
In Proceedings of the eigth International Conference on Conceptual Structures (ICCS'2000),
pages 156{170. Darmstadt, Germany, August 2000. Springer-Verlag.

Conceptual Graphs, Metamodeling

and Notation of Concepts

Olivier Gerb�e1, Guy W. Mineau2, and Rudolf K. Keller3

1 HEC Montreal.
3000, chemin de la Côte-Sainte-Catherine, Montr�eal, Qu�ebec, Canada H3T 2A7

Olivier.Gerbe@hec.ca
2 Universit�e Laval

Qu�ebec, Qu�ebec, Canada G1K 7P4
mineau@ift.ulaval.ca

3 Universit�e de Montr�eal
C.P. 6128 Succursale Centre-Ville, Montr�eal, Qu�ebec, Canada H3C 3J7

keller@IRO.UMontreal.ca

Abstract. Knowledge management, in particular corporate knowledge
management, is a challenge companies and researchers have to meet. The
conceptual graph formalism is a good candidate for the representation of
corporate knowledge, and for the development of knowledge management
systems. But many of the issues concerning the use of conceptual graphs
as a metalanguage have not been worked out in detail. By introducing
a function that maps higher level to lower level, this paper clari�es the
metalevel semantics, notation and manipulation of concepts in the con-
ceptual graph formalism. In addition, this function allows metamodeling
activities to take place using the CG notation.

1 Introduction

Knowledge management, especially corporate knowledge management, is a chal-
lenge companies and researchers have to meet. In a previous work, we compared
conceptual graphs with other formalisms [3, 5] and we concluded that the con-
ceptual graph formalism was a good candidate for the representation of corporate
knowledge, and for the development of knowledge management systems.

Conceptual graphs are a knowledge representation formalism introduced by
John Sowa [7] where objects of the universe of discourse are modeled by concepts
and conceptual relations that associate concepts. Conceptual graphs have been
extensively used and studied by a large scienti�c community. Using conceptual
graph formalism, a corporate memory has been developed at the Research & De-
velopment Department of DMR Consulting Group Inc in order to memorize the
methods, know-how and expertise of its consultants [4]. This corporate memory,
called Method Repository, is a complete authoring environment used to edit,
store and display the methods used by the consultants of DMR. The core of
the environment a knowledge engineering system based on conceptual graphs.

2 Olivier Gerb�e, Guy W. Mineau, and Rudolf K. Keller

Four methods are commercially delivered and their documentation in paper and
in hypertext format is generated from conceptual graphs. About two hundred
business processes have been modeled and from about 80,000 conceptual graphs,
we generated more than 100,000 HTML pages in both English and French that
can be browsed using commercial Web browsers.

However some fundamental aspects of conceptual graphs remains ambiguous
and not formally speci�ed. For example, the notation of concepts is syntactically
de�ned in the new CG standard [1] but its use and its semantics seems ambigu-
ous. Figure 1 illustrates this problem of notation. How could one represent the
notion (concept) of the person John using conceptual graphs?

Person : #34 Person : John Person : 'John' Person:

John

Fig. 1. Which notation?

Another example is the manipulation of embedded graphs. Concepts may
have conceptual graphs in the referent �eld. Figure 2 illustrates this problem of
manipulation. How could a CG system access the conceptual graph that is in
the referent �eld of this graph?

Graph : Cat : Garfield Lasagnaeat

Fig. 2. How to access the embedded graph?

We propose in this paper a metamodeling approach which will semantically
de�ne the notation and manipulation of concepts in the CG language. Little
work has been done on metamodeling and conceptual graphs. John Esch in [2]
introduces two relationships: Kind that links a concept to its type and Subt that
links two concept types that are in a subtype relationship. He de�nes, using
the relationship Subt, a type hierarchy for each higher order level and he links,
using the relationship Kind, types from di�erent levels. But Esch does not deal
with conceptual relations and relation types. In [8] Michel Wermelinguer de�nes
more formally higher order types and proposes a translation to �rst order logic.
He de�nes one hierarchy for all the concept types and one hierarchy for all the
relation types and organizes them in regard of their nature and their order. But
none proposes a complete metamodel of the conceptual graph language itself.

These two approaches are compatible and our work extends the notions in-
troduced by these authors. We formally de�ne the conceptual graph language
using conceptual graphs and we propose in this paper a notation for referents
based on the metamodel. In addition, we unify the two operators � and � [6] in

Conceptual Graphs, Metamodeling and Notation of Concepts 3

one general operator ! that maps a higher order level to a lower order level and
so allows the manipulation of concepts at the lower levels.

