
Towards a Precise Definition of the OMG/MDA Framework

Jean Bézivin
LRSG, Université de Nantes

2, rue de la Houssini`ere, BP 92208
44322 Nantes cedex3, France

Jean.Bezivin@sciences.univ-nantes.fr

Olivier Gerbé
HEC - Montréal

3000, chemin de la Cˆote-Sainte-Catherine
Montréal (Québec) Canada H3T 2A7

Olivier.Gerbe@hec.ca

Abstract

We are currently witnessing an important paradigm shift
in information system construction, namely the move from
object and component technology to model technology. The
object technology revolution has allowed the replacement
of the over twenty-year-old step-wise procedural decompo-
sition paradigm with the more fashionable object composi-
tion paradigm. Surprisingly, this evolution seems to have
triggered another even more radical change, the current
trend toward model transformation. A concrete example is
the Object Management Group’s rapid move from its pre-
vious Object Management Architecture vision to the latest
Model-Driven Architecture. This paper proposes an inter-
pretation of this evolution through abstract investigation.
In order to stay as language-independent as possible, we
have employed the neutral formalism of Sowa’s conceptual
graphs to describe the various situations characterizing this
organization. This will allow us to identify potential prob-
lems in the proposed modeling framework and suggest some
possible solutions.

1 Introduction

This paper provides an understanding of the extent and
importance of the recent move from object-based to model-
based information system architectures. Our point of depar-
ture will be the study of a proposed new vision of the Object
Management Group (OMG), called Model Driven Architec-
ture (MDA) [14, 8]. The OMG has proposed a modeling
language called UML (Unified Modeling Language [13])
for describing many types of object-oriented software arti-
facts. The scope of applicability of UML is not yet com-
pletely clear. In order to allow other similar languages to be
defined as well, the OMG uses a general framework based
on the MOF (Meta-Object Facility [12]). Some of the cur-
rent confusion concerning the application of these concep-
tual tools may have resulted from the fact that they are self-

defined and mutually dependent, as we shall see later. In
order to gain a better understanding of them, this paper will
use an external and neutral formalism to describe the situa-
tion and identify the problems that may arise. The formal-
ism employed will be Sowa’s conceptual graphs [20, 21],
chosen for their simplicity and precision.

This paper will focus on the characteristics of new
model-centred frameworks. In section 2 we present the
formalism of conceptual graphs, and in section 3 we dis-
cuss the main characteristics of the OMG/MDA framework,
which is replacing the OMA (Object Management Archi-
tecture). Section 4 introduces the framework we will use
in Section 5 to discuss a number of open questions in ap-
plied model engineering, where we try to shed some light
on these issues. We conclude by summarizing the original
contribution of this work.

2 Presentation of Conceptual Graphs

J. Sowa introduced conceptual graphs (CGs) in 1984.
They form a coherent system for the graphical representa-
tion of logic (existential graphs), and were invented at the
beginning of the 20th century by C. S. Pierce [16].

This section presents the formalism of conceptual
graphs. Only a minimum explanation is provided as re-
quired by the rest of the paper. More information on con-
ceptual graphs can be found in [21, 5], or in the various
annual ICCS conferences on the subject.

The fact that the company BricABrac employs John
Pendibidu may be described in CGs by the following lin-
ear textual description:

[Company: BricABrac]! (emp)! [Employee: John Pendibidu]

This can be considered a type of shorthand for the graphical
representation provided in Figure 1.

The fact that a company employs an employee may be
described by:

[Company:*x]! (emp)! [Employee:*y]

 



Company: BricABrac Employee: Pendibiduemp

Figure 1. Graphical Representation of a Con-
ceptual Graph.

There exists an operator called� that allows translation of
CGs to first order predicate logic. The previous statement
may then be rendered as:

(9x)(9y)((Company(x)^Employee(y)^employs(x; y))

where the binary predicateemploys corresponds to the
relationemp of the previous descriptions. Other research
establishing the basis of correspondence between CGs and
First Order Predicate Logic may be found in [1].

A conceptual graph is composed of concepts and rela-
tions. Concept nodes are organized as a lattice with a cor-
responding ordering relation. A concept type corresponds
to a definition graph, to which any instance of the concept
should conform.

The following defines the concept typeEmployee.

