
Published in U. Priss and D. Corbett and G. Angelova, editors, Proceedings of the 10th International
Conference on Conceptual Structures (ICCS’2002), Lecture Notes in Artificial Intelligence, volume 2393,

pages 205-219, Borovets, Bulgaria, July 2002. Springer-Verlag.

The Conceptual Graph Formalism as an

Ontolingua for Web-Oriented Representation
Languages: The RDF Schema Case Study

Olivier Gerbé1 and Guy W. Mineau2

1 HEC Montreal.
3000, chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada H3T 2A7

Olivier.Gerbe@hec.ca
2 Université Laval

Québec, Québec, Canada G1K 7P4
mineau@ift.ulaval.ca

Abstract. The semantic Web entails the standardization of represen-
tation mechanisms so that the knowledge contained in a Web document
can be retrieved and processed on a semantic level. RDF seems to be the
emerging encoding scheme for that purpose. However, there are many
different sorts of documents on the Web that do not use RDF as their pri-
mary coding scheme. It is expected that many one-to-one mappings be-
tween pairs of document representation formalisms will eventually arise.
This would create a situation where a young standard such as RDF would
generate update problems for all these mappings as it evolves, which is
inevitable. Rather, we advocate the use of a common Ontolingua for all
these encoding formalisms. Though there may be many knowledge rep-
resentation formalisms suited for that task, we advocate the use of the
conceptual graph formalism.

1 Introduction

The advent of the semantic Web [3] necessarily entails the standardization of
representation mechanisms so that the knowledge contained in a Web document
can be retrieved and processed on a semantic level. RDF (Resource Description
Framework) [25] seems to be the emerging encoding scheme for that purpose.
RDF and RDF-S (RDF Schema) [8] define a way to describe Web resources
through properties and values that are machine-understandable. RDF-S spec-
ifies how to describe RDF vocabularies. The popularity of RDF is bound to
grow. However, there are many different sorts of documents that are or could
be made available on the Web today that do not use RDF as their primary
coding scheme. Let us cite XML (eXtensible Markup Language) for encoding
the layout and content of Web pages, UML (Unified modeling Language) [19]
diagrams used for conceptual modeling purposes, E-R (Entity-Relationship) [7]
diagrams used in the development of database schemas, and soon, trading docu-
ments for independent software brokers who will automatically process requests

2 Olivier Gerbé and Guy W. Mineau

for different software modules, requests sent by distributed software applications
such as agent-based systems. Some of these documents will need to remain in
their original encoding format and would not benefit from being translated into
a RDF format because: a) their main purpose is better served by the former
encoding scheme, b) the expressiveness of RDF may not be sufficient, c) the cost
of translating all of these documents, either in processing time and/or storage
cost, could be prohibitive, d) the applications that use them would need to be
updated, and e) the human intervention required to update them (both appli-
cations and documents) would need extensive retraining, which can be costly
and in the end, poorly effective. It is expected that many one-to-one mappings
between pairs of document representation formalisms will eventually arise like
what was done in [10]. This would create a situation where a young standard such
as RDF would generate update problems for all these mappings as it evolves,
which is inevitable. Rather, we advocate the use of a common Ontolingua for all
these encoding formalisms. A mapping then only needs to be from and to this
Ontolingua and the target languages: RDF, XML, UML, etc. For instance, trans-
lating a UML (class diagram) document into a RDF format would go through
that Ontolingua. We believe that, in the long term, system interoperability and
flexibility would be best served by such an Ontolingua.

