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1 HEC - Montréal
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Montréal (Québec) Canada H3C 3P8
Kerherve.Brigitte@uqam.ca

3 CSIRO/CMIS
Locked Bag 17

North Ryde NSW 1670, Australia
Srinivasan.Uma@csiro.au

Abstract. With the recent advances in distributed systems and wireless
technology, users can access any information, from anywhere with any
device. Multimedia delivery services are currently under development to
operate in such environments. In this context, it appears essential to offer
and support different levels of service according to users requirements
and expectations and to work towards quality-driven delivery (QDD).
Implementing QDD mechanisms leads us to consider different issues such
as system components interoperability, quality information management,
distributed execution of QDD activities and multi-criteria optimization.
In this paper, we focus on quality information management to support
QDD. We propose a model management approach to the problem and
we introduce metamodel and model operations for that purpose. We use
conceptual graphs formalism to develop our QDD metamodel and we
show how the conceptual graph derivation mechanism can be applied to
implement some fundamental model operations.

1 Introduction

In the last two decades, we have been faced with tremendous evolution of dis-
tributed multimedia systems in order to support emerging applications such
as electronic commerce, health-care applications, digital publishing or infotain-
ment. These applications integrate large amounts of voluminous data, located on
several sites interconnected through various communication networks and poten-
tially accessed by a large number of users. Such complex environments require
the integration of system management mechanisms providing system scalabil-
ity, application adaptation and quality of service (QoS) support [14]. Scalability
refers to the capacity of the system to evolve according to the charge it faces.
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Abstract. This paper presents a metamodel that has been designed to support the
representation of any information technology method.  Using the conceptual graph
formalism, we have structured the knowledge in some modular way and introduced
abstraction levels. Our contribution is a new approach that focuses first, on concepts
of the application domain, then on information elements that document these concepts
and, finally, on activities that produce information elements. We have developed a
system including a conceptual graph engine to store, retrieve and display methods.
This work has been done as part of the IT Macroscope Project at the Research and
Development Department of DMR Group Inc.

1. Introduction

Information technology (IT) is among the most important factors of change in the 1990s
and is now playing a leading role in effecting change. Mastering the evolution and
management of IT requires methods, processes, software tools, training programs, as well
as a systematic, comprehensive and consistent approach.

DMR Group Inc. has initiated the IT Macroscope project [4], a joint research project that
aims to develop methods allowing organizations: i) to use IT to increase competitiveness
and innovation in both the service and product sectors; ii) to organize and manage IT
investments; iii) to implement information system solutions both practically and
effectively; and iv) to ensure IT investments are profitable.

The methods developed during the IT Macroscope project are stored in the
Methodological Repository. This repository is intended to fulfill the needs for designing
and maintaining methods, designing training courses, and managing and promoting IT
Macroscope products.

The Methodological Repository is faced with a problem of volume and complexity of
knowledge to be managed.  This requires to structure the knowledge in some modular
way and to introduce abstraction levels. For that purpose, we propose a three layers
approach: the Knowledge aspect is pure static data, the Presentation aspect supports the
presentation of the knowledge structure, and the Behavioral aspect supports modeling of
the dynamics of knowledge objects.
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• Knowledge Aspect

Two ideas, concept and symbol, are introduced to properly differentiate the essence of
the method from the way it is presented.

Concepts are the basic elements of the method; for example, documentation items,
processes and system components. The concepts and relations between them make up
the method itself. Symbols are texts, graphics, images, sounds and videos which name,
define, explain or illustrate the concepts. The concepts and symbols are linked through
description associations; they define the knowledge aspect.

• Presentation Aspect

The Presentation aspect defines how to display the knowledge. Displaying knowledge
involves two steps: i) information retrieval; ii) formatting and displaying the
information. For each step we have defined a complete set of concepts. This
presentation aspect is detailed in [3].

• Behavioral Aspect

Behavioral aspect contains concepts that are used to represent the dynamics of the
methods as well as the operations provided by repository tools.

This paper focuses on the knowledge aspect that supports and stores the methods
resulting from the IT Macroscope project. We present the metamodel we have designed
to store the IT Macroscope methods.

While designing this metamodel, we aimed at proposing a generic metamodel that would
support any method formalization. That lead us to consider several knowledge
representation formalisms. Among them we chose conceptual graphs [13] for their
powerful formalism as well as for their mathematical foundations.

In this paper we present in detail the metamodel we have designed and implemented
using conceptual graphs. This metamodel is currently implemented in the Methodological
Repository of the first commercial version of the IT Macroscope.

This paper is organized as follows: Section 2 introduces the knowledge representation
and notation used to model methods. Section 3 presents an overview of the components
of a method.  Sections 4 to 7 present further detail on the following components:
Concepts, Information Elements, Activities and Participants. Section 8 presents
applications of this work, followed by the conclusion and discussion of future work.

2. Meta-Metamodel and Notation

Developing the repository raised a problem: how to represent knowledge—or more
precisely—methods and their promotional and training materials. Is there a single,
homogeneous representation paradigm that can be used to describe the knowledge,
presentation and behavioral aspects of our methods?
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Classical IT modeling techniques use two fundamental notions to represent the real
world: type and relationship. A type is used to represent things or objects that have same
properties like attributes, relationships, behavior. Relationships represent association
between things or objects but are established between types in the model. These IT
techniques are well adapted in most cases but in some particular cases, it is very difficult
to represent the real world. For example, let us consider the following two sentences:

• An employee is a person employed by an organization.

• An United Nations University (UNU) employee is employed by UNU.

The figure below presents the most natural way to represent these sentences. The
relationship between Employee and UNU employee is a “is a” relationship. Any UNU
employee is an employee. The relationship between UNU and Organization should be a
“is an instance of” relationship but the “is employed by” relationship may not link a type
and an instance.

Employee Organization
is employed by

UNU
Employee

UNU
is employed by

Figure 1 - Type versus instance

To solve those kinds of problems, we have chosen conceptual graphs formalism where
relationships are always defined at instance level.