Type Employee(x) is
[Person:*x] (emp) [Company:*y]

This states that an employee is a person working for a
company.

This paper assumes that CGs are the global modeling
language used to describe various recommendations of the
OMG (Figure 2) including UML, MOF, SPE (Software
Process engineering), CWM (Common Warehouse Mata-
data), Wfl (Workflow), etc. This formalism may be over-
dimensioned for the task at hand, but we consider this an
advantage rather than a shortcoming. In order to describe
a situation where standards such as UML or the MOF de-
fine themselves as competing modeling languages as well,
it is useful to base our work on an independent formalism
that has at least equal or, preferably, more expressive power.
This is the case for CGs.

MOF

UML

SPE

OCL

CWM

XMI

Wfl

etc.
OMG/MDA

Recommendations

Conceptual
Graphs

Figure 2. MDA Observation With CGs.

3 From OMA to MDA

3.1 Systems, models and meta-models

The most important word in Model Driven Architecture
is model, and we must begin by defining the term. A model
is a simplification of a system built with an intended goal in
mind (Figure 3). The model should be able to answer ques-
tions in place of the actual system. The answers provided by
the model should be the same as those given by the system
itself, on the condition that questions are within the domain
defined by the general goal of the system.

In order to be useful, a model should be easier to use
than the original system. To achieve this, many details from
the source system are abstracted out, and only a few are
implemented in the target model. This simplification (or
abstraction) is the essence of modeling. Modeling is one of
the most common human activities, as it usually precedes
action. When one needs to apply exactly the same modeling
operation several times or if it is to be applied by different
people, the use of a meta-model is appropriate.

A meta-model is the explicit specification of an ab-
straction (a simplification). It uses a specific language for
expressing this abstraction: CGs, KIF (Knowledge Inter-
change Format)[10]or MOF are potential candidates for the
task. In order to define the abstraction, the meta-model
identifies a list of relevant concepts and a list of relevant
relationships between these concepts. This is what we refer
to asterminology in Figure 3. In some cases this may suf-
fice, but in many situations it needs to be completed by a
set of logical assertions. Languages such as KIF are able to
express both terminology and assertion layers. With other
languages, such as MOF, a specific formalism for the as-
sertions must be added (OCL). Figure 3 illustrates relation-
ships between systems, models and meta-models.

Model

+ask(q : Question)

System

+ask(q : Question)

Metamodel

-terminology : Collection
-assertions : Collection

represents

Figure 3. Relations Between a System and a
Model.

A meta-model defines a set of concepts and the relations
between these concepts and is used as an abstraction filter
in a particular modeling activity. The notion of the meta-
model is strongly related to the notion of ontology [15],



used in knowledge representation communities. We can ex-
tract a particular model from a system by using a specific
meta-model or ontology.

Different models of the same system can be observed and
manipulated, and each one can be represented by a different
meta-model. Obviously several models that have been ex-
tracted from the same system using different meta-models
will remain related. Other operations on models are also
possible, and for the most part they are based on transfor-
mation operations. In order to transform them we require
that models and composite models (models composed of
several models), including corresponding meta-models, are
organized in a regular manner.

Before proposing such an organization, we need to ac-
quire a deeper understanding of the relationship between a
model and its meta-model. More precisely, what is the na-
ture of the information contained in a meta-model and what
role is played by a meta-model?

3.2 Meta-modeling layers

Since the definition of UML, we have seen a new wave
of proposals at the OMG, evidence of a new era and a new
vision. At the centre of this evolution is the MOF, a unique
and self-defined meta-meta-model. The concept of a MOF
has emerged progressively over the last ten years in the
work of different communities like CDIF [6, 9] and IRDS
[17]. It acts as a framework to define and use meta-models
[11, 7]. The need for MOF resulted from the fact that UML
was only one of the meta-models in the software develop-
ment landscape. Because of the risk posed by the presence
of a variety of different, incompatible meta-models being
defined and evolving independently (data warehouse, work-
flow, software process, etc.), there was an urgent need for
a global integration framework for all the meta-models in
the software development industry. The solution was there-
fore a language for defining meta-models, i.e. a meta-meta-
model. This is the role of the MOF. As a consequence, a
layered architecture has now been defined.

This layered architecture has the following levels.