Though there may be many knowledge representation formalisms suited for
that task, we advocate the use of the conceptual graph formalism and we demon-
strate below that it is a particularly good candidate for that purpose. Tim
Berners-Lee compared RDF and conceptual graphs and concluded that Con-
ceptual Graphs are easily integrated with the Semantic Web [2]. Martin and
Eklund used CGs to describe and to index Web documents [12]. In effect, the
CG formalism:

1. offers a unified and simple representation formalism that covers a wide range
of other data and knowledge modeling formalisms,

2. allows matching, transformation, unification and inference operators to pro-
cess the knowledge that it describes,

3. as a graphical interface to a logic-based system, allows easier interpretation
of the knowledge that it encodes,

4. provides for higher representation capabilities such as contexts, modalities,
etc., in the same graphical notation as first-order knowledge,

5. is well suited for natural language processing, and is therefore an asset for
related applications where the input (textual or annotated documents) is
textual, or when the output must be in textual format (e.g., to generate
explanations for instance), as is supported by a wealth of literature on the
subject [14, 11].

This paper1 is organized as follows. Section 2 introduces the CG meta-
metamodel. Section 3 and 4 present respectively RDF and RDF-S metamodels
using CG meta-metamodel and Section 5 illustrates the use of these metamod-
els. Section 6 presents model transformation metarules and examples. Section 7
reviews related work and Section 8 concludes and discusses further work.
1 This work is part of a research project supported by HEC Montreal.

The Conceptual Graph Formalism as an Ontolingua 3

2 Conceptual Graphs and Metamodeling

Over the past few years a lot of work has been done on metamodeling [1, 9,
13, 17, 18, 26] but some issues are still debated today: the notion of abstraction
layers, their precise role, their relationships, and therefore, their number. In [6]
we discussed and argued that we envision three modeling layers, as illustrated in
Figure 2: the Meta-Metamodel layer, the Metamodel layer and the Model layer
and we shown in [16] that all these layers can be represented under the CG for-
malism. Figure 1 presents a part of the ontology used to the CG representation.

Element

Graph
DefinitionGraph

RestrictionGraph
If

Then

Concept

Relation

RelationType

ConceptType

Referent

Arc
SrceArc

DestArc

Type

Context

Graph_Elt

CorefLink

DefiningConcept

BoundConcept

IndividualConcept

GenericConcept

Fig. 1. The CG language type hierarchy.

At the top of the hierarchy are the six basic types of the conceptual graph lan-
guage: Referent, Graph, Context, Type, CorefLink, and Graph-Elt. Referents (Referent)
are internal proxies of the objects of the universe of discourse; graphs (Graph)
are the sentences of the language; contexts (Context) allow us to group con-
ceptual graphs; types (Type) are used to categorize referents; co-reference links
(CorefLink)associate concepts that represent same elements, and graphs elements
(Graph-Elt) that are arcs (Arc), relationships (Relation) and concepts (Concept).

Among concepts we distinguished between individual concepts (IndividualCon-

cept) that represent identified objects and generic concepts (GenericConcept) that
represent unidentified objects.

Among graphs we distinguished between definition and restriction graphs.
Definition Graphs (DefinitionGraph) are used to define concept types and relation
types. Restriction graphs (RestrictionGraph) are graphs that must be always false
and that constraint concept types definitions.

Using this language, we can represent different formalisms as shown in Figure
2. At the very top is the meta-metamodel layer, often referenced as M3, where the
vocabulary to specify metamodels is defined. In this paper, we will use conceptual
graphs to represent metamodels.

The metamodel layer known as M2 defines the set of terms used in M1 level
to model the real world. In M2 we can find different metamodels and metarules
to transform models from one metamodel to another metamodel. We give as
an example in Figure 2 three different metamodels: a metamodel for UML that
would define UML Class, UML Object and other UML elements, a metamodel

4 Olivier Gerbé and Guy W. Mineau

ConceptType:Person

Person:MaryConcept:

cgtype

rdfsClass:Person

rdfResource:Mary

rdfstype

umlClass:Person

umlObject:Mary

umltype

Mary : Person Person:Mary rdf:type

Mary

Person

UML Metamodel CG Metamodel RDF Schema Metamodel

Meta-Metamodel M3

M2

M1

M0

definitions
of:

UML Class,
UMLObject,
 ...

