
Conceptual Graphs and Metamodeling

Olivier Gerb�e1, Guy W. Mineau2, and Rudolf K. Keller3

1 HEC Montreal.
3000, chemin de la Côte-Sainte-Catherine, Montr�eal, Qu�ebec, Canada H3T 2A7

Olivier.Gerbe@hec.ca
2 Universit�e Laval

Qu�ebec, Qu�ebec, Canada G1K 7P4
mineau@ift.ulaval.ca

3 Universit�e de Montr�eal
C.P. 6128 Succursale Centre-Ville, Montr�eal, Qu�ebec, Canada H3C 3J7

keller@IRO.UMontreal.ca

Abstract. Metamodeling is often identi�ed as a key layer in the devel-
opment of an information system because it formally de�nes the modeling
primitives that will be used in subsequent modeling activities. We use the
Conceptual Graph (CG) theory for illustration purposes. The simplicity
of the CG notation and its exibility to represent metalevel knowledge
through the use of contexts makes it a serious contender for the repre-
sentation of a metamodeling theory. Therefore, this paper presents a CG
based metamodeling framework for the modeling of information systems.

1 Introduction

Metamodeling is often identi�ed as a key layer in the development of an infor-
mation system [2, 3] because it formally de�nes the modeling primitives that will
be used in subsequent modeling activities. By de�ning the modeling language,
the semantic constraints of the domain can be embedded into it, restricting the
expressivity of the modeling language accordingly, ensuring greater consistency
throughout the modeling of the domain. Also, queries concerning the modeling
language itself can be answered. Using its formal de�nitions, the modeling lan-
guage can be explained, which provides the essentials for the establishment of
an on-line task support system. A reduction in the number of work hours spent
to understand the modeling language, and therefore a gain in productivity, is
sought. When many people act as knowledge modelers throughout some orga-
nization (as with consultant �rms for instance), or when employee turn over is
high, this gain in productivity is considerable [11].

Furthermore, through the use of these formal de�nitions, the modeling lan-
guage can be validated. A valid modeling language, one in which all de�nitions
are together compatible, i.e., do not produce any inconsistencies, improves the
ability of the knowledge modeler(s) to produce a set of object de�nitions which
are consistent with one another.

Finally, with a metamodeling approach the modeling language is de�ned in
a declarative formalism. This allows partial or full mapping between di�erent
modeling languages, leading to systems integration. Therefore, system interop-
erability issues can be approached from a metamodeling point-of-view.

For all these reasons, we too advocate the use of a metamodeling layer in the
development of an information system. We use the Conceptual Graph (CG) the-
ory for illustration purposes. The simplicity of the CG notation and its exibility
to represent metalevel knowledge through the use of contexts makes it a seri-
ous contender for the representation of a metamodeling theory. Therefore, this
paper1 presents a CG based metamodeling framework for the modeling of infor-
mation systems. Section 3 introduces the basic ontology required to develop a
CG based metamodeling language. Section 4 presents a mapping function from
the metalevel to the data level, allowing the de�nitions stated at the former
level to be used at the latter level. Section 5 presents how this framework can be
used to create an arbitrary number of metalevels. Section 6 introduces metarules
that state restrictions and properties of metalevel de�nition primitives. Section
7 concludes and presents future directions for our research.

2 Literature Review

Metamodeling and conceptual graphs have not been extensively investigated.
John Esch in [7] introduces metamodeling through two prede�ned relations: Kind
that links a concept to its type and Subt that links two concept types that are in a
subtype relationship. He de�nes, using the relationship Subt, a type hierarchy for
each higher order level, and links, using relation Kind, types and concepts from
di�erent levels. But Esch does not deal with conceptual relations and relation
types. In [26] Michel Wermelinguer de�nes more formally higher order types
and proposes a translation to �rst order logic. He de�nes one hierarchy for all
the concept types and one hierarchy for all the relation types and organizes
them in regard of their nature and their order. Pavel Kocura in [12] deals with
the semantics of attribute relations in conceptual graphs and introduces some
second order concept types like: TYPE, REL TYPE and relation types like ATTR

and VALUE TYPE. He also presents some mapping rules from higher level to lower
level using Attribute (ATTR) relations. But none proposes a complete metamodel
of the conceptual graph language itself.

