

1

Abstract— Knowledge management is a key issue for many
public and private organisations. We propose in this paper a
metamodel for corporate knowledge representation and
management.

Index Terms— Metamodel, Model, Knowledge Management.

I. INTRODUCTION

nowledge management is a very significant problem for
many enterprises. According to research of Carnal

Havens [8], the professionals used approximately 60% of their
time to gather and verify information, 18% in effective work
and 22% in reunion, etc. Thus the reduction of time used for
seeking and validating information is a major question for
many enterprises. Another problem is the loss of competences
that is related to the leaving of experienced employees and due
to a lack of means to capitalize knowledge of these employees.
It is also necessary to optimize the training of new employees
in order to shorten the training time and to provide the support
necessary to theirs tasks.

Enterprise memory (EM) memorizes the corporative
knowledge (CK), which is the know-how of the enterprise such
as its businesses processes, its procedures, its policies
(mission, payments, standards) and its data (sales, purchases,
employee information, etc.). The management of EM raises
serious problems of quantity, complexity and diversity. It
implies a challenge for the representation and the modelling of
this memory.

The Entity-Relationship [4][9] or oriented-object [6][11]
[14][15] formalisms used for information systems modelling,
although very powerful, are badly adapted to knowledge
modelling. These formalisms manage in a completely
independent way the type level (class) and the instance level.
However, knowledge is often shared on these two levels. For
example, in the description of a business process, one speaks
about an activity ‘to extend a loan’ and of its tasks ‘to fullfill
the form and to sign the form’ with a description of the activity
and its tasks. A question may be raised: What is the difference
between activity and task? The entreprise memory must

1DINH Thi Lan Anh, PhD student of Montreal University (phone: (514)
340-6893; e-mail: lan-anh.dinh-thi@hec.ca).
2Olivier Gerbé, Prof. of HEC Montréal (phone: (514) 340-6855; fax:
(514) 340-6132; e-mail: olivier.gerbe@hec.ca).

preserve the information and restore it. A more detailed
analysis for these formalisms in a EM management context can
be found in [7].

Conceptual Graphs introduced by John Sowa in 1984 [18] are
a formalism whereby the universe of discourse is modeled by
concepts and conceptual relations. Conceptual graphs are a
very powerful formalism but its implementation is not easy and
still at a prototype step.

We propose in this paper a new metamodel based on the
Entity-Relationship formalism but extended with functions of
the conceptual graphs. We present the specification of a
metamodel for the representation of knowledge and we have
developed a prototype implemeting this metamodel. This
metamodel implements extensions to the Entity-Relationship
model : inheritance on attributes, inheritance on associations
and knowledge contextualization.

This paper is organized as follows. Section 2 describes our
framework. Section 3 introduces the proposed metamodel and
Section 4 presents its implementation. Finally Section 5
summarizes and discusses the results.

II. ARCHITECTURE

A. Modeling Levels

Lot of work about modelling and metamodelling has been
carried out by various groups of standardization Object
Management Group[12][13][14][15], ANSI [1] and also by
groups interested in models exchange CASE Data Interchange
Format (CDIF) [3].

There is nowadays a consensus on an architecture based on
four levels and adopted by OMG and CDIF: data, model,
metamodel and meta-metamodel. Each of the four levels is
briefly described bellow :
1) M3 (meta-metamodel) is the most abstract level in this

architecture and describes the basic concepts used for the
representation of the lower levels but also for itself.

2) M2 (metamodel) level defines all the vocabulary and also
the way used to build models by applying the grammar
represented in level M3.

3) M1 is the model level. By respecting the grammar specified
in level M2, it defines types and instances that accord
with the particular environment and represent the real
world.

4) M0 is the real world described at level M1.
It should be noted that in this architecture, only the first

three levels (M3, M2, M1) belong to the modelling levels while

A Metamodel for Knowledge Management

DINH Thi Lan Anh1, Olivier Gerbé2

K

2

the level M0 does not. This means that types and instances,
contrary to what is often perceived, are on the same M1 level.

