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Abstract

We propose a new theory of price rigidity based on firms’ Knightian uncertainty

about their competitive environment. This uncertainty has two key implications.

First, firms learn about the shape of their demand function from past observations

of quantities sold. This learning gives rise to kinks in the expected profit function

at previously observed prices, making those prices both sticky and more likely to

reoccur. Second, uncertainty about the relationship between aggregate and industry-

level inflation generates nominal rigidity. We prove the main insights analytically and

quantify the effects of our mechanism. Our estimated quantitative model is consistent

with a wide range of micro-level pricing facts that are typically challenging to match

jointly. It also implies significantly more persistent monetary non-neutrality than in

standard models, allowing it to generate large real effects from nominal shocks.
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1 Introduction

Macroeconomists have long recognized that incomplete price adjustment plays a crucial role

in the amplification and propagation of macroeconomic shocks. On the one hand, there

is ample evidence that aggregate inflation responds only slowly to monetary shocks (e.g.

Christiano et al. (2005)). On the other, numerous studies have shown that at the micro

level, prices are not as sticky as the aggregates imply. They do, however, display other

puzzling characteristics that could play a crucial macro role (e.g. Bils and Klenow (2004)).

In this paper, we propose a new theory of price rigidity based on firms’ Knightian

uncertainty about the demand for their product. This uncertainty endogenously generates an

as-if kink in expected profits, and hence a first-order cost of moving away from a previously

posted price. The mechanism not only leads to price stickiness, but also price memory and a

number of additional micro-level pricing facts. These features allow it to generate significant

monetary non-neutrality despite prices changing relatively frequently, as in the data.

Our economy is composed of a continuum of industries, each populated with monopolistic

firms who face uncertainty about their competitive environment. In order to evaluate how

demand changes as a function of the nominal price they post, firms need to jointly assess (i)

the unknown demand curve, as a function of the relevant relative price; and (ii) the relative

price itself, which equals the firm’s nominal price minus the unobserved industry price index.

Uncertainty about both jointly leads to nominal rigidity.

Standard models abstract from such uncertainty, typically assuming that firms know the

structure of the economy and observe the price index of the competition. In contrast, we

assume firms face specification doubts about the model of demand. We capture such doubts

by drawing on the large experimental and theoretical work motivated by Ellsberg (1961)

that distinguishes between risk (uncertainty with known odds) and ambiguity, or Knightian

uncertainty (unknown odds).1 In particular, we model the aversion to ambiguity using the

multiple priors preferences axiomatized by Gilboa and Schmeidler (1989), and characterize

the firm’s lack of confidence through a set of possible prior distributions over both the

unknown demand shape and the unknown relative price.

To this end, we assume that the firm, similar to an econometrician, estimates its unknown

demand function from past observations of prices and quantities sold. In doing so, the

firm knows demand is a smooth, downward-sloping function, but is not confident (i) that

it belongs to a particular parametric family of functions, and (ii) in a unique probability

1See Machina and Siniscalchi (2014) for a review of related theory and experiments. The latter confirm the
basic conjecture in Ellsberg (1961) of prevalent aversion to ambiguity, and includes surveys and experiments
specifically involving business managers, such as in Einhorn and Hogarth (1986), March and Shapira (1987),
Kunreuther et al. (1993) and Maffioletti and Santoni (2005).

1



measure over the space of potential demand functions. In particular, while the firm knows

that its demand is the sum of a price-sensitive component and a temporary shock, it faces

a signal extraction problem because it does not observe each separately. The firm uses its

history of quantities sold at past prices, together with its set of priors, to form a set of

conditional beliefs about its demand function.

The firm has two sources of information on the unknown industry-wide price level. The

first are periodic marketing reviews that fully reveal its current value. The second is the

aggregate price level, which the firm observes freely, but is an imperfect signal of the firm’s

specific industry price, because the link between industry and aggregate prices is uncertain

and ambiguous – while the firm understands that the two indices are cointegrated in the long

run, it is not confident about their short-run relationship. Specifically, over short horizons,

observing a change in the aggregate price level does not convince the firm that the industry

price has evolved in the same way. We model this lack of confidence as a set of potential

relationships, resulting in a set of conditional beliefs about the current industry price given

an observed value for the aggregate price level.2

In the face of ambiguity about both its demand function and its effective relative price,

the firm optimally selects a nominal price as if nature draws the joint prior distribution

that implies the lowest (i.e. worst-case) conditional expected demand. A key result is

that this joint worst-case belief changes endogenously around the level of previously posted

prices relative to the firm’s best, unambiguous estimate of industry inflation. The reason is

intuitive: an unambiguous price increase sets in motion a concern for a “double whammy” –

that nature draws (i) the most locally-elastic demand function allowed by the prior set and

(ii) the largest decrease in the unobserved industry price given the relevant set of conditional

beliefs. Hence, the firm fears the increase in its relative price is larger than expected and that

demand is especially sensitive to it. The opposite concern occurs in the case of a decrease

in price – the firm fears that demand is inelastic and the industry price index rose.

This endogenous switch in the worst-case scenario is at the heart of our mechanism:

it generates kinks in expected demand and thus price rigidity.3 An unambiguous change

in the relative price would move the firm away from the safety of previously accumulated

information, and therefore expose it to increased uncertainty about the shape of demand.

When interacted with ambiguity about the industry price, and therefore uncertainty

2Using the BLS’ most disaggregated 130 CPI indices as well as aggregate CPI, we present evidence that
an econometrician would generally have very little confidence that short-run aggregate inflation is related to
industry-level inflation, even though she can be confident that the two are cointegrated in the long-run.

3Such endogeneity is the defining feature of the Ellsberg experiment: when the agent evaluates a bet
on either a black or a white ball from the ambiguous urn, he does so as if the probability of drawing that
ball is less than 0.5 in either case. This behavior is inconsistent with any single probability measure on the
associated state space, but can be explained by the multiple-priors model.
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about the relative price achieved by a specific choice of nominal price, the rigidity becomes

nominal. The key is that the optimal choice robust to the joint uncertainty is to price as

if short-run industry inflation is not forecastable, and thus keep nominal prices rigid to take

advantage of the perceived kinks in demand. Intuitively, a directly observed change in the

industry price index would lead to an immediate adjustment in the nominal price, since it

has an unambiguous effect on the relative price. In contrast, the effect of aggregate inflation

on the underlying industry price level is ambiguous: if the firm assumes a positive link and

responds by increasing its nominal price, this would be precisely the wrong action in case

the industry price actually fell, and vice versa if it were to act under the belief that the two

are negatively correlated. These fears make aggregate (or other) indexation suboptimal.

In sum, a change in the relative price away from a previously observed value incurs

an endogenous, time-varying cost in terms of expected profits, whose properties we derive

analytically. First, this cost is locally first-order, so that a firm has an incentive to keep

its estimated relative price constant even when hit with marginal-cost shocks. Second,

conditional on changing, the firm is inclined to repeat a price it has already posted in the

past – such previously estimated relative prices are associated with kinks in expected profits,

and become ‘reference’ price points. Third, the cost is perceived to be larger for prices that

have been observed more often in the past, as higher signal-to-noise ratios deepen the kinks.

Fourth, given the resulting time-variation in the first-order cost, the firm may find it optimal

to implement small or large price changes. Fifth, the perceived cost of changing a posted

price increases with the value of the demand shock at that price. Sixth, even though firms

are forward-looking, the optimal experimentation strategy may in fact reinforce stickiness.

Since the worst-case belief is that aggregate inflation is uninformative about industry

prices, it follows that between marketing review periods, the firm faces a first-order cost of

nominal adjustment with similar properties. This results in what looks like “price plans”,

where the price series tends to bounce around just a few repeated price points. One important

difference with standard “price plan” models is that in our framework, the endogenous price

plan evolves gradually over time, incorporating new prices one-by-one as the firm experiments

and learns about demand at new price points. We document that this novel implication of

gradual adjustment in price plans is prevalent in the data, and also show that it has important

implications for the aggregate transmission of monetary shocks in the model.

In addition to the analytical results, we evaluate the model quantitatively. We solve

numerically for its stochastic steady state and estimate the parameters by targeting standard

micro-level pricing moments from the IRI Academic Dataset. We then show that our

learning mechanism is quantitatively consistent with a rich set of additional moments that

are typically considered challenging to match jointly : (i) memory in prices; (ii) co-existence
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of small and large price changes; (iii) pricing behavior over the product’s life-cycle; (iv)

downward-sloping hazard function of price changes; as well as a novel implication that (v) a

price with a positive demand innovation is less likely to change.4

Lastly, we show that our quantitative model predicts large and persistent real effects from

a nominal spending shock. These effects occur even though the model is consistent with the

observed high frequency and large median absolute size of price changes, typically taken to

imply low monetary non-neutrality in standard state-dependent models due to the Golosov

and Lucas (2007) selection effect. The reason lies in the endogenous memory of prices,

and in particular the slow adjustment of the effective “price plan”, an empirically supported

feature unique to our model. Because it significantly slows down the transmission of nominal

shocks, this type of memory delivers more persistent real effects than in standard price-plan

models. As a result, our mechanism has important novel features that can arguably help fit

the evidence of persistent monetary policy effects (Christiano et al. (2005)).

Next, we review the literature. Section 2 derives analytical results in a real model, while

Section 3 expands them to a nominal model. Section 4 quantifies the mechanism.

Relation to the literature

By connecting learning under ambiguity to the problem of a firm setting prices, our paper

relates to multiple strands of the literature. First is the extensive body of work on theories

of real and nominal price rigidity. With respect to the former, it relates to work on kinked

demand curves, including Stigler (1947), Stiglitz (1979), Ball and Romer (1990), Kimball

(1995) and Dupraz (2016). While in these models the kinks are a feature of the true demand

curve, in our setup they arise only as a result of uncertainty about the shape of demand,

and an econometrician would not be expected to find evidence of actual kinks.

On nominal rigidity, we connect to the literature that emphasizes the role of imperfect

information in generating slow adjustment to aggregate nominal shocks, including Mankiw

and Reis (2002), Sims (2003), Woodford (2003), Reis (2006) and Mackowiak and Wiederholt

(2009). However, while in order to obtain fully rigid prices these models typically require

additional frictions, (e.g. a menu cost), we show that uncertainty alone can lead to inaction.5

In testing our mechanism against a rich set of overidentifying restrictions, we connect to

4Given the importance of controlling for unobserved heterogeneity in recovering the hazard function facts,
and the novelty of the role of demand signals for pricing decisions, our detailed documentations of these two
particular conditional moments is of independent empirical interest for the pricing literature.

5Bonomo and Carvalho (2004) and Knotek and Edward (2010) are early examples of merging information
frictions with a physical cost or an exogenous probability of price adjustment. Recent models of rational
inattention (e.g. Woodford (2009) or Stevens (2014)) assume that memory, including assessing the passage
of time, is costly. Therefore, in periods when the firm is inattentive, it does not index to aggregate inflation.

4



several literatures on pricing models that have grappled with one or more of these facts.6

First, in our model, prices tend to return to previous values, giving rise to discreteness

and memory. This empirical regularity has been well documented following the seminal work

of Eichenbaum et al. (2011), as it presents a challenge to standard state-dependent pricing

theories that rely on a single fixed cost of a price change. To address this, the literature has

used exogenously defined price plans (Eichenbaum et al. (2011)), heterogeneous menu costs

(Kehoe and Midrigan (2015)), and rational inattention, emphasizing the discrete nature of

the optimal signal structure under certain conditions (Matějka (2015) and Stevens (2014)).

As discussed in the introduction, our mechanism differs from these frameworks both in terms

of its micro-foundations, testable predictions and aggregate implications.

The second set of related models is on pricing under demand uncertainty. The standard

approach has been to analyze learning about a parametric demand curve under expected

utility.7 Unlike our environment, this does not result in kinks in conditional beliefs at old

prices, and thus price stickiness and memory. In fact, the objective in introducing learning

in existing models has not been to generate stickiness, but instead to match other facts, such

as the shape of hazard function (Bachmann and Moscarini (2011), Baley and Blanco (2018))

or the pricing behavior over the product life cycle (Argente and Yeh (2017)). Our model

also matches these facts, in addition to others such as stickiness and memory.

At its core, our framework fits within the literature motivated by the classic work of

Ellsberg (1961), such as Gilboa and Schmeidler (1989), Dow and Werlang (1992), and

Epstein and Schneider (2003). In the field of industrial organization, Bergemann and Schlag

(2011) studies a static pricing problem with multiple priors over the distribution of buyers’

valuations, while Handel and Misra (2015) extends that analysis to a two-period model

with maxmin regret that allows for consumer heterogeneity. In contrast, we simplify the

consumer’s side of the market and instead develop a tractable learning environment to study

how the accumulation of information about a set of demand curves leads to pricing behavior

that is empirically supported and of interest for macroeconomic models.

2 Analytical Model

In this section, we develop the key insights of our mechanism in the context of a simple,

analytically-tractable model that does not distinguish between real and nominal prices. We

present the full nominal model in Section 3.

6In this, we follow the spirit of a broad literature that documents micro-level facts aimed at disciplining
theoretical models of rigidity, such as Bils and Klenow (2004), Klenow and Kryvtsov (2008), Nakamura and
Steinsson (2008), Klenow and Malin (2010) and Campbell and Eden (2014), among many.

7An early contribution is Rothschild (1974), who frames the learning process as a two-arm bandit problem.
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We study a monopolistic firm that each period sells a single good, facing the log demand

y(pt) = x(pt) + zt, (1)

where pt is the log price. Demand consists of two components – the price-sensitive x(pt) and

a price-insensitive component captured by zt. The firm’s time-t realized profit is:

υt = (ept − ect) ey(pt), (2)

where we have assumed a linear cost function, with ct denoting the time-t log marginal cost.

The decomposition of demand in (1) serves two purposes. First, it generates a motive

for signal extraction. In this respect we assume that the firm only observes total quantity

sold, y(pt), but not the underlying x(pt) and zt separately. Furthermore, we model zt as iid,

and thus past demand realizations serve as noisy signals about the unknown function x(p).

The second purpose is to differentiate between risk and ambiguity. We model zt as purely

risky, and give the firm full confidence that it is iid and drawn from the known Gaussian

distribution zt ∼ N(0, σ2
z). On the other hand, the x(pt) component is ambiguous, meaning

that the firm is not fully confident in the distribution from which it has been drawn and

does not have a unique prior over it.

Instead, the firm entertains a whole set of possible priors, Υ0, which is not restricted

to a given parametric family. Each individual prior in the set Υ0 is a Gaussian Process

distribution, GP (m(p), K(p, pt)), with mean function m(p) and covariance function K(p, pt).

A Gaussian Process distribution is the generalization of the Gaussian distribution to infinite-

sized collections of real-valued random variables, and is thus a convenient choice of a prior

for doing Bayesian inference on function spaces. It has the defining feature that for any finite

sub-collection of function inputs, e.g. a vector of prices p = [p1, ..., pN ]′ for some N > 1, the

corresponding vector of quantities demanded x(p) is distributed as

x(p) ∼ N



m(p1)

...

m(pN)

 ,

K(p1, p1) . . . K(p1, pN)

...
. . .

...

K(pN , p1) . . . K(pN , pN)


 ,

where the mean functionm(p) controls the average slope of the underlying functions x(p), and

the covariance function K(p, p′) controls their smoothness. In other words, this distribution

is a cloud of functions dispersed around m(p), according to the covariance function K(p, p′).

We model ambiguity by assuming that all priors have the same covariance function, but

different mean functions. We assume that the covariance function is of the widely-used
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squared exponential class (see Rasmussen and Williams (2006)):

K(p, p′) = Cov(x(p), x(p′)) = σ2
xe
−ψ(p−p′)2 .

The function has two parameters: σ2
x measures the prior variance about demand at any

given price, and ψ > 0 controls the extent to which information about demand at some

price p is informative about its value at a different price p′. The larger is ψ, the faster

the correlation between quantity demanded at different prices declines with the distance

between those prices.8 This covariance function parsimoniously, yet flexibly, captures the

natural prior view that there is an imperfect and declining correlation between demand at

different prices. Additionally, this prior puts zero probability on demand functions that are

not infinitely differentiable – thus any non-differentiability in the firm’s eventual worst-case

perceptions about demand are fully attributable to the ambiguity-aversion mechanism.

The multiple priors differ in their mean function m(p). We assume that the set of

entertained m(p) is centered around the true DGP of a standard log-linear demand function,

xDGP (p) = −bp, so that the potential m(p) lie within an interval of width 2γ around xDGP (p),

m(p) ∈ [−γ − bp, γ − bp]. (3)

The parameter γ > 0 controls the size of perceived ambiguity and captures the firm’s lack

of confidence in assigning probability assessments over the mean demand at a given price p.

In addition, to preclude any ex ante built-in non-differentiability, we also bound the local

variability of admissible m(p). The firm only entertains differentiable m(p) functions with a

derivative that lies within an interval centered around the derivative of the true DGP,

m′(p) ∈ [−b− δ,−b+ δ], (4)

with δ > 0 controlling the size of that interval. Throughout we assume that δ ≤ b, hence the

firm is at least confident that demand is weakly downward-sloping. As an illustration, the left

panel of Figure 1 provides some examples of admissible demand schedules m(p), out of the

infinite set of functions that satisfy (3) and (4). Later, we explain how an ambiguity-averse

firm extracts out of this set the kinked worst-case prior shown in the right panel.

The overall interpretation of our setup is that the firm has some a priori information

on the true demand, but is not confident in a single probabilistic weighting of the potential

8A Gaussian Process with a higher ψ has a higher rate of change (i.e. larger derivative) and its value is
more likely to experience a bigger change for the same change in p. For example, it can be shown that the
mean number of zero-crossings over a unit interval is given by ψ√

2π
.

