input
entities into output entities by agents. An event marks the end of an activity; the
event corresponds to the ful�lment of both the activity's postcondition and the
precondition of its successor activity. An agent is a human or material resource
that enables an activity. An input or output is a resource that is consumed of
produced by an activity. The notions of sequence and parallelism de�ne the
possible order of activity executions. Sequence speci�es an order of executions
and parallelism speci�es independence between executions.

Figure 1 presents the notions of activity, agent, input, and output. Activities
are represented by a circle and participants of activities are represented by rect-
angles and linked to their respective activities by arcs ; directions of arc de�ne
their participation: input, output or agent. There is no notational distinction be-
tween input and agent. Note that this simple process representation exclusively
serves for introducing terminology and for illustrating our requirements.

Fabrication
Order

Cut
Window
Panes

Glazier Window
Panes

Fig. 1. Activity with input, output and agent.

Figure 2 illustrates the notions of sequence and parallelism by a process com-
posed of �ve activities. The activity Write Production Order is the �rst activity
of the process, the activities Build Frame and Cut Panes are executed in paral-
lel, Assemble Window follows the activities Build Frame and Cut Panes, and �nally
Deliver Window terminates the process. Note that we only have to consider the
representation of parallel activities or sequential activities; all other cases can
be represented by these two cases by splitting activities into sub-activities.

3 Requirements

This section introduces the two main requirements underlying our study: repre-
sentation of processes sharing activities and management of instances that are
involved in a process. It is obvious that there exists a lot of other requirements
to represent a business process in a corporate memory. Since these other require-
ments are mostly met by all the formalisms studied, we decided to focus on the
two main requirements mentioned above.

4 Olivier Gerb�e, Rudolf K. Keller, and Guy W. Mineau

Write
Production

Order

Build
Frame

Cut
Panes

Assemble
Window

Deliver
Window

Fig. 2. A process as a set of activities.

3.1 Sharing Activities

Let us consider the case of two processes that share a same activity. Figure 3
illustrates this settings.

Design
Software

Design
Hardware

Build
Hardware

Write
Software

Code

Validate
Specifi-
cations

Fig. 3. Sharing Activities.

The example depicted in Fig. 3 deals with the fabrication of a product which
is made out of two components: a software component and a hardware compo-
nent, as in a cellular phone, a microwave oven or a computer. The �rst process
describes the development of the software component. It is composed of Design
Software, Validate Specifications, and Write Software Code. The second pro-
cess describes the development of the hardware component. It is composed of
activities Design Hardware, Validate Specifications, and Build Hardware. The
activity Validate Specifications is an activity of synchronization and is shared
by the two processes. The problem in this example is the representation and
identi�cation of the two processes. Each process is composed of three activities,
with one of them being in common. Therefore the formalism must o�er reuse of
parts of process de�nitions or support some kind of shared variable mechanism.

To support the representation of business processes in corporate memory, a
formalism must o�er features to represent processes sharing the same activities.

Conceptual Graphs for Representing Business Processes 5

3.2 Instance Management

To illustrate the problem of instance management, let us assume the example of
a window manufacturer who has a special department for building non standard
size windows. Figure 4 presents the window fabrication process.

Client
Order

Fabrication
Order

Window
Panes

Window
Frame

Window
Write

Fabrication
Order

Cut
Window
Panes

Assemble
Window

Build
Frame

Fig. 4. The Window Problem.

A fabrication order is established from a client order. A fabrication order
de�nes the size and material of the frame and the size and thickness of the
glasses to insert into the frame. The fabrication order is sent to the frame builder
and glass cutter teams which execute the order. Then the frame and glasses are
transmitted to the window assembly team which insert the glasses into the frame.
The problem of this team is to insert the right glasses (size and thickness) into
the right frames (size and material). Some frames take more time to build than
others, so the frames may be �nished in a di�erent order than the glasses are.
This problem can be solved by the assembly team by assembling the frame and
glasses in conformity with the fabrication order. At the notational level, this
requires the possibility of specifying instances of input and output participants.

To support representation of business processes in corporate memory, the for-
malism must o�er features to represent and manage the related instances needed
by di�erent processes.