3 Modeling Constructs in the CG Formalism

Through a mapping to �rst-order logic (FOL), the CG theory is recognized as
a general knowledge representation language. The simple CGs which are fully
mappable to FOL formulae are called �rst-order CGs. Additional features such
as sets [21, 8], contexts [5, 6, 7, 16], and various quanti�ers [1] provide higher

1 This work is part of a research project supported by HEC Montreal.

reasoning capabilities by allowing modal [10], temporal [4, 19, 20] and fuzzy [1]
reasoning systems to be devised based on the CG representation language.

First-order CGs are composed of concepts and relation nodes. Concepts rep-
resent objects (either physical or not) of some type. They are composed of the
type of the object followed by a reference to the object that they represent,
called a referent. Relations represent semantic links between objects. Relations
are typed. The distinction between a concept and a relation is rather arbitrary.
At times relations may be seen as objects. For simplicity purposes pertaining
to both the modeling activities and the subsequent eÆciency of the knowledge
handling operators, the knowledge engineer must decide on a domain ontology
that reects the concepts of the domain and their possible relationships, all seen
as primitive elements of the modeling language [14].

Section 3.1 introduces the representation primitives needed to describe con-
cept types; Section 3.2 does the same with the de�nition of relation types. To-
gether these sections provide the basic constructs needed to set up a metamod-
eling layer in a CG system.

3.1 De�ning Concept Types

The de�nition of a concept type is about an object that is being de�ned (and
speci�ed) at the metalevel so that it can be used as a concept type at the data
level. For example, let us introduce the object [ConceptType: Driver] which
states that Driver is an object of type ConceptType (which is prede�ned). And
let us use Driver in a concept [Driver: *x]. The former is useful to describe the
properties of concept type Driver, therefore providing it with a formal de�nition.
The latter is then permitted and can be used to describe individual drivers who
will comply with the de�nition of concept type Driver as given by the former
de�nition.

Therefore we �rst need a concept type ConceptType that is used to represent
and de�ne concept types. Then, when a concept type t is to be de�ned, we need
to attach the corresponding concept type concept [ConceptType: t] to some def-
inition graphs, represented by (embedded graphs) concepts, that will provide it
with di�erent roles and restrictions. These roles are indicated by the type of
relation that links concept [ConceptType: t] to its de�nition graphs. The di�er-
ent relation types that are needed to de�ne a concept type are: csubt, def, rstrct,
and sntx; each links concept type concept [ConceptType: t] to a concept type
concept, a de�nition graph, a restriction graph (or a rule graph), and a syntax
graph, respectively. Each of these relation types is de�ned in the subsections
below. For example, concept type Driver could be de�ned using the CG of Figure
1 asserted at the metalevel.

Subtyping: csubt

From Figure 1, the subtype relation Driver < Person can be extracted from
the csubt relation. The concept type hierarchy is therefore built from all such
relations extracted from all concept type de�nitions. This creates an inheritance

ConceptType:Driver

CTDefinitionGraph:

Person:?x Cardef

RestrictionGraph:

Person

drives Car

drives Car

rstrct

If:
Driver:*x

rstrct
Then:

drives Car

Driver:?x has DriverLicence

drives

on Road

ConceptType:Personcsubt

SyntaxGraph: Driver:*xsntx

Fig. 1. An example of a concept type de�nition.

network among concept types where all linked pairs of concept types are part of
a partial order of generality de�ned by the csubt relation.