7



𝑚(𝑝) 
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(a) Set of priors

𝑚(𝑝) 

𝑝 

m*(p0; ʹp )

m*(p0; ʹ́p )

ʹp p0 pʹ́

(b) Worst-case prior

Figure 1. Illustrative set of priors and worst-case prior

demand schedules (i.e. a single prior), nor is it able to restrict attention to a particular

parametric family of demand functions. The set of admissible beliefs may itself reflect the

disagreement between heterogeneous, but otherwise unique, prior beliefs expressed by various

agents inside the firm. The agent that takes the pricing decisions is not confident how to

probabilistically weigh them as these beliefs are all entertained as reasonable priors.9

The parametrization of ambiguity characterizing the sets (3) and (4) serves two purposes.

First, it avoids overparameterizing Υ0, so that we represent the ambiguity over a non-

parametric family of functions using only two parameters, γ and δ. Second, it contains

the minimal ingredients necessary for our main results. In particular, when γ = 0, the set

Υ0 collapses to a singleton, hence the firm has a unique prior and there is no ambiguity.

On the other hand, with δ = 0 the firm faces no ambiguity about the shape of the demand

function, which is the key ingredient of our theory. Uncertainty about the local elasticity of

demand (i.e. δ > 0) is at the heart of our mechanism.

2.1 Information and Preferences

The timing of choices and revelation of information is as follows: We assume that ct is known

at the end of t − 1 and that it is a continuous random variable following a Markov process

with a conditional density function g(ct|ct−1). The firm enters period t with information on

the history of all previously-sold quantities yt−1 = [y(p1), ..., y(pt−1)]′ and the corresponding

prices at which those were observed pt−1 = [p1, ..., pt−1]′, where a superscript denotes history

9The connection between the set of beliefs about m(p) to the dispersion of prior forecasts made by experts
inside a firm allows us to empirically discipline the magnitude of ambiguity in the model’s quantitative
evaluation. The view that uncertainty is not primarily a probabilistic concept is consistent with the survey
and experimental evidence involving business managers (see for example March and Shapira (1987)).
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up to that time. The firm updates its beliefs about demand conditional on εt−1 = {yt−1, pt−1},
observes ct and posts a price pt that maximizes expected profits, as detailed further below.

At the end of period t, the idiosyncratic demand shock zt is realized and the firm updates

its information set with the resulting quantity sold y(pt), and the new cost ct+1.

The firm uses the available data εt−1 to update the set of initial priors Υ0. Learning occurs

through standard Bayesian updating, prior-by-prior – for each prior in the initial set Υ0, the

firm uses the new information and Bayes’ Rule to obtain a posterior distribution. Given that

there is a set of priors, the Bayesian update results in a set of posteriors. In particular, we

denote by xt−1(p;m(p)) the posterior Gaussian distribution of x(p), conditional on εt−1 and

a particular prior m(p). We denote the conditional mean and variance of demand as:

x̂t−1(pt;m(p)) := E
[
x(p)|εt−1;m(p)

]
σ̂2
t−1(p) := V ar

[
x(p)|εt−1

]
.

While the conditional expectation depends on the prior m(p), the variance is the same for

all priors, as they differ only in their means. The evolution of beliefs is analytically tractable

and follows the standard Bayesian-updating formulas derived in Online Appendix A.1.

The firm is owned by an agent who is ambiguity averse and has recursive multiple priors

utility (Epstein and Schneider (2003)), so that she values the firm’s profits as:

V
(
εt−1, ct

)
= max

pt
min

m(p)∈Υ0

E

[
υ(εt, ct) + βV

(
εt, ct+1

) ∣∣∣∣εt−1, ct

]
, (5)

where υ(εt, ct) is the per-period profit defined in (2). The firm forms its conditional beliefs

and evaluates the expected profits and continuation utility using the available information

εt−1 and the prior m∗(p; pt) that achieves the worst-case belief, given a pricing choice pt.

Importantly, the minimization over the priors is conditional on the choice of pt. We

conjecture and verify that the minimizing prior m∗(p; pt) is such that, for a given price pt

and history εt−1, it implies the lowest admissible expected demand x̂t−1(pt;m
∗(p; pt)) at that

price. Thus, for any price pt the firm worries that, given the data it has seen, the underlying

demand is low and hence maximizes over pt under the worst-case belief x̂t−1(pt;m
∗(p; pt)).

2.2 As-if kinks in demand from learning

To gain intuition on how updating and the basic mechanism work, we start by considering

the simplest case, where the information set εt−1 contains only observations of demand at

a single price point p0 that has been seen N0 times, and has an associated average demand

realization ȳ0 = x(p0) + 1
N0

∑N0

i=1 zi. For a given prior m(p), the joint distribution of the
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signal and the unknown demand function x at any price p is:[
x(p)

ȳ0

]
∼ N

([
m(p)

m(p0)

]
,

[
σ2
x σ2

xe
−ψ(p−p0)2

σ2
xe
−ψ(p−p0)2 σ2

x + σ2
z/N0

])
.

The distribution of x(p) conditional on ȳ0 is also Gaussian, and its expectation and variance

are given by the familiar prior plus signal-updating formulas:

E(x(p)|ȳ0,m(p)) = m(p) + αt−1(p) [ȳ0 −m(p0)] (6)

V ar(x(p)|ȳ0) = σ2
x(1− αt−1(p)),

where the signal-to-noise ratio used to update beliefs of demand at a given price p is

αt−1(p) =
σ2
x

σ2
x + σ2

z/N0

e−ψ(p−p0)2 . (7)

Thus, the Bayesian update of the conditional expectation in equation (6) combines the prior

for demand at that price, m(p), with the information revealed by the difference between the

observed signal realization ȳ0, and the prior expected demand at that price, m(p0). Also note

that with ψ > 0, the signal-to-noise ratio αt−1(p) and the resulting reduction in uncertainty

is largest right at the observed price p0: as the correlation of quantity demanded at different

prices decreases with the distance between them, the information obtained from the signal

at p0 is most useful in updating the firm’s beliefs about demand around that price.

Worst-case prior

The firm minimizes the conditional expectation of demand over the priors m(p) ∈ Υ0. The

resulting worst-case prior m∗(p; pt) depends on the price pt at which the firm computes its

expected demand. From equation (6) we see that the conditional expectation of demand at

pt = p0 is decreasing in m(p0), since αt−1(p) ∈ (0, 1). Hence, the worst-case belief corresponds

to the prior with the lowest value of m(p0), so m∗(p0; pt) = −γ − bp0 by equation (3).

When updating demand at a price pt 6= p0, the firm minimizes over m(pt) and m(p0), as

both appear in the updating equation. It is useful to re-write equation (6) as

E(x(pt)|ȳ0,m(p)) = (1− αt−1(pt))m(pt)︸ ︷︷ ︸
Prior demand at pt

+ αt−1(pt)(ȳ0 +m(pt)−m(p0))︸ ︷︷ ︸
Signal at p0 + ∆ in Demand between pt and p0

,

since it makes clear that uncertainty over the prior m(p) affects both the overall level of

expected demand (through the first term), and how the firm interprets its signal ȳ0 (second
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term). The uncertainty about the shape of the demand function implies a lack of confidence

in how information about demand at p0 translates into information about the quantity

demanded at pt. Consequently, the firm minimizes over both the prior level of demand at pt

and its likely change between pt and p0, the position of the observed signal.

First, minimizing over the prior at the entertained price, m(pt), is straightforward – the

worst-case is that it lies at the lower bound of the set Υ0, so that

m∗(pt; pt) = −γ − bpt.

Second, the firm is worried that demand changes for the worse as the price moves from p0

to pt, implying a low value of m(pt)−m(p0). Thus, the worst-case for m(p0) is to be as high

as possible given the constraints on the level and derivatives of the admissible m(p) and the

worst-case level for m(pt). Crucially, this implies a switch in the worst-case demand shape

between pt and p0, depending on whether the firm considers a price increase or a decrease.

Conditional on a price increase, i.e. pt > p0, the worst-case is that demand is elastic,

since this generates a larger drop in demand. The drop from m(p0) to m(pt) is disciplined

by the constraints on Υ0, which restrict both the derivative of m(p) at any price p, and the

maximal level of m(p0). Therefore, the worst-case prior for m(p0) when pt > p0 is

m∗(p0; pt) = min [γ − bp0,−γ − bpt + (b+ δ)(pt − p0)] . (8)

On the other hand, when the firm considers a price cut, i.e. pt < p0, it worries that

demand is inelastic and that the price decrease generates as small of an increase in demand

as possible. The worst-case is again restricted by the constraints on Υ0, and in particular

the lower bound on the admissible derivative of demand in (4). Effectively, the firm worries

demand is flat to the left of p0, hence, the worst-case m∗(p0; pt) in this case is

m∗(p0; pt) = min [γ − bp0,−γ − bpt + (b− δ)(pt − p0)] . (9)

Worst-case conditional expectation and kinks

Having characterized the worst-case prior, we can now plug it in equation (6) to obtain

the worst-case conditional expectation at any entertained price pt. Since the worst-case

prior changes depending on whether pt is above or below p0, the conditional expectation

x̂∗t−1(pt) ≡ E(x(pt)|q0,m
∗(p; pt)) equals the following piecewise function

x̂∗t−1(pt) =

{
−γ − bpt + αt−1(pt)[ȳ0 − (−γ − bp0)]− αt−1(pt)δ|pt − p0| if pt ∈ [p, p]

−γ − bpt + αt−1(pt) [ȳ0 − (γ − bp0)] if pt /∈ [p, p]
(10)
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where p = p0 − 2γ
δ

and p = p0 + 2γ
δ

. For prices pt ∈ [p, p], the worst-case prior demand at p0

is obtained by moving away from m∗(pt; pt) = −γ− bpt along the steepest (flattest) possible

demand curve, when pt is higher (lower) than p0. At the threshold prices p, p, moving along

these worst-case elasticities intersects the upper bound of the set Υ0, so the solution to the

worst-case prior in equations (8) and (9) for prices pt outside [p, p] is given by γ − bp0.

Thus, the multiple priors endogenously generate a kink in expected demand at p0, as

captured by the absolute value term |pt − p0| in (10). In essence, the overall worst-case

expectation is the result of splicing two different priors together – an elastic one when

evaluating prices to the right of p0, and an inelastic one to its left – which creates a kink, even

though all individual priors are differentiable. Going back to Figure 1, panel (b) illustrates

this splicing when entertaining setting some p′ < p0 or p′′ > p0, conditional on seeing a signal

equal to the true DGP at a single price point p0 and facing the set of priors in panel (a).

Putting everything together, the left panel of Figure 2 shows the resulting worst-case

expected demand at any price pt (i.e. it plots equation (10)). Extending these derivations

to the case where εt−1 contains observations at more than one price point is straightforward

– Online Appendix A.1 describes the general formulas and an analytical approach to finding

the worst-case prior. The intuition is the same as for the case of a single previously observed

price: the worst-case is to set the prior at the entertained pt equal to the lowest bound of Υ0,

and the level of the prior at the prices in εt−1 as high as admissible, given the restrictions on

Υ0. The main difference is that because the endogenous switch in the worst-case priors now

applies more generally at all previously-observed prices, the firm perceives kinks at all of

them. To illustrate, panel (b) of Figure 2 plots the worst-case expectation when the firm has

observed demand signals at two distinct price points p0 and p1, and naturally the worst-case

expectation is kinked around both of these prices.

2.3 An as-if cost of changing the price

When choosing its price to maximize expected profits under the worst-case beliefs, the

problem of the firm is dynamic: posting a price today affects not only current profits, but

also next period’s information set. Solving the full infinite horizon optimization problem is

difficult numerically, because the size of the state space is unbounded, and explodes as the

number of posted prices increases over time. For this reason, we split our analysis in three

parts. In this section, we analyze a myopic problem that ignores the continuation value

of information, but provides a tight analytical characterization of the first-order forces at

play. Then in Section 2.4 we provide analytical results for a tractable approximation to the

forward-looking problem, before numerically analyzing it extensively in Section 4.
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Figure 2. Worst-case Expected Demand

A myopic firm chooses pt to maximize time-t’s worst-case expected profit

max
pt

min
m(p)∈Υ0

E

[
υ(εt, ct)

∣∣∣∣εt−1, ct

]
= max

pt
(ept − ect) ex̂t−1(pt;m∗(p;pt))+.5σ̂2

t−1(pt)+.5σ2
z︸ ︷︷ ︸

=ν∗(εt−1,ct,pt)

.

The optimal behavior crucially hinges on the history of observations εt−1, which is an

endogenous object, as it depends on the past actions of the firm. In order to describe

analytically the key mechanics of the model, in this section we take εt−1 as given. We

expand the analysis to the case where εt−1 is endogenous in Section 4.

We start with the simplest case for the firm’s information set and assume εt−1 contains

a single price p0, observed for N0 number of times with an average quantity sold of ȳ0. As

shown before, this results in a kink in the as-if expected demand, and in turn this provides

the firm with an incentive to keep its price rigid even when faced with variations in costs.

To show this insight analytically, in Proposition 1 we consider a log-linear approximation of

expected profits around p0, which reveals a first-order loss of moving away from p0.

Proposition 1. Define δ∗ = δ sgn (pt − p0). For a given realization of ct, the difference in

worst-case expected profits at pt and p0, up to a first-order approximation around p0, is

ln υ∗(εt−1, ct, pt)− ln υ∗0(εt−1, ct, p0) ≈
[

ep0

ep0 − ect
− (b+ αt−1(p0)δ∗)

]
(pt − p0) .

Proof. The switch in sign of δ∗ follows from the worst-case expected demand in (10). Also,

the marginal effect ∂αt−1(pt)
∂pt

= 0 at pt = p0. For details, see Online Appendix A.2.
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Proposition 1 shows the locally-evaluated tradeoff of moving the price away from p0. The

first term in the squared brackets is the direct effect of a change in price, holding demand

constant. The second term is the demand effect of a price change, by moving along the

perceived demand elasticity. The fact that the elasticity switches by αt−1(p0)δ∗ around p0,

as indicated by the signum function, is the key mechanism in our model.

We now describe the main results that stem from this property.

Result #1: There exists an inaction region around previously-posted prices

Given the first-order loss arising from the switch in elasticity around p0, a direct implication

(as derived explicitly in Corollary 1) is that there is a positive interval of ct realizations,

around c∗0 ≡ p0 − ln
(

b
b−1

)
, for which the firm keeps its current price fixed at pt = p0.

Corollary 1. Under the approximation in Proposition 1, p0 is a local maximizer for any ct ∈
(ct−1,0, ct−1,0), where ct−1,0 = c∗0 + ln

[
b
b−1

b−αt−1(p0)δ−1
b−αt−1(p0)δ

]
and ct−1,0 = c∗0 + ln

[
b
b−1

b+αt−1(p0)δ−1
b+αt−1(p0)δ

]
.

Proof. For any ct ∈ (ct−1,0, ct−1,0) we have ep0
ep0−ect ∈ (b− αt−1(p0)δ, b+ αt−1(p0)δ) . Thus, the

derivative in Proposition 1 is negative for pt > p0 when δ∗ = δ, and positive for pt < p0 when

δ∗ = −δ. This gives the necessary and sufficient conditions for p0 to be a local maximizer.

To gain intuition, consider an increase in cost to some ct > c∗0. This lowers the markup

if the price remains at p0, which gives the firm a reason to consider an increase in the price.

However, when the firm entertains a higher price pt > p0, it perceives a discrete increase in

demand elasticity to b + αt−1(p0)δ, which lowers the optimal markup the firm targets. As

long as costs do not increase too much, so that ct ≤ c̄t−1,0, the implied markup at p0 is in fact

still higher than the new target markup. Hence, the firm finds it optimal to keep its price

fixed and let the markup decline. If the cost eventually moves higher than the threshold

c̄t−1,0, the fall in markup would be too big, inducing the firm to change its price.

The logic is similar for a decrease in cost below c∗0. As the firm entertains lowering its

price from p0, it perceives the discretely-flatter elasticity b− αt−1(p0)δ. Facing this decrease

in elasticity, the firm finds it optimal to keep its price fixed and let the markup increase

until ct falls to the lower bound ct−1,0. Only for a cost realization below this threshold is the

implied increase in markup big enough to incentivize the firm to lower its price and move

along the flatter demand curve it perceives below p0.

Proposition 1 implies that rigidity arises if and only if there is ambiguity about the

demand shape. If that is not the case, i.e. δ = 0, the interval of costs for which p0 is the

local optimizer is the singleton set {c∗0}, and thus the probability that p0 is a local maximizer

becomes zero. With ambiguity, this probability becomes strictly positive.
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Unlike a fixed cost of changing the price, the as-if first-order perceived cost that emerges

in our model is history dependent. There are two fundamental dimensions along which past

information matters for this perception, which we now turn our attention to.

Result #2: The inaction region widens as a price gets observed more often

The first dimension is that the perceived demand loss of changing the price increases with

the signal-to-noise ratio αt−1(p0) (see Proposition 1). Intuitively, increasing the precision

of the information available at p0 makes the firm more confident in its estimate of x(p0),

effectively amplifying the perceived increase in uncertainty when moving away from p0. This

translates in a larger difference between the worst-case demand elasticities on either side of

p0, which in turn raises the first-order loss of changing prices. Since αt−1(p0) increases with

N0, (by equation (7)), it follows that holding everything else constant, having seen the price

p0 more often in the past leads to a larger inaction region, as summarized in Corollary 2.

Corollary 2. The interval, defined in Corollary 1, of cost shock realizations ct for which p0

is a local maximizer widens with N0 :

∂ct−1,0

∂N0

< 0;
∂ct−1,0

∂N0

> 0

Proof. Follows from Corollary 1 and from ∂αt−1(pt)
∂N0

> 0 in equation (7).