� M3: the meta-meta-model level (contains only the
MOF)

� M2: the meta-model level (contains any kind of meta-
model, including the UML meta-model)

� M1: the model level (any model with a corresponding
meta-model from M2).

� M0: the concrete level (any real situation, unique in
space and time, represented by a given model from
M1).

A parallel may be drawn with formal programming lan-
guages (see the right side of Figure 4). Level M3 cor-
responds to the meta-grammar level (for example, EBNF
notation), level M2 corresponds to the grammar level, and
level M1 corresponds to the program level. Level M0 cor-
responds to one given dynamic execution of a program, but
it is unrelated to modeling (it does not contain model el-
ements, but rather real or imaginary situational items and
facts). A given execution of a program at level M0 is not
itself a model; it is depicted by a model (the source code
of the program that describes the infinite number of differ-
ent executions of the program). Exactly the same situation
exists in the four OMG meta-modeling layers.

The MOF
MMM

The UML
MM

The UPM
MM

The CWM
MM

A UML
model m

Another UML
model m

A particular
use of m

Another
use of m

Level M2

Level M3

Level M1

Level M0

E
B

N
F

T
he

S
m

altalk
gram

m
ar

A
 S

m
alltalk

program
 P

A
n

execution of
program

 P

Figure 4. Several Spaces, Pertaining to Differ-
ent Levels.

4 A Framework for Understanding MDA

This section presents the framework used to illustrate our
understanding of MDA. To define our framework, we will
draw on the conceptual graph formalism introduced in Sec-
tion 2.

The framework is presented in Figure 5. It is based on
the MOF, and concepts have been renamed to clarify the
description and avoid the using of the same vocabulary in
describing the vocabulary itself. We will callNODE the
MOF::Class andLINK theMOF::Association. These notions,
used in the MOF at level M3, apply to everything located
at level M3 or below. TheMOF::Specialize relationship is
represented by thesuper relation. Although not directly
present in the MOF, we have also made explicit an instanti-
ation relation calledmeta, for sake of clarity.

Using the linear form of the conceptual graph, the frame-
work of Figure 5 may be expressed as follows:

[NODE:NODE]! (meta)! [NODE:NODE]
[NODE:LINK]! (meta)! [NODE:NODE]
[LINK:meta]! (meta)! [NODE:LINK]



NODE: LINK

meta

LINK: superLINK: meta

metameta

meta

NODE: NODE

Figure 5. Our Framework.

[LINK:super]! (meta)! [NODE:LINK]

TheNODE concept is an “instance” of itself. TheLINK con-
cept is an “instance” ofNODE and meta and super con-
cepts are “instances” ofLINK. It is immediately apparent
that the notation of concepts in CGs is a shortcut to stating
that an element is an “instance” of another element, as in
[LINK:super], which states thatsuper is an instance ofLINK.

The framework is taking shape but is still incomplete.
One particular element that is missing is what we will call
a CONTEXT, which corresponds to aMOF::Package and
is similar in some ways to a CG context. The three con-
texts underlying the framework,MODEL, METAMODEL and
METAMETAMODEL, are not represented in the drawing.
They are, however, real entities.

[NODE:CONTEXT]! (meta)! [NODE:NODE]
[NODE:MODEL]! (meta)! [NODE:CONTEXT]
[NODE:METAMODEL]! (meta)! [NODE:CONTEXT]
[NODE:METAMETAMODEL]! (meta)! [NODE:CONTEXT]

Figure 6, which provides a complete representation of the
framework from level M3 to level M0, provides a better un-
derstanding of how the framework is used. At level M1
of a given model corresponding to a particular Smalltalk
program, the Smalltalk objectMary is an instance (in the
sense of the Smalltalk language) of the Smalltalk classPer-
son. In the upper layer (level M2), we find elements of the
Smalltalk meta-model, namely the concepts of Instance and
Class and the relation instance, StkInstOf, between Class
and Instance.

As will be seen in the next section, this example will
prove useful when we address questions concerning the or-
ganization of models and meta-models.