• Conceptual Graphs

First reminder for readers not familiar with conceptual graphs. Conceptual graphs are a
formalism whereby the universe of discourse can be modeled by concepts and conceptual
relations. A concept represents an object of interest or knowledge; for example, each
word of a glossary corresponds to a concept. The IT Macroscope manipulates several
hundred of these concepts. A conceptual relation makes it possible to associate these
concepts. Conceptual graphs were developed by John Sowa in the early 80s [13].  They
are a system of logic based on the existential graphs of C.S. Peirce and semantic
networks. Today, an international scientific community is working on conceptual graphs
in fields as varied as natural language, artificial intelligence and corporate modeling. Our
work takes place in the latter.
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• Meta-Metamodel and Notation

In order to store conceptual structures, we have defined the meta-metamodel of the
knowledge aspect.  Concepts defining the meta-metamodel are also based on conceptual
structures described in [13]. We made some modifications and extensions to adapt the
formalism to the habits of IT professionals. We have first defined the notion of concept,
conceptual relation and conceptual graph, as well as concept specialization like
individual concept, generic concept and universal concept. Then we have defined the
notion of concept type, relation type, and cardinalities to be able to describe the above
notions. This section describes all these notions.

• Concept

A concept is a representation in mind
of an object of the universe of
discourse. A concept is the association
of two referents: one refers to a type
and the other refers to the object itself.
For example, the mug on my desk can
be seen in one context as a
manufactured object and in another
context as a  piece of artwork. In that
case there are two different concepts:
[#MANUFACTURED_OBJECT:#MY_MUG] and [#ART_WORK:#MY_MUG] depending on the
context.

• Conceptual Relation

A conceptual relation represents an association among an ordered set of one or two
concepts and refers to the role played by each concept in the association.

• Conceptual Graph

A conceptual graph is a finite, connected, bipartite graph where the two kinds of nodes
are concepts and conceptual relations, and where every conceptual relation has one or
more arcs, each of which is linked to some concept.

• Individual, Generic and Universal Concept

An individual concept refers to a definite, i.e., an identified or determined, object.  In a
natural language like French or English, an individual concept corresponds to entities
identified by a noun introduced by a definite article or identified by a proper noun. A
generic concept represents an indefinite object (introduced by an indefinite article in
natural language). It introduces the existential quantifier and corresponds to “There is a
concept...” A universal concept represents any object of a given type. It introduces the
universal quantifier and corresponds to “For all...”

#MANUFACTURED_OBJECT:#MY_MUG#ARTWORK:#MY_MUG

������

Figure 2 - My mug
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• Concept Type Definition Graph and Cardinalities

A concept type refers to a set of concepts that have similar conceptual relations with other
concepts.  A concept type may be seen as a viewpoint. Different concept types allow us to
look at things from different perspectives. An example in the context of methodology
would be: the project manager interprets the notion of activity differently than the
developer.  One is interested in the duration of the activity; the other in how to perform it.

A concept type is defined by its position in the hierarchical tree of types and by a
definition graph. In the concept type definition graph the universal concept refers to any
concept instance of the concept type, and specifies which relations can be established
between an instance of the type and other instances.

In order to describe in a more precise way conceptual relations that may be established
between instances, we have introduced the notion of cardinality as in the entity-
relationship formalism [1][2]. The use of cardinalities in concept type definition graph
allows us to define constraints about conceptual relations between instances. This notion
can be seen as a condensed form of type definition and schemata cluster as defined in
[13]. Cardinalities in definition  concept types allows the  control of inputs. A conceptual
relation may link two concepts if and only if this conceptual relation appears in at least
one of the concept type definitions of the involved concepts.

We have extended the notation of conceptual graphs to support the paradigm of
cardinalities.  On the link from the universal concept, two figures specify respectively the
minimum and the maximum number of times that any given conceptual relation may
appear.

In the example below, the definition graph specifies that a domain concept has at least
one text symbol, may have zero, one or more aliases or graphic symbols. and has one and
only one definition.

[DOMAIN_CONCEPT:∀]-
  1,N(SYMB)<-[TEXT_SYMBOL:*]
  0,N(ALIAS)<-[TEXT_SYMBOL:*]
  0,N(SYMB)<-[GRAPHIC_SYMBOL:*]

  1,1(ATTR)<- [DEFINITION:*].

Figure 3 - Domain Concept Definition Graph

3. Method Metamodel

This section presents an overview of method components. A method is a set of
interrelated domain concepts, activities, products or deliverables, participants and
techniques employed by a discipline. The diagram below presents a schematic graph for
an IT method.
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Path

Figure 4 - Schematic Method  Model

Domain concepts are the objects of interest of the domain or application area of the
method about which information is to be provided in the process of applying a method.
Information elements define a structure for gathering and presenting information about
domain concepts. Information elements present vocabulary used and documentation
produced when applying a method. Activities describe possible ways to use and produce
deliverables. Deliverables assemble information elements for a particular purpose.
Techniques define means to produce information elements.

Applying a method involves:

1. Determining which information elements will be produced;
2. Determining which techniques will be used to produce information elements;
3. Combining information elements into production and management deliverables;
4. Defining a process model to produce these deliverables; and
5. Executing this process model.

To help practitioners and project managers, method developers have defined paths. Paths
are examples of steps 1 to 4 in the application of a method.  A path is a set of activities,
information elements grouped into deliverables, and resources.

In the next sections we focus on the four basic components: domain concepts,
information elements, activities and participants (deliverables and resources).

4. Domain Concepts

Domain concepts are the objects of interest of the domain or application area of the
method. They present vocabulary used in the field of the domain.  Domain concepts are
not necessarily defined in the context of a method; domain concepts may be part of a
public ontology.