Result #3: Prices display memory

Another crucial property of history dependence is that when past information εt−1 contains

more than one unique price point, the general updating formulas discussed in Section 2.2

imply that there exist kinks in the as-if expected demand around each previously observed

price level pi ∈ εt−1. These kinks lead to qualitatively similar first-order losses in the expected

profit around all such prices. This result is formalized in Proposition 2.

Proposition 2. Let δ∗i ≡ δ sgn (pt − pi) for all pi ∈ εt−1. For a given realization of ct, up to

a first-order approximation around each such pi ∈ εt−1:

ln υ∗(εt−1, ct, pt)− ln υ∗0(εt−1, ct, pi) ≈
[

epi

epi − ect
− (b+ αt−1,i(pi)δ

∗ + Ai)

]
(pt − pi) .

Proof. The switch in δ∗ follows directly from the worst-case expected demand detailed in

Online Appendix A.1. There we also define the term αt−1,i(p) which denotes the weight put

on the past demand realization at pi in the conditional expectation, i.e. its effective signal-
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to-noise ratio when updating with multiple signals. Lastly, Ai collects additional derivative

terms that do not depend on the sign of (pt − pi), for details see Online Appendix A.2.

Letting c∗i = pi − ln
(

b
b−1

)
for all pi ∈ εt−1, a direct counterpart to Corollary 1 follows.

Corollary 3. Under the first-order approximation in Proposition 2, for each pi ∈ εt−1 there

exists the interval (ct−1,i, ct−1,i), where ct−1,i = c∗i + ln
[

b
b−1

b−αt−1,i(pi)δ+α̂−1

b−αt−1,i(pi)δ+α̂

]
and ct−1,i =

c∗i + ln
[

b
b−1

b+αt−1,i(pi)δ+α̂−1

b+αt−1,i(pi)δ+α̂

]
, such that for all ct ∈ (ct−1,i, ct−1,i) pi is a local maximizer.

Proof. For any ct in this interval, the first order derivative of the change in profits in

Proposition 2 is negative for pt > pi and positive for pt < pi, for all pi ∈ εt−1.

Thus, Proposition 2 and Corollary 3 imply that the firm is not only reluctant to change

its current price, but is in general inclined to repeat prices posted in the past, since there

are kinks in the profit function there as well. This generates ‘memory’ in the price series.

Result #4: Good demand signals make a price change less likely

Lastly, the analysis so far has focused on the first-order effect of price deviations around any

of the pi ∈ εt−1, showing that keeping the price fixed at previous levels is a local optimum.

Next, we show that there is an additional interaction between the level of the past quantity

sold ȳi and the change in the perceived demand slope around the price pi at which that

signal was observed. This interaction is of second-order, thus washes away in the local

analysis above, but can matter for finding the global optimum, as we do in Section 4.

This interaction arises from the fact that the signal-to-noise ratio αt−1,i(p) declines

with the distance between p and pi. Intuitively, because the levels of demand at different

prices are imperfectly correlated, the information about demand at some price pi is most

useful for updating beliefs at prices in its neighborhood. This naturally arises from the

fact that demand does not come from a particular parametric family – when learning non-

parametrically, information is inherently local, as it does not update beliefs about parameters

that control the underlying function globally. The non-linearity of αt−1,i(p) is of second-order

locally, but matters when thinking about the global maximum.

The second cross-derivative of the worst-case expected demand, with respect to price and

the perceived innovation at pi, denoted by ẑi ≡ ȳi − (−γ − bpi), is given by

∂2x̂∗t−1(pt;m
∗(p; pt))

∂pt∂ẑi
= −2ψαt−1,i(pt)(pt − pi).

Note that the derivative of the worst-case expected demand to the right (left) of pi

becomes more negative (positive) as the perceived innovation ẑi increases. Hence, a higher
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signal innovation ẑi amplifies the effects of the endogenous switch in the worst-case demand

elasticity. Intuitively, positive demand news shift up the conditional belief about demand

at all prices, but the weight put on the signal decreases with |pt − pi|, so that beliefs about

demand shift up the most locally. In Section 4 we investigate this interaction empirically and

quantify how much a firm that observes a particularly good (bad) demand realization is more

likely to keep (change) its posted price. This asymmetry in the effect of demand news on

the probability of changing a price stands in contrast to most state-dependent mechanisms,

such as a standard menu-cost model, where both positive and negative shocks make the firm

more likely to reprice as they raise the gap between the current and optimal prices.

2.4 Incorporating forward-looking behavior

Next, we consider how forward-looking behavior affects optimal pricing, and stickiness in

particular. The current price choice pt and demand realization yt become state variables in

next period’s problem, as they are incorporated in the future information set εt. This gives

rise to a new incentive: posting a price for the sake of obtaining new information.10

To characterize this exploration motive, we need to analyze the continuation value in (5).

This presents a technical problem – the relevant state εt−1 is the whole history of prices and

demand realizations, which is infinitely long, thus making the general form of the dynamic

problem intractable. To get around this, we assume the firm understands that its action

today (time t) will change its information set in the future, but thinks that none of its future

pricing decisions (t+ k) will affect its information set again – that is, εt+k = εt ,∀k ≥ 1. We

denote the resulting continuation value of the recursive problem from t+1 onward, when the

firm does not face any more changes in the endogenous state εt but still faces the fluctuations

in exogenous cost process ct+k, as Ṽ .11 Plugging it into (5), the firm solves

V (εt−1, ct) = max
pt

min
m(p)∈Υ0

E

[
ν(εt, ct) + β

∫
Ṽ (εt, ct+1)g(ct+1|ct)dct+1

∣∣∣∣εt−1

]
This approximation makes the dynamic problem tractable, while featuring two important

conceptual advantages. First, the firm is forward-looking into the discounted infinite future

10Conceptually, our environment is related to the multi-arm bandit literature. Here the payoffs of the
arms (i.e. price choices) are correlated since ψ > 0, and evaluated under multiple priors. See Bergemann
and Valimaki (2008) for a survey of related applications of bandit problems studied under expected utility.

11Ṽ (.) is the solution to the following recursive problem, with details presented in Online Appendix A.3

Ṽ (εt, ct+1) = max
pt+1

min
m(p)∈Υ0

E

[
ν(εt+1, ct+1) + β

∫
Ṽ (εt, ct+2)g(ct+2|ct+1)dct+2

∣∣∣∣εt]
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in terms of the cost process ct+k, hence does not only consider the likely cost next period as

it would in a simple two-period model. Second, the approximation leaves the history εt−1

completely unrestricted. Thus, it avoids any ad hoc assumptions limiting the firms’ memory,

which could lead to built-in conclusions on how firms learn and the resulting pricing decisions.

Instead, leaving it unrestricted allows us to evaluate in Section 4 the long-run properties of

the model at its stochastic steady state, where that history is fully endogenous and long.

In this section, however, we will focus on analyzing the qualitative features of the economic

forces shaping the exploration motive, and to this end we treat the history εt−1 as given.

The experimentation motive is driven by a desire for information that is both new and

relevant. On the one hand, the firm would like to obtain information on new parts of the

demand curve where its ex-ante uncertainty is high. On the other hand, the firm values

relevant information, i.e. signals that would affect beliefs about demand near prices that are

likely to be posted in the future. The balance of these two forces determines whether the

exploration incentives lead to the selection of a brand new price pt or revisiting one of the

previously observed prices. Which one dominates depends crucially on the information the

firm enters the period with – εt−1.

To gain analytical insight into this trade-off, we consider the special case where i) ψ =∞,

so that beliefs about demand at different prices are uncorrelated; and ii) there is perfect

foresight that future costs are constant at some arbitrary level c > 0, i.e. ct+k = c for all k ≥
1. Under these assumptions, we can characterize analytically the expected continuation value

E

[
Ṽ ({εt−1, pt, yt}, c)

∣∣∣∣εt−1, pt

]
as a function of pt (the expectation is over the realizations of

the new signal yt), and prove two results that illustrate how the exploration incentive could

be maximized either away from or exactly at one of the previously observed prices.

The composition of the history of observations εt−1 is key to determining whether the

optimal exploration strategy is to stay put or try something new. To illustrate, we consider

two cases that would also help understand the numerical results in Section 4 where εt−1 is

endogenous. First, let εt−1 = ε0 contain demand realizations at only one distinct price level

p0. To make the point starker, we assume that the realization of the observed signal ȳ0 is

good enough (i.e. ȳ0 > −γ − bp0 + σ2
x

2
), so that when the cost equals c∗0 = p0 − ln( b

b−1
), p0 is

not just locally optimal, but is in fact the global static profit-maximizer conditional on ε0.

In Proposition 3, we characterize the current price pt that maximizes the expected

continuation value when c = c0.

Proposition 3. The expected continuation value E

[
Ṽ ({ε0, pt, yt}, c∗0)

∣∣∣∣ε0, pt

]
achieves its

maximum at

p∗t = arg min
p

(p− p0)2 s.t. p 6= p0.
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Proof. We provide intuition in the text below, see Online Appendix A.3 for details.

Intuitively, choosing p∗t today ensures that the new signal yt will be informative about a

price as close as possible to the ex-ante expected optimal p0 – this makes the new information

highly relevant. As a result, if the realization ẑt at the new signal is above a threshold z̄t(p
∗
t ),

characterized in the proof, then the firm will stick with this price in the future, set pt+k = p∗t ,

and take advantage of the unexpectedly high demand at that price while remaining near its

ex-ante optimal markup level. On the other hand, if the signal realization happens to be bad,

the firm can safely switch back to the ex-ante optimal p0, where the belief about demand is

not affected by ẑt, and still offers lower uncertainty and the preferred markup.

The reason for not picking pt = p0 is that a bad realization of the new signal erodes the

ex-ante best pricing option, p0, while the firm does not have a good fall-back alternative, as

it has no observations of demand at other prices. Because of this, it is best to experiment

with a brand new price, though the desire for relevant information keeps the firm near p0.

Proposition 3 describes a case where the value of new information is maximized away

from p0. However, next we show that this is not a general result, but depends on whether

the firm has seen one or more distinct prices in the past. In particular, let εt−1 = ε1 contain

demand realizations at two distinct prior prices, p0 and p1. Also, to simplify the exposition

we assume that the information received at these prices is of the same quality – demand at

each price has been observed the same number of times (N1 = N0), and the observed signals,

ȳ0 and ȳ1, imply equally-good news, i.e. the same perceived innovation: ẑ0 = ẑ1 = ẑ.

Proposition 4 shows that when the previously observed demand at p0 and p1 has been

good enough, the continuation value is maximized at p0 for a range of cost shocks around

c∗0. Thus, forward-looking behavior reinforces the static stickiness result (Corollary 1).

Proposition 4. There is a non-singleton interval of costs (c, c̄) around c∗0, and a threshold

χ > 0, such that if ẑ > χ, then for any c ∈ (c, c̄):

p0 = arg max
pt

E

[
Ṽ ({ε1, pt, yt}, c)

∣∣∣∣ε1

]
.

Moreover, the threshold χ is decreasing in |p1 − p0|.

Proof. We provide intuition in the text below, see Online Appendix A.3 for details.

The reason for this result is two-fold. First, information about demand at p0 is the most

relevant since that is the price expected to be optimal in the future. Second, even if the firm

receives a ‘disappointing’ new signal yt at p0, it has a good fall-back option as it has also

accumulated information (and thus reduced uncertainty) at the price level p1. Thus, the firm

can set pt = p0 and further reduce uncertainty about demand at the most likely future price,
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safe with the knowledge that it has a good alternative in case the new information is bad.

The value of the fall-back option is important – in particular, the perceived innovation in

the average past demand realization at p1 must exceed a threshold χ (which we characterize

in the proof). This threshold is lower when p0 and p1 are closer to each other, because then

their implied markups are more similar, making the two price choices closer substitutes, and

thus p1 a more attractive fall-back option.

Our analytical results show that forward-looking behavior can both counteract and

reinforce the previous stickiness result derived from static maximization. The resulting

overall effect depends crucially on the structure of the prior history εt−1, which highlights

the importance of taking into account the endogeneity of that history. To that end, Section

4 numerically analyzes the stochastic steady state of a general version of our forward-looking

model, with ψ < ∞ and stochastic cost shocks. We find that experimentation is not only

consistent with significant price stickiness, but also helps generate an empirically relevant

(i) life-cycle profile of pricing behavior and (ii) size distribution of price changes.

3 Quantitative Model and Nominal Rigidity

In this section, we embed our mechanism in a macroeconomic model with monopolistic

competition. The key elements are that firms are uncertain about both (i) their demand curve

and (ii) the competitors’ price index. We first show analytically that this two-dimensional

uncertainty gives rise to as-if kinks in demand in terms of nominal prices. Then, in the

next section, we quantify the ability of our mechanism to match micro-level moments and

generate monetary non-neutrality. In what follows, all lower case variables are in logs.

3.1 Structure of competition

The first primitive of the economic framework is the firm’s set of direct competitors. We

assume that firm i sells to a single industry j and in doing so, competes against a continuum

of other monopolistically competitive firms who do the same. Each industry j has a

representative final-good firm that aggregates the varieties i. Its cost-minimization problem

implies a demand schedule xj(.) for the good of firm i in industry j

yi,t = xj (pi,t − pj,t, yj,t, zi,t) , (11)
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where pi,t is the log price set by firm i, and the log industry price index pj,t is such that

epj,t+yj,t =
∫
epi,t+yi,tdi.12 The zi,t term is an idiosyncratic demand shock for good i which

is unobserved by firm i but known to be distributed as N(0, σ2
z). The demand curve in

equation (11) is a generalization of the typical CES structure, with the familiar result that

the demand for a given intermediate good i is a function of the firm’s price relative to the

industry average, pi,t − pj,t; overall industry output yj,t; and demand shocks zi,t.

At the aggregate level, a representative household consumes a final good produced by a

competitive firm that buys from the continuum of industries j. The household’s consumption

basket and the associated aggregate price index are given by the standard CES structures

yt = b
b−1

ln
(∫

eyj,t
b−1
b dj

)
and pt = 1

1−b ln
(∫

epj,t(1−b)dj
)
. Cost minimization by the final good

producer implies a standard demand curve for the industry j composite good

yj,t = yt + b(pt − pj,t). (12)

We denote the relative prices that enter as arguments in the demand curves for firm i in

equation (11) and for industry j in equation (12), respectively, as

ri,t ≡ pi,t − pj,t; rj,t ≡ pt − pj,t. (13)

3.2 Information about competition

We model a firm that has Knightian uncertainty over the joint assessment of (i) its demand

curve xj as a function of its own relative price pi,t− pj,t, and (ii) the price index of its direct

competitors pj,t. Each firm i observes the full history of its own prices and quantities, pi,t and

yi,t, as well as the aggregate output and price levels, yt and pt. Intuitively, our framework is

meant to capture the idea that since firms do not know the exact structure of the demand

they face, they also do not know how to precisely aggregate over the prices of their direct

competitors to build the relevant price index they compete against. Thus, uncertainty about

the competitive environment manifests itself in uncertainty over the shape of the demand

curve, but also the relevant price index that determines a specific firm’s relative price.

12In the background, the technology is modeled as eyj,t = f−1
j

(∫
fj(e

yi,t)gj(e
zi,t)di

)
, where each industry

j has potentially different production functions fj and gj . Solving the cost-minimization problem of the

final good firm in industry j yields yi,t = ln
[
f ′−1
j

(
epi,t−pj,t

f ′
j(e

yj,t )

gj(e
zi,t )

)]
. In equation (11) we summarize the

effective demand curve as xj and note that it is a transformation of the functions fj and gj .
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Ambiguity about the demand curve

For tractability, we assume the firm understands that the industry demand yj,t and the

demand shocks zi,t enter multiplicatively in the unknown function xj in equation (11). Since

firm i also knows the structure of the aggregate consumption basket, it can substitute out

industry output yj,t from equation (12) to obtain the demand schedule

yi,t = xj(ri,t) + brj,t + yt + zi,t, (14)

where the relative prices ri,t and rj,t are defined in (13).

Ambiguity about the demand curve xj is modeled as in equations (3) and (4): there is a

set of multiple priors, each of which is a GP distribution with mean function m(ri) so that

m(ri) ∈ [−γ − bri, γ − bri]; m′(ri) ∈ [−b− δ,−b+ δ]. (15)

Ambiguity about the relative price

In our model, the firm does not directly observe its direct competitors’ price index pj,t. It

does, however, have two relevant sources of information. These sources differ in the perceived

ambiguity about their informational content. In particular, the firm is confident, i.e perceives

no ambiguity, about the first source, which consists of marketing reviews that perfectly reveal

the value of pj,t. We model reviews as occurring with some exogenous probability λT . Here

we implicitly assume that there are some technological constraints on the ability to perform

frequent reviews (e.g. the necessary data may not be observed every period); or simply that

reviews are costly, leading the firm to perform them infrequently.13

In addition, the firm observes the aggregate price level pt at all time. However, unlike

in a rational expectations (RE) framework, we assume the firm is not confident about how

pt relates to the unknown pj,t, and perceives their relationship as ambiguous. In particular,

we assume that while the firm is certain that aggregate and industry prices are cointegrated

and thus must keep pace with each other in the long-run, the firm is uncertain in the short-

run structural relationship between the two. Putting together the firm’s two sources of

information, it perceives the evolution of pjt as

pj,t = p̃j,t + φ(pt − p̃j,t), (16)

13As long as reviews do not happen every period, using deterministic or state-dependent review lags would
not change our analysis significantly. The modeling advantage over a deterministic timing is computational:
we find that stochastic review times achieve faster convergence towards the stationary distribution. The
advantage over a state-dependent setup is tractability, as it avoids modeling a cost-benefit analysis of reviews.
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where p̃j,t is the most recent review signal as of time t, and the function φ summarizes the

unknown and ambiguous structural relationship between pt and pj,t. Indeed, our assumption

that firms do not know the exact industrial structure (i.e. the function xj) implies that they

also do not know the exact equilibrium relationship between pt and pj,t – different industry

production functions imply different such structural relationships.