This paper1 is organized as follows. Section 2 presents an overview of the
metamodel of the conceptual graph formalism and Section 3 details �ve basic
components of this metamodel: element, concept, referent, individual concept
and generic concept. Based on this metamodel, Section 4 formalizes the notation
of referents in concepts and Section 5 introduces the function ! that links a
concept to the entity it represents and illustrates the use of this function in
metamodeling, laying the foundation for a CG theory of metamodeling. Section
6 concludes and presents future work.

2 CG Metamodel Overview

This section gives an overview of the conceptual graph metamodel. The meta-
model de�nes the basic components needed to represent knowledge. Figure 3
presents the concept type hierarchy of the CG language metamodel.

Element

Internal_Elt

External_Elt
Graph

DefinitionGraph

RestrictionGraph
If

Then

Concept

Relation

RelationType

ConceptType

Referent

Arc
SrceArc

DestArc

Type

Context

Graph_Elt

CorefLink

IndividualConcept

GenericConcept

Symbol

Fig. 3. Metamodel Concept Type Hierarchy.

At the highest level, we have external elements (ExternalElt) that are part
of the real world to be represented and internal elements (InternalElt) that are
building blocks of the CG language.

External elements represent entities of the Universe of Discourse that are
outside of the system but can be referenced by internal elements.

Internal elements are categorized under six types: Referent, Graph, Context,
Type, CorefLink, and GraphElement. Referents are the proxies that stand for entities
of the Universe of Discourse; Graphs are the sentences of the CG language;
Contexts help to cluster knowledge; Types are categories to classify entities;
Coreference Links associate elements that represent the same entities; and Graph
Elements are concepts, relations and arcs.
1 This work is part of a research project supported by HEC Montreal.

4 Olivier Gerb�e, Guy W. Mineau, and Rudolf K. Keller

Among concepts we distinguish individual concepts (IndividualConcept) that
represent identi�ed entities and generic concepts (GenericConcept) that represent
unidenti�ed entities.

Graph has two specialized subtypes: De�nitionGraph and RestrictionGraph. Def-
inition graphs are used to de�ne concept types and relation types. Restriction
graphs are graphs that must always be false. They are used to state constraints
on types. If and Then are special cases of restriction graphs where the conditions
they represent must already be present or be acquired simultaneously.

3 CG Metamodel Components

This section details the core components of the conceptual graph formalism that
are relevant to the notation and manipulation of concepts. We introduce a formal
de�nition using conceptual graphs of the �ve basic concept types related to con-
cept: Element, Concept, Referent, Individual Concept and Generic Concept. But before,
in order to understand speci�cation graphs in formal de�nitions, we illustrate
on an example how concept types are speci�ed.

3.1 Concept Type Speci�cation

Concept Types are de�ned by three kinds of graphs : de�nition graph, restriction
graph, and rule graph as illustrated in Figure 4. This �gure shows the graph that
speci�es the concept type Driver. De�nition, restriction and rule graphs give the
necessary and suÆcient conditions to recognize instances of Driver.

ConceptType:Driver
CTDefinitionGraph:

Person:? Cardef

RestrictionGraph:

Person

drives Car

drives Car

rstrct

If:
Driver:*x

rstrct
Then:

drives Car

Driver:?x has DriverLicence

drives

on Road

Fig. 4. Type de�nition of Driver.

De�nition Graph. The de�nition graph shows the conceptual relations that a
concept must have. In the example a person that drives a car is a driver under
the conditions stated by restriction graphs and rule graphs.

Conceptual Graphs, Metamodeling and Notation of Concepts 5

Formally, in [7], a concept type is de�ned by a lambda expression, the example
in Figure 4 states the following equation :

Driver = [Person : �]!(drives)![Car].

The symbol � shows that the concept Person is the formal parameter. In the
graphic form and in the linear form the symbol � is replaced by a question mark.

Restriction Graph. Restriction graphs specify supplementary and necessary
conditions; these graphs are forbidden graphs or subgraphs. They show particular
topologies that must not exist. In our example, the restriction graph states that
a driver cannot drive two cars2.

Rule Graph. Rule graphs specify other supplementary and necessary condi-
tions that are expressed more easily with rules3. In our example, the rule graph
states that if a driver drives a car on a road then he has a driver license.