Using a Concept Type at the Data Level: sntx

The syntax graph presents how the concept de�ned at the metalevel, a concept
type in the case of Figure 1, must be used at the data level2. Here again, rules
on how to compose a concept based on a concept type de�nition can be stated
at the metalevel (see Section 6). These rules ensure that the syntactical forms
are used according to the metalevel de�nitions on which the acquired objects
are based.

Genus and Di�erentia: def

In Figure 1, it is stated that a driver is a person who drives a car. The genus
of the de�nition is thus the concept of type Person; its di�erentia is the state-
ment that s/he must drive a car to be recognized as a driver. This statement is
equivalent to the lambda expression of Figure 2.

Driver(x1) = [Person: λ x1] (drives) [Car]

Fig. 2. The lambda expression extracted from the de�nition graph of Figure 1.

2 The use of *x in the syntax graph and ?x in the de�nition graph is a lexical convention
(see /refCGIG for semantics of *x and ?x). That does not mean they refer to the
same individual except if there are in the same graph

Additional validation rules can be stated (as shown in Section 6) on how to
ensure that the de�nition graph has a concept whose referent is ?x, and that the
concept type of this concept is in accordance with the concept type which is the
destination concept of the csubt relation.

Constraints on the Use of Types: rstrct

There are two types of restriction graphs, each one imposing a constraint on
the use of the concept type being de�ned: restriction graphs and rule graphs.
Restriction graphs introduce graphs that must never project themselves onto any
other graph in a CG system3. Therefore, they are graphs that represent situations
that must never occur. In our example of Figure 1, a driver cannot drive two cars
at the same time. Rule graphs introduce complementary de�nitions to the main
de�nition of a type, but only under certain conditions. With our example, when
a driver drives a car that is on the road, then s/he must have a driver's license.
That is, when the if-graph projects itself onto some graph in the CG system,
then the then-graph must also project itself onto the same graph (providing that
the coreferenced variables are bound to the same concepts). Restriction and rule
graphs permit the representation of a large subset of the semantic constraints
found in database literature. They were introduced under a slightly di�erent
representation in [18]. For a more complete introduction on restriction and rule
graphs see [17] and [13]; for a formal de�nition of their associated extensional
semantics see [15].

3.2 De�ning Relation Types

As before, a prede�ned RelationType concept type is required to express that
some object is a relation type. The primitive relations de�ned above either hold
for the de�nition of relation types or have counter-parts. Figure 3 gives some
example of the de�nition of a relation type.

Subtyping: rsubt

In Figure 3, relation type goingto is de�ned as a subtype of the Link4 relation
type. A relation type hierarchy can be built from the rsubt relations found in the
de�nitions of all relation types. Here we chose to specialize the type inheritance
relation (subt) for concept types (csubt) and relation types (rsubt). This choice,
rather than using the subt relation directly, is justi�ed for the following reasons.
First, linked elements concept types and relation types are di�erent. Second, the
way to verify the validity of the relation is also di�erent (See metarules in Figure
16 and Figure 18.)

3 The projection that we consider here is injective. See [9] for the appropriate moti-
vation. We believe that under certain simplifying assumptions (see [14]) an injective
projection should be sought.

4 The relation type Link is primitive and states a relationship between two concepts.
Link is at the top of the relation type hierarchy.

RelationType:goingto

RTDefinitionGraph:

Person:?x1 Godef

RestrictionGraph:

Person:*x1

goingto City:*x2

goingto

rstrct

If:
Person:*x1

rstrct

Then:

loc Continent:NorthAmerica

owns AirLineTicket

agnt

RelationType:Linkrsubt

SyntaxGraph:
sntx

dest City:?x2

City:*x3

RestrictionGraph:

Person:*x1

goingto

City:*x2

loc

rstrct

Person:?x1

loc Continent:Europegoingto City:*x2

Person:*x1 goingto City:*x2

Fig. 3. The de�nition of a relation type..

