Location, Location, Location: Industrial Structure and the Distribution of House Price Growth

Xiangyu Feng (Boston U.), Nir Jaimovich (Zurich), Krishna Rao (Zillow), Stephen Terry (Boston U.) & Nicolas Vincent (HEC Montréal)

October 2018

Preliminary, incomplete and questionable

Motivation: why are we here?

• MFG employment has plunged in the US in last few decades

Motivation: why are we here?

- MFG employment has plunged in the US in last few decades
- Regions were heterogeneously pre-exposed to the MFG sector

- MFG employment has plunged in the US in last few decades
- Regions were heterogeneously pre-exposed to the MFG sector

Result: significant cross-sectional geographic variation in various outcomes

- Employment dynamics: Jaimovich & Siu (2014); Autor, Dorn and Hanson (2013) ; Ebenstein et al. (2014), etc.
- Health and social outcomes: Adda and Fawaz (2017); Pierce and Schott (2016); Autor, Dorn, Hanson (2018)

Motivation: what do we do?

- Study the impact of cross-sectional variation in income & employment:
 - On house prices
 - 2 And especially: impact at different parts of the housing distribution

Motivation: what do we do?

- Study the impact of cross-sectional variation in income & employment:
 - On house prices
 - 2 And especially: impact at different parts of the housing distribution
- How do we do it? with a new microdataset.

Motivation: what do we do?

- Study the impact of cross-sectional variation in income & employment:
 - On house prices
 - 2 And especially: impact at different parts of the housing distribution
- How do we do it? with a new microdataset.
- Why is this interesting?
 - Housing is a big component of American wealth
 - Price growth varies substantially across regions
 - ...and effects vary across the housing distribution
 - Impact on housing and wealth inequality
 - $\textcircled{0} Growing literature about the impact of housing price movement \\ \rightarrow We contribute by identifying structural sources$

- Distributional changes in housing
- 2 Effects of manufacturing exposure on:
 - labor outcomes across regions
 - house price growth across regions
- Oistributional analysis: exploiting micro house price data
- Effects of MFG exposure on housing inequality
- Analytical model (not today)

Housing is a big deal

• Housing accounts for about 60%s of total assets (SCF)

 \rightarrow Takeaway: Housing inequality has a 1st order effect on wealth inequality

• What happened to the cross sectional variance of house prices?

- What happened to the cross sectional variance of house prices?
- Zillow database
 - 80+ million observations; 2 to 5 million per year starting in 2001
 - Wide geographical coverage
 - Source: "Zillow receives information about property sales from the municipal office responsible for recording real estate transaction."
 - Transaction and not self-assessment
 - $\bullet\,$ Can control for house characteristics \rightarrow useful down the road

Variance Levels

What is behind the fluctuations in house price variance?

- What explains the time series evolution of the cross-sectional variance?
- Consider a house living in a cell defined by two dimensions:
 - Geography (CZ)
 - "Tercile price level" (within a CZ)

- What explains the time series evolution of the cross-sectional variance?
- Consider a house living in a cell defined by two dimensions:
 - Geography (CZ)
 - "Tercile price level" (within a CZ)
- **Objective**: identify the main contributors to the changes in the distribution of house prices
 - \rightarrow Gives us an idea of where we should look later on
- Approach: use counterfactuals based on variance decomposition

$$P_{i,Y,C,T} \equiv E(P_{i,Y,C,T}) + SD(P_{i,Y,C,T}) \times \frac{P_{i,Y,C,T} - E(P_{i,Y,C,T})}{SD(P_{i,Y,C,T})}$$

$$P_{i,Y,C,T} \equiv E(P_{i,Y,C,T}) + SD(P_{i,Y,C,T}) \times \frac{P_{i,Y,C,T} - E(P_{i,Y,C,T})}{SD(P_{i,Y,C,T})}$$