5 Some Central Issues in Model Engineering

Now that the OMG approach has been at least partially
described, we can begin discussing its strengths and the po-

LINK

meta

StkInstance
StkInstOf

StkClass

metametameta

MaryPerson

meta

StkInstOf

metameta

meta

NODE

M3

M2

M1

The real Smalltalk object,
installed on a given computer at

a given address. This concrete
object is itself a representation

of Mary, the real person, unique
in time and space.

represented by

M0

Figure 6. A Complete Picture.

tential problems that remain. A significant amount of liter-
ature exists concerning modeling layers: How many layers
do we need? May we have more than four layers? Is there a
fundamental difference between a model and a meta-model,
or between a meta-model and a meta-meta-model? Can a
model specialize another model? Can a meta-model spe-
cialize another meta-model? etc. We do not intend to ad-
dress all these questions, only highlight some aspects of the
overall model organization problem.

We have seen that meta-models are found at level M2. In
order to avoid possible confusion and better illustrate basic
principles, we will consider a Smalltalk meta-model rather
than the classical example of the UML meta-model. Java or
C# would have served our purposes just as well.

5.1 The double instantiation problem

One of the topics currently generating a great deal of dis-
cussion is the double instantiation problem [3]. Is it possible
for an entity to be, at the same time, an instance of several
classes? In other words, considering Figure 7, should the
answer to the question “Who is Mary?” be “Mary is a per-
son”, “Mary is a Smalltalk instance”, or both? A quick look
at Figure 7 is sufficient to conclude that this is not an issue.

This situation could be described in the CG linear form
as follows:

[NODE:StkInstance]! (meta)! [NODE:NODE]
[NODE:StkClass]! (meta)! [NODE:NODE]
[NODE:StkInstOf]! (meta)! [NODE:LINK]



[NODE:Person]! (meta)! [NODE:StkClass]
[LINK:StkInstOf]! (meta)! [NODE:StkInstOf]
[NODE:Mary]! (meta)! [NODE:StkInstance]
[NODE:Mary]! (StkInstOf)! [NODE:Person]

There are two types of definitions of Mary here: local
(contextual) and global. The global definition (“Mary is
a Smalltalk instance”) uses the underlying global typing
system of the MOF, whereas the local definition (“Mary is
a Person”) relies on the context of the defining Smalltalk
meta-model. There is no ambiguity. If we were using
the UML meta-model instead of the Smalltalk meta-model,
Mary could be aPerson in this context,Person being a
UML class.

StkInstance
StkInstOf

StkClass

MaryPerson

meta

StkInstOf

metameta

M2

M1

Figure 7. The Difference Between a Contex-
tual and a Global Definition.

It is clear that there can be many localinstanceOf rela-
tions. These should not be confused with the unique and
global type/instance relation that we have namedmeta and
which corresponds to the MOF typing hierarchy. In Fig-
ure 6 we have presented a fragment of a Smalltalk model
(i.e. program) at level M1. This model is constrained by the
Smalltalk meta-model at level M2. This is clearly a simpli-
fication of the situation. In order to pursue this example fur-
ther, we could have noted that the Smalltalk language allows
dealing explicitly with meta-classes and therefore added the
following element:

[NODE:StkMetaClass]! (meta)! [NODE:NODE]
[NODE:Person]! (StkInstOf)! [NODE:Person class]

Notice that this new statement in the meta-model requires a
definition of the notion of meta-class (StkMetaClass) in the
Smalltalk meta-model. The statement above demonstrates,
however, that the relation between a class and its meta-class
is identical to the relation between an instance and its class
(StkInstOf).

It is of paramount importance that this relationStkIn-
stOf does not cross the hypothetical boundary between layer
M1 and M0. If this were not the case, the result would be
an arbitrary number of levels, as the relation between the
Smalltalk class Person and the Smalltalk meta-class Per-
son Class would cross another boundary between meta-
modeling layers.

5.2 Explicit specification

Again, our example as illustrated in Figure 6 is very lim-
ited. We could have also included another Smalltalk class
namedAnimatedBeing, and madePerson inherit of Animat-
edBeing in the Smalltalk sense.

[NODE:Person]! (StkInherits)! [NODE:AnimatedBeing]
[NODE:AnimatedBeing]!