Using a Relation type at the Data Level: sntx

Finally, the use of the relation type r at the data level must be represented.
The syntax graph associated with the de�nition of r does that. As mentioned
before, syntactical formation rules can be expressed at the metalevel in order to
validate the use of a relation type at the data level (see Section 6).

Genus and Di�erentia: def

From Figure 3, one can see that the relation type goingto between two param-
eters x1 and x2, is de�ned as a person x1 who is the agent of a verb Go, for
which the destination is a city x2. From this (relation type) de�nition graph, the
lambda expression of Figure 4 could be extracted. Again, a metalevel rule can
be expressed to verify that the de�nition of a relation type r conforms to the
relation type of its supertype r' (according to the rsubt relation) (see Section 6).

goingto(x 1,x2) = [Person: λ x1] (agnt) [Go] (dest) [Person: λ x2]

Fig. 4. The lambda expression extracted from the de�nition graph of Figure 3.

Using the lambda expression produced from the de�nition of a relation type r,
the signature of r is then known. Therefore the canonical basis of the CG system,
B, can be built from the analysis of the de�nition graph of each relation type.
Also, a metarule enforcing the signature of each relation type can be expressed,
as will also be presented in Section 6.

Constraints on the Use of Types: rstrct

As with concept type de�nitions, restrictions can be de�ned on the use of
a relation type at the data level. For instance, Figure 3 states that a person
cannot go to two di�erent cities that s/he cannot go to a city where s/he is
already located, and that when a person is located in North America and goes
to a city in Europe, then s/he must own an airline ticket.

4 Mapping Metalevel to Data Level

In [9] we de�ned a function !5 that maps higher level to a lower level objects.
Let us recall that de�nition.

De�nition 1. Function ! is de�ned over C ! E where C is the set of concepts
that represent entities of the system and E is the set of all referenced elements
(internal and external elements6).

Applied on a concept, function ! returns the entity represented by the concept.
Obviously, the function is de�ned on the set of concepts that represent entities
of the system, i.e., internal elements.

Figure 5 shows the way the function ! may be used. Let us have (a) graph
[City:Ottawa]->(cap)->[Country:Canada] identi�ed by the internal referent #4387,
(b) two di�erent ways to speak about this conceptual graph, and (c) the appli-
cation of ! on the �rst concept of (b).

Figure 6 presents how the type of a concept could be accessed using a meta-
level CG describing the concept. Let us consider [Concept: [City:Ottawa]] that
is the concept that represents the concept [City:Ottawa]. Using the prede�ned
type and ref relations and Concept and Referent concept types, let us have the
graph of Figure 6.

Figure 7 shows the mapping from a higher level to its immediate lower level.
Applying function ! on the concept of type Concept in the meta-level CG of
Figure 6, we obtain the (data level) concept representing the city of Ottawa.

5 The function ! is a generalization of the Sowa's functions � and �[24]. ! is di�erent
of Sowa's function referent that returns the lexical of the referent �eld[25].

6 In the metamodel we distinguish two types of element, the external elements, exter-
nal with the language, and the internal elements which are the components of the
language. The external elements represent the objects of the universe of the speech
which is outside the system and which can be referred by internal elements.

City:Ottawa Country:Canadacap#4387

Graph:#4387 Graph: City:Ottawa Country:Canadacap

Graph:#4387 City:Ottawa Country:Canadacapω () =

(a)

(b)

(c)

Fig. 5. Function !.

Concept: City:Ottawa

ConceptType:Citytype

Referent:Ottawaref

Fig. 6. From a lower level to a higher level.

Concept: City:Ottawa

ConceptType:Citytype

Conceptω () =

Referent:Ottawaref

City:Ottawa

Fig. 7. From a higher level to a lower level.

5 De�ning Subtypes of the Primitives of Section 3

The de�nition primitives of Section 3 and the mapping operator of Section 4
allow the objects of any level to be described by de�nitions found one level up,
at their metalevel. This provides for many layers of modeling levels. One use for
such layers is the de�nition of the modeling primitives from which the modeling
language that we are describing in this paper is composed of, allowing di�erent
modeling languages to be mapped onto one another.