4 Formalisms

This section presents the four business process modeling formalisms of our study.
These formalisms o�er representation features in order to describe, exchange,
and execute business processes. Each of the studied formalisms supports the
representation of the basic notions introduced in Section 2, so we concentrate on
the speci�c requirements discussed above. Against these requirements we have
evaluated the four formalisms, UML [1] (Uni�ed Modeling Language), PIF [8]

6 Olivier Gerb�e, Rudolf K. Keller, and Guy W. Mineau

(Process Interchange Format), WfMC framework [6] (Work
ow Management
Coalition) and conceptual graphs. Other formalisms, Petri net [16] and CML
[11, 12], have been considered but not included in this study because not well-
suited to represent business processes or not enough formal.

4.1 Uni�ed Modeling Language

In [2] we presented how to represent the static structure in UML [1] (Uni�ed
Modeling Language). Let us recall that UML, developed by Grady Booch, Jim
Rumbaugh and Ivar Jacobson from the uni�cation of Booch method, OMT and
OOSE, is considered as a de facto standard.

UML provides several kinds of diagrams that allow to show di�erent aspects
of the dynamics of processes. Use Case diagrams show interrelations between
functions provided by a system and external agents that use these functions.
Sequence diagrams and Collaboration diagrams present interactions between ob-
jects by specifying messages exchanged among objects. State diagrams describe
the behavior of objects of a class or the behavior of a method in response to a
request. A state diagram shows the sequence of states an object may have dur-
ing its lifetime. It also shows responsible requests for state transitions, responses
and actions of objects corresponding to requests. Activity diagrams have been
recently introduced in UML. They are used to describe processes that involve
several types of objects. An activity diagram is a special case of state diagram
where states represent the completion of activities.

In the context of corporate memory , activity diagrams are the most relevant
and we will present their main concepts in what follows. In UML, there are
two types of execution of activities: execution of activities that represent atomic
actions, they are called ActionState, and execution of a non atomic sequence
of actions, they are called ActivityState. Exchange of objects among actions
are modeled by object
ows that are called ObjectFlowState. ObjectFlowStates
implements notions of inputs and ouptuts. Agents are represented by Swimlane
in activity diagrams. However it is possible to de�ne agent as a participant to
an activity and to establish explicitly a relationship between agent and activity.

Figure 5 shows how to model the cut window pane activity with participants.
Activity diagrams shows possible scenarios; this means that activity diagrams

:glazier Cut
Window
Panes

:panes

:fabrication
order

Fig. 5. UML - The cut window pane Activity.

Conceptual Graphs for Representing Business Processes 7

show objects instead of classes. Dashed arrows link inputs and outputs to activ-
ities.

Processes may be represented using activity diagrams in UML and Fig. 6
shows an example of the window building process. Solid arrows between processes
represent the control
ow.

Build Frame

Cut
Window
Panes

Write
Fabrication

Order

Assemble
Window

Deliver
Window

Fig. 6. UML - The whole Process.

Sharing Activities As detailed in [1], UML does not support adequate represen-
tation features for sharing activities. However activity diagrams are new in the
de�nition of the language and all cases have not been yet presented.

Instances Management In opposition with the representation of structure [2], the
process representation is done at the instance level. Activity diagrams involve
objects not classes and therefore it is possible to represent the window problem
by using the object fabrication order which speci�es frame and panes. Figure
7 shows a representation for the window problem.

Build Frame

Cut Window
Panes

:fabrication
order

:client order Write
Fabrication

Order

:fabrication
order

Assemble
Window

:window

:panes

:frame

:fabrication
order

:fabrication
order

specifies specifies

Fig. 7. UML - The Window Problem.

8 Olivier Gerb�e, Rudolf K. Keller, and Guy W. Mineau

4.2 Process Interchange Format (PIF)

The PIF (Process Interchange Format) workgroup, composed of representatives
from companies and universities developed a format to exchange the speci�ca-
tions of processes [8].

A PIF process description is a set of frame de�nitions. Each frame speci�es
an instance of one class of the PIF metamodel. Figure 8 shows PIF metamodel.
It is composed of a generic class ENTITY from which all other classes are derived
and of four core classes: ACTIVITY, OBJECT, TIMEPOINT, and RELATION. Subclasses

Decision

Agent Activity Object

Time Point

?

begin

?

end

?

status

-performs
-creates
-modi�es
-uses

?

if

?

thensuccessor

?

before�

Fig. 8. PIF - Metamodel.

of ACTIVITY and OBJECT are respectively DECISION and AGENT. Class RELATION has
seven subclasses, subclasses CREATES, MODIFIES, PERFORMS, and USES de�ne rela-
tionships between ACTIVITY and OBJECT, the subclass BEFORE de�nes a predecessor
relationship between two points in time, the subclass SUCCESSOR de�nes a succes-
sor relationship between two activities and, ACTIVITY-STATUS de�nes the status
of an activity at a point in time.