Ambiguity about φ is modeled with the same tools as the uncertainty about the demand

function xj. Specifically, we assume that the priors on φ are GP distributions, with mean

functions that lie in a set Ωφ around the true DGP φ(pt − p̃j,t) = pt − p̃j,t. For tractability,

we focus on the limiting case in which the variance function of the GP distributions over φ

goes to zero almost everywhere. Given the resulting Dirac priors, we can simplify notation

and specify the set of priors directly as a set of possible φ’s the firm entertains.

In particular, we specify that for small inflationary pressure, i.e. when |pt − p̃j,t| is less

than some threshold Γ, the relationship is uncertain and the function φ lies in the interval

φ(pt − p̃j,t) ∈ [−γp, γp], for |pt − p̃j,t| ≤ Γ. (17)

This captures the idea that observing a small change in the aggregate price pt does not

convince the firm that the unobserved industry price has also changed. Online Appendix

A.7, shows that such uncertainty about the local relationship between aggregate and industry

inflation is well supported by the data. Lastly, to ensure that under all admissible priors

pt − pj,t is stationary, we make the set of potential φ grow with pt − pj,t as inflation rises:

φ(pt− p̃j,t) ∈ [−γp+pt− p̃j,t−Γ sgn(pt− p̃j,t), γp+pt− p̃j,t−Γ sgn(pt− p̃j,t)], for |pt− p̃j,t| ≥ Γ.

Unambiguous estimates of relevant relative prices and demand

The review signal p̃j,t is the only unambiguous estimate of pj,t. The firm can use this

signal to construct unambiguous estimates of the relative prices of interest, ri,t and rj,t, as

r̃i,t ≡ pi,t − p̃j,t; r̃j,t ≡ pt − p̃j,t. (18)

Here, r̃i,t represents the firm’s estimate of the relevant relative price driving its own demand

curve, constructed using the firm’s observed nominal price pi,t and the review signal p̃j,t. In

turn, r̃j,t is the estimate of the relative price that enters the industry j demand curve.

Using these expressions, we can decompose the relative prices ri,t and rj,t into a compo-

nent over which the firm is confident and one that is perceived as ambiguous. Specifically,

given the law of motion of pj,t in equation (16), the unknown relative prices ri,t and rj,t
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defined in (13), and their unambiguous estimates in (18), the decomposition is given by

ri,t = r̃i,t − φ (r̃j,t) ; rj,t = r̃j,t − φ (r̃j,t) . (19)

Substituting the decompositions of the unobserved ri,t and rj,t in (19) into the demand

equation (14) leads to

yi,t = xj(r̃i,t − φ(r̃j,t))− bφ(r̃j,t)︸ ︷︷ ︸
ambiguous components of demand

+br̃j,t + yt + zi,t, (20)

which isolates the unambiguous and ambiguous components of demand. The former are

given by the observed aggregate output yt, the risky demand shock zi,t and the unambiguous

estimates of the relative prices (r̃i,t, r̃j,t). The ambiguous components are due to ambiguity

over (i) the demand curve xj itself, with the set of priors given in equation (15); and over

(ii) the relative prices (ri,t, rj,t), arising from the set of priors for φ in (17).

3.3 Optimization problem

Having described the competitive and information structures, we now turn our attention

to the profit maximization problem. We assume that the production function of the

intermediate-good firm i is given by yi,t = ωi,t+at+ li,t, where ωi,t and at are an idiosyncratic

and aggregate productivity shock respectively; and li,t represents the (log) hours supplied by

the household to firm i. The processes for these shocks are known:

ωi,t = ρωωi,t−1 + εωi,t; at = ρaat−1 + εat ,

where εωi,t is iid N(0, σ2
ω) and εat is iid N(0, σ2

a). Because we are ultimately interested in how

nominal shocks affect the firm’s pricing decisions, nominal spending is the other aggregate

shock in this economy: the log nominal aggregate spending st = pt + yt is assumed to follow

a random walk with drift, st = µ+ st−1 + εst , where εst is iid N(0, σ2
s).

The aggregate side of the model is standard. We assume linear labor disutility for the

representative household, which then equalizes the wage to consumption, which in turn is

simply equal to aggregate output by market clearing (as detailed in the Online Appendix

A.4). Given the log-demand in equation (20), the real flow profit of firm i becomes

υi,t =
(
epi,t−pt − eyt−ωi,t

)
eyi,t . (21)

The firm’s problem can be summarized as follows: The firm enters period t with
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knowledge of the history of all its previous quantities sold, the corresponding nominal prices

at which those quantities were observed and its history of industry price review signals. In

addition, the firm sees the history of aggregate prices and output. At the start of time t,

the idiosyncratic productivity ωi,t and aggregates (pt, yt) are observed. If a new review is

conducted, p̃j,t equals pj,t and equals p̃j,t−1 otherwise. Given the history of observables and

current states, the firm optimizes over its action, pi,t, taking into account the ambiguity over

its demand in equation (20). At the end of period t, the demand shock zi,t is realized and

the firm updates its information set with the observed quantity sold yi,t at price pi,t.

Finally, the firm needs to conjecture a law of motion of pt to forecast future profits. We

close the model by assuming that the ambiguity-averse firms are measure zero, while the rest

of the economy is populated by rational-expectations firms. This makes aggregate determi-

nation simple, as the equilibrium pt is given by pREt . The implication of this assumption is

that by ignoring strategic complementaries in price setting, the quantitative benchmark of

Section 4 can be seen as a lower bound on the degree of monetary non-neutrality.

For a transparent comparison between our model and the RE benchmark, we assume a

simple DGP where each variety i faces the same demand function coming from industry j in

(14), given by xj(ri,t) = −bri,t. Using this knowledge of the demand function in equation (20),

it follows that a RE firm has full knowledge that its demand is yREi,t = −b(pi,t−pt) + yt + zi,t.

The resulting optimal RE nominal price takes the familiar form pREi,t = log b
b−1

+ pt − ωi,t,
where the aggregate price (up to a constant) is pREt = st − at.

Aggregate price level and profits

Note that the aggregate price pt affects real profits in equation (21) through three possible

channels. The first is the standard effect of deflating nominal profits by pt. The other two

effects show up in the demand equation (20). On the one hand, when observing a higher pt,

holding p̃j,t constant, the firm estimates that the industry j’s composite good is relatively

cheaper. As a result, the firm expects higher demand for industry j’s composite good, which

in turn, holding everything else constant, translates into a higher demand for firm i. This

demand shifter is given by br̃j,t in equation (20). On the other hand, the same observation of

a higher pt may change the firm’s perception of the unobserved pj,t, through their structural

relationship φ(r̃j,t). In particular, holding constant p̃j,t, a larger pt indicates to the firm that

the aggregate price index is higher than the firm’s unambiguous estimate of pj,t. While in a

RE model this observation would fully convince the firm that pj,t must have also risen, our

ambiguity-averse firm lacks such confidence, as summarized in the set of beliefs in (17).

25



3.4 Joint worst-case beliefs

To illustrate the key intuition analytically, for the rest of this section we zero-in on the special

case of a myopic firm born at time t = 0 that is in its second period of life (i.e. t = 1).

Hence, its information set contains just one previous price point, pi,0, and the quantity sold

at that price, yi,0.14 In addition, the firm observes the history of aggregates, {y0, y1, p0, p1},
and signals on the industry price level, {p̃j,0, p̃j,1}. These observables are used by the firm

to form the unambiguous estimates of the relative prices, {r̃i,0, r̃j,0, r̃j,1}, as defined in (18).

Abstracting from the unambiguous terms, expected demand is given by

m(r̃i,1 − φ(r̃j,1))− bφ(r̃j,1) + α{yi,0 − [m(r̃i,0 − φ(r̃j,0))− bφ(r̃j,0)]}, (22)

where α = σ2
x

σ2
x+σ2

z
.15 The expectation is simply a combination of a prior belief about demand

at the current relative price ri,1 (i.e. m(r̃i,1 − φ(r̃j,1)) − bφ(r̃j,1)) and an update given the

realized quantity yi,0 at the previous price ri,0. Since the industry prices pj,0 and pj,1 are

uncertain, expected demand depends on the priors for both the demand curve, m(.), and

the structural relationship between industry and aggregate prices, φ(.).

The analysis of the worst-case priors is similar to the one in the real model in that it

can be decomposed in jointly considering the worst-case priors for (i) the level of demand at

the current relative price ri,1 and (ii) the change in demand between ri,1, and the previous

ri,0 (where the quantity sold yi,0 was observed). However, the firm now needs to account for

the joint ambiguity over both the demand shape, i.e. m, and the industry-aggregate price

relationship φ, since the latter affects perceptions about the unknown pj,0 (the industry price

when yi,0 was realized) and pj,1 (the industry price that determines the current relative price).

The worst-case prior for the level of demand at the current price ri,1 is straightforward –

it is equal to the lower bound of (15), given by −γ − b (r̃i,1 − φ(r̃j,1)). Under this prior, the

first two components of expected demand in (22) simplify to −γ− br̃i,1, as the bφ(r̃j,1) terms

cancel out. This reflects our assumption that while the firm faces ambiguity about the local

elasticity of its demand schedule, its beliefs are centered around the true xj(ri,t) = −bri,t.
Still, the ambiguity about the shape of demand impacts the firm’s evaluation of the

change in demand from ri,1 to ri,0, and thus its update based on the realization of yi,0. In

14In Online Appendix B.2 (on the authors’ website) we show how the conceptual analysis is extended to
having multiple past prices, and Section 4 shows numerical results for the general case of forward-looking
firms with unrestricted history.

15To simplify notation and the analysis, for the rest of this section we suppress the local information effects
by working with ψ = 0. We relax this assumption in Section 4.
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fact, there are two sources of ambiguity affecting this update, since the surprise in yi,0 is

yi,0 − [m(r̃i,0 − φ(r̃j,0))−m (r̃i,1 − φ(r̃j,1))︸ ︷︷ ︸
Ambiguous change along firm’s demand curve

] + b [φ(r̃j,0)− φ(r̃j,1)]︸ ︷︷ ︸
Ambiguous change in industry’s relative price

(23)

The first source of ambiguity in the update is the firm’s uncertainty over the shape of its

demand curve between ri,0 and ri,1, governed by the set of priors m. The second source

of ambiguity is due to the unobserved change in the industry price level from pj,0 to pj,1,

and is governed by the set of priors on the industry-aggregate price structural relationship

φ. Moreover, the unknown industry inflation impacts the firm’s update in two places: (i) it

affects the actual change in the relative price ri,t and enters the argument of the prior on the

demand function m, and (ii) introduces a shift in the firm’s demand schedule, as movements

in pj,t against the aggregate price pt change the economy’s demand for the composite good

of industry j, shifting demand for all firms in that industry (the second term in (23)).

Once the relevant constraints on the admissible functions m and φ are taken into account,

determining the joint worst case for the ambiguous update in (22) reduces to

min
δ′∈[−δ,δ]

min
φ(r̃j,t)∈[−γp,γp]

−δ′ {r̃i,1 − r̃i,0 − [φ(r̃j,1)− φ(r̃j,0)]} . (24)

The joint worst-case prior beliefs depend on whether the firm considers a price that raises

or lowers r̃i,1 relative to r̃i,0. When it entertains an action that increases r̃i,t, it sets in motion

a concern that its effective demand is sensitive to this action. This concern manifests itself

in a joint worst-case belief that both (i) the unknown demand curve m, is steep, i.e. δ∗ = δ,

and that (ii) there was a decline in the unknown price index of its direct competition within

industry j. Hence, if r̃i,1 ≥ r̃i,0, the minimizing priors are

δ∗ = δ; φ∗(r̃j,1) = −γp; φ∗(r̃j,0) = γp. (25)

In contrast, when the firm entertains decreasing its estimated relative price r̃i,1, it worries

about the opposite situation: that (i) its unknown demand curve is flat (i.e. δ∗ = −δ), and

(ii) it is facing an increase in the unknown price index of the competition. Hence, if r̃i,1 ≤ r̃i,0,

δ∗ = −δ; φ∗(r̃j,1) = γp; φ∗(r̃j,0) = −γp. (26)

It is worth pointing out that the worst-case belief about the change in pj,t is not always

that the firm’s competition has lowered prices. The reason is that the industry price affects

the firm’s demand in two ways: (i) it determines the relevant relative price (the argument of

xj), and (ii) acts as a demand shifter since lower overall prices in industry j boost demand
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for all firms inside the industry. These two effects go in opposite directions, and which one

dominates depends on the perceived elasticity of the demand function xj. When xj takes on

the average elasticity b, these two effects cancel out. However, when the firm is contemplating

a price increase or decrease, the worst-case local elasticity of xj changes away from b. As a

result, the worst-case belief about φ endogenously depends on the firm’s action r̃i,1.

The key implication of equations (25) and (26) is that the joint worst-case beliefs over

the demand curve and the industry-aggregate price relationship endogenously induce a kink

in the worst-case conditional demand schedule around r̃i,0, – notice they give rise to an

absolute value term −αδ|r̃i,1 − r̃i,0| in (24). The reason behind the emergence of the kink

is similar to the real model, and in particular equation (10). The difference is that while

in the real model the relevant relative price was uniquely determined by the firm’s action,

here this is not the case. Intuitively, the firm is facing an identification problem, as it is

uncertain about both the argument and the shape of the demand function. Faced with this

joint ambiguity, it turns out that the robust solution is to estimate the demand curve in

terms of the unambiguous estimate of the relative price r̃i,t. Due to the uncertainty about

the local shape of the demand function, a kink at the previously observed r̃i,0 emerges.

3.5 Learning and nominal rigidity

The kink in the worst-case expected demand leads to a first-order expected loss of having

an estimated relative price r̃i,1 different from r̃i,0. The firm can avoid this loss by posting a

nominal price pi,1 such that r̃i,1 = r̃i,0, or

pi,1 − p̃j,1 = pi,0 − p̃j,0. (27)

Naturally, rigidity in r̃i,t has implications for the optimal nominal price.

First, consider the case in which a new review of the industry price does not occur at

time t = 1, so that p̃j,1 = p̃j,0. In that case, if the firm finds it optimal to take advantage of

the kink in estimated relative prices, equation (27) shows that the firm will do so by keeping

its nominal price fixed and set pi,1 = pi,0. This makes the nominal price rigid.

Of particular importance is the result that the optimal nominal price p∗i,1 may stay fixed

at its previous value pi,0 even as the aggregate price changes. The current aggregate price

p1 is one of the state variables that affects profits, as shown in equation (21) and discussed

in Section 3.3, and thus affects pricing decisions. However, due to the kink in the worst-case

expected demand, captured by the −αδ|r̃i,1− r̃i,0| term discussed above, we show (see details

in Proposition A1 in Online Appendix A.5) that there is a range of values of aggregate

inflation for which it is optimal for the firm to keep pi,1 = pi,0. A similar argument leads to

28



nominal rigidity conditional on changes in the other state variables as well.

Alternatively, consider periods when the firm observes the industry price through a review

signal, i.e. p̃j,1 = pj,1. To take advantage of the kink at r̃i,0, the firm changes its nominal price

away from pi,0 in response to the information that is revealed by the difference pj,1 − p̃j,0.
Unless by chance pj,1 = p̃j,0, rigidity in the estimated relative price leads to a nominal

adjustment.

Indexation is suboptimal

Our model makes indexation to the aggregate price level suboptimal, even in the absence

of external costs of changing prices. Intuitively, this is because the unambiguous estimate of

the relevant relative price, pi,t− p̃j,t, is conceptually different from the real price, pi,t−pt. The

firm optimally seeks to minimize exposure to ambiguity about its demand. Since demand is

a function of the relative price pi,t− pj,t, the firm optimally keeps constant the unambiguous

estimate of this relative price, not the real price as measured against the aggregate price.

The two concepts of relative prices are materially different in our model because the observed

aggregate price pt is neither (i) the direct competitors’ price index, nor (ii) an unambiguous

estimate of it.

To see this, note that the observed aggregate price can be used to deflate all nominal

prices to obtain real prices. We denote the resulting real versions of the price of the firm,

the current industry j price, and the industry price observed at the last marketing review as

preal
i,t ≡ pi,t − pt; preal

j,t ≡ pj,t − pt; p̃real
j,t ≡ p̃j,t − pt. (28)

The key point is that as long as the competitive and information structure defined in Sections

3.1 and 3.2 are maintained, such re-normalization of prices based on variables in the firm’s

information set leads to the same optimal solution as derived above. Therefore, the nominal

rigidity is not an artifact of a lack of properly deflating nominal prices or nominal illusion.

We can rewrite all of the basic relationships of our model using the deflated prices in

(28). For example, the demand curve faced by the individual firm can be written as

yi,t = xj
[
preal
i,t − p̃real

j,t − φ(−p̃real
j,t )
]
− b
[
p̃real
j,t + φ(−p̃real

j,t )
]

+ yt + zi,t, (29)

where the set of beliefs over the functions xj(.) and φ(.) is the same as in (15) and (17).

Indeed, in the short run the firm still entertains that φ(−p̃real
j,t ) ∈ [−γp, γp]. In our two-period

case, equation (29) leads to a kink in the worst-case expected demand around the estimated
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relative real price preal
i,0 − p̃real

j,0 . The local profit maximizer around that kink is to set

preal
i,1 − preal

i,0 = p̃real
j,1 − p̃real

j,0 . (30)

But since aggregate inflation p1 − p0 cancels out on both sides of this equation, we obtain

back the optimal nominal price solution given by equation (27).

Intuitively, when there is no review, the RHS of equation (30) implies that the observed

aggregate inflation rate reduces the unambiguous estimate of the industry j real price one-

to-one. To keep demand at the same estimated real price relative to the industry average,

the firm finds it optimal to keep its nominal price unchanged, i.e. pi,1 = pi,0, and thus let its

real price also decrease one-to-one, as implied by the LHS of equation (30).