This section will illustrate these ideas by de�ning subtypes of certain relation
types, creating classes of relations, thus specializing the modeling language even
more (Section 5.1) and classes of specialized graphs (Section 5.2). By doing so,
we aim at demonstrating how general the framework described in this paper is.

5.1 Creating Classes of Relations

The RelationType concept type, used as a primitive element in our modeling
language ontology so far, is itself a concept type. Therefore, it could be de�ned
using the de�nition primitives introduced in Section 3.1. Doing so will allow
specializations of it to be de�ned, re�ning further the modeling language that will
be handed out to the knowledge acquisition modules in charge of modeling the

actual application domain. In this section, we intend to show the expressivity of
the simple representation tools introduced in Sections 3 and 4. As a �rst example,
let us say that a relation type is a type that is subtype of another relation type.
Figure 8 below illustrates this de�nition. Notice that there is no syntax graph
associated with it since a syntax graph represents a precise syntactical form,
therefore, a predetermined and �xed number of parameters (the arity of relations
of that type) would be required.

ConceptType:RelationType

CTDefinitionGraph:

Type:?x RelationTypedef rsubt

ConceptType:Typecsubt

Fig. 8. The de�nition of a relation type.

Therefore, syntactic considerations lead us to de�ne �xed-arity relation types.
Figure 9 shows a specialization of concept type RelationType, BinaryRelationType,
which will be useful for de�ning binary relations7. It imposes a particular syntax
graph to all of its elements, providing a �xed arity of two for all relations of that
type.

ConceptType:BinaryRelationType

CTDefinitionGraph:

RelationType:?x

def

sntx

ConceptType:RelationTypecsubt

SyntaxGraph: T ω x T

Fig. 9. The de�nition of a relation type for binary relations.

Other subclasses of relation types can be de�ned in the same way. For in-
stance, it is possible to de�ne a class of transitive relations through the de�nition
of a subclass of BinaryRelationType. Figure 10 gives such a de�nition.

Other classes of relations can be de�ned to match particular properties of
relations, like symmetry (see Figure 11), anti-symmetry (see Figure 12), and
reexivity (see Figure 13).

7 As introduced in [9] in order to simplify the notation we replace
!([RelationType:*r]) by !r

If

Then:

T:?x ω r T:?z

T:*x ω r T ω r T:*z

ConceptType:TransitiveRelationType

CTDefinitionGraph:

BinaryRelationType:?rdef

ConceptType:BinaryRelationTypecsubt

rstrct

Fig. 10. The de�nition of a class (type) for all transitive relations.

If

Then:

T:?y ω r T:?x

T:*x ω r T:*y

ConceptType:SymmetricalRelationType

CTDefinitionGraph:

BinaryRelationType:?rdef

ConceptType:BinaryRelationTypecsubt

rstrct

Fig. 11. The de�nition of a class (type) for symmetrical relations.

If

RestrictionGraph:

T:?y T:?x

T:*x

ω r

T:*y

ConceptType:Anti-SymmetricalRelationType

CTDefinitionGraph:

BinaryRelationType:?rdef

ConceptType:BinaryRelationTypecsubt

rstrct

ω r

Then

Fig. 12. The de�nition of a class (type) for anti-symmetrical relations.

In Figure 12 the restriction graph states that if x is in relation r with y and
y is in relation r with x then x and y may not be two distinct concepts.

ConceptType:ReflexiveRelationType

CTDefinitionGraph:

BinaryRelationType:?x

def

sntx

ConceptType:BinaryRelationTypecsubt

SyntaxGraph: T1 ω x T1

If

Then:

T1:?x

T1:*x

ω x
rstrct

Fig. 13. The de�nition of a class (type) for reexive relations.

In Figure 13 we need to use the syntactic graph to identify in the rule graph
the type that the relation may link.