Concept,
Relation,
 ...

RDFS Class,
RDF Resource,
 ...

Fig. 2. The three modeling layers and the real world.

for CGs which would include Concept Type, Concept and other CG elements,
and a RDF Schema with RDF-S Class, RDF resource and other RDF-S and
RDF elements.

Models are defined at the M1 layer. A model is a simplified representation
of the real world. In our example we have represented with conceptual graphs
the fact that ”Mary is a person” using terms defined in M2 under three different
metamodels: UML Metamodel, CG Metamodel and RDF Schema Metamodel.

On the left side under the UML Metamodel, the fact that is represented in

UML by Mary : Person is represented by Mary is a umlObject that has a relationship
umlType with the umlClass Person. The central part of the Figure shows the CG
representation. On the right side there is the RDF Schema representation where
we expressed that Mary is a rdfResource whose rdfType is the rdfClass Person.

As said in the introduction, in this paper we metamodel RDF Schema ele-
ments using conceptual graphs. As a first example, Figures 3 and 4, show the
specification of a RDF Schema Class using respectively RDF-S and CGs. And
we think that the latter is less confusing. In a nutshell, there has been a lot of
work on knowledge representation languages based on semantic networks over
the past 30 years and we feel that any graphical specification language (such as
RDF-S) should rely on this wealth of expertise in order to come up with a specifi-
cation formalism that would avoid the pitfalls identified in the literature[24, 20]:
the mixing of different abstraction layers in a single expression, the imprecise
association of syntactical constructs to semantic roles, and so on.

In specification using CGs, relationships csubt and def are meta-relationships.
They belong to the metamodel. The csubt relationship between the concept
[ConceptType:RDFSClass] and [ConceptType:RDFSResource] expresses that a RDF-
S Class is a kind of RDF-S Resource.

The Conceptual Graph Formalism as an Ontolingua 5

rdfs:Class

rdfs:Resource

rdfs:subClassOf rdf:ID

rdfs:Literal

range

dom
ain

subClassOf

range

do
m

ai
n

Fig. 3. The definition of the RDF-S Class using RDF-S.

ConceptType:rdfsClass

CTDefinitionGraph:

rdfsResource:?x
def

ConceptType:rdfsResourcecsubt

subClass rdfsClass

ID rdfsLitteral

Fig. 4. The definition of the RDF-S Class using CGs.

3 RDF Metamodel

We have seen that we can represent the different levels using CGs. We propose
a metamodel for RDF in this section and a metamodel for RDF-S in the next
section.

In this section we present the three main elements of RDF: Resource, Property,
and Statement, since they form the basis of RDF and are quite sufficient to
provide some idea on how other elements of RDF would be represented under
the metamodel that we describe in this paper using the CG notation.

3.1 RDF Schema Resource

The main element of RDF is the notion of rdfsResource. rdfsResource is at the
top of the class hierarchy and is subclass of itself. Figure 5 presents its CG
specification. A rdfsResource has a rdfstype relationship with a rdfsClass, and
a rdfslabel relationship with a rdfsLitteral and may also have some literals as
comments.

3.2 RDF Schema Property

In a RDF Schema the notions of attribute and relationship are implemented
through the unique notion of property. A Property links two classes. One is the
class on which the property may be applied (attribute of the class or source
of the relationship). The other one is the class in which values may be taken
(values of the attribute or target of the relationship). Associated to Property, a

6 Olivier Gerbé and Guy W. Mineau

ConceptType:rdfsResource

CTDefinitionGraph:

rdfsResource:?x

def

ConceptType:rdfsResourcecsubt

rdfstype rdfsClass

rdfslabel rdfsLitteral

rdfscomment rdfsLitteral

Fig. 5. The rdfsResource specification.

RDF Schema defines two relationships (properties): domain and range. Figure 6
presents the CG representation of the specification of Property.