CF1: SHUT DOWN THE AVERAGE SHIFT IN WITHIN-(TERCILE X CZ) CELL VARIANCE CHANGES

$$P_{i,Y,C,T}^{CF1} = E(P_{i,1,C,T}) + \begin{bmatrix} SD(P_{i,Y,C,T}) \\ - \\ E\left(\Delta SD(P_{i,(1,Y),C,T})\right) \end{bmatrix} \times \frac{P_{i,Y,C,T} - E(P_{i,Y,C,T})}{SD(P_{i,Y,C,T})}$$

$$P_{i,Y,C,T} \equiv E(P_{i,Y,C,T}) + SD(P_{i,Y,C,T}) \times \frac{P_{i,Y,C,T} - E(P_{i,Y,C,T})}{SD(P_{i,Y,C,T})}$$

$$P_{i,Y,C,T}^{CF1} = E(P_{i,1,C,T}) + \begin{bmatrix} SD(P_{i,Y,C,T}) \\ - \\ E\left(\Delta SD(P_{i,(1,Y),C,T})\right) \end{bmatrix} \times \frac{P_{i,Y,C,T} - E(P_{i,Y,C,T})}{SD(P_{i,Y,C,T})}$$

CF2: SHUT DOWN THE HETEROGENEITY IN THE SHIFT IN WITHIN-(TERCILE X CZ) CELL VARIANCE CHANGES

$$P_{i,Y,C,T}^{CF2} = E(P_{i,1,C,T}) + \begin{bmatrix} SD(P_{i,1,C,T}) \\ + \\ E\left(\Delta SD(P_{i,(1,Y),C,T})\right) \end{bmatrix} \times \frac{P_{i,Y,C,T} - E(P_{i,Y,C,T})}{SD(P_{i,Y,C,T})}$$

$$P_{i,Y,C,T} \equiv E(P_{i,Y,C,T}) + SD(P_{i,Y,C,T}) \times \frac{P_{i,Y,C,T} - E(P_{i,Y,C,T})}{SD(P_{i,Y,C,T})}$$

$$\begin{split} P_{i,Y,C,T}^{CF1} &= E(P_{i,1,C,T}) + \begin{bmatrix} SD(P_{i,Y,C,T}) \\ - \\ E\left(\Delta SD(P_{i,(1,Y),C,T})\right) \end{bmatrix} \times \frac{P_{i,Y,C,T} - E(P_{i,Y,C,T})}{SD(P_{i,Y,C,T})} \\ P_{i,Y,C,T}^{CF2} &= E(P_{i,1,C,T}) + \begin{bmatrix} SD(P_{i,1,C,T}) \\ + \\ E\left(\Delta SD(P_{i,(1,Y),C,T})\right) \end{bmatrix} \times \frac{P_{i,Y,C,T} - E(P_{i,Y,C,T})}{SD(P_{i,Y,C,T})} \end{split}$$

CF3: SHUT DOWN THE HETEROGENEITY IN GROWTH RATES

$$P_{i,Y,C,T}^{CF3} = \begin{bmatrix} E(P_{i,1,C,T}) \\ + \\ E\left(\Delta E(P_{i,(1,Y),C,T})\right) \end{bmatrix} + SD(P_{i,Y,C,T}) \times \frac{P_{i,Y,C,T} - E(P_{i,Y,C,T})}{SD(P_{i,Y,C,T})}$$

• Challenge in constructing "price level cell": time variation in the types of houses on the market

- Challenge in constructing "price level cell": time variation in the types of houses on the market
- Two approaches:
 - Hedonic:
 - Pros: coverage
 - Con: unobserved heterogeneity
 - Provide the second s
 - Pros: (almost) perfect control
 - Cons : limited coverage

• Using all transactions in **2001**: Regress the price of house *i* on a number of characteristics:

 $\log P_{i,2001} = \beta_0 + \beta_1 \log sqft_i + \beta_2 AGE_i + \beta_3 ROOMS_i + \beta_4 BATH_i$ $+ \beta_5 BED_i + \beta_6 STORIES_i + \beta_6 GARAGE_i + \sum_{i=1}^{j} ZIP_i^j + \epsilon_i$

• Fit: $Adj.R^2 = 0.52$

- Split the distribution of predicted $\log P_{i,2001}$ into terciles at each CZ.
- Solution For each transaction (house *i*, time *t*): create $\log P_{i,t}^{2001}$, the predicted 2001-based price based on the house characteristics
- 3 Assign a 2001-based decile to each house transaction.

- **Question:** Had we "shut" down one of the three channels, would we have ended with a significantly different cross-sectional dispersion?
- **Question:** Which channel contributes most to the cross-sectional dispersion?

Housing Inequality - Counterfactuals

Variance Levels: Counterfactual Manipulations of All Prices

Housing Inequality - Counterfactuals

Variance Levels: Counterfactual Manipulations of All Prices

What's behind the fluctuations in dispersion?

• Takeaway so far: heterogenous growth across cells $(CZ \times Tercile)$ matters most

What's behind the fluctuations in dispersion?