Suppose on the contrary that the firm were to index its nominal price using aggregate

inflation and follow a pricing policy that sets preal
i,1 = preal

i,0 , and keeps its real price constant.

Positive aggregate inflation implies a lower estimate of the real industry price p̃real
j,1 , compared

to the last period. Keeping its own real price constant while that estimate has decreased is

equivalent to an increase in the firm’s real relative price vis-a-vis its direct within industry

competitors, i.e. preal
i,1 − p̃real

j,1 goes up. This is precisely what the firm wishes to avoid, as

movements in this relative price expose it to first-order losses arising from the ambiguity

about the demand shape, as discussed above.16 Thus, such indexation is suboptimal.

Stickiness and memory in nominal prices

The result of equation (27) extends in a straightforward fashion once we move beyond

the example of a firm in its second period of life. The unrestricted history of estimated

relative prices r̃t−1
i and realized quantities forms the information set used to update beliefs

about demand. Given past history r̃t−1
i , the worst-case beliefs feature kinks at all previously

observed r̃i ∈ r̃t−1
i . When a review does not occur this period so that p̃j,t = p̃j,t−1, the kinks

in expected demand occur at the same set of nominal prices as last period.

These kinks make stickiness in nominal prices akin to “price plans”, where posted prices

tend to bounce around a few “reference prices”. However, unlike other frameworks such as

Eichenbaum et al. (2011), price plans adjust gradually over time: as shocks push the firm to

visit a price it has not posted previously, it is added to its “price plan”. Importantly, in the

future the firm is still likely to revisit the older prices, as the signals it has accumulated there

16Formally, these first-order losses dominate the standard markup and aggregate-demand effects of a
change in pt, as shown in Propositions A1 and A2, Online Appendix A.5. Naturally, we can modify either
one of our two key primitives that (i) the economy is sub-divided in industries so that the set of firm’s direct
competitors is different from the set of all firms in the economy, and thus pj,t 6= pt, or that (ii) the firms are
not confident that movements in pt translate one-to-one in movements in pj,t, in ways that would recover full
nominal flexibility. Online Appendix B.3 (on the authors’ website) has details on such alternative economies.
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remain in its information set. As we discuss in Section 4.3, this feature has implications for

the persistence of the real effects of monetary shocks.

4 Quantitative evaluation

Next, we evaluate quantitatively the empirical relevance of the model described in the

previous section by testing its implications against a rich set of conditional and unconditional

moments. This requires solving numerically the general infinite horizon decision problem of

the ambiguity-averse firms. As discussed earlier, the dimensionality of the space grows with

the length of the history εt−1, and to handle this problem we use the same Ṽ approximation as

outlined in Section 2.4. The advantage of this approach is that we can leave εt−1 completely

unrestricted, hence do not need to impose any ad-hoc assumptions limiting the memory of

the firms. This way, we can evaluate the performance of our mechanism in the long-run,

at the stochastic steady state of the model, where the history of observations εt−1 is both

endogenous, reflecting past optimal choices, and long.

4.1 Calibration

The model period is a week. We calibrate β = 0.97(1/52) to match an annual interest

rate of 3%. The mean growth rate of nominal spending µ = 0.00046 is set to match

an annual inflation of 2.4%, and we pick the standard deviation σs = 0.0015 to generate

an annual standard deviation of nominal GDP growth of 1.1%. Following the calibration

in Vavra (2014) we set the persistence and standard deviation of aggregate productivity

ρa = 0.91(1/13) = 0.9928 and σa = 0.0017 to match the quarterly persistence and standard

deviation of average labor productivity, as measured by non-farm business output per hour.

We choose an elasticity of substitution of b = 6, implying a (flexible price) markup of 20%.

We choose the remaining parameters by targeting micro-level pricing moments from the

IRI Academic Dataset. The dataset consists of scanner data for the 2001 to 2011 period

collected from over 2,000 grocery stores and drugstores in 50 U.S. markets. The products

cover a range of almost thirty categories, mainly food and personal care products. For our

purposes, we focus on nine markets and six product categories.17 Because our model does

not feature a rationale for sales, all reported moments are based on “regular price” series in

17The markets are Atlanta, Boston, Chicago, Dallas, Houston, Los Angeles, New York City, Philadelphia
and San Francisco. The categories are beer, cold cereal, frozen dinner entrees, frozen pizza, salted snacks
and yogurt. A more complete description of the dataset is available in Bronnenberg et al. (2008).
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which temporary sales are filtered out.18

Learning parameters and stochastic shocks

Our mechanism emphasizes non-parametric learning under ambiguity, which creates a rich

learning environment characterized by six parameters {δ, γp, γ, σ2
x, ψ, λT}. With a focus on

limiting the associated degrees of freedom, we set two of the learning parameters to values

corresponding to natural limiting cases, and freely estimate the remaining four parameters.

First, regarding ambiguity over the demand function, we assume that the firm is confident

that the mean demand function cannot be locally upward sloping, hence δ ≤ b. To minimize

degrees of freedom, we thus simply fix δ = b. Second, in terms of ambiguity over the

unobserved industry price index, the parameter γp controls the size of the entertained set

of cointegration relationships in equation (17). As detailed in Section 3, a positive γp is the

reason why the joint worst-case beliefs about the demand function and the relative price lead

to nominal rigidity in the short run. However, once the worst-case is determined and the

firm engages in learning through the perceived relative price r̃i, the value of γp only enters

as a price-independent demand shifter in the worst-case expectation. Its quantitative role is

therefore limited and thus we study the limit of γp → 0. This leaves four learning parameters

{γ, σ2
x, ψ, λT} that we estimate by targeting micro-level moments, as detailed below.

The only modeling difference relative to the environment described in Section 3 is the

assumption that with probability λφ, firm i exits and a newly-born firm takes its place

in industry j. New firms have no information on the demand function beyond the time-

zero prior, thus exit resets the information capital of firms.19 This assumption serves two

purposes. First, with an infinitely growing history of signals, conditional beliefs are non-

stationary, making it difficult to evaluate behavior at the stochastic steady state. Second, it

allows us to study pricing behavior over the firm’s life-cycle, which serves as an additional

set of untargeted moment restrictions on our learning mechanism. Here, we set the exit

probability λφ = 0.0075, following Argente and Yeh (2017), who provide a detailed analysis

of the duration of a UPC-store pair in the same IRI dataset that we use.

The firm’s quantity sold is subject to demand shocks, with a standard deviation of σz.

We calibrate this parameter by using empirical evidence on the accuracy of predicting one-

18We use the methodology of Nakamura and Steinsson (2008) which aims to eliminate V-shaped sales.
Also, as is usual with scanner datasets, we obtain the unit price by dividing weekly revenue by quantity
sold. In order to minimize the probability that we identify spurious price changes due to middle-of-the-
week repricing, the use of coupons, loyalty cards, etc., we take the conservative approach of eliminating any
observations that feature a price with fractional cents.

19As such, we interpret reseting the informational capital as a broad concept, which includes any shock
that makes the firm unsure that past observations are still informative, including major changes in the
competitive landscape, the introduction of rival substitutes or technological change.
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period-ahead quantity. This involves estimating the demand regression:

qijt = β0 + β1qi,j,t−1 + β2pijt + β3p
2
ijt + β4cpit + week′tθ1 + store′jθ2 + item′iθ3 + zijt (31)

where qijt and pijt are quantities and prices in logs for item i in store j at time t; cpit is the

(log) consumer price index for food and beverages; while weekt, storej and itemi are vectors

of week, store and item dummies respectively.20 We then compute the empirical standard

deviation of the residuals zijt leading us to set σz = 0.613.21

The firms also face idiosyncratic productivity shocks, whose persistence and volatility

(respectively ρw and σw) we estimate via moment matching.

Simulated method of moments

We estimate the six free parameters, {ρw, σw, σx, ψ, λT , γ}, via simulated method of moments,

by targeting the six pricing moments listed in Table II. For the most part, these are basic

pricing moments widely used in the literature to discipline price-setting models. Throughout,

we define the ‘reference price’ as the modal price within a 13-week window period, as in

Gagnon et al. (2012). The last moment, the mean duration of a pricing regime, appeals

to the fact that in our model, the kinks in expected demand turn basic stickiness into

price plans. In both actual and simulated data, we identify these price plans using the

method in Stevens (2014).22 Table I presents all parameters values, while Table II shows

the outcomes for moments targeted in the estimation.23 The model matches the targeted

moments very well and, naturally, it does so through a positive ambiguity parameter γ,

which is the necessary source for any price stickiness in the model.24

4.2 Testable implications

Next, we analyze the ability of the model to match various features of the data that were

not directly targeted in the estimation, yet speak to the mechanisms at the heart of our

20Given the high (weekly) frequency of our data and the fact that we do not find evidence of middle-of-
the-week price changes, endogeneity is unlikely to be a significant issue here.

21The regression is run and the volatility measure is computed first for each of the 54 category/market
pairs, before being aggregated using revenue weights.

22The methodology modifies the Kolmogorov-Smirnov test to identify shifts in the distribution of price
changes over time. In order to have enough observations from which to identify regimes when applying to
the data, we ignore quote-lines that have missing price data or less than 104 weekly observations (2 years).
We use Stevens (2014)’ standard critical value of 0.61 throughout our regime identification exercises, for
both actual and simulated data. Also, in both cases, we eliminate regular price changes of less than 1%.

23The estimation is based on a simulated panel of 5000 time periods with 1000 active firms in each period.
24Online Appendix A.6 shows that the estimated γ implies an empirically plausible amount of ambiguity,

as it generates dispersion in prior demand forecasts that matches the evidence in Gaur et al. (2007).
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Table I. Parameter Values

Calibrated Parameters Estimated Parameters

β µs σs ρa σa σz λφ ρw σw σx ψ λT γ
0.9994 0.00046 0.0015 0.993 0.0017 0.613 0.0075 0.998 0.008 0.691 4.609 0.018 0.614

model. All model moments are computed at the ergodic steady state. Online Appendix

A.8 provides a detailed discussion on the nature of the average firm’s ergodic pricing policy

function. Crucially, it features multiple kinks, hence the typical firm has multiple price points

with low uncertainty that are both sticky and likely to be revisited. A direct implication is

that the history of observations is endogenously sparse in terms of the price points visited,

so that firms face substantial residual demand uncertainty even at the steady state of the

model.

We start by covering moments that have previously been analyzed in the literature, before

turning to more novel features. The results are presented in Table III. All empirical moments

are obtained by weighing results across markets and categories.

Table II. Targeted moments - Data vs model

Data Model
Frequency of regular price changes 0.108 0.105
Median size of absolute regular price changes 0.149 0.154
75th pctile of the distribution of non-zero absolute price changes 0.274 0.277
Fraction of non-zero price changes that are increases 0.537 0.533
Frequency of modal price changes (13-week window) 0.027 0.026
Mean duration of pricing regimes 29.90 30.54

Table III. Untargeted moments - Data vs model

Data Model
Panel A Prob. modal P is max P 0.819 0.740

Fraction of weeks at modal P (13-week window) 0.829 0.880
Prob. price moves to modal P 0.592 0.669

Panel B Prob. revisiting old price (26-week window) 0.478 0.414
uni (26-week window) 0.792 0.822

Panel C Avg hazard slope -0.011 -0.015
Panel D Kurtosis( ∆P distribution) 3.00 2.16

Prob. modal P revisits old modal P (52-week window) 0.085 0.112
Prob. revisiting price from before last modal P change 0.269 0.259
Prob. revisiting price from before brand new price 0.327 0.388
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4.2.1 Reference prices, memory and size distribution

We first show that our model matches well a number of moments analyzed in the literature.

Reference prices. Panel A of Table III shows that the model correctly predicts that the

typical modal price is generally also the highest price in a given 13-week window – the

probability of that occurring in the data is 82% vs. 74% in the model. Second, within

each 13-week window, we also compute the average fraction of weeks that the regular price

spends at the reference (modal) price: while in the data the regular price spends 83% of the

time at the modal price, in the model this fraction equals 88%. We confirm that this is not

simply a by-product of pervasive price stickiness: the probability that a non-modal regular

price change ends at the modal price, and not at some other regular price, is 67% in the

simulations compared to 59% in the data.

Discreteness and memory. In our model, the first-order perceived cost of moving away

from any of the previously-observed prices implies that prices display memory (see Corollary

3). Panel B of Table III reports the probability that, conditional on a price change, the firm

posts a regular price that it has already visited within the last six months (26 weeks): it is

41% in our model, compared to 48% in the data. Note that a standard menu cost or Calvo

model would feature no such price memory and the probability would be 0%.

A related empirical observation is that firms tend to cycle through a relatively limited,

discrete set of prices as opposed to posting a lot of new unique prices. To test this property,

we produce a novel statistic that takes into account price stickiness: for each product i (a

given UPC) sold in a specific store j, we compute the number of unique prices and price

changes observed within the 26-week window centered around week t, and denote them by

uijt and cijt respectively. We then define the ratio uniijt ≡ uijt/(cijt + 1).25 Note that if all

price changes end up at a price that had not been visited before within a specific window,

the ratio uniijt is equal to 1. Yet, in the data we see that the average value of this moment

is 0.792, as reported in Table III. This is very close to the simulated moment of 0.822.

Size distribution of price changes In our model, the perceived cost of changing prices

is history dependent and a function of the absolute size of the price change. As a result, our

model allows for the co-existence of large and small price changes. This property is evident

from Figure 3, which plots the distribution of the size of price changes in the model (left

25In both the data and the model, we drop from the computation any window that features no price
change. We thank an anonymous referee for suggesting this moment to us.
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panel) and the data (right panel). While parameter heterogeneity across firms would allow

for a smoother distribution, our model clearly can generate price changes of various sizes.
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Figure 3. Distribution of the absolute size of price changes. Data vs. simulations.

4.2.2 Hazard function of price changes

An important force in our setup is that, all else equal, a firm is less willing to move away

from a price that it has stayed at for longer and thus acquired more information about. This

naturally gives rise to a declining hazard function of price changes: the probability of a price

change conditional on the price having survived τ periods is decreasing in τ .

The shape of the hazard function has been heavily discussed in the price-setting literature.

Nakamura and Steinsson (2008), for example, estimate a downward-sloping hazard using U.S.

CPI data, a characteristic that they consider represents a challenge to many popular price-

setting mechanisms. Some, however, have argued that this finding could be a by-product

of heterogeneity: as noted by Klenow and Kryvtsov (2008), “[t]he declining pooled hazards

could simply reflect a mix of heterogeneous flat hazards, that is, survivor bias.”

In light of this word of caution, our approach is to employ a linear probability model

(LPM) with a rich set of fixed effects to control for heterogeneity in unconditional price

change frequencies that may mechanically generate downward-sloping hazard functions. The

linear regression circumvents the incidental parameters problem that arises with the use of

fixed effects in non-linear models, such as a proportional hazard framework or a probit. 26

For each category/market, we run a separate regression of the type:

1(pi,j,t 6= pi,j,t−1) = α + βτi,j,t + γi + γj + γt + ui,j,t (32)

26In Online Appendix B.4 (on the authors’ website), we apply our econometric approach to panels of
simulated data and show that it allows us to recover the true value of the slope of the hazard function, even
in the presence of pervasive heterogeneity.
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where the symbol 1(.) denotes the indicator function. Since τi,j,t is the length of the price

spell (i.e. the number of weeks since the price has last been changed), the coefficient β

therefore represents the estimate of the slope of the hazard function. Finally, γi, γj and

γt are product, store and week fixed effects respectively. These shifters control for any

systematic heterogeneity that would bias downwards the slope of the hazard. We run the

regression on spells of 26 weeks or less, where the vast majority of observations lie.

Panel C of Table III shows that we obtain a slope estimate β̂ of -0.011, once averaged

across the 54 category/market pairs. This value implies that each additional week that a

spell survives lowers the probability of observing a price change by about 1.1 percentage

point. The estimated slope coefficients are negative and statistically significant at the 1%

level in all category/market pairs, whether we use unweighted or weighted observations.27

To evaluate the model’s ability to match the empirical hazard, we estimate the same

LPM regression on the data simulated by the model. At -0.015, the slope of the simulated

hazard is steeper, yet compares well with its empirical counterpart.

In Online Appendix A.9 we apply the alternative approach of Campbell and Eden (2014)

and reach the same conclusion: the hazard of regular price changes is downward sloping and

of similar magnitude in both model and data.

4.2.3 Pricing behavior over the product life-cycle

Using the same dataset as ours, Argente and Yeh (2017) find that both the frequency and size

of price changes decline significantly with the age of the typical the product. In our model,

the price behavior over the life-cycle of the product/firm is shaped by the history dependence

of the optimal pricing decision through the interaction of two forces. First, at the beginning

of its life, the firm does not have much information about the demand curve of the product

it sells and has therefore not yet established any deep perceived kink in expected demand.

Second, the fact that the firm has very little information about demand increases the relative

value of experimentation, as discussed in Section 2.4. Both of these forces imply that price

flexibility decreases with age: newly-born firms tend to change prices more frequently than

firms that have been in existence for a while and have accumulated significant information

capital at past prices. Similarly, the experimentation motive implies that the average size

of price changes for young firms is larger than that of older firms.

We quantify the life-cycle properties of the frequency and size of price changes in our

27We cluster standard errors at the store level, the cluster which yields the highest standard errors. Also,
in line with the literature, we drop all left-censored spells from the sample. Lastly, in Figure B.1 of the
Online Appendix B.5 (on the authors’ website), we plot the distribution of coefficient estimates β̂ across the
54 category/market pairs.
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model by running the following two regressions on the simulated data:

1(pi,t 6= pi,t−1) = βfreq0 + βfreq1 1(agei,t ≤ 26) + εi,t

|∆pit| = βsize0 + βsize1 1(agei,t ≤ 26) + εi,t,

where the coefficients of interest are βfreq1 and βsize1 , which capture respectively the frequency

and size of price changes in the first 6 months of a firm’s life relative to the next half a year.28

In both cases, we find positive and statistically-significant coefficients: β̂1

freq
= 0.23 and

β̂1

size
= 0.09. In other words, our model predicts that both the frequency and size of price

changes fall as a new product ages, in line with the evidence from Argente and Yeh (2017).