A domain concept is characterized by its attributes. Our repository is multilingual and a
domain concept must have at least one text symbol which names it so that can be referred
to in written text or diagrams. A domain concept may have aliases and graphic symbols
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to represent it. A domain concept must have one and only one definition. Following is the
definition graph of a domain concept.

[DOMAIN_CONCEPT:∀]-
  1,N(SYMB)<-[TEXT_SYMBOL:*]
  0,N(ALIAS)<-[TEXT_SYMBOL:*]
  0,N(SYMB)<-[GRAPHIC_SYMBOL:*]

  1,1(ATTR)<- [DEFINITION:*]

Figure 5 -  Domain Concept Definition Graph

5. Information Elements

Information elements structure information about domain concepts. They are the building
blocks that will be produced and assembled into deliverables when applying a method.
Information elements are categorized into information element types. This section gives
definitions of information element, information element type and an example that
illustrates these definitions.

•  Information element

Domain concepts are defined regardless of the method; at the opposite side, information
elements are defined in the context of a method. An ontology may contain hundreds or
thousands of concepts, but a method may not be interested in all the concepts defined in
the ontology.  Information elements specify which concepts are relevant and are
documented in the method.

The diagram below is the concept type definition graph of an information element. An
information element documents one or more domain concepts. An information element
may be produced using a technique and may be characterized by one or more states.
Information elements may be composite, so an information element may be included in
bigger information elements.

[INFORMATION_ELEMENT:∀]-
  1,N(DOCUMENTS)->[DOMAIN_CONCEPT:*]
  0,1(PRODUCED_BY)->[TECHNIQUE:*]
  0,N(CHRC)<-[STATE:*]
  0,N(MEMBER)->[INFORMATION_ELEMENT:*].

Figure 6 -  Information Element Definition Graph

•  Information element type

Information elements are structured into category based on the documented concept and
their structure. These categories are called information element types. Attributes of
information element types are: text symbol that name the type, a content description text
that paraphrases the definition graph of the type and possibly purposes that explain the
“raison d’être” of information elements. Associated to an information element type,
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examples may exemplify instances of the type. The figure below shows the information
element type graph definition.

[INFORMATION_ELEMENT_TYPE:∀]-
  1,N(ATTR)<-[TEXT_SYMBOL:*]
  1,1(ATTR)<-[CONTENT_DESCRIPTION_TEXT:*]
  0,N(ATTR)<-[PURPOSE:*]
  0,N(EXAMPLIFIES)<-[EXAMPLE:*].

Figure 7 -  Information Element Type Definition Graph

• Example

The figure below shows an example of information element. This example defines what a
mission description is. The first graph defines the information element type mission
description with an English label “description of the organization’s mission”, a French
label “description de la mission de l’organisation”, a reference to a content description
text that should describe what an instance of mission description is, and an example. The
second graph is the definition graph of the type. It states that a mission description
documents a mission, may be produced by a JAD technique, may have states and is a part
of a P100 information element.

[INFORMATION_ELEMENT_TYPE:MISSION_DESCRIPTION]-
  (ATTR)<-[ENGLISH_TEXT_SYMBOL:’description of the organization’s mission’]
  (ATTR)<-[FRENCH_TEXT_SYMBOL:’description de la mission de l’organisation’]

  (ATTR)<-[CONTENT_DESCRIPTION_TEXT: #14]

  (EXAMPLIFIES)<-[EXAMPLE: #15].

[MISSION_DESCRIPTION: ∀]-
  1,1(DOCUMENTS)->[MISSION:*]

  0,1(PRODUCED_BY)->[TECHNIQUE: #JAD]
  0,N(CHRC)<-[STATE:*]
  1,1(MEMBER)->[P100:*].

Figure 8 - Example

6. Activities

One of the greatest problems we had to solve during the definition of the metamodel of
method was how to define process models. The importance of process models or
procedures needs no illustration. The International Organization for Standardization has
based ISO 9000 on procedures. The Software Engineering Institute has based the
Capability Maturity Model on the possibility of reproducing and controlling processes.

We have defined an activity as a change, over a specific period in time, of specific inputs
into specific outputs (possibly) by specific agents according to activity conditions.
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A process model is a network of activities; activities
may be performed in sequence or in parallel. A
complex activity is described by a process model
that defines its sub-activities. Activities may be
shared by different complex activities. For example
the same activity, Design User Interface, may be
performed by a software developer and the future
user of the application. Looking at the software
developer process model and at the future user
process model, these models show the same
activity, Design User Interface, because they are
both participants of the same activity.

Figure 9 illustrates the decomposition of two
complex activities sharing activities: One is
decomposed into a sequential process model of
three activities and the other is decomposed into a
process model with parallel activities. Any sub-activity may itself be a complex activity.

The diagram below presents the type definitions of process model and event.  A process
model is a network of events that refer to the activities they sequence.

[PROCESS_MODEL:∀]-
  1,N(FIRST)<-[EVENT:*]
  1,1(HOW)->[ACTIVITY:*].

[EVENT: ∀]-
  0,N(FOLLOWS)->[EVENT:*]
  1,1(REFERS)->[ACTIVITY:*].

Figure 10 - Process Model & Event Definition Graph

In the process of developing a method, the documentation of activities is the key issue.
Activities are what people have to do and they have to be described in detail. Following
is the list of all the attributes and other components involved in the description of an
activity.

An activity is documented by its purposes, objectives, and possibly a descriptive text. An
activity has been defined as changes of inputs into outputs by resources according to
activity conditions. An activity must have at least one output, one resource, and possibly
inputs used to produce outputs.  Each group of these participants may be described by a
text (input text, output text, resource text) that introduces or explains the role of the group
in the activity.

Activities are sequenced by defining process models. The sequence is also fully defined
by the preconditions and postconditions of the activities [12]. The preconditions and

Complex Activity

Activity

refers to

Activity

refers to

Activity

refers to

Process
Model

first follows follows

how

Complex Activity

Process
Model

how

first

follows

refers to

Activity

refers to

refers to

Activity

refers to

Figure 9 - Process Model Diagram
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postconditions are propositions that specify the conditions that must be true before and
after the performance of the activity.