The achitecture presented above is based on a consensus
but important questions about the levels of modeling still
remain to be discussed such as: the number of levels really
necessary for modelling; need or not of an architecture of more
than four levels; the fundamental difference between a model
and a me tamodel and betwween a metamodel and a meta-
metamodel; the possibility for a model to specify another
model and also the possibility for a metamodel to specify
another metamodel; etc.

We present in next section our proposed meta-metamodel
and architecture for knowledge modeling which, we hope, tries
to give an answer to the questions listed above.

B. Proposed Architecture
Our architecture (See Figure 1) is in conformity with the

consensus and is on four levels (M3, M2, M1 and M0).

This architecture gives an answer to another question
largely discussed: the double instanciation. In Figure 1, Mary
is an instance of Instance in the global context (that is
specified by the relation meta on vertical axis), and is an
instance of Person in the local context (what is specified by the
InstOf relation on horizontal axis).

C. Meta-metamodel (M3)

The meta-metamodel provides the language and grammar to
describe modelling formalisms . Figure 2 presents the meta-
metamodel elements.

The elements of the level M3 are: NODE, LINK, ‘super’,
‘meta’, ‘srce’ and ‘dest’. NODE and LINK are NODE and
‘super’, ‘meta’, ‘srce’ and ‘dest’ are LINK. The NODE and the
LINK make it possible to represent the objects of the universe
of discourse. A NODE represents an entity, a LINK represents

an association. A LINK is defined by a NODE source, and a
NODE destination. The relation ‘super’ makes it possible to
classify the NODE and implements the inheritance relation. The
relation ‘meta’ is an instanciation relation and allows indicating
the nature of a represented object. Finally the relations ‘srce’
and ‘dest’ make it possible to specify the sources and

destinations of the LINK.

In order to better understand and better distinguish the
modeling levels in our architecture (Fig. 1), the following rules
are to be noted:
1) The instanciation relation ‘meta’ links concepts defined

either all on the level M3, or on two adjacent levels in the
modeling architecture. In the second case, ‘meta’ indicates
the transition between levels.

2) Each concept is defined in only one level, and once it is
defined, it is attached by the relation ‘meta’ to one and
only one another existing concept. Thus the relation
‘meta’ is not transitive.

3) For the relation ‘super’, if a concept A is a super-type of
B, it states that A is related to B by a link ‘super’, then B
inherits from A all possible attributes and associations.

4) As ‘super’ is a transitive relation, so if A is super-type of
B and B is super-type of C, then A is also super-type C.

5) In the level M2, all instances of NODE, which are thus
connected to NODE by link ‘meta’, represent concepts
called non-relational concepts. All instances of LINK,
which are connected to LINK by link ‘meta’, represent
concepts called relational whose instances link instances
of NODE and/or LINK

6) Each concept defined in the level M2 must be linked by
the relation ‘meta’ with an element of M3.

7) Each association model defined in a given level must
comply with the syntactic and semantic rules specified at

Fig. 1. Modelling Architecture.

NODE: LINK

meta

LINK: dest

LINK: meta

meta

meta

meta

NODE: NODE

LINK: srce

meta

LINK: super

meta

Fig. 2. The meta-metamodel M3.

NODE

node1 node2R

LINK srce NODEdest

meta meta meta

Fig. 3. Semantic Rule.

3

the higher and adjacent level (fig. 3)

D. Metamodel
The metamodel contains all the concepts as well as all the

relations existing between them. It can be seen as the
vocabulary used to describe the application level. We defined
two kinds of concepts for knowledge representation:
1) The first kind includes concepts called types, all being

‘instances’ of NODE.
2) The second includes concepts called links to specify of

interelations between types. These concepts are all
‘instances’ of LINK.

Types and links are organized into two separate hierarchies
(see Figure 4 and 5). Figure 6 presents the associations
between types and links. In the type hierarchy KO
(Knowledge Object) is at the top, KO is the root. We sub-
classified the types into six categories:
1) LABEL that specifies labels used to name concepts by

using the link ident.