5.2 Creating Classes of Graphs

The CTDe�nitionGraph concept type, used as a primitive element so far, may
be de�ned as a concept type. A Concept Type De�nition Graph (CTDe�nition-
Graph) is a specialization of De�nitionGraph. Figure 14 presents the de�nition and
restriction graphs of CTDe�nitionGraph. The de�nition graph states that a CTDef-

initionGraph has at least one concept with a question mark and the restriction
graph states that a CTDe�nitionGraph may not have two distinct concepts with
question marks.

ConceptType:CTDefinitionGraph

CTDefinitionGraph:

DefinitionGraph:?xdef

ConceptType:DefinitionGraphcsubt

If

rstrct CTDefinitionGraph:*x

elt Concept ref Referent:'?x'

elt Concept ref Referent:'?x'

elt Concept ref Referent:'?x'

Fig. 14. The de�nition of a class (type) for Concept Type De�nition Graph.

As CTDe�nitionGraph above, the CTSyntaxGraph concept type may be de�ned
as a concept type. A Concept Type Syntax Graph (CTSyntaxGraph) is a special-

ization of De�nitionGraph. Figure 15 presents its de�nition and restriction graphs.
The de�nition graph states that a CTSyntaxGraph has at least one concept and
the restriction graph states that a CTSyntaxGraph may not have two distinct
concepts.

ConceptType:CTSyntaxGraph

CTDefinitionGraph:

DefinitionGraph:?xdef

ConceptType:DefinitionGraphcsubt

If

rstrct CTSyntaxGraph:*x
elt Concept

elt Concept

elt Concept

Fig. 15. The de�nition of a class (type) for Concept Type Syntax Graph.

In this section we demonstrated how the de�nition primitives of Section 3
and the mapping operator of Section 4 can be used to describe objects of any
level by de�nitions at their metalevel. In the next section we will show how we
can complete speci�cations by adding metarules.

6 Metarules

This section presents metarules we introduced in earlier sections.
The �rst metarule, as illustrated in Figure 16, states that the de�nition graph

of a concept type has a concept whose referent is ?x, and whose concept type
is in accordance with the concept type which is the destination concept of the
csubt relation.

If

Then:

ConceptType:?x

ConceptType:*x

csubt ConceptType

ConceptCTDefinitionGraphcsubt elt ref Referent:'?x'

type

Fig. 16. Concept Type De�nition Graph Composition Rule.

The second metarule presented here, illustrates the composition rule for con-
cept type syntax graphs. The metarule (see Figure 17) states that the concept
type of the concept that appears in the syntax graph is the concept type itself.

If:
ConceptType:*y

Then:

sntx

CTSyntaxGraph Concept

type

elt

ConceptType:?y

ref Referent:'*x'

Fig. 17. Concept Type Syntax Graph Composition Rule.

In section 3.2 we argued that a metalevel rule can be expressed to verify that
the de�nition of a relation type r conforms to the relation type of its supertype
r' (according to the rsubt relation). Figure 18 presents this metarule.

If:
r

Then:

type

ConceptType

Concept:

csubt

Ta:?y1

Ta:*y1

ConceptType

type

Concept elt SyntaxGraph

type

ref

Referent:'*x1'

ConceptType

csubt

ConceptType

type

Conceptelt

ref

Referent:'*x2'

Tb:*y2

BinaryRelationType:?r

sntx

Concept: Tb:?y2

Fig. 18. Signature Compliance Rule.

If two concepts [Ta:*y1] and [Tb:*y2] are linked by a relation whose relation
type is r then the two types Ta and Tb are in csubt relation with the two types of
the signature of r as expressed in its syntax graph. Concept [Ta:*y1] identi�ed as
the source of the relation has a type that is a specialization of the concept type
of the concept (element of the syntax graph) whose referent is *x1. Respectively,

Concept [Tb:*y2] identi�ed as the destination of the relation has a type that is
a specialization of the concept type of the concept whose referent is *x2.