Activities may be linked to rules that are prescribed guidelines for action. The
performance of some activities may require skills or know-how.  This is indicated by
links to techniques.  The acquaintance of inputs, outputs, resources and techniques may
not be sufficient to perform the activity efficiently.  Depending on the types of resources,
guidelines may be documented to help in the performance of the activity.

[ACTIVITY: ∀]-
  1,N(SYMB)<-[TEXT_SYMBOL:*]
  "--------------------------------------------"
  0,N(ATTR)<-[PURPOSE:*]
  0,N(ATTR)<-[OBJECTIVE:*]
  0,1(ATTR)<-[DESCRIPTION_TEXT:*]
  "---Inputs-----------------------------------"
  0,1(ATTR)<-[INPUT_TEXT:*]
  0,N(USED_BY)<-[PARTICIPANT:*]
  "---Outputs----------------------------------"
  0,1(ATTR)<-[OUTPUT_TEXT:*]
  1,N(CHANGED_BY)<-[PARTICIPANT:*]
  "---Resources--------------------------------"

  0,1(ATTR)<-[RESOURCE_TEXT:*]
  1,N(ENABLES)<-[PARTICIPANT:*]
  "---Process Model----------------------------"
  1,N(END)<-[EVENT:*]
  0,1(HOW)<-[PROCESS_MODEL:*]
  "---Pre & post Conditions--------------------"
  1,N(DEPENDS_ON)->[PRECONDITION:*]
  1,N(REALIZES)->[POSTCONDITION:*]
  "---Rules------------------------------------"
  0,N(GOVERNS)<-[RULE:*]
  "---Guiding Techniques-----------------------"
  0,N(GUIDES)<-[TECHNIQUE:*]
  "---Guidelines-------------------------------"
  0,1(ATTR)<-[PRACTITIONER_TEXT:*]
  0,1(ATTR)<-[CLIENT_TEXT:*]
  0,1(ATTR)<-[MANAGER_TEXT:*].

Figure 11 -  Activity Definition Graph

7. Participants

The above section distinguishes three types of participants in activities: inputs that are
used by activities, outputs that are produced by activities and resources that enable
activities. This section details each of these types of participants.

• Inputs

An input is a participant that is used by an activity. An input must exist before the
beginning of the activity and is transformed or consumed during the activity.
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If the input is consumed, it disappears during the activity and no longer exists.  If the
input is transformed, this means that there is a state transition during the activity and the
input no longer exists in its original state. In both cases, inputs in their orignal state no
longer exist at the end of the activity.

Following is the definition graph of an input to an activity.  The link to an activity is
unique and mandatory.

[INPUT: ∀]-
  1,1(USED_BY)->[ACTIVITY:*].

Figure 12 - Input Definition Graph

• Outputs

An output is a participant that is produced by an activity. An output may be created or
modified by the activity.

If the output is created, it may be created from scratch or from a consumed input.  If the
output is modified, this means that it is the result of a modification applied to a
transformed input

Following is the definition graph of an output of an activity.  The link from output to
activity is unique and mandatory.

[OUTPUT:∀]-
  1,1(PRODUCED_BY)->[ACTIVITY:*].

Figure 13 - Output Definition Graph

• Resources

Resources are participants in activity which are not inputs or outputs. A resource is
neither consumed nor transformed by the activity. A resource is, at the end of the activity,
in the same state it was at the beginning of the activity.

Following is the definition graph of a resource of an activity.  A resource must have at
least one enables conceptual relation with an activity. In the context of an activity, a
resource may assume a responsibility.

[RESOURCE:∀-
  1,N(ENABLES)->[ACTIVITY:*]
  0,1(ASSUMES)->[RESPONSABILITY:*].

Figure 14 - Resource Definition Graph

• Relationtype Hierarchy

This section presents the relation types hierarchy we have defined to describe
participation in activities. Indentation reflects subtyping.
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Involved
An involved relationship is a relationship between a concept and an activity.

Enables
An enable relationship is an involved relationship for which:
- each involved object exists before the activity starts, and
- those involved objects are not changed.

Practices
A practices relationship is an enables relationship for which the
involved object does the activity.

Informs
An informs relationship is an enables relationship for which the
involved object feeds the activity with information .

Controls
A controls relationship is an enables relationship for which the involved
object guides, manages, or controls the activity.

Supports
A performs relationship is an enables relationship for which the
involved object supports the realization of the activity.

Used
A used relationship is an involved relationship for which the involved objects
are either consumed during the activity, or the state they are at the start will
change.

Consumed
A consumed relationship is an used relationship for which the involved
object is consumed or deleted during the realization of the activity.

Transformed
A transformed relationship is an used relationship for which the
involved object is transformed in its state during the realization of the
activity.

Changed
A changed relationship is an involved relationship for which each involved
object is either created , or its state has been changed during the activity.

Created
A created relationship is an involved relationship for which the
involved object is created during the activity.

Modified
A modified relationship is an involved relationship for which the
involved object has its state changed during the activity.
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8. Conclusion

In this paper we have presented the metamodel of a method based on domain concepts.
This work has been developed and implemented at the Research & Development
Department of DMR Group Inc.  This work is part of the IT Macroscope Repository that
stores and displays the methods developed in the context of the IT Macroscope project.

In January 1996, five methods were commercially delivered: Information systems
development, Architecture, Benefits, Technical Infrastructure, and Estimating in
hypertext formats generated from conceptual graphs. From about 80,000 conceptual
graphs, we generated more than 100,000 HTML pages that can be browsed using
commercial Web browsers.

We developed a CG knowledge base to store the knowledge aspect (with its three levels
of abstraction: the meta-metamodel, the metamodel of method, the methods themselves)
and the presentation aspect. We also developed an engine that interprets presentation
conceptual graphs and generates any kind of output.