2) LANGUAGE presents languages in which a value can be

interpreted, e.g, a man named toto will be called ‘Monsieur
toto’ in French but ‘Mister toto’ in English, etc. It is
indicated by link depend.

3) USER is the representation of persons such as

administrators and users who create and insert data in the
data base. It is linked to KO by the link create.

4) KOType (Knowledge Object Type) classifies types having
same properties . It is divided into three groups:
PACKAGE, ATTRIBUTE and TYPE.

5) PACKAGE (packages) is used to organize data using the
link defIn. Packages can be imported by (link ‘import’),
included in (link ‘defIn’), and be super-type of (link
‘super’) another packages.

6) ATTRIBUTE (attribute type) is used to represent
attributes of types (TYPE). An attribute is linked to its
type by a chrc link. An attribute can be composed of
another attributes.

7) CONCEPT (non-relational concept types) is mainly used
to model the application level.

8) Relational concept types: ASSO-1 (1-adic associations),
ASSO-2 (binary associations), ASSO-V (virtual
associations – See an example in Figure 7), and ASSO-N

(n-adic associations). Each relational type is specified by
the link srce and/or the link dest. A virtual association is
composed of a sequence of associations, this is specified
by the link comp ose.

9) T groups all the concepts, which are defined at the model
level and represent objects of the real world. It aimed at
the representation of the real instance according to the
class. Here, composed attributes (AttrComp), objets
(Object), and relations (R1, R2, Rv, Rn) are respectively
instances of composed attribute types (ATTRIBUTE),
non-relational concept types (CONCEPT) and relational
concept types (ASSO-1, ASSO-2, ASSO-V, ASSO-N) by
using the link instOf (See Figure 8).

10) VALUE represents the value attached to object attribute

Fig. 4. Hierarchy of types

Fig. 5. Hierarchy of links

� & 2 8 1 7 5

ORFDWHG�LQ
OLYH�LQ

ZRUN�IRU3 (5 6 2 1 & 2 0 3 $ 1 <

Fig. 7. Example of virtual associations - ‘live in’

KO

AttrValue

KOType

Type

ATTRBUTE

CONCEPT

ASSO-12v

ASSO-N

ASSO-1

ASSO-2

ASSO-V

LANGUAGE

T

Object

R12v

Rn

R1

R2

Rv

USER

LABEL

srce

dest

LABEL

LANGUAGE

T

or

ident

create

chrcsuper

depend

lien
instOfsuper

super

instOf

lien

subset

instOf

super

srce

dest

lien

lien

instOf

compose compose

instOf

attrVisibvalueOf
valueOf

AttrComp

chrc

KOType

TLANGUAGE

USER

valueOf import super

KO

defIn

PACKAGE

card role

lien

valueOf

ASSO

CONCEPT

super

ATTRIBUTE AttrCompinstOf

Fig. 6. Diagram of associations between types in level M2

4

values. A value is different from an object attached to
concepts. An object can be changed or transformed into
other over the time, but a value always remains itself. For
example, let NAME an attribute of the concept PERSONNE
and toto (NAME=Papin) and tata (NAME=Papin) which
are two instances of PERSONNE. If the values of NAME
were seen as objects, then Papin would be an object
attached to the two objects ‘toto’, ‘tata’. Therefore if
‘Papin’ was changed to ‘Levesque’, then NAME value of
‘toto’ and ‘tata’ would become automatically ‘Levesque’.
This effect could not be what we want. But if NAME
values are seen as values, even if the NAME value of toto
is changed to ‘Levesque’, then the NAME value of tata
remains the same one: Papin. It is why we distinguish
value from object, and as showed in Figure 6, the link from
a value to an element of an object is ‘valueOf’. VALUE is a

super type of ‘AttrValue’ (attribute values), of ‘role’
(values allowing the explicit distinction of axis linking to
entities in an n-adic association), of ‘cardMin’ and of
‘cardMax’ (cardinality constraints), of ‘attrVisib’ (visibility
of concepts in a package: public, protected, or private). A
VALUE is linked to an object by a ‘valueOf’ link (See
Figure 8).