ConceptType:rdfsProperty

CTDefinitionGraph:

rdfsResource:?xdef

ConceptType:rdfsResourcecsubt

rdfsrange rdfsClass

rdfsdomain rdfsClass

Fig. 6. The Property specification.

3.3 RDF Statement

In RDF, knowledge is represented through statements. A statement is an asso-
ciation between a resource, a property and a value or another resource. Figure
7 illustrates knowledge representation in RDF and its representation using con-
ceptual graphs: a property and a value are linked to the resource they describe.
The conceptual relations subject, object and predicate identify roles played by
each concept (see 3.4).

3.4 RDF High Order Statement

Sometimes we need to express knowledge about statements. In RDF, statements
may be reified. RDF allows the representation of statements about statements,
called High Order Statements. Figure 7 shows a high order statement expressed
in RDF Syntax and its representation into conceptual graphs. A statement is
represented by a resource with four properties. The subject property identifies
the described resource. The predicate property identifies the property of the

The Conceptual Graph Formalism as an Ontolingua 7

Resource:book2

Property:Author Literal:'Sowa'

triplet

predicate object

subject

<rdf:Description about='book2'>
 <a:author>Sowa</a:author>
</rdf:Description>

Fig. 7. A RDF Statement.

statement and the object property identifies the value of the property or the
resource linked by the property. Contrarily to the previous statement, here using
this high order statement, we can state about statements as in ”Paul says that
the book is authored by Sowa”. ”The book is authored by Sowa” is expressed
as a high order statement that is attributed to Paul.

Statement:

<rdf:Description>
 <rdf:subject resource='book2' />
 <rdf:object resource='Sowa' />
 <rdf:predicate resource='Author' />
 <rdf:type resource='Statement' />
 <a:attributedTo>Paul<a:attributedTo>
</rdf:Description>

Resource:book2

Property:Author Literal:'Sowa'

triplet

predicate object

subject

Resource:Paul

Property:attributedTo

triplet

Fig. 8. The RDF High Order Statement.

4 RDF Schema Metamodel

This section presents the main elements of the RDF Schema Metamodel. We
will not present all the RDF Schema metamodel elements, but will rather focus
on the core classes and properties. Figure 9 presents the type hierarchy of the
presented elements.

At the top is the type rdfsResource. All elements of RDF and RDF schemas
are considered to be resources. Below we find the two main elements: rdfsClass
and rdfsProperty that correspond respectively to CG Concept Type and Relation
Type. Constraint Resource is an ad-hoc element used to specify constraints. In
particular Constraint Property will be used to implement the constraint properties
domain (4.4) and range (4.5).

4.1 RDF Schema Class

A RDF Schema Class corresponds to the abstract notion of Type. As noted in
RDF Schema specification [8], this notion is similar to Class in object-oriented

8 Olivier Gerbé and Guy W. Mineau

ConceptType:rdfsResource

ConceptType:rdfsClass

ConceptType:rdfsConstraintResource

ConceptType:rdfsProperty

ConceptType:rdfsConstraintProperty

Fig. 9. The RDF Schema Type Hierarchy.

programming languages. This means that class members specification is made at
the type level as in UML [19] and not at the data level as in the CG formalism
[15]. Figure 10 presents the CG specification representation of rdfsClass. At the
metamodel level, a rdfsClass is a kind of rdfsResource so there is a csubt relation-
ship between [ConceptType:rdfsClass] and [ConceptType:rdfsResource]. At the model
level, a rdfsClass is a rdfssubClass of another rdfsClass and is identified by an ID.

ConceptType:rdfsClass

CTDefinitionGraph:

rdfsResource:?x
def

ConceptType:rdfsResourcecsubt

subClass rdfsClass

ID rdfsLitteral

Fig. 10. The Class Specification.