These few examples demonstrate that conceptual graphs can easily be used
to state restriction or de�ne rule at a metalevel.

7 Conclusion and Future Work

Metamodeling and therefore metamodels are important because they formally
de�ne the modeling primitives used in modeling activities. In this paper we intro-
duced basic building blocks in order to use Conceptual Graphs in metamodeling
activities.

We have seen a metamodeling approach is important because it allows declar-
ative and formal de�nition of modeling constructs (Section 3 and 5). It authorizes
validation of acquired knowledge through formal de�nition and metarules(Section
6).

In this paper we demonstrated that CGs are powerful enough to be used as an
universal metamodeling language but a lot of work remains to be done to de�ne a
complete metamodeling framework based on CGs. In [9] we demonstrated that
CGs may be used to model the main model component of KADS [22, 23] (a
methodology to develop knowledge-based systems), and more generally, we are
currently working on the development of a meta-metalevel where we could, using
formal de�nition of modeling languages, specify a mapping between modeling
languages. This will allow integration of information systems even if based on
di�erent paradigms.

References

[1] T. Cao and P. Creasy. Fuzzy order-sorted logic programming in conceptual graphs
with a sound and complete proof procedure. In Lecture Notes in Arti�cial Intel-
ligence #1453, pages 270{284. Springer-Verlag, 1998.

[2] S. Crawley, S. Davis, J. Indulska, S. McBride, and K. Raymond. Meta informa-
tion management. In Formal Methods for Open Object-based Distributed Systems
Conference, Canterbury, UK, July 1997.

[3] S. Crawley, S. Davis, J. Indulska, S. McBride, and K. Raymond. Meta-meta is
better-better! In IFIP WG 6.1 International Working Conference on Distributed
Systems, October 1997.

[4] J. Esch. Temporal intervals. In T. Nage, J. Nagle, L. Gerhloz, and Eklund P.,
editors, Conceptual Structures, pages 363{380. Ellis Horwood, 1992.

[5] J. Esch. Contexts as white box concepts. In G. Mineau, B. Moulin, and J. Sowa,
editors, Proceedings of the 1st International Conference on Conceptual Structures
(ICCS'93), pages 17{29, Quebec City, Quebec, Canada, August 1993. Springer-
Verlag.

[6] J. Esch. Contexts and concepts, abstraction duals. In W. Tepfenhart, J. Dick, and
J. Sowa, editors, Proceedings of the Second International Conference on Concep-
tual Structures (ICCS'94), pages 175{184, College Park, Maryland, USA, August
1994. Springer-Verlag.

[7] J. Esch. Contexts, canons and coreferent types. In W. Tepfenhart, J. Dick, and
J. Sowa, editors, Proceedings of the Second International Conference on Concep-
tual Structures (ICCS'94), pages 185{195, College Park, Maryland, USA, August
1994. Springer-Verlag.

[8] D. Gardiner, B. Tjan, and J. Slagle. Extended conceptual structures notation.
In Proceedings of the 4th Annual Workshop on Conceptual Structures. IJCAI-89,
1989. Section 3.05.

[9] O. Gerb�e. Un mod�ele uniforme pour la mod�elisation et la m�etamod�elisation d'une
m�emoire d'entreprise. PhD thesis, Universit�e de Montr�eal, 2000.

[10] B. Ghosh and V. Wuwongse. Computational situation theory in the conceptual
graph language. In Lecture Notes in Arti�cial Intelligence #1115, pages 188{202.
Springer-Verlag, 1996.

[11] C. Havens. Enter, the chief knowledge oÆcer. CIO Canada, 4(10):36{42, 1996.
[12] P. Kocura. Semantics of attribute relations in conceptual graphs. In G. Gan-

ter, B. Mineau, editor, Proceedings of 8th International Conference on Concep-
tual Structures (ICCS2000), pages 235{248, Darmstadt, Germany, August 2000.
Springer.