- Takeaway so far: heterogenous growth across cells ($CZ \times Tercile$) matters most
- Question: Is there a part of the distribution that saw more action?

	Overall Variance
2001	0.776
2006	0.723
2015	0.860

Dispersion within terciles

• **Finding:** More action seems to happen at the bottom of the price distribution

	Overall Variance	Tercile 1	Tercile 2	Tercile 3
2001	0.776	0.849	0.731	0.746
2006	0 700	0.870	0.652	0.624
2006	0.723	0.879	0.652	0.634
2015	0.860	1.281	0.768	0.528

Housing Inequality - Counterfactuals

Variance Levels: Counterfactual Manipulations of Tercile 1 Prices

• 1/2 to 2/3 of contribution is coming from 1st tercile alone

Main takeaways

- **(**) Housing accounts for around 2/3 of total U.S. wealth
- **②** Differences in the mean $(CZ \times Tercile)$ growth rate account for most of time variation in the cross-sectional variance of housing
- The bottom of the distribution accounts for most changes in the cross-sectional variance

Main takeaways

- In Housing accounts for around 2/3 of total U.S. wealth
- **②** Differences in the mean $(CZ \times Tercile)$ growth rate account for most of time variation in the cross-sectional variance of housing
- The bottom of the distribution accounts for most changes in the cross-sectional variance

Implications

- If we want to understand the evolution of housing inequality, it makes sense to study the evolution of the cross sectional growth rates
- ② We need to do it in a way that allows for heterogeneity in the initial distribution (terciles) → exploit micro data

Heterogeneous Exposure to Manufacturing

Confounding regional characteristics?

For the rest of the talk:

- First, focus on period 2001-2006: Rapid house price buildup
- Then consider longer time period (2001-2015)

For the rest of the talk:

- First, focus on period 2001-2006: Rapid house price buildup
- Then consider longer time period (2001-2015)

Start by verifying impact on labor market outcomes (IPUMS data)

- Run a regression of labor market variable (Δ wage, mfg empl, etc.) on:
 - Manufacturing exposure in 2001
 - Various controls in 2001
 - Census Division fixed effects

Manufacturing, Income and Employment

Table: Labor Market changes + Controls + Div Dummies

	(1)	(2)	(3)	(4)	(5)	(6)
	Wages	MFG	Cons	Other	NW	LOG NW
MFG Share	-0.326***	-0.160***	-0.0528**	0.0555	0.158***	0.464***
	(0.003)	(0.000)	(0.019)	(0.112)	(0.000)	(0.000)
Pct routine cognitive	0.000426	-0.0207	-0.0381	0.138	-0.0791	-0.108
	(0.999)	(0.810)	(0.667)	(0.256)	(0.482)	(0.759)
Some college	0.00845	-0.0155	-0.0254	-0.0521	0.0930*	0.190
	(0.938)	(0.542)	(0.222)	(0.212)	(0.051)	(0.190)
Pct employed female	-0.430	0.0339	0.0934	-0.0431	-0.0841	-0.350
	(0.104)	(0.703)	(0.254)	(0.790)	(0.613)	(0.508)
Pct pop foreign born	0.0715	0.0140	0.0301**	0.103***	-0.147***	-0.457***
	(0.236)	(0.432)	(0.035)	(0.005)	(0.000)	(0.000)
Offshorability index	0.0208	-0.0174	-0.0170	0.00724	0.0271	0.163
	(0.829)	(0.511)	(0.401)	(0.854)	(0.596)	(0.327)
Observations	179	179	179	179	179	179
Adjusted R^2	0.357	0.494	0.236	0.175	0.497	0.447

p-values in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01
Table: Quantitative interpretation

	MFG	Wages	MFG likelihood	NW likelihood	Log NW
25%	0.087	0.047	-0.029	-0.008	-0.026
75%	0.185	0.126	-0.009	0.019	0.063
IQR	0.098	0.079	0.019	0.027	0.090
Coef		-0.326	-0.160	0.158	0.464
% Explained		40.36%	80.81%	57.46%	50.64%

Table: Quantitative interpretation

	MFG	Wages	MFG likelihood	NW likelihood	Log NW
25%	0.087	0.047	-0.029	-0.008	-0.026
75%	0.185	0.126	-0.009	0.019	0.063
IQR	0.098	0.079	0.019	0.027	0.090
Coef		-0.326	-0.160	0.158	0.464
% Explained		40.36%	80.81%	57.46%	50.64%

Confirmed: Mfg exposure numbers matter a lot for flows

Question: How much variation does it explain for stock variables like wealth?