4.2 RDF Schema type Relationship

The RDF-S type relationship is used to indicate that a resource is a member of a
class. The relationship links a resource to its class. In a RDF Schema a resource
may be linked to more than one class. Figure 11 presents the CG specification
of the relationship.

4.3 RDF Schema subClassOf Relationship

The RDF-S subClassOf relationship links a class to its super class. Figure 12
presents the CG specification of the relationship. In a RDF Schema one class
may be linked by a subClassOf relationship to more than one class.

The Conceptual Graph Formalism as an Ontolingua 9

RelationType:rdfstype

RTDefinitionGraph:

rdfsResource:?x1 rdfstypedef srce

RelationType:Linkrsubt

dest rdfsClass:?x2

Fig. 11. The RDF-S type relationship specification.

RelationType:rdfssubClassOf

RTDefinitionGraph:

rdfsClass:?x1 rdfssubClassOfdef srce

RelationType:Linkrsubt

dest rdfsClass:?x2

Fig. 12. The RDF-S subClassOf relationship specification.

4.4 RDF Schema domain Relationship

The RDF-S domain relationship links a property to classes whose members can
have this property. Figure 13 presents the CG specification of the relationship.

RelationType:rdfsdomain

RTDefinitionGraph:

rdfsProperty:?x1 rdfsdomaindef srce

RelationType:Linkrsubt

dest rdfsClass:?x2

Fig. 13. The RDF-S domain relationship specification.

4.5 RDF Schema range Relationship

The RDF-S range relationship links a property to the class in which the property
takes its values. Figure 14 presents the CG specification of this relationship.

We have shown in this section how conceptual graphs can be used to represent
the RDF Schema Metamodel. Now in the following section, we will present how
to express a RDF-S statement using conceptual graphs.

5 Example of RDF Schema and RDF Representation

Now we have defined RDF and RDF-S metamodel elements, we can represent
RDF facts and RDF-S facts in the same formalism. We can have a complete

10 Olivier Gerbé and Guy W. Mineau

RelationType:rdfsrange

RTDefinitionGraph:

rdfsProperty:?x1 rdfsrangedef srce

RelationType:Linkrsubt

dest rdfsClass:?x2

Fig. 14. The RDF-S range relationship specification.

picture of the two levels as illustrated in Figure 15 which adds to Figure 7 the
model part. Figure 15 shows a part of the RDF Schema metamodel and the
model of the statement. On the upper part of the figure are the main elements
of the RDF Schema metamodel. We find the actual model on the lower part of
the figure. This figure expresses (through its left part) that the property Author
takes its values in the class Litteral and that it may be applied to the class
Person. On its right part it expresses the statement itself: the resource Book2 is
the subject of the statement, the resource Sowa whose type is Litteral is the object
of the statement and the property Author is the predicate of the statement. We
added dotted lines between concepts and their concept types to explicitly show
relationships between models and metamodels although these relationships are
implicitly represented by the name of type in concepts.

ConceptType:rdfsClass ConceptType:rdfsProperty

RelationType:rdfsrange

RelationType:rdfsdomain

rdfsClass:Book rdfsProperty:Author

rdfsClass:Litteral

rdfsrange

rdfsdomain

rdfsResource:Book2

triplet

rdfsResource:'Sowa'

ConceptType:rdfsResource

predicate
object

subject

RDF Schema Metamodel

RDF Schema Model

rdfstype

rdfstype

RelationType:rdfstype

Fig. 15. The representation of ”Sowa is the author of the book2”.

The Conceptual Graph Formalism as an Ontolingua 11

6 Transformation Rules

For all formalisms we can have a CG representation of their metamodel and
we can define transformation rules from one to another2 as illustrated in this
section.