[13] G. Mineau. Constraints and goals under the conceptual graph formalism: One way
to solve the scg-1 problem. In W. Tepfenhart and W. Cyre, editors, Proceedings
of the 7th International Conference on Conceptual Structures, pages 334{354,
Blackburg, VA, USA, July 1999. Springer.

[14] G. Mineau. The engineering of a cg-based system: Fundamental issues. In
B. Ganter and Mineau G., editors, Proceedings of the 8th International Con-
ference on Conceptual Structures, pages 140{156, Darmstadt, Germany, August
2000. Springer-Verlag.

[15] G. Mineau. The extensional semantics of the conceptual graph formalism. In
B. Ganter and G. Mineau, editors, Proceedings of the 8th International Confer-
ence on Conceptual Structures (ICCS'2000), pages 221{234, Darmstadt, Germany,
August 2000. Springer.

[16] G. Mineau and O. Gerb�e. Contexts: A formal de�nition of worlds of assertions. In
Proceedings of 5th International Conference on Conceptual Structures (ICCS'97),
pages 80{94, Seattle, Washington, USA, August 1997.

[17] G. Mineau and R. Missaoui. Semantic Constraints in Conceptual Graph Systems.
DMR Consulting Group Inc., Montreal, Quebec, Canada, June 1996. Internal
Research Report #960611A. 39 pages.

[18] G. Mineau and R. Missaoui. The representation of semantic constraints in con-
ceptual graph systems. In D. Lukose, H. Delugach, M. Keeler, L. Searle, and
J. Sowa, editors, Proceedings of 5th International Conference on Conceptual Struc-
tures (ICCS'97), pages 138{152. Springer-Verlag, 1997. LNAI #1257.

[19] B. Moulin. The representation of linguistic information in an approach used
for modeling temporal knowledge in discourses. In G. Mineau, B Moulin, and
J. Sowa, editors, Proceedings of 1st International Conference on Conceptual Struc-
tures (ICCS'93), pages 182{204, Quebec City, Quebec, Canada, August 1993.
Springer.

[20] B. Moulin and S. Dumas. The temporal structure of a discourse and verb tense
determination. In J. Tepfenhart, J. Dick, and J. Sowa, editors, Proceedings of
Fourth International Conference on Conceptual Structures (ICCS'94), pages 45{
68, College Park, Maryland, USA, August 1994. Springer-Verlag.

[21] H. Pfei�er and R. Hartley. Additions for set representation and processing to con-
ceptual programming. In Proceedings of the 5th Annual Workshop on Conceptual
Structures. AAAI-90, 1990. Section A.15.

[22] A. Schreiber, B. Wielenga, H. Akkermans, W. Van de Velde, and A. Anjewier-
den. CML: The CommonKADS conceptual modelling language. In L. Steels,
A. Schreiber, and W. Van de Velde, editors, Proceedings of the 8th European
Knowledge Acquisition Workshop (EKAW'94), pages 1{24, Hoegaarden, Belgium,
1994. Springer-Verlag.

[23] G. Schreiber, B. Wielenga, R. de Hoog, H. Akkermans, and W. Van de Velde.
CommonKADS: A comprehensive methodology for KBS development. IEEE Ex-
pert, pages 28{36, December 1994.

[24] J. Sowa. Relating diagrams to logic. In John F. Sowa Guy W. Mineau,
Bernard Moulin, editor, Proceedings of the First International Conference on Con-
ceptual Graphs (ICCS'93), volume 699, pages 1{35, Quebec City, Quebec, Canada,
August 1993. Springer-Verlag.

[25] J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, 1984.

[26] M. Wermelinger. Conceptual graphs and �rst-order logic. In G. Ellis, R. Levinson,
W. Rich, and J. Sowa, editors, Proceedings of the Third International Conference
on Conceptual Structures (ICCS'95), pages 323{337, Santa Cruz, CA, USA, Au-
gust 1995. Springler-Verlag.