Figure 9 shows the representation of an activity using the PIF format. ACT1

(define-frame ACT1
:own-slots
((Instance-Of ACTIVITY)
(Name ”Cut Window Panes")
(End END-ACT1)))

(define-frame END-ACT1
:own-slots
((Instance-Of TIMEPOINT)))

(define-frame AGT1
:own-slots
((Instance-Of AGENT)
(Name ”Glazier")))

(define-frame PRFRMS1
:own-slots
((Instance-Of PERFORMS)
(Actor AGT1)
(Activity ACT1)))

(define-frame INPUT1
:own-slots
((Instance-Of OBJECT)
(Name ”Fabrication Order")))

(define-frame USES1
:own-slots
((Instance-Of USES)
(Activity ACT1)
(Object INPUT1)))

(define-frame OUTPUT1
:own-slots
((Instance-Of OBJECT)
(Name ”panes")))

(define-frame CRTS1
:own-slots
((Instance-Of CREATES)
(Activity ACT1)
(Object OUTPUT1)))

Fig. 9. PIF - Activity with participants.

Conceptual Graphs for Representing Business Processes 9

de�nes the cut window panes activity as an instance of ACTIVITY with a name
and a relation to END-ACT1. END-ACT1 represents the end of the activity and
is de�ned as a point in time. Then come de�nitions of the three participants;
each participant is de�ned in two parts: de�nition of the participant itself and
de�nition of the relationship between the activity and the participant.

With the PIF process interchange format and framework, there is no explicit
de�nition of a process. A process is the set of de�ned activities. Example shown
in Fig. 10 shows how two activities ACT1 and ACT2 are linked by a BEFORE
relationship.

(define-frame ACT1-ACT2
:own-slots
((Instance-Of BEFORE)
(Preceding-Timepoint END-ACT1)
(succeeding-Timepoint END-ACT2)))

(define-frame ACT2
:own-slots
((Instance-Of ACTIVITY)
(Name ”Build Frame")
(End END-ACT2)))

(define-frame END-ACT2
:own-slots
((Instance-Of TIMEPOINT)))

(define-frame ACT1
:own-slots
((Instance-Of ACTIVITY)
(Name ”Write Fabrication Order")
(End END-ACT1)))

(define-frame END-ACT1
:own-slots
((Instance-Of TIMEPOINT)))

Fig. 10. PIF - Process.

Sharing Activities The PIF format supports representation of several sequences
of activities. It is possible to de�ne in one �le more than one sequence of activities
by a set of frames instance of BEFORE. However it is not possible to explicitly
identify several processes.

Instance Management With the PIF format activities and participants involved
in the activities are described at the type level. Therefore, it is not possible to
identify instances in PIF activity de�nitions.

4.3 Work
ow Reference Model

TheWork
owManagement Coalition (WfMC) de�nes in the Work
ow Reference
Model [6] a basic metamodel that supports process de�nition. The Work
ow
Reference Model de�nes six basic object types to represent relatively simple
processes. These types are: Worflow Type Definition, Activity, Role, Transition
Conditions, Workflow Relevant Data, and Invoked Application. Figure 11 shows
the basic process de�nition metamodel. The Work
ow Management Coalition
has also published a Process De�nition Interchange in version 1.0 beta [17] that
describes a common interface to the exchange of process de�nitions between
work
ow engines. Figure 12 presents the de�nition of the activity Cut Window

Panes using this exchange format. Participants (inputs or agents) to an activity
are de�ned explicitly. Data that are created or modi�ed by an activity are de�ned
in the postconditions of the activity or de�ned as output parameters of invoked
applications during activity execution. In WFMC Process De�nition Interchange
format, a process is de�ned as a list of activities and a list of transitions that

10 Olivier Gerb�e, Rudolf K. Keller, and Guy W. Mineau

Work
ow Type
De�nition

Role Activity Data

Invoked
Application

Transition
Conditions

?

may
have

?
6uses

�

may
refer to -

uses?

consists
of

6

may refer to

?

has

Fig. 11. WfMC - Basic Process De�nition MetaModel.

specify in which order activities are executed. In Fig. 13 of the following section,
examples of de�nitions of activities in WFMC interchange format are shown.