More details on the interaction between concepts can be
found in [5].

E. Metamodel evaluation

We evaluate our metamodel in face of knowledge
representation issues.
1) Classification and partial knowledge: It means that a
object can be defined as instance of more than one category,
or it can be migrated dynamically from a category into another
by the system. Links ‘instOf’ and ‘super’ permit respectively to
represent the multi-instantiation and the multi-inheritance that
are both seen as multi-classification. However, this version of
the metamodel does not yet define the rule for dynamic
migration as the one in the Conceptual Graphs formalism
([10][18][2]) as for the case like this once: ‘if a person (instance
of PERSON) works for (work-for) the company Teximus
(instance of COMPANY), then this person becomes an
emp loyee (instance of EMPLOYEE-Teximus) of this company’
or well ‘all people working for the company Teximus are its
employees’ (fig. 9, fig. 10).
2) Relation between categories and/or instances: It means

that the formalism allows a category to be related to another
category or to an instance.
3) Category or instance: It means that an element can be seen
as a category or as an instance depending on the point of
view. The metamodel allows the representation of an element
as a class or as an instance. Figure 8 shows the concepts
PERSON which is viewed as an instance of CONCEPT and also
as a classe according to the instance level.
4) Constraint representation: The metamodel permits the
reprsentetaion all of the kinds of cardinality constraints on
associations as shown in Figure 11. The default values of
‘cardMin’ and ‘cartMax’ are respectively ‘0’ and ‘unlimited’
(value ‘unlimited’ is represented by ‘N’, or by ‘*’ as in the
UML formalism [16][17])
The links ‘subset’ and ‘or’ permit respectively to represent

constraints of subset and exclusiveness (See Figure 12 and 13).
Figure 12 states that a person manages only an organization
for which he works for; and Figure 13 states that a person
cannot works for an ORG-l’ETAT organization and manages a
ORG-Ltd organization in the same time.

Constraints on simultaneous existence of a n o n n-adic
relations sequence are represented by introducing virtual

work-for ORG-l'ETATPERSON

or :

PERSON manage ORG-Ltd

Fig. 13. Examples of ‘or’ constraints

Fig. 8. Examples of instOf and valueOf behavior

work-for C O M P A N YPERSON srce: dest:

cardMin : 50

valueOf:

cardMax : 2

valueOf:

or :

work-for C O M P A N YP E R S O N

50 .. N 0 . . 2
Fig. 11. Examples of Relations and cardinalities

manage ORGANISATIONPERSON

work-for ORGANISATIONPERSON

subset :

Fig. 12. Examples of subset constraints

Type EMPLOYEE-Teximus(x) is
[PERSON : *x] ? (work-for) ? [COMPANY-Teximus]

Fig. 9: GCs - example of type definition

Fig. 10: Uniform Model - example of type definition

5

association. Figure 7 states that if a person is living in a
country, then she works for a company that is located in the
country where she is living; Figure 14 illustrates an another
example: each professor who is in charge of a course prepares
and gives himself this course.

Our metamodel is based on the conceptual graphs formalism
and implements some extensions to the Entity-Relationship
formalism. Our metamodel allows the characterization of types
and objects by simple or structured attributes, the
representation of constraints on cardinalities of relational
types. Our metamodel supports the simple and multiple
inheritances of attributes and of associations. For the
contextualization problem, our metamodel supports data
packaging similar as the one in UML. With our metamodel we
can represent contextual assertions as ‘Jean thinks that Marie
is pretty’. But this version misses the representation of rule ‘if
… then …’, which could help to implement implication
constraints or to migrate elements dynamically. We need also
to add the operator ‘not’ to define negation of model. This
operator will help to represent constrained situations like ‘each
professor cannot follow the course which he gives’, or ‘there is
not any conference room on the 5th floor’. A lot of work
remains to be done to improve our metamodel.