These transformation rules are metarules that map the meta level to the
data level. In [23] Sowa describes a mapping between the meta level and the
data level. To translate a meta level statement into a data level statement, Sowa
introduces two functions τ and ρ. The function τ translates a referent name into
a type label. The function ρ has the same behavior as τ on relation types and
relations; it translates the name of a relation into a relation type label. In [16]
we generalized τ and ρ and defined the function ω as follow:

Definition 1. The function ω is defined over C → E where C is the set of
concepts that represent entities of the system and E is the set of all referenced
elements (internal and external elements).

Applied on a concept the function ω returns the entity represented by the con-
cept. Obviously, the function is defined on the set of concepts that represent
entities of the system.

ω([Graph : [Cat]->(on)->[Mat]]) = [Cat]->(on)->[Mat]

ω([ConceptType : *t]) abbreviated in ωt returns the type label t

We show here how we can use CG Metamodeling and metarules to transform
models from one formalism to another3. To illustrate these transformation rules
we present three of them.

The first rule may be applied to transform a RDF Resource into its cor-
responding conceptual graph model. A RDF Resource corresponds to a CG
concept. The rule states that if there exists a RDF Resource x instance of a
RDF-S Class y then there is a concept whose type is y and referent is x. Figure
16 presents this metarule.

The second rule may be applied to transform a RDF Schema model with
constraints into its corresponding conceptual graph model. As we said before,
constraints are not always defined in the same way in RDF Schema and in
conceptual graphs. In a RDF Schema constraints are stated between classes
and properties. In the conceptual graphs formalism some constraints are stated
between concept types but others are stated in concept type definition graphs.
Figure 17 presents the metarule.

Constraints on RDF-S classes like rdfssubClassOf are transformed into con-
straints on concept types. The rdfssubClassOf property between classes is trans-
formed into the csubt relationship between concept types. But constraints like
2 If the expressiveness of the two formalisms is equivalent. If it is not, there is only

a mapping of a subset of constructs of the most expressive formalism to the least
expressive one.

3 As long as metarules do not use functional symbols and do not introduce new ele-
ments, one can have a direct mapping between equivalent constructs and rules are
not recursive.

12 Olivier Gerbé and Guy W. Mineau

If

Then:

rdfResource:*x rdfstype rdfsClass:*y

ConceptType:*y cgtype Concept: ωy:*x

Fig. 16. A RDF Resource is translated in a concept.

If

Then:

rdfsProperty:*x

rdfsdomain rdfsClass:*y

rdfsClass:*t

ConceptType:*y

CTDefinitionGraph:

ωz:?udef ωx ωt

rdfssubClassOf rdfsClass:*z

ConceptType:*zcsubt

rdfsrange

Fig. 17. A RDF Schema Constraint is transformed into a Concept Type Definition.

rdfsrange and rdfsdomain are transformed into constraints between concepts. A
RDF-S property x having a class y for range and a class t for domain may be
transformed into the fact that any concept of type t has a relationship of type x

with a concept of type y.
The third rule illustrates the transformation in the reverse way from a CG

model to a RDF Schema model. The concept type definition is transformed in
a set of RDF-S constraints. Figure 18 shows the metarule and the Figure 19
presents its application.

Applying metarules presented above we can translate a Concept Type Defi-
nition into RDF Schema Constraints and vice-versa as illustrated in Figure 19

7 Related Work

Few researchers has worked on model transformation and metamodeling. Re-
vault and al. propose in [4] a bridge to translate UML-based models to different
formalisms. They use a meta-metamodel called PIR3 that is itself an extension
of IR3 [22]. Instead of metarules, they use a reduction/normalization algorithm
that transforms a UML-based model to a set of constructs; each construct cor-
responding to a construct of PIR3. Bézivin [5] and Lemesle [21] have the same
approach of ours. They use metarules to transform a model with one formalism
to another model with a different formalism. Using a first set of metarules they

The Conceptual Graph Formalism as an Ontolingua 13

If

Then:

rdfsProperty:?x

rdfsdomain rdfsClass:?y

rdfsClass:?t

ConceptType:*y

CTDefinitionGraph:

ωz:?udef x t

rdfssubClassOf rdfsClass:?z

ConceptType:*zcsubt

rdfsrange

Fig. 18. A Concept Type Definition is transformed into a RDF Schema Constraint.