ACTIVITY Cut_Window_Panes
 PARTICIPANT Glazier, Fabrication_Order
 POST CONDITION Window_Panes exists
END ACTIVITY

PARTICIPANT Glazier
 TYPE HUMAN
END PARTICIPANT

DATA Fabrication_Order
 TYPE COMPLEX DATA
END DATA

DATA Window_Panes
 TYPE REFERENCE
END DATA

Fig. 12. WfMC - Activity with Participants.

Sharing Activities Processes are de�ned using keywordWORKFLOW and END-
WORKFLOW which respectively begins and ends a process de�nition. In a
process de�nition, it is possible to use activities or participants that have been
de�ned in another process de�nition. In the example shown in Fig. 13, two
processes are de�ned with a common activity. The commom activity is de�ned
in process 1 and reused in process 2.

Instance Management Process de�nitions are de�ned at type level. However
conditions that �re activity or that are realized at the end of an activity are
expressed using Boolean expressions with variables. In theory, it is possible to
represent the window problem but the version 1.0 beta of Process De�nition
Interchange [17] gives few indications to realize it.

Conceptual Graphs for Representing Business Processes 11

WORKFLOW PROCESS1
 ACTIVITY Design_Software
 . . .
 END_ACTIVITY

 ACTIVITY Validate_Specifications
 . . .
 END_ACTIVITY

 ACTIVITY Write_Software_Code
 . . .
 END_ACTIVITY

 TRANSITION
 FROM Design_Software
 TO Validate_Specifications
 END_TRANSITION

 TRANSITION
 FROM Validate_Specifications
 TO Write_Software_Code
 END_TRANSITION
END_WORKFLOW

WORKFLOW PROCESS2
 ACTIVITY Design_Hardware
 . . .
 END_ACTIVITY

 ACTIVITY Build_Hardware
 . . .
 END_ACTIVITY

 TRANSITION
 FROM Design_Hardware
 TO Validate_Specifications
 END_TRANSITION

 TRANSITION
 FROM Validate_Specifications
 TO Build_Hardware
 END_TRANSITION
END_WORKFLOW

Fig. 13. WfMC - Processes Sharing Activities.

4.4 Conceptual Graphs and Processes

In conceptual graph theory, there is no standard way to represent processes.
Processes have not been extensively studied and only a few works are related
to the representation of processes. John Sowa in [13] presents some directions
to represent processes. Dickson Lukose [9] and Guy Mineau [10] have proposed
executable conceptual structures.

We present below a possible metamodel to represent processes that ful�lls
corporate memory requirements as expressed in Section 3. The metamodel (Fig.
14) is composed of three basic concepts: ACTIVITY, PROCESS, and EVENT. An activity

TYPE ACTIVITY(x) IS
 [T:*x]-
 (INPUT)<-[T:*i]
 (OUTPUT)<-[T:*e]
 (AGENT)<-[T:*a]
 (DEPENDS-ON)->[PRECONDITION:*pre]
 (REALIZES)->[POSTCONDITION:*post]

TYPE EVENT(x) IS
 [T:*x]-
 (END)->[EVENT:*ev1]
 (FOLLOWS)<-[EVENT:*ev2]

TYPE PROCESS(x) IS
 [T:*x]-
 (FIRST)<-[EVENT:*].

Fig. 14. Conceptual Graphs - Metamodel.

is de�ned by its inputs and outputs, the agents that enable the activity, and by
pre and post conditions. Preconditions de�ne conditions or states that must
be veri�ed to �re the execution of the activity; postconditions de�ne states or
conditions that will result from the execution of the activity. An event is a
point in time that marks the end of an activity; it marks the realization of the
postcondition of the activity. A process is de�ned as a set of events that represent
the execution of a set of activities.

12 Olivier Gerb�e, Rudolf K. Keller, and Guy W. Mineau

Using this metamodel, the Cut-Window-Panes process is de�ned by the de�ni-
tion graph presented in Fig. 15 where two variables with the same name represent
the same object.

TYPE CUT-WINDOW-PANES(x) IS
 [ACTIVITY:*x]-
 (AGENT)<-[GLAZIER:*]
 (INPUT)<-[ORDER:*o]
 (OUTPUT)<-[PANES:*v]
 (REALIZES)->[POSTCONDITION:[ORDRE:*o]-
 (CONFORMS)<-[PANES:*v]].