(StkInstOf)! [NODE:AnimatedBeing class]

The point here is that the relationStkInherits represents the
Smalltalk language inheritance relation. There are many
such relations in various environments, and they are all dif-
ferent from each other, in spite of their similarities. If we
were in a Java environment, we would call this relation
JavaExtends, and show how it would apply (in a different
way) to notions ofJavaClass andJavaInterfaces. There are
many similar but different local inheritance (also special-
ization, generalization, or extension) relationships. These
should not be confused with each other. Moreover, they
should not be confused with a global specialization relation
similar to theMOF::Specialize relation defined at level M3,
here namedsuper. Creating all these different relations im-
proves the precision of the various models. This appears
necessary if we want to avoid confusion.

As demonstrated above, there is a great deal to be gained
from a precise and explicit definition of a meta-model[4].
For example, for any Smalltalk class, “the super-class of
its meta-class is the meta-class of its super-class” could be
written in CGs. Such an assertion could also be added to
the Smalltalk meta-model in OCL.

5.3 Relationships between a model and a meta-
model

Models and meta-models are different kinds of contexts.
They delimit local spaces in the global knowledge context.
The basic property of these spaces is that no overlapping is
allowed. Embedding is possible, however, as a context may
contain any element, including another context.

Figure 8 illustrates relationships between a given model
X and its meta-model Y. Let us consider modelX con-
taining entitiesa andb. There exists one (and only one)
meta-modelY defining the “semantics” ofX. The relation-
ship between a model and its meta-model (or between a
meta-model and its meta-meta-model) is called thesem
relationship.

The significance of thesem relationship is as follows.
All entities of modelX find their definition in meta-model
Y. Relationshipsmeta and sem are mutually related. If
an entity of modelX has ameta relationship with an en-
tity of meta-modelY, thenX and Y are linked by asem
relationship.



r

A
B

destsrce

a br

meta sem meta

X

Y

meta

Figure 8. Fundamental Relations Between a
Space X and a Meta-Space Y.

The situation illustrated in Figure 8 may be stated in CGs
with the following assertions.

[NODE:X]! (meta)! [NODE:MODEL]
[NODE:Y]! (meta)! [NODE:METAMODEL]
[NODE:X]! (sem)! [NODE:Y]
[NODE:r]! (srce)! [A]
[NODE:r]! (dest)! [NODE:B]
[LINK:r]! (meta)! [NODE:r]
[NODE:a]! (meta)! [NODE:A]
[NODE:b]! (meta)! [NODE:B]
[NODE:a]! (r)! [NODE:b]

Themeta relation may be considered global and basic. The
sem relation is derived from themeta relation. It indicates
at which level a space stands; if it is at level M1 it is a model,
if at level M2 it is a meta-model and if it stands at level M3
it is a meta-meta-model. Relationshipsmeta andsem are
inherently different. The approach known as loose meta-
modeling considers these relations identical. The loose ap-
proach creates many problems and is more and more fre-
quently replaced by the strict meta-modeling approach [2].

It is clear that there are many reasons to avoid stating
that “a model is an instance of a meta-model because its
elements are instances of meta-model elements”. It is also
clear that the following assertion cannot be made:

[MODEL:X]! (meta)! [METAMODEL:Y]

because it was previously stated that:

[MODEL:X]! (meta)! [NODE:MODEL]

The relationshipmeta is unique in the sense that, in the
global context, a node may have one and only one meta-
node, as seen in Section 5.1.

5.4 What is a layer?

The global modeling context is therefore composed of
three kinds of local spaces: model, meta-model and meta-
meta-model.

With respect to developing meta-modeling layers, there
are many ways to approach the problem. Some of these
have already been introduced.

� There is a long tradition of using a layered architec-
ture in information systems (e.g. IRDS) and CASE
tools engineering (e.g. CDIF). Many independent ef-
forts have converged toward similar architectures.

� It is possible to establish analogies with other domains;
for example, formal grammars for programming lan-
guages.

� The decomposition is a natural one, i.e. layer M3 is
universal for the entire information systems/software
engineering field. Any feature that could be useful to
all meta-models should be at level M3. There is no
absolute means of distinguishing between a model and
a meta-model; this problem is one of point of view and
corresponds to the precise task performed. It should be
taken as an additional argument for maintaining a clear
separation between layers M1, M2 and M3.