4.2.4 Past demand realizations and price-setting decisions

The focus so far has been on price-related moments, as is common in the literature. Yet,

our model also has stark and unique implications about the relationship between quantities

and prices. In particular, the perceived cost of changing the last posted price increases

with the realized value of the demand shock at that price (see Result 4): a firm that

observes a particularly good demand realization is more likely to stay put, while bad demand

realizations raise the likelihood of a price reset.

To test this prediction, we first extract demand innovations in the data by using regression

(31), which was described earlier. The object of interest is the residual zijt, the unexplained

or “surprise” demand component for item i in store j at time t. We then construct two

indices that capture how attractive a given price may be from the perspective of the firm.

We define the z-score of price pijt as:

zscoreijt =

∑26
τ=0 [validij,t−τ × zij,t−τ ]∑26

τ=0 validij,t−τ
.

The indicator validij,t−τ = 1 if pijt = pij,t−τ , that is, if the price at time t − τ is the same

as the one we compute the z-score for. Conceptually, the z-score of price pijt corresponds to

the average of the demand innovations at that price.29 It is also useful to define a version

of the zscore that only incorporates demand innovations up to t − 1, and which therefore

28Focusing on first 12 months of life helps isolate the life-cycle effects. The estimates are even more
pronounced if we do not censor on the right. As is typical with any moments on the size of price changes,
the second regression only considers time periods with a non-zero price change.

29We truncate the window to 26 weeks to capture the idea that demand realizations very far back are
likely to be of little value to the firm. We also tried to geometrically discount past observations; this has
little impact on the results.
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informs the price choice at t:

zscorelagijt =

∑26
τ=1 [validij,t−τ × zij,t−τ ]∑26

τ=1 validij,t−τ
.

Finally, we define wscoreijt, which captures how often a price has been posted in the past:

wscoreijt =
26∑
τ=0

validij,t−τ .

In order to test whether the firm is less (more) likely to move away from a price that

experienced an unexpectedly good (bad) demand realization, we run the following regression:

1(pi,j,t 6= pi,j,t−1) = β0 + β1(zscoreij,t−1 − zscorelagij,t−1) + β2wscoreij,t−1 + fij + εijt. (33)

The LHS equals 1 when the price at t is different than at t−1, and 0 otherwise. The regressor

of interest, zscoreij,t−1 − zscorelagij,t−1, corresponds to the change in the z-score of the price

posted at t− 1: a positive value indicates that all else equal, the firm was hit by a relatively

good demand realization at time t−1.30 We also control for the w-score, which is the proper

way of controlling for the declining hazard under the null hypothesis of our mechanism. When

run on the actual data, the panel regression includes either category/market or product/store

fixed effects fij in order to control for the heterogeneity in price change frequency.

For both the model and the data, we run two main regressions. The first one imposes

no additional restrictions. The second uses only observations for which wscoreij,t−1 ≤ 12,

so that the price the firm is considering leaving has been posted for at most half of the

periods within the backward-looking 26-week window. This distinction is driven by our

model prediction that new demand realizations are less likely to influence the decision to

change a price that has been observed more often in the past (high w-score).

Table IV presents the results of running the regression in equation (33) on both the

actual and simulated data. To ease the interpretation, the coefficients are reported as

marginal effects: the impact of a one-standard-deviation deviation in the z- or w-score on

the likelihood of a price change. All coefficients are statistically significant at the 1% level.

Three observations on the z-score effect are worth highlighting.

First, the effect is negative in all regressions: a good (bad) demand realization at the

posted price that lifts (lowers) the z-score decreases (increases) the chance of moving away

from that price. This is in contrast to most state-dependent mechanisms, such as a standard

30To minimize the risk that changes in the z-score are driven by some complex non-linearity in the demand
function, we focus on observations for which there was no price change at t− 1, i.e. pi,j,t−1 = pi,j,t−2.
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menu-cost model: in these environments, both positive and negative shocks make the firm

more likely to reprice as they raise the gap between the current and optimal prices.

Second, the effect is indeed larger for more “recent” prices (low w-score): while a one-

standard-deviation change in the z-score decreases the probability of a price change by

between 80 to 90 basis points when we condition on wscoreij,t−1 ≤ 12, the effect is only

around 55 basis points with wscoreij,t−1 ≤ 25. The effects are also economically meaningful,

as a 80bp increase in the probability of a price change is about 10% of the unconditional

probability of a price change in the data.

Third, the z-score effects in the data and the model are similar: for younger prices, the

absolute impact on the price change frequency is 83bp, almost perfectly in line with the 86-

87bp effect in the data. They also compare favorably when conditioning on wscoreij,t−1 ≤ 25

(65bp vs. 57-58bp in the data).

Table IV. Results from the z-score regressions

Data Model

wscoreij,t−1 ≤ x x = 12 x = 25 x = 12 x = 25

zscoreij,t−1 − zscorelagij,t−1 -0.0087 -0.0086 -0.0058 -0.0057 -0.0083 -0.0065

wscoreij,t−1 -0.0373 -0.0290 -0.0466 -0.0264 -0.0253 -0.0195

Category/market FE X X

Product/store FE X X

Note: The dependent variable equals 1 when pi,j,t 6= pi,j,t−1, 0 otherwise. The empirical regressions include

either both category and market fixed effects, or item/store fixed effects. We report marginal effects: the

impact of a one-standard-deviation in the independent variable on the likelihood of a price change. Standard

errors are clustered at the category-market level. All coefficients are statistically significant at 1% level.

4.3 Monetary non-neutrality

In this section, we argue that our theory is relevant not only due to its successful micro-level

predictions, but also because the model alters the standard relationships highlighted in the

literature between micro-level moments and the propagation of nominal shocks.

We quantify the degree of monetary non-neutrality by computing the impulse response of

total output produced by the measure-zero set of ambiguity-averse firms to an innovation in

aggregate nominal spending. Note that because all other firms have rational expectations,

our exercise arguably represents a lower bound on the size and persistence of monetary

non-neutrality since it ignores any strategic complementaries in price setting.
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(a) Models match frequency of regular price changes
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(b) Models match frequency of reference price changes

Figure 4. Nominal spending effects on real output.

We estimate the impulse responses via Jordá (2005) projections, an approach well suited

to the high degree of non-linearity in our model. In the expression below, we regress the

t+ k output of ambiguity-averse firms on the nominal shock εst

ln(

∫
Yi,t+kdi) = αk + βkε

s
t + uj,t+k.

The coefficients βk represent the impulse response of output to the nominal shock, plotted

by the solid line in Figure 4, panel (a). The response is shown as a fraction of the shock.

We find that, for a 1% shock, real output increases by 0.38% on impact, and this increase is

persistent, with full a cumulative output effect of 7.2% after 52 weeks.

Alternative models

To provide context for our results, we contrast our mechanism with three simple and widely

used alternative mechanisms of nominal rigidity.31 The first is a Calvo model, where the

firm can change its price with an exogenous probability. The second is a menu cost version,

where the firm can change its price at any time by paying a fixed cost. The third model uses

Kimball (1995) preferences which create a smoothed version of a kink in demand - a form of

real rigidity. To generate nominal rigidity in that model, we follow the literature and assume

31Online Appendix B.8 (on the authors’ website) details instead comparative statics within our model,
focusing on the resulting nuanced link between price flexibility, memory, and non-neutrality.
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that the firm must pay a small menu cost.32 Besides these differences, all specifications share

the same economic framework: we study a similar measure-zero sector and assume the same

cost processes as in our benchmark setup.

The Kimball model represents a particularly useful comparison because even if it shares a

similar kinked-demand flavor, the underlying mechanism is very different from ours. For one,

our framework generates stickiness without additional fixed costs since it features kinks that

are not smoothed-out. Second, our model generates perceived kinks in demand; in a Kimball

world, an econometrician would be expected to find evidence of actual kinks in demand

schedules. This property is not innocuous as it has proven difficult to find evidence for the

large super-elasticity values that are needed to jointly generate a significant persistence of

monetary shocks and plausible micro price facts (see the evidence in Dossche et al. (2010)

and the analysis in Klenow and Willis (2016)).

Our model of rigidity is also consistent with a range of facts, such as experimentation and

effects of the level of past demand realizations on price setting, that are driven by our learning

forces which are absent in the three considered alternative models. A crucial property here is

that in the alternative models, conditional on a price change the gap towards the new optimal

frictionless price is perfectly closed and the probability that the firm visits an old price is

zero. Instead, in our framework, the firm does not typically eliminate this gap, preferring to

return to a previously visited “safe” price due to ambiguity aversion. As we discuss below,

this type of price memory has important implications for monetary non-neutrality.

Our first set of comparisons are based on calibrating the respective free parameter of each

of the alternative models (Calvo probability or menu cost) to the same 10.5% frequency of

regular price changes as in our ambiguity model. The impulse responses corresponding to

these models are marked by the non-solid lines in Figure 4, panel (a). Overall, the cumulative

real effect in our model is similar to that of the Calvo model (7.58%), and significantly larger

than in the menu cost and Kimball models (1.12% and 1.81% respectively).

Impulse responses

The most striking difference is in the degree of persistence. In our model, the real effect

only dies out after 48 weeks and has a half-life of 18 weeks. In contrast, in the menu cost

and Kimball models the real effects have half-lives of less than 3 weeks, and disappears

within 10 weeks, while in Calvo it has a half-life of 8 weeks and dies out 32 weeks in. The

different persistence across these standard models is due to the Golosov and Lucas (2007)

selection effect - the adjusting firms in the Calvo framework are chosen randomly, but are

32See for example Klenow and Willis (2016), whom we follow to use a value of 10 for the demand super-
elasticity (elasticity of the demand’s price elasticity) in the Kimball aggregator.
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self-selected in the two other versions and hence adjust by a lot on average, leading to a

quick transmission of the shock.

The fundamental reason for the significantly larger persistence in our model is that,

consistent with the data, it features memory in nominal prices: a substantial proportion of

price movements occurs between perceived demand kinks that have formed prior to the shock.

As the firm revisits old price points, aggregate adjustment is slowed down, even though prices

look very flexible at the micro level. Indeed, our environment features something akin to a

“price plan” – a collection of low-uncertainty prices that the firm has visited in the past and

switches between relatively flexibly.

This flexibility when switching between low-uncertainty, previously-visited prices ac-

counts for the muted real effect on impact of the nominal spending shock. Intuitively,

as noted by Alvarez and Lippi (2019), in models that have price plan-like behavior (like

ours) firms actively use their free but imperfect margin of adjustment, leading to significant

flexibility on impact. Yet, in our model, the blunted real effect on impact is more than made

up for by the high persistence, leading to a large cumulative real effect, as well as to impulse

response dynamics that are not well approximated by any of the three alternative models.

Frequency and kurtosis of regular price changes

Alvarez et al. (2016) show that the cumulative degree of nominal non-neutrality in a wide

range of models, including the three alternative frameworks we study, is proportional to

the kurtosis of the regular price change distribution. Intuitively, this proportionality arises

because in this class of models the derivative of the density of price gaps at the adjustment

thresholds, and implicitly the Golosov and Lucas (2007) selection effect, becomes small only

for sufficiently leptokurtic distributions of price changes.

In contrast, as noted by Alvarez and Lippi (2019), frameworks that feature price plans,

like ours, do not fit the class of models analyzed in Alvarez et al. (2016). Indeed, we find

that our mechanism does not abide by this sufficient statistic relationship, in a manner that

is quantitatively important. As we report in Panel D of Table III, the distribution of the

regular price changes has a kurtosis of 3 in the data, while our model generates a kurtosis of

2.16. The standard analysis would predict that such a model-implied kurtosis, if anything an

underprediction of its empirical value, would be associated with weak real effects of nominal

shocks. However, even though the kurtosis in our model is significantly lower than in the

Calvo version, (2.16 versus 5.7), the cumulative real effects are very similar (7.2% versus

7.6%). In fact, our kurtosis is much closer to that of the menu cost and Kimball models, at

1.23 and 1.79 respectively, yet our model implies a cumulative real effect that is six times

larger than in the menu cost model.
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The broad observation that price-plan-like behavior is important for mapping moments of

regular price changes to the propagation of nominal shocks is not unique to our model – see

previous discussion in Eichenbaum et al. (2011) (EJR) and Kehoe and Midrigan (2015). Yet,

we argue next that the nature of price memory in our model is fundamentally different than

in existing frameworks, in a way that has important implications for aggregate dynamics.

Gradual adjustments in price plans

If our mechanism was simply an endogenous version of the EJR “price plan”, then the

persistence of the real output effect to a money shock would be governed by the frequency

of changes in reference prices. In particular, Alvarez and Lippi (2019) show that a simple

menu cost model calibrated to the frequency of reference price changes provides a useful

upper bound on the effect of such a “price plan” model. But that is not true for our model

– panel (b) of Figure 4 shows that our model’s real effects are significantly more persistent

and as a result cumulatively larger (7.2% versus 5.5% and 6%, respectively) than those from

a menu cost or Kimball model matched to the same frequency of reference price changes.

The reason is that the price plans in our model adjust gradually. In a standard price-plan

model like EJR, once a firm decides to update its plan, it resets all prices within the plan.

In our model, instead, the price plans evolve slowly, with new prices being added to the

effective plan as the firm experiments with and learns about demand at new price points.

The reason is that when shocks drive a firm to post a price outside of the set it has been

visiting in the past, this does not destroy the information capital it has built up at its old

price points. Hence, when idiosyncratic shocks mean-revert, the firm is likely to revisit those

old price points. This is important: the fact that the firm returns to known prices, even after

sampling a new portion of the price space, is what slows down the evolution of the aggregate

price level beyond what is captured by the frequency of reference price changes.

We quantify the importance of these gradual price-plan adjustments in both the model

and the data in three ways, which we report in Panel D of Table III. First, we consider

memory in reference, as opposed to regular, prices: we compute the probability that a

change in the reference price (i.e. the modal price in a 13-week window) revisits one of

the old reference prices set in the past 52 weeks. The previous literature has not studied

potential memory in reference prices; under the implicit assumption that reference price

changes capture price plan resets, such as in EJR, such memory should be zero. Instead, we

find that these probabilities are 8.5% and 11.2% in the data and model respectively, pointing

at significant memory in reference prices.

Next, we try to identify gradual price plan changes. Consider that a reference price

change occurs at time t. We compute the probability that the first price reset following the
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reference price change leads to a price that had already been posted before period t. In

standard memory models such as EJR, this probability would be 0%, as firms reset their

whole price plan at once. Yet, we find this probability to be 27% in the data, compared

to 26% time in the model. We also consider an alternative approach to capturing partial

price plan changes. We first identify occurrences of “brand new prices”, which are defined as

prices that have not been posted in the previous 52 weeks. We then compute the probability

that the first price change that follows a time-t brand new price revisits a price that was

posted before t (ostensibly from before the shift in the “price plan”). This probability is

equal to 33% in the data, and 39% in the model.

Summary

Overall, our theory offers a micro-foundation for price memory that delivers novel im-

plications at both the micro and macro levels. First, we show that our unified theory

of rigidity and memory jointly matches a host of over-identifying restrictions on micro-

level pricing behavior. These additional moments not only provide external validity of

the underlying theory, but also imply a more nuanced picture of how the observed micro-

level price flexibility maps into the aggregate propagation of nominal shocks. Second, our

framework endogenously generates slow and gradually adjusting price plans. This feature

implies much more persistent real effects from monetary shocks than in a benchmark menu

cost model calibrated instead to the frequency of reference price changes. As a result,

we believe that our mechanism may be better suited at capturing the high persistence of

monetary policy effects estimated in the data (Christiano et al. (2005)).

5 Conclusion

In this paper we show how firms’ specification doubts about their perceived model of demand

leads to a novel theory of price stickiness. We find strong empirical support for our theory

by subjecting the mechanism to a rich set of micro-level implications. The parsimony

and quantitative relevance of the mechanism make it a promising step towards building

macroeconomic models that can be used for counterfactual analysis. Importantly, the theory

has novel predictions about the way in which nominal shocks affect the aggregate economy.

References

Alvarez, F., H. Le Bihan, and F. Lippi (2016): “The real effects of monetary shocks
in sticky price models: a sufficient statistic approach,” American Economic Review, 106,

45



2817–51.

Alvarez, F. and F. Lippi (2019): “Temporary Price Changes, Inflation Regimes and
the Propagation of Monetary Shocks,” American Economic Journal: Macroeconomics,
forthcoming.

Argente, D. and C. Yeh (2017): “Product’s Life Cycle, Learning, and Nominal Shocks,”
Manuscript, Minneapolis Fed.

Bachmann, R. and G. Moscarini (2011): “Business cycles and endogenous uncertainty,”
Manuscript, Yale University.

Baley, I. and J. A. Blanco (2018): “Firm uncertainty cycles and the propagation of
nominal shocks,” AEJ: Macroeconomics, forthcoming.

Ball, L. and D. Romer (1990): “Real rigidities and the non-neutrality of money,” The
Review of Economic Studies, 57, 183–203.

Bergemann, D. and K. Schlag (2011): “Robust monopoly pricing,” Journal of
Economic Theory, 146, 2527–2543.

Bergemann, D. and J. Valimaki (2008): “Bandit problems,” The New Palgrave
Dictionary of Economics, 2nd ed. Macmillan Press.

Bils, M. and P. Klenow (2004): “Some evidence on the importance of sticky prices,”
Journal of Political Economy, 112, 947–985.