Fig. 15. Conceptual Graphs - The Cut Window Panes Activity.

The process to build a window is represented by the de�nition graph shown
in Fig. 16.

TYPE BUILD-WINDOW(x) IS
 [PROCESS:*x]-
 (FIRST)<-[EVENT:*ev1]-
 (END)->[WRITE-FABRICATION-ORDER:*]
 (FOLLOWS)<-[EVENT:*ev2a]-
 (END)->[BUILD-FRAME:*],
 (FOLLOWS)<-[EVENT:*ev2b]-
 (END)->[CUT-WINDOW-PANES:*]
 (FOLLOWS)<-[EVENT:*ev3]-
 (END->[ASSEMBLE-WINDOW:*]
 (FOLLOWS)<-[EVENT:*ev3]-
 (END)->[DELIVER-WINDOW:*].

Fig. 16. Conceptual Graphs - Process.

Sharing Activities The proposed model allows the representation of processes
that share a same activity (as indicated by variables under a global corefer-
ence assumption1). Figure 17 shows two processes that share the same activity

TYPE PROCESS1(x) IS
 [PROCESS:*x]-
 (FIRST)<-[EVENT:*ev1a]-
 (END)->[DESIGN-HARDWARE:*]
 (FOLLOWS)<-[EVENT:*ev2a]-
 (END)->[VALIDATE-SPECIFICATIONS:*vs]
 (FOLLOWS)<-[EVENT:*ev3a]-
 (END)->[BUILD-HARDWARE:*].

TYPE PROCESS2(x) IS
 [PROCESS:*x]-
 (FIRST)<-[EVENT:*ev1b]-
 (END)->[DESIGN-SOFTWARE:*]
 (FOLLOWS)<-[EVENT:*ev2b]-
 (END)->[VALIDATE-SPECIFICATIONS:*vs]
 (FOLLOWS)<-[EVENT:*ev3b]-
 (END)->[WRITE-SOFTWARE-CODE:*].

Fig. 17. Conceptual Graphs - Processes Sharing Activities.

VALIDATE-SPECIFICATIONS. Each process is de�ned by a sequence of events, and
one event of each process marks the end of the activity.
1 The proposed model assumes global coreference. Two variables with the same iden-
ti�er represent the same concept.

Conceptual Graphs for Representing Business Processes 13

Instance Management. Figure 18 shows that with the use of variables and the
global coreference assumption, conceptual graphs support the representation of

TYPE WRITE-FABRICATION-ORDER(x) IS
 [ACTIVITY:*x]-
 (INPUT)<-[CLIENT-ORDER:*c]
 (OUTPUT)<-[ORDER:*o].

TYPE BUILD-FRAME(x) IS
 [ACTIVITY:*x]-
 (INPUT)<-[ORDER:*o]
 (OUTPUT)<-[FRAME:*f]
 (REALIZES)->[POSTCONDITION:[ORDER:*o]-
 (CONFORMS)<-[FRAME:*f]].

TYPE CUT-WINDOW-PANES(x) IS
 [ACTIVITY:*x]-
 (INPUT)<-[ORDER:*o]
 (OUTPUT)<-[PANES:*p]
 (REALIZES)->[POSTCONDITION:[ORDER:*o]-
 (CONFORMS)<-[PANES:*v]].

TYPE ASSEMBLE-WINDOW(x) IS
 [ACTIVITY:*x]-
 (INPUT)<-[ORDER:*o]
 (INPUT)<-[PANES:*p]
 (INPUT)<-[FRAME:*f]
 (DEPENDS-ON)->[PRECONDITION:[ORDER:*o]-
 (CONFORMS)<-[PANES:*p]
 (CONFORMS)<-[FRAME:*f]]
 (OUTPUT)<-[WINDOW:*w].

Fig. 18. Conceptual Graphs - The Window Problem.

the window problem. The concept type de�nition of WRITE-FABRICATION-ORDER,
BUILD-FRAME, CUT-WINDOW-PANES, and ASSEMBLE-WINDOW specify that the frame and
panes involved in assemble window are conformed to the fabrication order.