ConceptType:Driver

CTDefinitionGraph:

Person:?udef drives Car

ConceptType:Personcsubt
Driver

Person

drives

Car

subClassOf

range

domain

Fig. 19. Transformation example.

translate the source model in sNets, then from this sNets representation they
generate a model in the target formalism.

8 Conclusion

This article advocates the use of the CG formalism as an Ontolingua for al-
lowing the automatic translation of knowledge structures from one knowledge
representation formalism to the next, thus improving interoperability between
these formalisms (especially for those used in Web-oriented applications). In
[16] we showed that the CG formalism was an appropriate candidate for such
a purpose. Its expressiveness allowed the representation of the various levels of
abstraction needed to model some application domain: the data model (M1), its
metamodel (M2) and its meta-metamodel (M3). By providing a CG represen-
tation of metamodels of different formalisms, we therefore enable a knowledge
engineer to write transformation rules that will translate statements provided
in a source formalism to a target formalism. Using RDF and RDF-S, we illus-
trated our proposed methodology. We described the metamodel of RDF and
RDF-S using CGs, and showed how statements in RDF would be translatable
to other formalisms. Of course our prototype is far from being complete. We
need to extend the metamodel under construction so that we cover all aspects
of RDF and RDF-S. And we need to implement an analyzer that will convert
RDF statements into their CG representation using that metamodel. We also

14 Olivier Gerbé and Guy W. Mineau

plan on developing the (CG) metamodel of other formalisms (such as UML).
Our ultimate goal is to provide reasoning capabilities on knowledge structures
encoded in various documents on the WWW. Improving the interoperability of
the knowledge structures that each document contain is therefore relevant. Syn-
tax related considerations are a first and necessary step in that direction. Of
course, other considerations such a semantic interpretation of these extracted
knowledge structures is also a research issue that is on our agenda; forth-coming
papers on the subject will soon present that aspect of our research program.

References

[1] C. Atkinson and T. Kühne. The Essence of Multilevel Metamodeling. In Pro-
ceedings of UML’2001 Conference on Modeling Languages, Concepts and Tools,
Toronto, Ontario, Canada, October 1-5 2001.

[2] T. Berners-Lee. Conceptual Graphs and the Semantic Web. February 2001.
available at http://www.w3.org/DesignIssues/CG.html.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Amer-
ican, May 2001.

[4] X. Blanc, J.F. Perrot, and N. Reveault. Traduction de méta-modèles. In I. Borne
and R. Godin, editors, Langages et Modèles à Objets, pages 95–111, Le Croisic,
France, Janvier 2001. Hermès Science Publications.

[5] J. Bézivin. Objects Everywhere. In Proceedings of ICEIS, Setùbal, Portugal, July
2001. Invited Presentation.

[6] J. Bézivin and O. Gerbé. Towards a Precise Definition of the OMG/MDA Frame-
Work. In Proceedings of the 16th Conference on Automated Software Engineering,
pages 273–280, San Diego, USA, November 2001. IEEE Computer Society Press.

[7] P. Chen. The Entity-Relationship Model: Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9–36, March 1976.

[8] World Wide Web Consortium. Resource Description Framework (RDF) Schema
Specification 1.0, March 2000.

[9] S. Crawley, S. Davis, J. Indulska, S. McBride, and K. Raymond. Meta-Meta is
Better-Better. October 1997.

[10] A. Delteil, R. Dieng, and C. Faron-Zucker. Extension of RDFS Based on the
CGs Formalism. In H. Delugach and G. Stumme, editors, Proceedings of the 9th
International Conference on Conceptual Structures, ICCS 2001, pages 275–289,
Stanford, CA, USA, July/August 2001. Springer Verlag.