This development lead us to manage a large amount of knowledge:

• 1,000 concept types for meta-metamodels of knowledge, presentation and
operational aspects;

• 100 view types and 2,000 concept types that define how to extract information from
the conceptual graph repository and how to generate HTML files;

• 5,000 domain concepts, 1,500 information elements, 20,000 deliverables, 5,000
activities, 200 techniques;

• 100,000 English and French HTML files, 2,000 generated GIF models and more
than 1,000,000 hyperlinks;

This new approach will allow us to define methods that can be automated. We have
extended the conceptual graph notation but these extensions have their equivalencies in
conceptual graph formalism [10]. The next step is the complete integration of the three
aspects: knowledge, presentation and behavior.
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Application adaptation refers to the ability of the application to change its be-
havior according to the changes occurring in the processing environment. QoS is
a more general concept referring to the capacity of the system to offer and sup-
port different levels of service according to users requirements and expectations.
Scalability and application adaptation can be considered as some of the possible
mechanisms used to provide QoS support.

QoS support was initially introduced in the field of telecommunication net-
works and multimedia systems [13] and led to proposals for management strate-
gies aimed at deciding whether and controlling how multimedia streams can
be delivered to the user with some constraints. These constraints are expressed
during a specification step where the user specifies his requirements, generally
concerning system performance relative to media delivery and synchronization.
The system then works to deliver the specified level of service and for that pur-
pose transforms the users’ requirements into various constraints mainly targeted
to the transport system [7].

If we consider the notion of QoS from a broader perspective, we have to
position the user at the center of the process and allow him to express non-
functional requirements. We can then talk about quality-driven delivery (QDD)
where the user’s quality requirements are taken into account in the different steps
of the delivery. With this perspective in mind, implementing QDD mechanisms
leads us to consider different issues such as system components interoperability,
quality information management, distributed execution of QDD activities, and
multi-criteria optimization. In this paper, we focus on quality information man-
agement to support QDD. We propose a model management approach to the
problem and we introduce metamodel and model operations for that purpose.
We use conceptual graphs formalism to develop our QDD metamodel and we
show how the conceptual graph derivation mechanism can be applied to imple-
ment some fundamental model operations. The rest of the paper is organized
as follows. Section 2 presents the principles of QDD and motivates the use of
an approach based on model management. We present our modeling formalism
and our architecture in Section 3. In section 4 we propose and explain our meta-
model. Section 5 presents some operations we need to process on models in order
to support QDD. Section 6 concludes and presents some future work.

2 Quality-driven Delivery

Quality-driven delivery refers to the capacity of services to deliver objects, while
considering the users expectations in terms of non-functional requirements. For
example, an adaptive video delivery service must consider user expectations in
terms of the perceived quality of video sequences to be delivered, as well as the
characteristics of the equipment used for delivery (cellular phone, PDA or other).
In this case, the video delivery service has to choose among possible variants of
the video sequence, the one satisfying the user expectations and the equipment
constraints.
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Some approaches have been proposed for multimedia application adaptation,
more specifically for adaptation to the technical infrastructure used for accessing
multimedia objects [8][6][15]. Most of them are more oriented towards resource
allocation than user-perceived quality. We believe that it is time to consider
maximizing the user-perceived quality as a main objective.

These considerations may be placed in the more general context of the Web
Accessibility Initiative (WAI) initiated by the World Wide Web Consortium.
The accessibility to the World Wide Web is important and there are barriers on
the Web for many types of disabilities. A QDD approach based on the user re-
quirements considers all personal (physical, cognitive and affective) parameters.

In this section we first introduce the general principles and activities involved
in a QDD process and we illustrate them with the help of a simple adaptive video
delivery application. We then motivate the use of a model management based
approach.

2.1 Principles and Activities

QDD can be viewed as a generalization of QoS management, and some of the
traditional QoS activities can be transposed for QDD. More specifically, when
studying quality information management, we are mainly interested in the three
following QoS activities: specification, monitoring and mapping.

Specification consists in identifying the quality dimensions to express user’s
requirements such as time, cost or data quality and of defining the expected
level of quality. Monitoring consists in collecting information on the quality level
that can be provided by the different components of the distributed multime-
dia system, such as the video server, the communication server, the database
server or the client device. Mapping consists in converting qualitative and sub-
jective quality levels into quantitative and measurable quality levels, as well as
to convert these quantitative quality levels to constraints corresponding to re-
source requirements for the object delivery. A QDD system then requires the
description and management of this quality information. Based on this informa-
tion, the system takes decisions that are transmitted to the different components
supporting QDD.

To illustrate the principles of QDD, we take the example of a simple adaptive
video delivery service where the users specify their quality preference according
to three dimensions: the language of the audio sequence and the size and the
frame rate of the video. The adaptation process leads to take decisions in order
to deliver a variant of the initial high quality video sequence compatible with
the available resources.

2.2 Quality Information Management

The focus of the work presented in this paper is the management of quality in-
formation or quality metadata related to the user requirements, the objects to
be delivered and the resources used for delivery. Quality information comes from
different sources and can be heterogeneous. For example, quality information
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associated to video objects can differ depending on the encoding format and the
standard used to describe associated metadata. The monitoring tools used to
collect quality information about the service level of the system components can
also produce heterogeneous information. We see that there is a need for homog-
enization and integration of quality information. Different factors can influence
user-perceived quality, and any metadata associated to multimedia object should
be considered as a potential candidate for being a quality factor. Thus, there is
a need for extension and adaptation of quality information models as well as
for tools allowing description, integration and translation of quality information
sets coming from different sources and represented using different formalisms or
standards.

This problem is similar to the problem of data migration or schema transla-
tion in the field of metadata management for data warehouses and web portals.
For QDD, we are interested in a subset of metadata, metadata describing the
quality of objects, data sources or resources. To solve the problem of data mi-
gration and schema translation, database researchers have recently proposed an
approach based on model management [1] [2]. These authors propose to address
the problem from a higher level of abstraction and to work on models rather than
working on data. This approach would lead to the development of a generic in-
frastructure for managing models and to the introduction of model operations
for integration and translation of data.