Boivin, J., M. P. Giannoni, and I. Mihov (2009): “Sticky prices and monetary policy:
Evidence from disaggregated US data,” American Economic Review, 99, 350–84.

Bonomo, M. and C. Carvalho (2004): “Endogenous time-dependent rules and inflation
inertia,” Journal of Money, Credit and Banking, 1015–1041.

Bronnenberg, B., M. Kruger, and C. Mela (2008): “Database paper: The IRI
Marketing Data Set,” Marketing Science, 27, 745–748.

Campbell, J. R. and B. Eden (2014): “Rigid prices: Evidence from US scanner data,”
International Economic Review, 55, 423–442.

Christiano, L., M. Eichenbaum, and C. Evans (2005): “Nominal Rigidities and the
Dynamic Effects of a Shock to Monetary Policy,” Journal of Political Economy, 113.

Dossche, M., F. Heylen, and D. Van den Poel (2010): “The kinked demand curve
and price rigidity: Evidence from scanner data,” Scandinavian Journal of Economics, 112,
723–752.

Dow, J. and S. Werlang (1992): “Uncertainty Aversion, Risk Aversion, and the Optimal
Choice of Portfolio,” Econometrica, 60, 197–204.

46



Dupraz, S. (2016): “A Kinked-Demand Theory of Price Rigidity,” Mimeo, Banque de
France.

Eichenbaum, M., N. Jaimovich, and S. Rebelo (2011): “Reference Prices, Costs, and
Nominal Rigidities,” American Economic Review, 101, 234–62.

Einhorn, H. J. and R. M. Hogarth (1986): “Decision making under ambiguity,” Journal
of Business, S225–S250.

Ellsberg, D. (1961): “Risk, Ambiguity, and the Savage Axioms,” The Quarterly Journal
of Economics, 643–669.

Epstein, L. G. and M. Schneider (2003): “Recursive Multiple-Priors,” Journal of
Economic Theory, 113, 1–31.
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A Online Appendix A (For Publication)

A.1 Updating with more observed prices

We can readily expand the updating formulas that we have developed in Section 2.2 for one

observed price to the case of multiple observed past price points. Let the firm’s information set

εt−1 contain T unique price points collected in the vector pT = [p1, . . . , pT ]′, where T > 0 is

arbitrarily large but finite. We label the average realized quantity sold at each of these unique

price points ȳi, and similarly collect them in the vector yT = [y1, . . . , yT ]′. Lastly, let Ni be the

number of times the firm has seen price point pi in the past, and thus this is the number of signals

at pi the firm has. The vector NT = [N1, . . . , NT ]′ collects these values.

The joint distribution between demand at any price p and the vector of signals y is similarly

joint Normal: [
x(p)

yT

]
∼ N

([
m(p)

m(pT )

]
,Σ(p,pT )

)
where the variance-covariance matrix is given by

Σ(p,pT ) =

[
σ2
x K(p,pT )

K(pT , p) K(pT ,pT ) + diag(NT )−1σ2
z

]

The conditional expectation of x(p) given a prior mean function m(p) and the vector of signals

yT , follows from applying the standard formula for conditional Gaussian expectations:

E(x(p)|yT ,m(p)) = m(p) +K(p,pT )(K(pT ,pT ) + diag(NT )−1σ2
z)
−1(yT −m(pT )) (34)

Expanding the above expression, we can show that the conditional expectation is again linear

in the prior and a weighted sum of the demeaned signals, leading to

E(x(p)|yT ,m(p)) = m(p) + α1(p)(y1 −m(p1)) + · · ·+ αT (p)(yT −m(pT ))

where αi ∈ (0, 1) is the i-th element of the 1xT vector K(p,pT )(K(pT ,pT )+diag(NT )−1σ2
z)
−1.

Without loss of generality, assume the prices in p are sorted in ascending order, with the

last element being the largest price value. In building the worst case expectation, one can work

from back to front and first characterize the worst case prior m∗(p; pt) for entertained price values

pt > pT . The firm wants the prior level of demand at the entertained price pt, m
∗(pt; pt), to be

the lowest possible so it sets it equal to the lower bound of Υ0 so that

m∗(pt; pt) = −γ − bpt

Again similar to the case of only one previously observed price, the firm is worried that demand
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decreases a lot as it increases its price away from its previous observations. Now, however, this

worry does not apply only to the closest signal at the price value of pT , but to all previous signals.

Since all previous signals were observed at prices below pt, the worst case m∗(p; pt) for any p < pt

is given by:

m∗(p; pt) = min [γ − bp,−γ − bpt + (b+ δ)(pt − p)]

Next consider, pt ∈ (pT−1, pT ]. The worst case m∗(pt; pt) is again at the lower bound of the

admissible set Υ0. And the basic intuition for the rest of the worst-case prior is similar to before

– the firm worries that setting the price pt away from its previous observations pT makes demand

change for the worse. Thus, the firm is worried that m∗(pT ; pt) is the highest possible level, given

constraints on the admissible set Υ0 and the fact that m∗(pt; pt) = −γ − bpt. This concern yields

m∗(p; pt) =

{
min [γ − bp,−γ − bpt + (b+ δ)(pt − p)] for p < pt

min [γ − bp,−γ − bpt + (b− δ)(pt − p)] for p ≥ pt

Hence for all price points below the currently entertained price pt, the worst-case prior is

restricted by the maximum admissible derivative b+ δ, while for prices above pt it is restricted by

the lowest admissible derivative b− δ.
Substituting this worst case prior in (34), it is easy to evaluate the worst-case expectation

x̂∗(pt|yT ,m∗(p; pt)). Given the piecewise nature of m∗(p; pt), it follows that there is a kink in the

worst-case expected demand x̂∗(pt|yT ,m∗(p; pt)) around any p ∈ pT .

A.2 Proofs for Section 2

Proposition 1. Define δ∗ = δ sgn (pt − p0). For a given realization of ct, the difference in worst-

case expected profits at pt and p0, up to a first-order approximation around p0, is

ln υ∗(εt−1, ct, pt)− ln υ∗0(εt−1, ct, p0) ≈
[

ep0

ep0 − ect
− (b+ αt−1(p0)δ∗)

]
(pt − p0) .

Proof. Consider ln υ∗(εt−1, ct, pt) at some pt ∈ [p0 − 2γ
δ
, p0 + 2γ

δ
]. When pt > p0, we have

ln(ept − ect) +
{
−γ − bpt + αt−1(pt)ẑ0 − αt−1(pt)δ (pt − p0) + .5σ̂2

t−1(pt) + .5σ2
z

}
,

while at pt < p0, this equals

ln(ept − ect) +
{
−γ − bpt + αt−1(pt)ẑ0 + αt−1(pt)δ (pt − p0) + .5σ̂2

t−1(pt) + .5σ2
z

}
.

where for convenience we have defined ẑ0 ≡ −γ − bp0. In turn, ln υ∗(εt−1, ct, p0) equals

ln(ept − ect) +
{
−γ − bp0 + αt−1(pt)ẑ0 + .5σ̂2

t−1(p0) + .5σ2
z

}
.
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Fix some ct and take a first-order approximation of ln υ∗(εt−1, ct, pt) with respect to pt,

evaluated at p0. Since this function is not differentiable at p0, we analyze its right and left derivative

separately. The former derivative equals

ep0

ep0 − ect
− b− αt−1(p0)δ +

∂αt−1(pt)

∂pt
[ẑ0 − δ (pt − p0)] + .5

∂σ̂2
t−1(pt)

∂pt

where the partial derivatives ∂αt−1(pt)
∂pt

and
∂σ̂2
t−1(pt)

∂pt
are evaluated locally at p0. In particular, given

that

αt−1(pt) =
σ2
x

σ2
x + σ2

z/N0

e−ψ(pt−p0)2 ; σ̂2
t−1(pt) = σ2

x(1− αt−1(pt)),

then these two functions are differentiable p0, with marginal effects equal to zero at p0. Therefore,

the local approximation to the right of p0 simplifies to

ep0

ep0 − ect
− [b+ αt−1(p0)δ] .

The first term in the brackets reflects the effect of changing the price on profits, while the

second captures the movement of demand along a curve with elasticity −b. The third term arises

from the effect of demand of moving along a steeper demand curve, which is a characteristic of

the worst-case belief about the demand elasticity.

Therefore, we obtain the local approximation to the right of p0

ln υ∗(εt−1, ct, pt)− ln υ∗0(εt−1, ct, p0) ≈
[

ep0

ep0 − ect
− (b+ αt−1(p0)δ)

]
(pt − p0) (35)

A similar derivation follows for the derivative to the left of p0, where we obtain

ep0

ep0 − ect
− [b− αt−1(p0)δ]

and therefore the local approximation to the left of p0 is simply

ln υ∗(εt−1, ct, pt)− ln υ∗0(εt−1, ct, p0) ≈
[

ep0

ep0 − ect
− (b− αt−1(p0)δ)

]
(pt − p0) (36)

We obtain the result in Proposition 1 by putting together equations (35) and (36) and using

the signum function to define δ∗ = δ sgn (pt − p0).

Proposition 2. Let δ∗i ≡ δ sgn (pt − pi) for all pi ∈ εt−1. For a given realization of ct, up to a

first-order approximation around each such pi ∈ εt−1:

ln υ∗(εt−1, ct, pt)− ln υ∗0(εt−1, ct, pi) ≈
[

epi

epi − ect
− (b+ αt−1,i(pi)δ

∗ + Ai)

]
(pt − pi) .
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Proof. The structure of the proof is very similar to the previous one. Consider ln υ∗(εt−1, ct, pt) at

some pt ∈ [pi − 2γ
δ
, pi + 2γ

δ
]. Using δ∗i ≡ δ sgn (pt − pi) we can write ln υ∗(εt−1, ct, pt) as

ln(ept−ect)+

−γ − bpt +
∑

pk∈εt−1

αt−1,k(pt)
(
ẑk − δ∗k (pt − pk)1(pt ∈ (p

k
, pk))

)
+ .5σ̂2

t−1(pt) + .5σ2
z

 ,

Fixing some ct, take a first-order approximation of ln υ∗(εt−1, ct, pt) with respect to pt, evaluated

at pi. Since this function is not differentiable at p0, we analyze its right and left derivative separately

as before, Using the notation δ∗i ≡ δ sgn (pt − pi), we can express both the right and left derivatives

around one of the pi ∈ εt−1 as

epi

epi − ect
− b− αt−1,i(pi)δ

∗
i +

∂αt−1,i(pi)

∂p
ẑi + .5

∂σ̂2
t−1(pi)

∂p

+
∑

pk∈εt−1/pi

∂αt−1,k(pi)

∂p

(
ẑk − δ∗k (pi − pk)1(pi ∈ (p

k
, pk))

)
−

∑
pk∈εt−1/pi

αt−1,k(pi)
(
−δ∗k1(pi ∈ (p

k
, pk))

)

The partial derivatives of the signal-to-noise ratios and the posterior variance are no longer zero,

however they are not a function of the sign of (pt−pi) hence when considering a local approximation

around pi all of the additional terms (as compared to Proposition 1) can be treated as a constant.

We call that constant Ai:

Ai =
∂αt−1,i(pi)

∂p
ẑi + .5

∂σ̂2
t−1(pi)

∂p

+
∑

pk∈εt−1/pi

∂αt−1,k(pi)

∂p

(
ẑk − δ∗k (pi − pk)1(pi ∈ (p

k
, pk))

)
−

∑
pk∈εt−1/pi

αt−1,k(pi)
(
−δ∗k1(pi ∈ (p

k
, pk))

)

Using the fact that the Ai term is not a function of pt, it just updates the coefficients in the

first-order approximation of ln υ∗(εt−1, ct, pt), but does not change the basic observation that there

is a kink in the profit function at pi, so that:

ln υ∗(εt−1, ct, pt)− ln υ∗0(εt−1, ct, pi) ≈
[

epi

epi − ect
− (b+ αt−1,i(pi)δ

∗ + Ai)

]
(pt − pi) .

A.3 Forward looking behavior

We solve the recursive optimization problem in two steps. First, we compute the value function

at time t + 1. The key insight is that from this point onward the firm solves a series of static

maximization problems because the endogenous state variable, the information set εt, remains the

4



same from period to period. Still, the firm faces a dynamic, recursive problem because of the law

of motion of the exogenous state variable, the cost shock ct, which evolves according to its law

of motion g(ct+1|ct). Hence, the value function at t + 1, which we label with Ṽ (.) to differentiate

from the time-t value function V (.), is given by

Ṽ (εt, ct+1) = max
pt+1

min
m(p)∈Υ0

E

[
ν(εt+1, ct+1) + β

∫
Ṽ (εt, ct+2)g(ct+2|ct+1)dct+2

∣∣∣∣εt]
Since the information set is not growing over time, the state space for this problem is finite

and tractable. As a result, we can solve for Ṽ (εt, ct+1) through standard techniques and use it as

the continuation value perceived by the firm at time t:

V (εt−1, ct) = max
pt

min
m(p)∈Υ0

E

[
ν(εt, ct) + β

∫
Ṽ (εt, ct+1)g(ct+1|ct)dct+1

∣∣∣∣εt−1

]
s.t.

εt = {εt−1, pt, yt}.

Thus, at time t the firm fully takes into account that pt, and the resulting new demand signal

yt, will serve as informative signals for future profit-maximization decisions. Importantly, this

information is useful not only in the very next period, but propagates through the infinite future

according to the law of motion of ct.

For the following analytical results we work with the case where ψ = ∞ and the firm has

perfect foresight on future costs, s.t. ct+k = c for all k ≥ 1, for some constant c. In this case, the

time t+ 1 value function is just the present discounted value of worst-case expected profits when

the cost shock equals c:

Ṽ (εt, c) =

maxp minm(p)∈Υ0 E

[
ν(εt+1, c)

∣∣∣∣εt]
1− β

Hence, the only remaining uncertainty in Ṽ (.) from the perspective of time t is the uncertainty

about the realization of the time t signal yt. Next, we turn to characterizing the expectation of

Ṽ , given the time t information set εt−1.

For all analytical results below, we assume that (i) ψ → ∞ and (ii) there is perfect foresight

on future costs so that ct+k = c for some c.

Exploration makes prices more flexible when εt−1 contains demand observations at

only one previous price p0

We start with the case where the time t information set, εt−1, contains only one price point, p0,

observed N0 times with an average signal y0. To be specific, call that information set ε0. We will

assume that the realization of the signal y0 is good enough, so that when c = c∗0 = p0 − ln( b
b−1

),
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p0 is not just locally optimal (recall Corollary 1), but that it is the global maximizer conditional

on εt−1. The relevant condition is

ẑ0 = y0 − (−γ − bp0) >
σ2
x

2
,

in which case

p0 = arg max
p

min
m(p)∈Υ0

E

[
ν(εt+1, c

∗
0)

∣∣∣∣ε0,m(p)

]
Hence in the absence of any new information, in future periods the firm will optimally set p0,

since it essentially faces a static problem with marginal cost equal to c∗0. The signal pair {pt, yt}
provides such new information and could lead to a different optimal action pt+k.

Our first result is a characterization of the current price pt that maximizes the expected

continuation value when c = c∗0. It turns out that when the firm has collected prior information

about demand only at p0, then even even at that value of the cost the optimal exploration strategy

is to deviate from p0.

Proposition 3. The expected continuation value E

[
Ṽ ({ε0, pt, yt}, c∗0)

∣∣∣∣ε0, pt

]
achieves its maxi-

mum at

p∗t = arg min
p

(p− p0)2 s.t. p 6= p0.

Proof. In order to simplify notation, throughout the proofs we will use the standard expectation

notation E(.) to define the worst-case expectation of the firm.

The limiting case ψ → ∞ simplifies the construction of the worst-case expected demand

because corr(x(p), x(p′)) = 0 for all p 6= p′. Thus, when updating beliefs about demand at any

price p, only past signals observed at that particular price p matter. For future reference, it will be

convenient to define the following notation for signal-to-noise ratios that will show up repeatedly

α0 ≡ αt−1(p0; p0) =
σ2
x

σ2
x + σ2

z/N0

αt|0 ≡ αt(p0; p0|pt = p0) =
σ2
x

σ2
x(N0 + 1) + σ2

z

αt ≡ αt−1(pt; pt|pt 6= p0) =
σ2
x

σ2
x + σ2

z

where the first is the signal-to-noise ratio of the signal y0 conditional on ε0 information, αt|0 and αt

are the (recursive) signal-to-noise ratios applicable to the new signal yt given the signal y0, in the

two cases where pt = p0 and pt 6= p0 respectively. Since p0 = ln( b
b−1

) + c∗0, it is the optimal myopic

price for ct+k = c∗0, which is the relevant case in the future. Thus, if its information set does not

change, the firm will price pt+k = p0 in the future. The information set changes, of course, as a

function of the current period pricing choice pt and the resulting new signal yt. For convenience,
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define the perceived innovations in the existing signal y0 and the new signal yt as

ẑ0 ≡ y0 − (−γ − bp0)

ẑt ≡ yt − (−γ − bpt)

and the variance adjusted innovation of y0 as

z̃0 ≡ ẑ0 −
1

2
σ2
x.