4.5 Summary

Table 1 presents a summary of this survey on business process representation
formalisms. This summary shows that the framework proposed by the WfMC

Table 1. Summary

Sharing Activities Instances Management

UML No Yes

PIF Yes No

WfMC Yes Yes

CG Yes Yes

and conceptual graphs ful�ll our requirements for the representation of business
processes in corporate memories. However, the �rst part of our study [2] iden-
ti�ed conceptual graphs as the best-suited formalism for knowledge structure.
Therefore, for the sake of uniformity of formalism, we chose conceptual graphs.

5 Experience and Future Work

Using conceptual graph formalism, a corporate memory has been developed at
the Research & Development Department of DMR Consulting Group Inc in or-

14 Olivier Gerb�e, Rudolf K. Keller, and Guy W. Mineau

der to memorize the methods, know-how and expertise of its consultants. This
corporate memory, called Method Repository, is a complete authoring environ-
ment used to edit, store and display the methods used by the consultants of
DMR. The core of the environment is the CG Knowledge Base; it is a knowledge
engineering system based on conceptual graphs. Four methods are commercially
delivered: Information Systems Development, Architecture, Bene�ts Realization,
and Strategy; their documentation in paper and in hypertext format is generated
from conceptual graphs. About two hundred business processes have been mod-
eled and from about 80,000 conceptual graphs, we generated more than 100,000
HTML pages in both English and French that can be browsed using commercial
Web browsers.

This paper has described the research we have done to identify which for-
malism was the most suitable for the representation of business processes in
corporate memories. We have compared four formalisms and this comparison
has shown as in a previous study [2] how conceptual graphs are a good response
to the speci�c requirements involved in the development of corporate memories.

References

[1] G. Booch, J. Rumbaugh, and I. Jacobson. Uni�ed Modeling Language, Version
1.1. Rational Software Corporation, 1997.

[2] O. Gerb�e. Conceptual graphs for corporate knowledge repositories. In Proceedings
of 5th International Conference on Conceptual Structures, pages 474{488, 1997.

[3] O. Gerb�e, B. Guay, and M. Perron. Using conceptual graphs for methods model-
ing. In Proceedings of the 4th International Conference on Conceptual Structures,
1996.

[4] O. Gerb�e and M. Perron. Presentation de�nition language using conceptual
graphs. In Peirce Workshop Proceedings, 1995.

[5] C. Havens. Enter, the chief knowledge oÆcer. CIO Canada, 4(10):36{42, 1996.
[6] D. Hollingsworth. The Work
ow Reference Model. Work
ow Management Coali-

tion, 1994.
[7] DMR Consulting Group Inc. The IT Macroscope Project, 1996.
[8] J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, and Yost G. other members

of the PIF Working Group. The PIF Process Interchange Format and Framework
(May 24, 1996), 1996. availaible at http://soa.cba.hawaii.edu/pif/.

[9] D. Lukose. Model-ecs: Executable conceptual modelling language. In Proceedings
of Knowledge Acquisition Workshop (KAW96), 1996.

[10] D. Lukose and G.W Mineau. A comparative study of dynamic conceptual graphs.
In Accepted for publication at the 11th KAW, 1998.

[11] A. Schreiber, B. Wielenga, H. Akkermans, W. Van de Velde, and A. Anjewierden.
Cml: The commonkads conceptual modelling language. In L. Steels, A. Schreiber,
and W. Van de Velde, editors, Proceedings of the 8th European Knowledge Acqui-
sition Workshop (EKAW'94), pages 1{24. Springer-Verlag, 1994.

[12] G. Schreiber, B. Wielenga, H. Akkermans, W. Van de Velde, and A. Anjewiereden.
Cml: The commonkads conceptual modelling language. In Proceedings of the 8th
European Knowledge Acquisition Workshop (EKAW'94), 1994.

[13] J. Sowa. Processes and participants. In P. Eklund, G. Ellis, and G. Mann,
editors, Proceedings of the 4th International Conference on Conceptual Structures,
ICCS'96, pages 1{22. Springer, 1996.

Conceptual Graphs for Representing Business Processes 15

[14] E. W. Stein. Organizational memory: Review of concepts and recommendations
for management. International Journal of Information Management, 15(1):17{32,
1995.

[15] G. van Heijst, R. van der Spek, and E. Kruizinga. Organizing corporate memories.
In Proceedings of the Knowledge Acquisition Workshop, 1996.

[16] WG11. High-level petri net standard - working draft - version 2.5. 1997.
[17] Work
ow Management Coalition. Interface 1: Process De�nition Interchange,

1996.