3.2 Element

The conceptual graph language is made of elements that are combined to rep-
resent knowledge. Figure 5 shows the speci�cation graph of type Element. An
element is symbolized by one or more symbols but one symbol may not be
linked to two di�erent elements. Symbols are unique identi�ers in the system.

ConceptType:Element
DefinitionGraph:

Element:?xdef

RestrictionGraph:

Element

Element

Symbol

ref

ref

rstrct

Symbolsymb

Fig. 5. Speci�cation graph of type Element.

3.3 Concept

The notion of concept is the fundamental notion of the conceptual graph theory.
A concept is the representation of an object, an idea or any notion one can
perceive and express.

2 Two di�erent boxes represent two di�erent concepts.
3 Any rule graph can be rewritten as a restriction graph.

6 Olivier Gerb�e, Guy W. Mineau, and Rudolf K. Keller

De�nition 1. A concept is the representation of an object of the Universe of
Discourse. It is the assembly of two parts: a referent that identi�es the repre-
sented object and the type that classi�es it.

Figure 6 shows the speci�cation graph of type Concept. The de�nition graph
states that a concept is an internal element that has a type, a referent, and is
element of a graph. Restriction graphs clarify building rules, a concept has one
and only one type and one and only one referent.

ConceptType:Concept DefinitionGraph:
ConceptType

Referent

Graph

InternalElt:?x

type

ref

is-elt

def

RestrictionGraph:
Referent

Referent
Concept

ref

ref

RestrictionGraph:
ConceptType

ConceptType
Concept

type

type

rstrct

rstrct

Fig. 6. Speci�cation graphs of type Concept.

One can notice that one type may be associated to several di�erent referents
and one referent may be associated to di�erent types and make up di�erent
concepts. This later mechanism provides the representation of point of views,
one object may be perceived in di�erent ways.

Examples of concepts are :

[Person], [TaxiDriver], [Concept]

[Person : #Tom], [Concept : #624], [ConceptType : Person]

Examples of concepts whose concept type is Concept are:

[Concept : #624], [Concept : [ConceptType : Person]],

[Concept : [Referent : #624]]

3.4 Referent

The referent is the part of a concept that represents and identi�es the object of
the universe of discourse for which the concept is an interpretation.

De�nition 2. A referent is a proxy for an object of the universe of discourse in
the knowledge base. A referent is made up of a quanti�er and a designator that
refers to the object.

Conceptual Graphs, Metamodeling and Notation of Concepts 7

Figure 7 shows the speci�cation graph of type Referent. A referent is a part of
a concept and represents an element (external or internal). Restriction graphs
state that one referent represents one and only one element and two referents
cannot represent the same element. There exists a special referent written #blank

that 'represents' an element which exists but is not identi�ed (3.6).

ConceptType:Referent DefinitionGraph:

InternalElt:?xdef

ref Concept

RestrictionGraph:

Referent
rep Element

rep Element

rstrct

RestrictionGraph:

Referent rep

Element
repReferent

rstrct

rep Element

Fig. 7. Speci�cation graph of type Referent.

Examples of referents are :

#12, #blank, Tom, Person, 8*x.

3.5 Individual Concept

De�nition 3. An individual concept is a concept whose represented entity is
known. The concept is an interpretation of an object on the universe of discourse
that is identi�ed and represented in the knowledge base by a referent other than
#blank.

Figure 8 presents the speci�cation graph of type IndividualConcept. An individual
concept has a referent that represents an element. The referent of an individual
concept is di�erent from the blank referent.

Examples of individual concepts are :

[Person : Tom], [Referent : #624], [ConceptType : Person]

3.6 Generic Concept

There exist two kinds of concepts depending whether the entity represented by
the concept is known or unknown.

8 Olivier Gerb�e, Guy W. Mineau, and Rudolf K. Keller

ConceptType:Individual
DefinitionGraph:

ReferentConcept:?x refdef

RestrictionGraph:

Referent:#blankIndividual refrstrct

rep Element

Fig. 8. Speci�cation graphs of type IndividualConcept.

De�nition 4. A generic concept is a concept that represents an unknown entity.
The concept is an interpretation of an object of the universe of discourse that
exists but is not identi�ed.

Figure 9 presents the speci�cation graph of type GenericConcept. A generic
concept has the special referent #blank that represents an unidenti�ed element.
In practice this referent is omitted.