In addition to these arguments, it is possible to establish
a formal characterization of the notion of a meta-modeling
layer. The basis for this is thesem relation presented in
Figure 8. The contexts related by thesem relation form a
hierarchy, where the context at the top is the only one that
is self-defined:

[UNIVERSE]! (sem)! [UNIVERSE]

The contextUNIVERSE is the MOF in our MDA organiza-
tion. This allows a deduction of which contexts lie at level
M2 and which lie at level M1, given their distance to the
MOF measured by thesem relation. The relationship is ac-
tually a bit more complex than described above, because
we need to take into account variants of meta-models (dis-
cussed below). It is possible, however, to establish a formal
characterization of thesem relation in terms of themeta
relation and of the layer the context belongs to. This has
been discussed in [19], where the three-layers conjecture
has been demonstrated.

5.5 What is a transformation?

At the heart of the MDA approach is the question of
model transformation. For example, the designer and pro-
grammer would be given profiles, UML for CORBA or
UML for C++, and then, with the help of some limited fa-
cilities provided by the UML CASE tool vendors, use these
dialects of UML to prepare the transformation between a
UML design model and IDL or C++ code.

In fact, the potential applications are based in more gen-
eral approaches currently under study in many different



contexts. For example, a typical proposal has been made
in [18]. If we were to consider two meta-models, the source
model could be UML and the target model could be Java or,
more realistically, the EJB meta-model. The transformation
from a UML model to EJB code may be specified by a set
of rules defined in terms of the corresponding meta-models.
The expression of these rules is facilitated if a basic generic
framework is present in the MOF. Suggestions for building
this framework may be found in the CWM meta-model. The
transformation engine itself may be built on any technology,
such as the XSLT tools.

When studying Figure 9 raises questions concerning the
status of the Transformation Rules Context. Does it also
have the status of a meta-model? Should it use basic fa-
cilities (transformation primitives) provided by the MOF?
These are typical questions that remain open in the defini-
tion of a MDA framework.

MOF

Source
Meta-model

Target
Meta-model

sem sem

Transformation
Rulesfrom to

Source
Model

Target
Model

semsem

Figure 9. Meta-Model Based Model Transfor-
mation.

6 Conclusion

Within many environments like the OMG, meta-model
technologies are now becoming “ready for prime time”.
The move from procedural technology to object technology
has triggered a more radical change how we think about in-
formation systems and software engineering. Model engi-
neering has significant potential as an avenue of research. It
consists of bestowing first-class status on models and model
elements, similarly to the first class status given to objects
and classes in the 1980’s, the beginning of the object tech-
nology era. Two important areas of interest are models
of software components and models of software processes.
The move from the implicit to the explicit is characteristic
of model engineering. The fundamental change is that mod-
els are no longer used only for documentation, but can be
directly used to drive tool development. This principle is

at the core of the new MDA organization proposed by the
OMG. One of the consequences is that it will be possible to
better separate the various business models from the many
technical models (platforms).

The correspondence between meta-models and formal
grammars could and should be pursued much further than
it has been possible to do here. It is clear that there are
many similarities between them. The notions of a terminal
and a non terminal exist in the formal grammar of the Java
language as well as in the UML meta-model.

This paper has shown that the notion of a modeling layer
is quite different from the notion of an abstraction layer.
The evidence for this is the precise kind of relation exist-
ing between two adjacent layers. We have proposed a strict
interpretation of these layers, where there are exactly three
modeling layers. Our interpretation is based on the fact that
the so-called fourth layer is not a model, but is itself a sys-
tem (the situation being modeled). As a consequence, the
relation between an element of a system at level M0 and an
element at level M1 may be given any name, such asrepre-
sentedBy, but cannot be namedinstanceOf.

Our interpretation of the layered meta-modeling archi-
tecture does not correspond to the conventional view, but
does not contradict it, either. It has many advantages, one
of them being closure on the debate over the variable num-
ber of meta-modeling layers. As is clearly shown in Figure
7, a new layer is not created whenever a relationinstanceOf
is found.

Another contribution of this work has been that a clear
distinction has been drawn between a unique global typ-
ing relation, here calledmeta and defined at level M3, and
many other contextual relations, often calledinstanceOf and
usually defined inside various meta-models. The confusion
between all these typing relations has also created many
doubts about the organization of meta-modeling layers.