III. PROTOTYPE

We developed a prototype using JScript language. The
prototype is running in Microsoft IIS environment. The
prototype is interfaced with the relational database SQL Server.
The knowledge input format is XML (Extensible .Markup
Language).

A. Data storage model
We created two tables within SQL Server in order to store
knowledge representation models. This implementation choice
can be discussed. We chose the most simple solution even if
not optimal to make a proof of concept.
Data is organized in the two following categories :
1) Concepts (objects): Relational concepts (each one links

concepts called entities); Non-relational concepts (each
one does links any concept);

2) Values
As the behaviour of values is quite different from one of
concepts, all concepts are stored in a table and all value in
another one.
Each concept is identified by one and only one label, defined
in one and only one package and in relation ‘meta’ with only
one other concept; moreover one concept of relation either 1-
adic or n-adic can be coded by binary relation form, and the

two relations ‘srce’ and ‘dest’ are used to define binary
relations, so all links ‘ident’, ‘defIn’, ‘meta’ are directly coded
into table fields. In order to simplify the implementation of the
prototype, ‘instOf’ is directly coded to table field as ‘meta’.
Figure 15 presents an example of concepts and values.

We can also represent all concepts defined in the metamodel
in a XML file to charge in database.

B. Knowledge validation

Information about each concept are the following: the package
in which the concept is declared, the label that names it
(koCode), the type (koType) of the concept, the linked entities
(only for relational concept), the attributes (including the
inherited attributes) , and information about its relationships
(including all inherited relationships).

The knowledge validation is done at loading time. Following
is the process to validate a concept (if a step fails, the
followings are cancelled):
1) Verify the existence of the package and check if the

concept type is accessible from the current package;
2) If this concept is a relational one, read all its entities in

order to check their accessibility from the current package;
3) Verify if not already stored in the current package, then

decide insert or not it into the database;
4) Validate information about the attributes and associations.
The valid ation process of a relational concept is made of three
steps.
1) Read all information of the entities in order to check their

accessibility from the current package;
2) Check whether it is really instantiated by its type and is a

relation of that concept;
3) If it is not yet existent in the database, check whether the

realtional concept satisfies the constraints on cardinalities,
if it does then insert it into the database and continue to
validate information about the attributes.

The validation process of a value is quite simple and done in
two steps :
1) Check whether this attribute is really linked to this concept

according to the definition model;
2) Insert it into the database if it is not already in the

database.

C. Data visualisation

All information about concepts are visualized by the package
in which the concepts are defined (See Figure 15).

prepare COURSPROFESSOR

compose :

teache COURSPROFESSOR

charge

COURS

PROFESSOR

Fig. 14. Examples of simultaneous existence of relations

6

Concepts can be divided into two groups: one for concepts
that are seen as classes and can be instantiated using relation
meta or instOf, and the other one for concepts that are seen as
objects and cannot be instantiated. A class can also be
observed like either a class or like an object which is instance
of its type. Our metamodel allows the representation of
relations between concepts , relational or not, then a relational
concept can be observed by context like a relation between
entities or an entity with its relations.

D. Prototype evaluation
The prototype demonstrates that knowledge represented in

our model can 1) be stored within a relational database and 2)
can be visualized as the object-oriented model with the support
of the inheritance on attributes and associations, and with
knowledge segmentation.

It ensures the single reference for each concept stored in the
database. However, the prototype does not verify constraints
concerning the impact of relations ‘subset’ and ‘or’, and
minima for cardinalities at the instance level. These constraints
should be checked after the completion data loading.

Concerning contextualisation problem, the metamodel can
represent assertions such as ‘Jean thinks that Marie is pretty’
but the prototype does not permit to distinguish if Marie is
pretty only in thoughts of Jean or in the universal context.