ConceptType:GenericConcept
DefinitionGraph:

Referent:#blankConcept:?x refdef

Fig. 9. Speci�cation graphs of type GenericConcept.

Examples of generic concepts are :

[Person], [TaxiDriver:#blank], [Concept]

4 Notation

This section formalizes the notation of concepts in the conceptual graph formal-
ism. Individual concepts are the basic components of the CG language. Individ-
ual concepts are concepts that are abstractions of well identi�ed entities. The
referent slot of an individual concept is symbolized by a unique literal preceded
by the symbol #. The referent represents the identi�ed entity in the system. The
entity of the universe of discourse itself may be symbolized. Figure 10 presents
the underlying metamodel. A concept has a referent. This referent is symbolized
by a symbol and represents an element that may also be symbolized.

An alternative for the notation of the concept is to replace its symbol by
any symbol of the represented element. This mechanism may be formalized by
a metalevel rule as illustrated in Figure 11. If an element represented by the
referent of a concept is itself symbolized by symbols then the referent may be
symbolized by the same symbols.

We illustrate this rule on three di�erent examples: notation of concept, no-
tation of concept type and notation of graph.

Conceptual Graphs, Metamodeling and Notation of Concepts 9

ElementReferent repConcept ref

Symbol

symb

Symbol

symb

String

symb

Image

symb

Fig. 10. The metamodel of symbolization.

Element:*x 3Referent:*x 2 repConcept:*x 1 ref

Symbol:*x 4

symb

Symbol:*x 6

symb

String:*x 7

symb

Image:*x 5

symb

Referent:?x 2Concept:?x 1 ref

Symbol:?x 4

symb

Symbol:?x 6

symb

String:?x 7

symb

Image:?x 5

symb

If:

Then:

Fig. 11. The notation rule.

4.1 Notation of Concept

A lot of di�erent notation has been used in the literature to denote individual
concepts. We give here the example of the representation of the person John.
According to the metamodel of Figure 10, the metalevel conceptual graph de-
scribing the concept that stands for the person John is presented in Figure 12.
The concept [Person:#34] has a referent that is symbolized by #34. This referent
represents the element John (an external element), which can be symbolized by
di�erent symbols: a string, a symbol4 and an image.

Image:

John

ElementReferent repref

Symbol:#34

symb

Symbol:John

symb

String:'John'

symbsymb

Concept : Person : #34

Fig. 12. The meta conceptual graph for notation of John.

4 A symbol is di�erent from a string. It is a whole and cannot be edited

10 Olivier Gerb�e, Guy W. Mineau, and Rudolf K. Keller

By applying the notation rule de�ned above the referent #34 may be replaced
by any of the symbols that stands for the person John. Figure 13 shows the
possible notation of the same concept.

Person : #34 Person : JohnPerson : 'John' Person:

John

Fig. 13. Di�erent and equivalent notations of John.

4.2 Notation of Concept Type

In the literature concept types, when used as concepts, are denoted with the type
label in the referent �eld. Figure 14 presents the meta level conceptual graph
describing the concept that stands for the concept type Person. The concept
[ConceptType:#15] has a referent symbolized by #15 The referent represents the
type Person that is symbolized by the symbol Person.

Elementrepref

Symbol:#15

symb

Symbol:Person

symb

Concept: ConceptType : #15 Referent

Fig. 14. The meta conceptual graph for notation of the type Person.

By applying the notation rule the referent #15 may be replaced by the symbol
that stands for the type. Figure 15 shows the two possible notations of the
concept type.

ConceptType : #34

ConceptType : Person

Fig. 15. Di�erent equivalent notations of the type Person.

4.3 Notation of Graph

Concepts that represent conceptual graphs are denoted with the type Graph in the
type �eld and the graph itself in the referent �eld. Figure 16 presents the meta

Conceptual Graphs, Metamodeling and Notation of Concepts 11

level conceptual graph describing the concept that stands for the graph [Cat:

Garfield]!(eat)![Lasagna]. The concept [Graph:#72] has a referent symbol-
ized by #72. The referent represents the graph that is symbolized by a symbol
GarfieldMeal, a linear form and a �rst order logic form of the graph.

Elementrepref

Symbol:#72

symb

LinearForm: [Cat:Garfield]->(eat)->[Lasagna]
symb

Concept: Graph : #72 Referent

Symbol:GarfieldMeal

symb
symb

Logic: ∃ x, Cat(Garfield) eat(Garfield,x) Lasagna(x)

Fig. 16. The meta conceptual graph for notation of the Gar�eld meal.