At the same time, in the field of software engineering and more specifically for
software production, the Object Management Group (OMG) recently launched
the Model Driven Architecture (MDA) to move from code-oriented software
production techniques to model-oriented production techniques [10][3]. The ob-
jective is to allow abstraction, refinement and different viewpoints of models
representing the function, structure or behavior of a system. The other impor-
tant objective is to be able to design models independent of platform and im-
plementation environments. The concept of platform-independent model (PIM)
and platform-specific model (PSM) have been introduced for that purpose.

We believe that quality information management for QDD is a good can-
didate for model management, because not only are we concerned by integra-
tion and translation of quality metadata but also because QDD is provided in
a distributed and heterogeneous environment where monitoring tools are fully
platform-dependant.

3 Modeling Formalism

When looking at modeling techniques to deal with model management in the
context of QDD, we have chosen conceptual graphs formalism for two reasons: (i)
type definitions are made at instance levels, and (ii) there exists a very powerful
mechanism called conceptual graph derivation, that can be used for fundamental
model operations.
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In this section, we first introduce our overall modeling architecture and iden-
tify where our work takes place, and then we give a brief introduction to con-
ceptual graphs for those who are not familiar with this formalism.

3.1 Modeling Levels

Our overall modeling architecture is a four layers architecture, based on the
notions of model, metamodel and meta-metamodel.

In our context we define a model as an abstract representation of something
that happens in the real world. A model is a simplification of a situation that
takes place in the real world. The way and the vocabulary we use to build
models are called the metamodel. The metamodel is a precise definition of the
constructs and rules that are used in models. At the highest level, the meta-
metamodel defines the language used in metamodels. In this paper we use the
conceptual graph formalism to represent these models and their relationships.

Conceptual graphs are graphs made of concepts (a box with a type label and
a referent) and conceptual relations (a circle with a type label). The type label
identifies the type of the referent or of the relationship. Conceptual graphs will
be presented in more details in the next section.

Figure 1 illustrates the four layers architecture where:

– M0 is the real world where the situation we want to represent takes place.
The M0 level is described at level M1.

– M1 is the model level. It represents a particular situation of the real world.
It defines types and instances that represent the real world, M0. Models at
level M1 are expressed using a language that is defined at level M2.

– M2 is the metamodel level: our meta-model for QDD. It contains all the
vocabulary used at level M1.

– M3 is the meta-metamodel: the formalism of conceptual graphs. We show
only constructs of the formalism that are involved in the example. A complete
description can be found in [5]

In Figure 1, at level M0 Mary is specifying her requirements. She wants
her video in French. This is represented at level M1 by Req. This requirement
contains a qualitative dimension Language which is characterized by the value
’French’. At level M2 we find the vocabulary needed to describe M1. In the
example, for clarity purpose we show only concept types QualitativeRequirement,
QualitativeDim, Value and relation type chrc (characterizes). At level M3 is the
meta-metamodel with Concept Type and Relation Type. The meta-metamodel is
defined using itself and thus is the highest level.

The conceptual relation meta links two constructs from two adjacent levels
or two constructs from level M3. In Figure 1 conceptual relations meta has been
added to better understand the different modeling levels and their relationships.
They are implicitly defined in the type of concepts.
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M3

M2

M1

M0

ConceptType:QualitativeRequirement

ConceptType:QualitativeDim ConceptType:Value

QualitativeDim:Language Value:'French'chrc

QualitativeRequirement : Req

meta meta meta

RelationType:chrc

meta

ConceptType:ConceptType ConceptType:RelationType

metametameta meta

metameta

Fig. 1. Four Layers Architecture.

3.2 Conceptual Graphs

This section presents a brief introduction to the formalism of conceptual graphs
introduced by John Sowa in 1984 [11]. Only a minimum explanation is provided
as required to understand the rest of the paper. More information on conceptual
graphs can be found [12] and [4].

Conceptual graphs are a formalism whereby the universe of discourse is mod-
eled by concepts and conceptual relations. Concepts may be categorized based
on the type of conceptual relations they have with other concepts. Concept types
define these categories. A concept type is defined by a definition graph any in-
stance of that concept type must comply with. Figure 2 presents the definition
graph of EMPLOYEE that means that an employee is a person that works for
some organization.

ConceptType:Employee

CTDefinitionGraph:

Person:*xdef works-

for
Organization:*

ConceptType:Personcsubt

Fig. 2. Conceptual Graphs: Type Definition.

We now present two theorems from [11] that specify how conceptual graphs
can be structured.

Theorem 1. Generalization, denoted ≤, defines a partial ordering of conceptual
graphs, called the generalization hierarchy. For any conceptual graphs u, v and
w three conceptual graphs, the following properties are true:
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– Reflexive. u≤u;
– Transitive. If u≤v and v≤w, then u≤w;
– Antisymmetric. If u≤v and v≤u, then u=v;
– Subgraph. If v is a subgraph of u then u≤v;
– Subtypes. If u is identical to v except that one or more type labels of v are

restricted to subtypes in u, then u≤v;
– Individuals. If u is identical to v except that one or more generic concepts of

v are restricted to individual concepts of the same type, then u≤v.

Last we present the fundamental operation on conceptual graph that calcu-
late the specialization relationship.

Theorem 2. For any conceptual graph u and v where u ≤ v, there exists a
mapping π : v → u, where πv is a subgraph of u called a projection of v in u.
The projection operator π has the following properties :

– For each concept c in v, πc is a concept in πv and type(πc)≤type(c). If c is
individual, then referent(c) = referent(πc).

– For each conceptual relation r in v, πr is a conceptual relation in πv and
typeπr = type(r). If the ith arc of r is linked to a concept c in v, the ith arc
of πr must be linked to πc in πv.