Among the inherent problems that remain to be dis-
cussed and solved, we would like to mention profiles, the
creation of precise definitions of a meta-model profile, a
model profile and even a meta-meta-model profile.

7 Acknowledgements

Many issues presented here have benefited from dis-
cussions and work done with Richard Lemesle and Er-
wan Breton. Mikael Peltier has provided much insight on
the implementation of meta-model driven model transfor-
mation.Valuable suggestions for improving this paper have
been made by Mariano Belaunde, Guy Genilloud, Joaquin
Miller and Thomas Kuehne.



References

[1] G. Amati and I. Ounis. Conceptual Graphs and First
Order Logic.The Computer Journal, 43(1), 2000.

[2] C. Atkinson. Supporting and Applying the UML Con-
ceptual Framework. In J. B´ezivin and P. A. Muller,
editors, Proceedings of UML’98, Beyond the Nota-
tion, Mulhouse, France, 1998. Springer Verlag. LNCS
1618.

[3] C. Atkinson and T. K¨uhne. The Essence of Multilevel
Metamodeling. InProceedings of UML’2001 Con-
ference on Modeling Languages, Concepts and Tools,
Toronto, Ontario, Canada, October 1-5 2001.

[4] M. Belaunde. A Standalone Metamodel for Ex-
pressing Model Relationships. 2001. Avail-
able at http://universalis.elibel.tm.fr/publications/ Re-
lationshipMetamodelV02.pdf.

[5] M. Chein and M.L. Mugnier. Conceptual Graphs:
Fundamental Notions. Revue d’intelligence artifi-
cielle, 6(4):365–406, 1992.

[6] CDIF Technical Committee.CDIF: Case Data Inter-
change Format, Framework for Modeling and Exten-
sibility. Electronics Industry Associate, 1994. Interim
Standard EIA/IS-107.

[7] S. Crawley, S. Davis, J. Indulska, S. McBride, and
K. Raymond. Meta-Meta is Better-Better. October
1997.

[8] D. DSouza. OMG’s MDA, An Architecture for
Modeling, 2001. OMG document available at
http://www.omg.org/mda/presentations.htm.

[9] J. Ernst. Introduction to CDIF, 1997. Available at
www.metamodel.com.

[10] M. Genesereth. Knowledge Interchange For-
mat - draft proposed American National Standard
(dpANS) NCTIS.T2/98-004, 1998. Available at
http://logic.stanford.edu/kif/kif.html.

[11] O. Gerbé and B. Kerherv´e. Modeling and Metamod-
eling Requirements for Knowledge Management. In
J. Bézivin, J. Ernst, and W. Pidcock, editors,Pro-
ceedings of OOPSLA Workshop on Model Engineer-
ing with CDIF, Vancouver, Canada, October 1998.

[12] Object Management Group.Meta Object Facility
(MOF) Specification, 1997. OMG Document AD/97-
08-14.

[13] Object Management Group.Unified Modeling Lan-
guage Specification, 1999. OMG Document AD/99-
06-08.

[14] Object Management Group and R. Soley.Model-
Driven Architecture, 2000. OMG document available
at www.omg.org.

[15] N. Guarino and C. Welty. Towards a method-
ology for ontology based model engineering. In
International Workshop on Model Engineering (in
conjunction with ECOOP’2000), Nice / Sophia
Antipolis, France, June 2000. Available at
http://www.metamodel.com/IWME00/program.html.

[16] N. Houser, D. Roberts, and J. Van Evra.Studies in the
Logic of Charles Sanders Peirce. Indiana University
Press, 1997.

[17] ANSI IRDS. Conceptual Schema and Modeling Lan-
guage Analysis, 1993. Technical Report X3H4/93-
196.

[18] R. Lemesle. Transformation Rules Based on Meta-
modeling. InProceedings of EDOC’98, pages 113–
122, La Jolla, CA, November 1998.

[19] R. Lemesle.Techniques de modélisation et de ḿeta-
mod́elisation. PhD thesis, Universit´e de Nantes, 2000.

[20] J. Sowa.Conceptual Structure: Information Process-
ing in Mind and Machine. Addison-Wesley, 1984.

[21] J. Sowa. Knowledge Representation : Logi-
cal, Philosophical, and Computational Foundations.
BrooksCole, 2000.