By applying the notation rule the referent #72 may be replaced by any of
the symbols that stands for the graph. Figure 17 shows possible notations of the
same graph.

Graph: ∃ x, Cat(Garfield) eat(Garfield,x) Lasagna(x)

Graph: [Cat:Garfield]->(eat)->[Lasagna]

Graph:GarfieldMeal

Graph : #72

Fig. 17. Di�erent equivalent notations of the graph Gar�eld Meal.

Using this notation mechanism, we can de�ne named elements. We will
write [Graph : GarfieldMeal [Cat: Garfield]!(eat)![Lasagna]] to state that
GarfieldMeal and [Cat: Garfield]!(eat)![Lasagna] are two symbols of the
graph. Any reference to the graph may be subsequently done by the concept
[Graph : GarfieldMeal]. For example, this mechanism may be apply with situa-
tions; it allows to name situation and avoid to repeat every time the graph that
describes the situation when we make a reference to this situation.

5 Meta Level to Data Level and Data Level to Entities

This section introduces the function that links a concept to the entity or entities
it represents.

In [6] Sowa describes a mapping between the meta level and the data level.
To translate a meta level statement into a data level statement, Sowa introduces
two functions � and �. The function � translates a referent name into a type

12 Olivier Gerb�e, Guy W. Mineau, and Rudolf K. Keller

label. The example below illustrates the use of the function � . The meta level
statement: t1 is a subtype of t2 is transformed into a data level statement: every
t1 is a t2 .

IF : [Type:*t1]->(subt)->[Type:*t2]

THEN : [�t1 : 8*x] [�t2 :?x]

The function � has the same behavior as � on relation types and relations; it
translates the name of a relation into a relation type label. The example above
presents the translation rule from the meta level to the data level in Entity-
Relationship diagram.

IF : [Type:*t1]->(arg1)->[Relation:*r]<-(arg2)<-[Type:*t2]

THEN : [�t1]->(�r)->[�t2]

5.1 Function !

More generally, we need a function to access the entity represented by a concept
in order to use it. For example, we would like to access the image represented
by the concept [Drawing : BeautifulLandscape] or we would like to be able to
manipulate the graph represented by the concept [Graph:[Cat]->(on)->[Mat]].

Let us de�ne ! as such a function.

De�nition 5. The function ! is de�ned over C ! E where C is the set of
concepts that represent entities of the system and E is the set of all referenced
elements (internal and external elements).

Applied on a concept the function ! returns the entity represented by the con-
cept. Obviously, the function is de�ned on the set of concepts that represent
entities of the system.

!([Drawing : BeautifulLandscape]) =

!([Graph : [Cat]->(on)->[Mat]]) = [Cat]->(on)->[Mat]

5.2 ! versus � and �

Using the function !, the above example using � may be rewritten as follows:

IF : [Type:*t1]->(subt)->[Type:*t2]

THEN : [!([Type:*t1]):8*x] [!([Type:*t2]):?x]

where !([Type:*t1]) returns the entity represented by the concept [Type:*t1]

that is the type represented by t1 and !([Type:*t2]) returns the entity repre-
sented by the concept [Type:*t2] that is the type represented by t2.

To show the equivalence with � and � if we replace !([Type:*t1]) by !t1.
The rule becomes:

IF : [Type:*t1]->(subt)->[Type:*t2]

Conceptual Graphs, Metamodeling and Notation of Concepts 13

THEN : [!t1:8*x] [!t2:?x]

In a same way, the translation rule for an E-R diagram becomes:

IF : [Type:*t1]->(arg1)->[Relation:*r]<-(arg2)<-[Type:*t2]

THEN : [!t1]->(!r)->[!t2]

5.3 Function ! and metamodeling

The function ! maps a higher level to a lower level. To show the power and the
use of the function !, we give below four examples using the function. Using ! we
give the de�nition of the transitivity, symmetry and anti-symmetry properties of
a relation. Such de�nition uses generic relation types at the higher and lower level
in speci�cation graphs. So before giving the associated de�nitions, we present
the notation of co-referenced types that are mapped from a higher level to a
lower level.

Concepts that represent co-referenced concepts are denoted with the same
symbol in the referent �eld preceded by an asterisk and by a question mark.
Figure 18 presents the meta level conceptual graph describing two co-referenced
concepts that stand for an unidenti�ed Concept Type5.