- So far: impact on wages, employment, & establishments
- Next: what is the impact on house prices?
- Ultimately: effect across the distribution

- So far: impact on wages, employment, & establishments
- Next: what is the impact on house prices?
- Ultimately: effect across the distribution
- But first a quickie: does MFG exposure impact average house prices?
 - Use FHFA CZ-level house price indices
 - Regress ΔP_H for 2001-2006 on 2001 MFG share and controls

Large heterogeneity in house price changes

Table: Moments of house price change, 2001-2006

	mean	sd	p10	p25	p50	p75	p90
Shocks gap	0.0563	0.0347	0.0233	0.0324	0.0433	0.0740	0.113
Observations	411						

Manufacturing, elasticities and house prices

	(1)	(2)	(3)
	None	Region	Division
MFG Share	-0.146***	-0.0959**	-0.140***
	(0.000)	(0.035)	(0.003)
Supply elasticity	-0.0103***	-0.00918**	-0.00762**
	(0.007)	(0.014)	(0.010)
Pct routine cognitive	-0.187	-0.158	-0.130
	(0.159)	(0.209)	(0.222)
Some college	0.0589	0.0448*	0.0123
	(0.120)	(0.088)	(0.639)
Pct employed female	0.228	0.381**	0.181*
	(0.204)	(0.016)	(0.096)
Pct pop foreign born	0.255***	0.199***	0.171***
	(0.001)	(0.005)	(0.001)
Offshorability index	-0.111***	-0.0912***	-0.0710***
	(0.003)	(0.007)	(0.004)
Constant	-0.0106	-0.0778	0.0394
	(0.891)	(0.255)	(0.421)
Observations	411	411	411
Adjusted R^2	0.425	0.516	0.624
p-values in parenthes	ses		

Table: House price change, manufacturing and controls, 2001-2006

* p < 0.1, ** p < 0.05, *** p < 0.01

Table: Moments of manufacturing share, 2000

	mean	sd	p25	p50	p75
Share of mfg	0.140	0.0707	0.0903	0.132	0.184
Observations	411				

• From 25th to 75th pct of the CZs in terms of manufacturing share:

•
$$\frac{.14 \times 0.094}{0.042} \approx 31\%$$
 of the IQR of ΔP_H

Next: ΔP_H across the housing price distribution

- Is the response of ΔP_H to MFG exposure significantly different at the bottom and top of the distribution?
- Are the effects "distribution neutral?"
- Are the effects long-lasting?

ΔP_H and manufacturing exposure - Tercile 1

ΔP_H and manufacturing exposure - Tercile 3

Manufacturing and house price distribution

Manufacturing and house price distribution

Table: ΔP and MFG across the distribution, 2001-2006

	(1)	(2)	(3)	(4)
	Parametric	+ controls	Non-parametric	+ controls
MFG Share	-0.472***	-0.454***	-0.387***	-0.369***
	(0.001)	(0.001)	(0.002)	(0.001)
Tercile * MFG Share	0.0807***	0.0808***		
	(0.001)	(0.002)		
Tercile 2 * MFG			0.0668***	0.0671***
			(0.001)	(0.001)
Tercile 3 * MFG			0.161***	0.162***
			(0.001)	(0.002)
Constant	0.144***	0.352*	0.145***	0.353*
	(0.000)	(0.076)	(0.000)	(0.076)
Observations	535	535	535	535
Adjusted R^2	0.222	0.248	0.221	0.247
p-values in parenthe	ses, Div FE			

* p < 0.1, ** p < 0.05, *** p < 0.01

Housing inequality and MFG exposure

Table: ΔP_H at different Terciles & MFG exposure

	Ter 1	Ter 2	Ter 3
MFG 25%	-0.024	-0.026	-0.031
MFG 75%	-0.060	-0.056	-0.051

- Remove all common factors (that would make it positive)
- High MFG exposure: Irrespective of tiers
 - Vis-a-vis low MFG exposure: Per annum around 3% lower ΔP_H
- $\bullet\,$ Over 2001-2006: A widening of 15% in housing wealth inequality

• From 25th to 75th pct of the CZs in terms of MFG share:

- Lower Tercile: $\frac{.369 \times 0.095}{0.09} \approx 40\%$ of the IQR of ΔP
- Middle Tercile: $\frac{.3\times0.095}{0.085}\approx 30\%$ of the IQR of ΔP
- Upper Tercile: $\frac{.2\times0.095}{0.07}\approx 25\%$ of the IQR of ΔP
- Quantitatively: the impact on house prices of being heavily exposed to manufacturing is 60% higher for the bottom tercile vs. the top

- Pre-existing MFG share regressions are equivalent to Bartik regressions with two sectors (MFG and "Other")
- Useful to isolate as a first stage the income & emp components projected by MFG for ΔP_H regressions

- Pre-existing MFG share regressions are equivalent to Bartik regressions with two sectors (MFG and "Other")
- Useful to isolate as a first stage the income & emp components projected by MFG for ΔP_H regressions
- **Concern:** pre-existing MFG share as a whole may be correlated with a third factor ("amenities") that is affecting ΔP_H

- Pre-existing MFG share regressions are equivalent to Bartik regressions with two sectors (MFG and "Other")
- Useful to isolate as a first stage the income & emp components projected by MFG for ΔP_H regressions
- **Concern:** pre-existing MFG share as a whole may be correlated with a third factor ("amenities") that is affecting ΔP_H
- Alternatively: Use industrial composition ("Bartiks") within MFG and exploit the cross sectional variation
 - Basic idea: Different sectors within MFG evolved differently
 - Identifying assumption: composition with MFG industries is not "correlated" with "amenities"
 - Use Bartiks as first stage for different variables

Manufacturing and house price distribution

	(1)	(2)	(3)
	+Controls+Saez Elasticity	IV MFG Share	IV Bartik
MFG Share	-0.369***		
	(0.001)		
Tercile 2 * Mfg Share	0.0671***		
	(0.001)		
Tercile 3 * Mfg Share	0.162***		
	(0.002)		
Wages		1.152***	0.828***
		(0.008)	(0.006)
Tercile 2 * Wages		-0.153***	-0.122***
		(0.003)	(0.037)
Tercile 3 * Wages		-0.371***	-0.275***
		(0.002)	(0.011)
Observations	535	535	535
Adjusted R^2	0.247	0.135	0.237
First Stage		25.23, 109.83, 109.83	24.60, 102.77, 102.77

Table: House Price changes

p-values in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01

• Quantitatively: the impact on house prices of being heavily exposed to manufacturing is significantly higher for the bottom tercile vs. the top

• Quantitatively: the impact on house prices of being heavily exposed to manufacturing is significantly higher for the bottom tercile vs. the top

• Why?

• Quantitatively: the impact on house prices of being heavily exposed to manufacturing is significantly higher for the bottom tercile vs. the top

• Why?

- If housing markets are (relatively) segmented...
 - Direct effect on the relevant parts of the housing distribution

• Quantitatively: the impact on house prices of being heavily exposed to manufacturing is significantly higher for the bottom tercile vs. the top

• Why?

- If housing markets are (relatively) segmented...
 - Direct effect on the relevant parts of the housing distribution
- Where do manufacturing workers live?
 - Is there over representation in lowest ΔP_H tercile?
 - $\bullet\,$ Conditional on industry: % of workers who live in lowest tercile of house price distribution (from ACS)

Where do mfg workers live in the P_H distribution?

Where do mfg workers live in the P_H distribution?

- Growth rate heterogeneith across CZ an important factor for overall variance
- Areas with high MFG exposure saw a bigger fall in wages and employment
- **③** Effects translate to aggregate house price growth
- Strongest effects are at the bottom of the house distribution
 - Consistent with the fact that MFG workers tend to live disproportionally in lower house terciles

So far, we have focused on the house price boom (2001-2006)

- So far, we have focused on the house price boom (2001-2006)
 - Does this all unwind during the Great Recession?
 - Are the effects present at longer horizons or are they only temporary?
- \rightarrow Repeat the analysis for the 2001-2015 period (last year of our dataset)

Manufacturing and house price distribution (2001-2015)

Table: Labor	Market	changes	+	Controls	+Div	Dummies
--------------	--------	---------	---	----------	------	---------