IV. CONCLUSION AND FUTURE WORK

Several models were proposed for knowledge representation
but each one has strong points and weak points. For example,
conceptual graphs are known for their simplicity and flexibility
and are very close to the natural language, but the
implementation is very complex. It is why our research focused
on the development of a new metamodel to knowledge
management system. This metamodel is based on Entity-
Relationship metamodel but is extended with somme
functionalities of conceptual graphs. The proposed metamodel
authorizes the representation of static knowledge . It allows to
characterize types/objets by simple or composed attributes, to

represent constraints on cardinalities for relational types; it
supports simple and multiple inheritance on types, on
attributes and on associations. It also supports the knowledge
segmentation.

We developed a prototype that has validated the metamodel
with a simple implementation. It accepts in input data
represented in XML document by checking part of the
constraints attached to the data while loading. Data are stored
within a relational database.

The work presented here is only a stage in the specification
and the realization of a metamodel for knowledge management.
It remains several points to study like adding other elements to
the metamodel in order to represent dynamic knowledge and
rules.

REFERENCES
[1] American National Standard, “ Conceptual Graph Standard ”, 1999.

http://www.bestweb.net/~sowa/cg/cgdpans.htm.
[2] J. Bézivin, O. Gerbé, “Towards a Precise Definition of the

OMG/MDA framework”, in Proceedings of the 16th International
Conference on Automated Software Engineering, 2001.

[3] CDIF Technical Committee, Electronic Industries
Association. CDIF - CASE Data Interchange Format :
Overview. January 1994.

[4] P. Chen. The Entity-Relationship Model -- Towards a Unified
View of Data. ACM Transactions on Database systems, 1(1) : 9—
36, 1976

[5] T.L.A. Dinh, “ Spécification d’un métamodèle pour la
représentation d’une mémoire d’entreprise ”, Mémoire de maîtrise-
Institut de la Francophonie pour l'Informatique, 2001.

[6] Gregor Engels, Reiko Heckel, Stefan Sauer, “ UML - A Universal
Modeling Language ”, University of Paderborn, 2000.
engels|reiko|sauer@upb.de.

[7] Olivier Gerbé, “ Un modèle uniforme pour la modélisation et la
métamodélisation d’une mémoire d’entreprise” , Université de
Montréal (UdM). Janvier 2000.

[8] Charnel Havens, “ Enter, the chief knowledge officer CIO Canada,
4(10), 1996 , pages: :36-42.

[9] Peter Loos, “ Capture More Data Semantic Through The
Expanded Entity-Relationship Model (PERM) ”, University of
Münster, Institute of Business Informatics, Grevener St r. 91, D-
48159 Münster, Germany –

[10] Régis Monte, “ Gestion d’un Système de Mémoire d’Entreprise par
Graphes Conceptuels”, Mémoire de maîtrise, Université Joseph
Fourrier, Grenoble. Mai-Août 2000.

[11] Pierre-Alain Muller, “ Instant UML ”, Wrox Press Ltd, 1997
[12] Object Management Group. Meta Object Facility (MOF), version

1.4. Formal/02-04-03. April 2002.
http://www.omg.org/docs/formal/02-04-03.pdf

[13] Object Management Group. Meta Object Facility (MOF) 2.0 Core
Proposal - Revised Submission to OMG RFP ad/2003-04-07. Apr
2003. Object Management Group. OMGUnifiedModelingLanguage
Specification. Version 1.3, June1999.
http://citeseer.nj.nec.com/307472.html

[14] Object Management Group. Unified Modeling Language:
Infrastructure. Version 2.0. March 2003.

[15] Object Management Group. Unified Modeling Language:
Superstructure. Version 2.0. OMG Adopted Specification, ptc/03-
08-02. August 2003.

[16] James Rumbaugh, Ivar JACOBSON, Grady Booch , “ The Unified
Modeling – User Guide ”, Addison wesley, 1999.

Fig. 15. Example of concept

7

[17] James Rumbaugh, Ivar JACOBSON, Grady Booch, “ The Unified
Modeling – Language Reference Manual ”, Addison Wesley, 1998

[18] J.F. Sowa, “ Conceptual Structures – Information processing in
mind and machine ”, Addison wesley 14472, 1984