Elementrep

ref

Symbol:*t 1

symb

Concept: Type : *t 1

Referent

Concept: Type : ?t 1 ref

Symbol:?t 1

symb

Fig. 18. The meta conceptual graph for notation of coreferenced concepts.

Two concepts that are linked by a coreference link are abstractions of the
same element. Therefore they have the same referent that represents the uniden-
ti�ed element. Applied on these concepts the function ! returns the unidenti�ed
element that is represented by the referent. For simplicity reasons, !([Type:?t1])
will be denoted ?t1 and !([Type:*t1]) will be denoted *t1.

Transitivity. A relationship R is transitive if and only if :

xRy ^ yRz) xRz (1)

Figure 19 presents the graph that de�nes a transitive relationship at the meta
level.

5 In a coreference link the de�ning concept is denoted with an asterisk and the bound
concept is denoted with a question mark.

14 Olivier Gerb�e, Guy W. Mineau, and Rudolf K. Keller

If:
RelationType:*r attr Transitive

Then: If

Then:

Entity:?x ?r Entity:?z

Entity:*x ?r Entity ?r Entity:*z

Fig. 19. De�nition rule of a transitive relationship.

Symmetry. A relationship R is symmetrical if and only if :

xRy) yRx (2)

Figure 20 presents the graph that de�nes a symmetrical relationship.

If:
RelationType:*r attr Symmetrical

Then: If

Then:

Entity:*x Entity:*y

Entity:?x Entity:?y

?r

?r

Fig. 20. De�nition rule of a symmetrical relationship.

Anti-Symmetry. A relationship R is anti-symmetrical if and only if :

xRy ^ yRx) x = y (3)

which is equivalent to
:(xRy ^ yRx ^ x 6= y) (4)

Figure 21 presents the graph that de�nes an anti-symmetrical relationship6.

6 Conclusion

In this paper, we introduced an approach to clarify the semantics, notation, and
manipulation of concepts in CG language. This approach uses metamodeling
constructs based on CG language. This demonstrates that conceptual graphs
may be used in metamodeling activities. The function ! that maps a higher
level to a lower level allows the manipulation of concepts from di�erent levels.

6 Note: two di�erent boxes represent two di�erent concepts

Conceptual Graphs, Metamodeling and Notation of Concepts 15

If:
RelationType:*r attr AntiSymmetrical

Then: If

Then:

Entity:*x Entity:*y

RestrictionGraph: Entity:?x Entity:?y

?r

?r

Fig. 21. De�nition rule of an anti-symmetrical relationship.

With a simple problem, the representation of concepts, we showed that
through the formal de�nition of a meta level and of mapping functions from
one level to the next, we can represent in a uniform way higher level and lower
level and navigate between them. There is an obvious need for a complete the-
ory of metamodeling in the CG formalism. We are currently developing such a
theory.

References

[1] NCITS.T2 Committee. Conceptual Graph Standard - draft proposed American
National Standard, 1999.

[2] J. Esch. Contexts, Canons and Coreferent Types. In W. Tepfenhart, J. Dick, and
J. Sowa, editors, Proceedings of the Second International Conference on Conceptual
Structures, ICCS'94, pages 185{195. Springer-Verlag, 1994.

[3] O. Gerb�e. Conceptual Graphs for Corporate Knowledge Repositories. In Pro-
ceedings of 5th International Conference on Conceptual Structures, pages 474{488,
1997.

[4] O. Gerb�e and al. Macroscope Architecture: Architecture of DMR Repository. DMR
Consulting Group Inc., 1994.

[5] O. Gerb�e, R. Keller, and G. Mineau. Conceptual Graphs for Representing Busi-
ness Processes in Corporate Memories. In Proceedings of the sixth international
Conference on Conceptual Structures (ICCS'98). Springer-Verlag, 1998.

[6] J. Sowa. Relating Diagrams to Logic. In John F. Sowa (Eds.) Guy W. Mineau,
Bernard Moulin, editor, Conceptual Graphs for Knowledge Representation, ICCS
'93, volume 699, pages 1{35. Springer-Verlag, 1993.

[7] J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, 1984.

[8] M. Wermelinger. Conceptual Graphs and First-Order Logic. In G. Ellis, R. Levin-
son, W. Rich, and J. Sowa, editors, Proceedings of the Third International Confer-
ence on Conceptual Structures, ICCS'95, pages 323{337. Springler-Verlag, 1995.