[11] H. Delugach and G. Stumme, editors. Proceedings of the 9th International Con-
ference on Conceptual Structures, ICCS 2001. Springer Verlag, Stanford, CA,
USA, July/August 2001.

[12] P. Eklund and P. Martin. Embedding Knowledge in Web Documents: CGs ver-
sus XML-based Metadata Languages. In W. Cyre and W. Tepfenhart, editors,
Proceedings of the 7th International Conference on Conceptual Structures, ICCS
1999, pages 230–246, Blacksburg, VA, USA, July 1999. Springer Verlag.

[13] J. Esch. Contexts, Canons and Coreferent Types. In J. Dick, J. Sowa, and
W. Tepfenhart, editors, Proceedings of the Second International Conference on
Conceptual Structures (ICCS, pages 185–195, College Park, Maryland, USA, Au-
gust 1994. Springer Verlag.

The Conceptual Graph Formalism as an Ontolingua 15

[14] B. Ganter and G. Mineau, editors. Proceedings of the 8th International Conference
on Conceptual Structures, ICCS 2000. Springer Verlag, Darmstadt, Germany,
August 2000.

[15] O. Gerbé. Conceptual Graphs for Corporate Knowledge Repositories. In H. Del-
ugach, M. Keeler, D. Lukose, L. Searle, and J. Sowa, editors, Proceedings of the
5th International Conference on Conceptual Structures (ICCS, pages 474–488,
Seattle, Washington, USA, August 1997. Springer Verlag.

[16] O. Gerbé. Un modèle uniforme pour la modélisation et la métamodélisation d”une
mémoire d”entreprise. PhD thesis, Université de Montréal, Avril 2000.

[17] O. Gerbé and B. Kerhervé. Modeling and Metamodeling Requirements for Knowl-
edge Management. In J. Bézivin, J. Ernst, and W. Pidcock, editors, Proceedings
of OOPSLA Workshop on Model Engineering with CDIF, Vancouver, Canada,
October 1998.

[18] Object Management Group. Meta Object Facility (MOF) Specification, September
1997. OMG Document AD/97-08-14.

[19] Object Management Group. Unified Modeling Language Specification, Jume 1999.
OMG Document AD/99-06-08.

[20] P. Kocura. Semantics of Attribute Relations in Conceptual Graphs. In B. Gan-
ter and G. Mineau, editors, Proceedings of the 8th International Conference on
Conceptual Structures, ICCS 2000, pages 235–248, Darmstadt, Germany, August
2000. Springer Verlag.

[21] R. Lemesle. Transformation Rules Based on Metamodeling. In Proceedings of
Second International Enterprise Distributed Object Computing Workshop (EDOC,
pages 113–122, La Jolla, CA, November 1998.

[22] H. Sahraoui. Application de la méta-modélisation à la génération des outils de
conception et de mise en oeuvre des bases de données. PhD thesis, 1995.

[23] J. Sowa. Relating diagrams to logic. In John F. Sowa Guy W. Mineau,
Bernard Moulin, editor, Proceedings of the First International Conference on Con-
ceptual Graphs (ICCS’93), volume 699, pages 1–35, Quebec City, Quebec, Canada,
August 1993. Springer-Verlag.

[24] J. Sowa. Ontology, Matadata, and Semiotics. In B. Ganter and G. Mineau, editors,
Proceedings of the 8th International Conference on Conceptual Structures, ICCS
2000, pages 55–81, Darmstadt, Germany, August 2000. Springer Verlag.

[25] W3C. Resource Description Framework (RDF) Model and Syntax Specification,
February 1999.

[26] M. Wermelinguer. Conceptual Graphs and First Order Logic. In G. Ellis, R. Levin-
son, and W. Rich, editors, Proceedings of the Third International Conference
on Conceptual Structures, pages 323–337, Santa Cruz, CA, USA, August 1995.
Springer Verlag.