We will use these theorems for model management operations. The reader
interested in their demonstrations will find them in [11].

We can now understand why conceptual graphs are well adapted for model
management. Types definitions are made at instance levels that, means that
types are defined by graphs made of instances and part of these instances may
be generic or individuals. Types and instances are represented with the same
elements: concepts and conceptual relations. Therefore we define models (types)
and requirements (instances) as graphs and we use generalization and derivation
operations to manipulate them. Using Object oriented technology like UML is
more problematic because classes (types) and objects (objects) are different in
nature and cannot be mixed or manipulated by the same tools.

4 Metamodel for QDD

In this section, we present the metamodel we propose for QDD. This metamodel
specifies the vocabulary and grammar we will use to describe quality information
for users, media objects and system components.

4.1 Dimension

Quality information is built with the concept of dimension. Dimensions are used
to describe objective or subjective characteristics relative to the quality of a de-
livery service or the quality of an object to be delivered. Subjective characteristics
refer to the quality level perceived by the user while objective characteristics refer
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to a measurable quality level. An example of a dimension is network-throughput.
This dimension is objective and can be measured using monitoring tools for
communication networks. We call such a dimension a quantitative dimension.
An example of a subjective dimension can be response-time with the values: (un-
acceptable, bad, good, excellent). This dimension a qualitative dimension since
the possible values depends on the perception or the interpretation of the user.
Figure 3 presents the concept type definition graph for Dimension. A Dimension
is defined on a domain of possible values.

ConceptType:Dimension

CTDefinitionGraph:

T:*xdef
on Domain

ConceptType:Tcsubt

Fig. 3. QDD Metamodel : Dimension element.

We define two types of dimensions: qualitative dimensions and quantitative
dimensions.

4.2 Quality Information Models

The quality information, built with the concept of dimension, is modeled in
quality information (QI) models. QI models describe the structure of quality in-
formation and allow the reuse, transformation and extension of existing models.
A Model is represented by a graph that contains Dimension elements. Figure 4
shows the concept type definition graph for Model.

ConceptType:Model

CTDefinitionGraph:

def

ConceptType:Graphcsubt

Dimension:*

Graph:*x

Fig. 4. QDD Metamodel : Model element.

QI models can be User Quality Model or Actor Quality Model. The model
elements of a User Quality Model describe the dimensions used to specify the
expected quality level. We make a distinction between Qualitative Quality Model
where the dimensions included in the model are qualitative dimensions, and
Quantitative Quality Model where the dimensions are quantitative dimensions.
Figure 5 presents the type hierarchy for Model.
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Quality
Information

Model

User Quality
Model

Actor
Quality Model

Qualitative
Quality Model

Quantitative
Quality Model

Resource
Quality Model

Media
Quality Model

Fig. 5. Quality Information Models.

The model elements of an Actor Quality Model integrate the quantitative
quality dimensions along which is described a quality level. We make a distinc-
tion between a Media Quality Model built with the dimensions used to describe
the quality level of an object to be delivered, and a Resource Quality Model
describing the quality level offered by a system component (communication net-
work, database system, video server, user’s device etc.).

We give in Figure 6 an example of a Quantitative Quality model. The model
has been simplified in order to understand the relationship between the meta-
model at level M2 and models at level M1. The VideoDeliveryModel is a graph
that contains three dimensions Language, Frame Rate and Size.

QuantitativeDim:FrameRate

QuantitativeDim:Language LanguageValue:*chrc

Value:*chrc

QuantitativeModel:M0

QuantitativeDim:Size Value:*chrc

Fig. 6. QDD Models : an example.

4.3 Derived Models

In our approach, we consider that there exists a predefined Quality Information
Model: the Core Model. The Core Model is unique and contains the predefined
set of dimensions relevant for all types of QDD services. From this Core Model,
we can derive other models. The Core Model can be built on the basis on existing
standard such MPEG-7[6]

Derived models are models that are built from other models. A derived model
is a graph that is a generalization of another model. Explanation of derivation
mechanism will be detailled in Section 5
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ConceptType:DerivedModel

CTDefinitionGraph:

Model:*xdef
derived Model:*y

ConceptType:Modelcsubt

Fig. 7. QDD Metamodel : Derived Model element.

4.4 Instances of Models

From Quality Information Models we instantiate Quality Information. We distin-
guish : Qualitative Requirement, Quantitative Requirement, and Quality Level.
From a Qualitative Quality Model we instantiate a Qualitative Requirement
which is the user’s specification of the expected quality level. From an Actor
Quality Model we instantiate a Quality Level for a given actor (media or re-
source) and from a Quantitative Quality Model we instantiate a Quantitative
Requirement

In Figure 8 is the concept type definition of Quantitative Requirement. Quan-
titative Requirements are built from Quantitative Quality models. A quantitative
requirement is a graph that has a relationship instOf with a quantitative quality
model. Explanation of instantiation mechanism will be detailed in Section 5

ConceptType:QuantitativeRequirement

CTDefinitionGraph:

Model:*xdef
instOf QuantitativeQualityModel:*y

ConceptType:Modelcsubt

Fig. 8. QDD Metamodel : Quantitative Requirement element.

5 Model Operations

While considering model management for QDD, we have to consider the differ-
ent operations to be performed on models during the different steps of a QDD
process. The first operation occurring is the definition of the different QI models
supporting the process. In order to avoid repetitive tasks in model definition and
creation and to favor reuse of predefined or existing models, we introduce the
derivation operation. The second operation we consider in this paper is the model
instantiation, where a container for quality information is created in associating
values or constraints to the dimensions that constitute the QI model.

Another important operation is the model transformation, where semantic
or implementation rules are expressed to transform instances of a source model
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to instances of a target model. The transformation operation is not discussed in
this paper and is part of our future work.

In this section, we focus on model derivation and model instantiation and we
show how the conceptual graph derivation mechanism can be applied for these
two operations on QI models. We illustrate these operations with a given model.