(1)	(2)	(3)	(4)	(5)	(6)
(1) Wares	MEG	Cons	(+) Other		
vvages	IVII G	COII3	Other	14.00	LOG NW
-0.278**	-0.391***	0.0502***	0.318***	0.0230	0.0951
(0.037)	(0.000)	(0.006)	(0.001)	(0.752)	(0.674)
0.425	0.563*	0.198**	-0.0780	-0.682	-2.084
(0.139)	(0.061)	(0.043)	(0.823)	(0.116)	(0.138)
-0.0843	0.0700	0.0194	-0.214*	0.125	0.390
(0.481)	(0.362)	(0.474)	(0.067)	(0.243)	(0.245)
-0.846**	-0.0993	-0.0357	-0.387	0.522	1.594
(0.033)	(0.713)	(0.706)	(0.294)	(0.186)	(0.194)
-0.0156	-0.142*	0.0185	0.265***	-0.142*	-0.381
(0.858)	(0.054)	(0.384)	(0.002)	(0.096)	(0.163)
0.154	0.0774	0.0268	-0.00238	-0.102	-0.289
(0.101)	(0.459)	(0.378)	(0.981)	(0.365)	(0.444)
135	135	135	135	135	135
0.347	0.549	0.178	0.272	0.246	0.225
	(1) Wages -0.278** (0.037) 0.425 (0.139) -0.0843 (0.481) -0.846** (0.033) -0.0156 (0.858) 0.154 (0.101) 135 0.347	$\begin{array}{c cccc} (1) & (2) \\ Wages & MFG \\ \hline & & \\ -0.278^{**} & & & \\ -0.391^{***} \\ (0.037) & (0.000) \\ 0.425 & 0.563^{*} \\ (0.139) & (0.061) \\ & & \\ -0.0843 & 0.0700 \\ (0.481) & (0.362) \\ & & \\ -0.846^{**} & & \\ -0.0993 \\ (0.033) & (0.713) \\ & & \\ -0.0156 & & \\ -0.142^{*} \\ (0.858) & (0.054) \\ 0.154 & 0.0774 \\ (0.101) & (0.459) \\ \hline & 135 & 135 \\ 0.347 & 0.549 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $p\mbox{-values in parentheses}\ ^* p < 0.1, \ ^{**} p < 0.05, \ ^{***} p < 0.01$

Persistent impact of mfg exposure...at the bottom

Manufacturing and house price distribution (2001-2015)

|--|

	(1)	(2)	(3)
	+Controls+Saez Elasticity	IV MFG Share	IV Bartik
MFG Share	-0.0699*		
	(0.061)		
Tercile 2 * Mfg Share	0.0502***		
	(0.000)		
Tercile 3 * Mfg Share	0.106***		
	(0.000)		
Wages		0.310*	0.212**
		(0.066)	(0.026)
Tercile 2 * Wages		-0.134***	-0.104***
		(0.003)	(0.006)
Tercile 3 * Wages		-0.284***	-0.209***
-		(0.000)	(0.000)
Observations	523	403	403
Additionational D2	0 406	0.356	0.408

Housing inequality and MFG exposure

Table: ΔP_H at different Terciles & MFG exposure

	Ter 1	Ter 2	Ter 3
MFG 25%	-0.010	-0.002	0.005
MFG 75%	-0.017	-0.004	0.009

- High MFG exposure
 - Vis-a-vis low MFG exposure: Per annum around 2-3% lower ΔP_H
- Over 2001-2015: A widening of 35%-50% in housing wealth inequality

- Areas with high MFG exposure saw a bigger fall in wages and employment
- In Effects translate to aggregate house price growth
- Strongest effect is at the bottom of the house distribution
 - Consistent with the fact that MFG workers tend to live disproportionally in lower house terciles
- Effects are persistent and quantitatively significant

- Recall: The first-order factor for the time variation in the cross-sectional variance of house prices is the cross-sectional variance in the mean $(CZ \times Tercile)$ growth rate
- How much of that is related to MFG?

- Recall: The first-order factor for the time variation in the cross-sectional variance of house prices is the cross-sectional variance in the mean $(CZ \times Tercile)$ growth rate
- How much of that is related to MFG?

 \rightarrow MFG accounts for about 30% of cross-CZ variation

• Use our empirical specification to remove the MFG effects

Variance after Removing Various Growth Rate Influencers

- MFG decline caused dramatic drops in income and employment
- Fall translates into house prices
- The drop is stronger at the bottom of the house price distribution where more MFG workers live.
- Analysis of cross sectional variance of housing \rightarrow importance of variation in mean growth rates and relation to MFG
- Also: Model of income and housing segmentation consistent with empirical predictions