5.1 A Quality Information Model

Let M0 be a Quantitative Quality model, Figure 9 presents M0, an example
of generic quality model. The graph M0 groups three quantitative dimensions
describing the quality of a video Language, FrameRate and Size. Each dimension is
characterized by a Value. In the case of Language, a specialized value LanguageValue

has been defined as a subtype of Value.

QuantitativeDim:FrameRate

QuantitativeDim:Language LanguageValue:*chrc

Value:*chrc

QuantitativeModel:M0

QuantitativeDim:Size Value:*chrc

Fig. 9. A Quantitative Quality Model for video delivery..

5.2 Model Derivation

In our approach, derivation is defined as a model specialization. A generic model
is specialized into a more specific model where each element of the specialized
model is a specialization of an element of the more generic model. In object
oriented modeling and in object oriented programming, specialization is well
defined [9]. The specialization is implemented through the inheritance mech-
anism in UML which is based on segment descriptors and full descriptors. A
full descriptor is the specification of characteristics of instances. A full descrip-
tor is produced from a set of segment descriptors connected by generalization
relationships. Segment descriptors are the elements defined in UML models.

Using conceptual graphs, the model derivation mechanism we defined for
QI model management consists in a generalization. From a generic model, a
generalization is done by the user selecting the dimensions which he or she
is interested in. In this step, the user suppresses the dimensions that are not
relevant for him. The result is a subgraph of the original one so the result model
is a generalization of the generic model.

From a generic model, M0 we want to derive two QI models for two specific
video delivery applications where the users are only concerned by the language
quality dimension in the first application and by Frame-rate and Size in the
second one. The selection of the pertinent dimensions for the application is made.
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The first one is only concerned by the dimension Language. The resulting graph
M1 is presented in Figure 10. It is reduced to one dimension. The second one is
only concerned by the dimensions FrameRate and Size. The resulting graph M2a
is presented in Figure 10. It is reduced to two dimensions.

QuantitativeDim:Size

QuantitativeDim:FrameRate Value:*chrc

SizeValue:*chrc

QuantitativeModel:M2

QuantitativeDim:Language LanguageValue:*chrc

QuantitativeModel:M1

Fig. 10. Model Derivation : example 1 and 2.

In both cases we have a subgraph of the original graphM0. According to The-
orem 1 (Section 3.2) M1 and M2 are subgraphs of M0 then we have M0≤M1
and M0≤M2. In the context of conceptual graphs, we use generalization to
define the model derivation operation as follows :

Definition 1. A model Mx is said a derived model from the model My if there
exists a projection π : Mx → My. There are the following properties :

– π(Mx) is a subgraph of My.
– My ≤ Mx.

5.3 Model Instantiation

Model instantiation corresponds to the creation of a container for Quality Infor-
mation and the creation of expressions (values or constraints) on the dimensions
that are part of a given Quality Information Model. Instantiation of a Quality In-
formation Model produces a Quality Information. Instantiation of a Qualitative
(Quantitative) Quality Model produces a Qualitative (Quantitative) Require-
ment, corresponding to a constraint specifying the quality requirements and
expectations for a given user. Instantiation of an Actor Quality Model produces
a Quality Level corresponding to the description of the quality level of a system
component or of an object to be delivered.

This operation corresponds to the conceptual graph specialization. In the
example 1 the requirement is on the language of the video. The language must
be French. The concept that represents the value of the language is replaced by
an individual concept that refers to the language French. Figure 11 presents the
resulting graph Req1 which is an instance of model M1.

In the second example we assume a new type has been defined. This new
type SizeValue is a subtype of Value. Its domain is for example 320x240, 640x480,
720x480. In order to restrict the possible values of size to this set of values we
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QuantitativeDim:Language LanguageValue:Frenchchrc

QuantitativeRequirement:Req1

Fig. 11. Model Instantiation : example 1.

replaced Value by sizeValue. The concept remains generic, so it is one of the three
possible values. As in the first example, the user wants a specific value for the
frame rate, 30 images per second in this case. The generic concept [Value:*]
is replaced by the individual concept [Value:30] . Figure 12 presents the
resulting graph Req2 which is an instance of model M2.

QuantitativeDim:Size

QuantitativeDim:FrameRate Value:30chrc

SizeValue:*chrc

QuantitativeRequirement:Req2

Fig. 12. Model Instantiation : example 2.

In both cases, we use the model instantiation operation which corresponds
to the specialization mechanism of conceptual graphs. According to Theorem 1
(Section 3.2) every concept of Req1 and Req2 have the same type or a subtype
and the referent is the same or a generic referent has been replaced by an indi-
vidual one in respectively M1 and M2 then we have Req1 ≤ M1 and Req2 ≤
M2. The instantiation operation is a specialization in the context of conceptual
graphs and we can define it as follows.

Definition 2. A Quality Information QIx is an instantiation of a model Mx if
there exists a projection π : Mx → QIx.

6 Conclusion and Future Work

In this paper we have presented a metamodel for quality-driven delivery us-
ing conceptual graphs as a modeling formalism. With this metamodel, we have
specified the vocabulary and grammar we use to describe quality information
for users, media objects and system components.

We have also showed how two model management operations: derivation and
instantiation may be implemented in a very simple way through the deriva-
tion mechanism of the conceptual graphs. Using the conceptual graphs formal-
ism helped us to clarify the concepts of our metamodel and the corresponding
operations. Conceptual graphs appear to be a neutral and powerful modeling
formalism for defining model management mechanisms.

In the future, we will work on another important operation for QDD: the
mapping operation. Mapping allows the expression of semantic relationships
between the concepts of different quality information models. These semantic
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relationships are defined on the quality dimensions and will be used to transform
instances of a source model to instances of a target model. We believe that
conceptual graphs with its inference capabilities and agents are certainly a good
candidate to formally define mapping operations.
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