Observe that since ct+k = c∗0 with probability one, the only uncertainty over future profits is in

the innovation of the new signal ẑt. Hence, the expected continuation value is simply the expected

discounted value of a stream of worst-case static profits at ct+k = c∗0, after taking the expectation

over the unknown ẑt: E
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
= β

1−βE

[
E(ν(p∗t+k, c

∗
0)|{ε0, pt, yt})

∣∣∣∣ε0, pt

]
=

β
1−βE

[
ν∗t+k(p

∗
t+k, c

∗
0)

∣∣∣∣ε0, pt

]
, where p∗t+k is the resulting static optimal price, given the updated

information set {ε0, pt, yt}.
If pt = p0, this optimal price is still p0 unless the information in the new signal yt is particularly

bad and sufficiently erodes the firm’s beliefs about profits at p0, in which case the firm switches

to the interior optimal price pintt+k – the ex-ante second best option. To find this interior optimum,

note that for all prices pt+k 6= p0 the worst-case demand is simply

x̂∗t (pt+k;m
∗(p; pt+k)) = −γ − bp

hence the interior optimal price is

pintt+k = min{p|(p− p0)2 > 0},

which gets you as close as possible the to optimal markup b
b−1

while still staying on the smooth

portion of the firm’s demand curve (recall: there is a kink in the worst-case belief at p0, but is

smooth everywhere else). Thus, if pt = p0, optimal p∗t+k is equal to p0 unless ẑt < z0, where z0 is

such that:
Et−1(ν∗t+k(p0, c

∗
0)|ε0, pt = p0, ẑt = z0)

limp→p0 E(ν∗t+k(p, c
∗
0)|ε0, pt = p0, ẑt = z0)

= 1

Substituting in the relevant expressions and simplifying, we can derive

z0 =
σ2
x

2
(1− α0)− α(p0)

αt|0
z̃0.

Hence if pt = p0, the optimal p∗t+k is equal to p0 as long as the innovation in the new signal is good

enough – namely ẑt ≥ z0.

7



If pt 6= p0, p0 remains the optimal price at t + k unless the new signal yt is good enough to

convince the firm to deviate from its ex-ante optimum p0 and move to the newly observed pt itself.

In the limiting case ψ → ∞ we know that the only potential alternative is pt, because yt does

not update beliefs anywhere else, and hence p0 dominates all other prices. In particular, for every

possible pt there is an upper threshold for the innovation in yt, such that p∗t+k = pt if and only if

ẑt > z̄(pt). This threshold z̄(pt) satisfies

E(ν∗t+k(pt, c
∗
0)|ε0, pt 6= p0, ẑt = z̄(pt))

E(ν∗t+k(p0, c∗0)|ε0, pt 6= p0, ẑt = z̄(pt))
= 1

Substituting in the respective expressions, and simplifying we can derive:

z̄(pt) =
α0

αt
z̃0 +

σ2
x

2
− 1

αt

[
ln

(
exp(pt)− exp(c∗0)

exp(p0)− exp(c∗0)

)
+ b(p0 − pt)

]
With the two thresholds thusly characterized, we can conclude that the optimal pricing policy at

time t+ k is given by:

p∗t+k =


p0 if pt = p0 and ẑt ≥ z0 or pt 6= p0 and ẑ(pt) ≤ z̄(pt)

pt if pt 6= p0 and ẑt > z̄(pt)

pintt+k if pt = p0 and ẑt < z0

We can then evaluate the expected continuation value E

[
Ṽ ({ε0, pt, yt}, c∗0)

∣∣∣∣ε0, pt

]
– we do so

separately for the cases pt = p0 and pt 6= p0, since the expected continuation value (which we will
denote by the short-hand Et−1(Ṽ ) to save space) is potentially discontinuous at pt = p0, so that
Et−1(Ṽ |pt = p0) =

= Φ(
z0√

σ2
x(1− α0) + σ2

z

)(exp(p0)− exp(c∗0)) exp(−γ − bp0 +
1

2
(σ2
x + σ2

z))

+ (1− Φ(
z0√

σ2
x(1− α0) + σ2

z

))(exp(p0)− exp(c∗0)) exp(−γ − bp0 + α0ẑ0 +
1

2
(σ2
x(1− α0) + σ2

z))
Φ(

αt|0(σ2
x(1−α0)+σ2

z)−z0√
σ2
x(1−α0)+σ2

z

)

1− Φ(
z0√

σ2
x(1−α0)+σ2

z

= (exp(p0)− exp(c∗0)) exp(−γ − bp0
1

2
(σ2
x + σ2

z))

(
Φ(
αt|0(σ2

x(1− α0) + σ2
z)− z0√

σ2
x(1− α0) + σ2

z

) exp(α0z̃0) + Φ(
z0√

σ2
x(1− α0) + σ2

z

)

)
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while Et−1(Ṽ |pt 6= p0) =

= P (ẑt < z̄(pt))(exp(p0)− exp(c∗0)) exp(−γ − bp0 + α0ẑ0 +
1

2
(σ2
x(1− α0) + σ2

z))

+ P (ẑt ≥ z̄(pt))(exp(pt)− exp(c∗0)) exp(−γ − bpt +
1

2
(σ2
x(1− αt) + σ2

z))E(exp(αtẑt)|ẑt > z̄(pt))

= Φ(
z̄(pt)√

(σ2
x + σ2

z)
)(exp(p0)− exp(c∗0)) exp(−γ − bp0 + α0ẑ0 +

1

2
(σ2
x(1− α0) + σ2

z))

+ Φ(
αt(σ

2
x + σ2

z)− z̄(pt)√
(σ2
x + σ2

z)
)(exp(pt)− exp(c∗0)) exp(−γ − bpt +

1

2
(σ2
x + σ2

z)))

where we use the fact that the firm perceives ẑt ∼ N(0, σ̂2
t−1(pt) + σ2

z), and Φ(.) denotes the CDF

of the standard normal distribution.
The first question of interest is if and when the expected continuation value is discontinuous

at pt = p0. To answer this question, we evaluate the ratio Et−1(Ṽ |p1=p0)

limp1→p0 Et−1(Ṽ |p1 6=p0)
. It is useful to first

evaluate the denominator and collect terms, concluding that limpt→p0 Et−1(Ṽ |pt 6= p0) =

= (exp(p0)− exp(c∗0)) exp(−γ − bp0 +
1

2
(σ2
x + σ2

z))

(
Φ(

z̄(pt)√
(σ2
x + σ2

z)
) exp(α0z̃0) + Φ(

αt(σ
2
x + σ2

z)− z̄(pt)√
(σ2
x + σ2

z)
)

)

It then follows that the ratio Et−1(Ṽ |pt=p0)

limpt→p0 Et−1(Ṽ |pt 6=p0)
=

=
Φ(

σ2x
2

(1−α0)+
α0
αt|0

z̃0
√
σ2
x(1−α0)+σ2

z

) exp(α0z̃0) + Φ(
(1−α0)

σ2x
2
− α0
αt|0

z̃0
√
σ2
x(1−α0)+σ2

z

)

Φ(
α0
αt
z̃0+

σ2x
2√

(σ2
x+σ2

z)
) exp(α0z̃0) + Φ(

σ2x
2
−α0
αt
z̃0√

(σ2
x+σ2

z)
)

where we have substituted in the respective values of the thresholds z0 and z̄(pt). The ratio limits

to 1 as z̃0 →∞, and it is below 1 at z̃0 = 0, as in this case

Et−1(Ṽ |pt = p0)

limpt→p0 Et−1(Ṽ |pt 6= p0)
=

Φ(
σ2x
2

(1−α0)√
σ2
x(1−α0)+σ2

z

)

Φ( σ2
x

2
√
σ2
x+σ2

z

)
< 1

Next, we show that the derivative of the ratio in respect to z̃0 is positive for the relevant values

z̃0 ≥ 0, which is enough to conclude that Et−1(Ṽ |pt=p0)

limpt→p0 Et−1(Ṽ |pt 6=p0)
converges to 1 from below and hence

is less than one for all finite z̃0 ≥ 0. The needed derivative,

∂ Et−1(Ṽ |pt=p0)

limpt→p0 E(Ṽ |pt 6=p0)

∂z̃0

,
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it is proportional to

(φ(

σ2
x
2

(1− α0) + α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

) exp(α0z̃0)− φ(
(1− α0)

σ2
x
2
− α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

))︸ ︷︷ ︸
=0

α0

αt|0
√
σ2
x(1− α0) + σ2

z

+ Φ(

σ2
x
2

(1− α0) + α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

) exp(α0z̃0)α0

 ∗
Φ(

α0
αt
z̃0 +

σ2
x
2√

(σ2
x + σ2

z)
) exp(α0z̃0) + Φ(

σ2
x
2
− α0

αt
z̃0√

(σ2
x + σ2

z)
)

−
Φ(

σ2
x
2

(1− α0) + α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

) exp(α0z̃0) + Φ(
(1− α0)

σ2
x
2
− α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)

 ∗
(φ(

σ2
x
2

+ α0
αt
z̃0√

σ2
x + σ2

z

) exp(α0z̃0)− φ(

σ2
x
2
− α0

αt
z̃0√

σ2
x + σ2

z

))
α0

α1

√
σ2
x + σ2

z︸ ︷︷ ︸
=0

+Φ(

σ2
x
2

+ α0
α1
z̃0√

σ2
x + σ2

z

) exp(α0z̃0)α0



= α0 exp(α0z̃0)

Φ(

σ2
x
2

(1− α0) + α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)Φ(

σ2
x
2
− α0

αt
z̃0√

σ2
x + σ2

z

)− Φ(

σ2
x
2

(1− α0)− α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)Φ(

σ2
x
2

+ α0
αt
z̃0√

σ2
x + σ2

z

)



Thus, the derivative is positive if and only if

Φ(
σ2x
2
−α0
αt
z̃0√

σ2
x+σ2

z

)

Φ(
σ2x
2

+
α0
αt
z̃0√

σ2
x+σ2

z

)

>
Φ(

σ2x
2

(1−α0)− α0
αt|0

z̃0
√
σ2
x(1−α0)+σ2

z

)

Φ(
σ2x
2

(1−α0)+
α0
αt|0

z̃0
√
σ2
x(1−α0)+σ2

z

)

This inequality holds since

Φ(
σ2x
2
−α0
αt
z̃0√

σ2
x+σ2

z

)

Φ(
σ2x
2

+
α0
αt
z̃0√

σ2
x+σ2

z

)

>
Φ(

σ2x
2
− α0
αt|0

z̃0
√
σ2
x+σ2

z

)

Φ(
σ2x
2

+
α0
αt|0

z̃0
√
σ2
x+σ2

z

)

>
Φ(

σ2x
2

(1−α0)− α0
αt|0

z̃0
√
σ2
x(1−α0)+σ2

z

)

Φ(
σ2x
2

(1−α0)+
α0
αt|0

z̃0
√
σ2
x(1−α0)+σ2

z

)

where the first inequality follows from αt|0 < αt, and the second from the fact that

∂

σ2x
2

(1−α̃0)− α0
αt|0

z̃0
√
σ2
x(1−α̃0)+σ2

z

∂α̃0

<
∂

σ2x
2

(1−α̃0)+
α0
αt|0

z̃0
√
σ2
x(1−α̃0)+σ2

z

∂α̃0

and the fact that the term

∂

Φ(

σ2x
2 (1−α̃0)−

α0
αt|0

z̃0√
σ2x(1−α̃0)+σ2z

)

Φ(

σ2x
2 (1−α̃0)+

α0
αt|0

z̃0√
σ2x(1−α̃0)+σ2z

)


∂α̃0
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equals

φ(

σ2
x
2

(1− α0)− α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)Φ(

σ2
x
2

(1− α0) + α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)

∂

σ2x
2

(1−α̃0)−
α0
αt|0

z̃0
√
σ2
x(1−α̃0)+σ2

z

∂α̃0
− Φ(

σ2
x
2

(1− α0)− α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)φ(

σ2
x
2

(1− α0) + α0
αt|0

z̃0√
σ2
x(1− α0) + σ2

z

)

∂

σ2x
2

(1−α̃0)+
α0
αt|0

z̃0
√
σ2
x(1−α̃0)+σ2

z

∂α̃0

< 0

Thus, we can conclude that
Et−1(Ṽ |pt = p0)

limpt→p0 Et−1(Ṽ |pt 6= p0)
< 1

for all z̃0 ≥ 0 meaning that there is discontinuous jump down in the continuation value at pt = p0.

Lastly, consider what value of pt optimizes the expected continuation value. Since the

discontinuity at p0 (the only potential corner solution) is a jump down, the maximizing pt must

be the interior maximum, which satisfies the FOC condition that ∂Et−1(Ṽ |pt 6=p0)
∂pt

= 0. Taking the

derivative, ∂Et−1(Ṽ |pt 6=p0)
∂pt

=

= φ(
z̄(pt)√
σ2
x + σ2

z

)(ep0 − ec∗0) exp(−γ − bp0 + α0ẑ0 +
1

2
(σ2
x(1− α0) + σ2

z))

∂z̄(pt)
∂pt√
σ2
x + σ2

z

− φ(
αt(σ

2
x + σ2

z)− z̄(pt)√
(σ2
x + σ2

z)
)(ept − ec∗0) exp(−γ − bpt +

1

2
(σ2
x(1− αt) + σ2

z + α2
t (σ

2
x + σ2

z)))

∂z̄(pt)
∂pt√
σ2
x + σ2

z

+ Φ(
αt(σ

2
x + σ2

z)− z̄(pt)√
(σ2
x + σ2

z)
) exp(−γ − bpt +

1

2
(σ2
x(1− αt) + σ2

z + α2
t (σ

2
x + σ2

z)))(e
pt − b(ept − ec∗0))

The above expression limits to zero as pt → p0. To see that, note that limpt→p0
∂z̄(pt)
∂pt

= 0, thus

the first 2 terms of the FOC expression above fall out. For the last term, using p0 = ln( b
b−1

) + c0

it follows that

(ep0 − b(ep0 − ec∗0)) =
b

b− 1
ec
∗
0 − b

b− 1
ec
∗
0 = 0

Therefore, we can conclude that limpt→p0
∂Et−1(Ṽ |pt 6=p0)

∂pt
= 0, and thus the interior maximum of the

expected continuation value is pt → p0.

Intuitively, p∗t = arg minp(p−p0)2 s.t. p 6= p0, ensures that the new signal yt will be informative

about a price as close as possible to the ex-ante expected optimal p0, and thus achieves almost the

same markup – this makes the new information highly relevant. As a result, if the realization of

ẑt happens to be good enough, i.e. ẑt is above a threshold z̄t(p
∗
t ) that is characterized in the proof

above, then the firm will stick with this price in the future, set pt+k = p∗t , and take advantage of the

unexpectedly high demand at that price. On the other hand, if the signal realization happens to

be bad, the firm can safely switch back to the ex-ante optimal p0, where the belief about demand

is not affected by ẑt, and still offers lower uncertainty and a good perceived markup.
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The reason for not picking pt = p0 is that a bad signal realization at p0 erodes the ex-ante

best available pricing option, p0, and at the same time the firm does not have a good fall-back

alternative, as it has no observations of demand at other prices. If in that case the realization of

ẑt falls below the threshold z0, the news about x(p0) is bad enough to incentivize the firm to set

pt+k to a previously unvisited price. Due to this downside risk at p0, there is a first-order gain

of obtaining information at a new price, which manifests in the discontinuous jump down in the

expected continuation value at p0.

As shown in Proposition 3, the best forward-looking strategy is therefore to experiment by

posting a new price. This exploration incentive could potentially overturn the rigidity result

implied by the static maximization pricing choice analyzed earlier, but as we show next it turns

out that this results is specific to the firm having seen only one price in the past. In more general

situations, when the firm has seen more than one distinct price point in the past, forward-looking

behavior can in fact reinforce the static rigidity incentives.

Exploration makes prices stickier, when εt contains observations at multiple prices

Proposition 4. There is a non-singleton interval of costs (c, c̄) around c∗0, and a threshold χ > 0,

such that if ẑ > χ, then for any c ∈ (c, c̄):

p0 = arg max
pt

E

[
Ṽ ({ε1, pt, yt}, c)

∣∣∣∣ε1, pt

]
.

Moreover, the threshold χ is decreasing in |p1 − p0|.

Proof. The proof follows a similar logic as the previous one. First, we characterize the optimal

pt+k for c = c∗0, but now conditional on ε1, and then use it to compute the expected continuation

value and show that it is maximized at pt = p0. Lastly, we appeal to continuity to conclude that

pt = p0 is optimal for an interval of cost values around c∗0. In addition to the signal-to-noise ratio

notation α0, αt|0, αt defined in the previous proof, we define

α1 ≡ αt−1(p1; p1) =
σ2
x

σ2
x + σ2

z/N1

αt|1 ≡ αt(p1; p1|pt = p1) =
σ2
x

σ2
x(N1 + 1) + σ2

z

Similarly, we define the (variance corrected) innovation in the signal at p1 as

z̃1 ≡ ẑ1 −
1

2
σ2
x = y1 − (−γ − bp1)− 1

2
σ2
x

The optimal policy at t+ k follows a similar structure to the one described in the previous proof.

Conditional on just ε1 the optimal pt+k is equal to p0, and the way the new information contained

in yt affects the optimal pt+k depends on the position of pt. If pt = p0, then the firm stays at p0
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unless the new signal is too bad (ẑt < z0). If pt = p1, then the firm moves to p1 if the signal is

good enough (ẑt > z̄1) otherwise stays at p0. And if pt /∈ {p0, p1}, then the firm again stays at p0

unless the signal is too good, but compared to a different threshold: ẑt > z̄(pt). The key difference

from the previous proof is what happens if pt = p0 and the signal is sufficiently bad to prompt a

move (ẑt < z0). There exists a χ1 > 0 such that if ẑ1 > χ1, then the firm does not move to the

interior optimum pint, but rather to p1, which as another relatively good price at which the firm

has built some information capital is a better option than the brand new pint where the firm has

not accumulated any information. To see this, note that

E(ν∗t+k(p1, c
∗
0)|ε1, pt = p0)

limp→p0 E(ν∗t+k(p, c
∗
0)|ε1, pt = p0)

= (b exp(p1 − p0)− b+ 1) exp(−b(p1 − p0) + α1z̃1) > 1

Note that the RHS is increasing in z̃1, and thus in ẑ1 and limits to infinity as ẑ1 → ∞, hence

there exists a constant χ1 > 0 such that the above ratio is strictly greater than one when ẑ > χ1.

For the rest of the proof we assume that ẑ1 > χ1 so that the above inequality holds. The relevant

thresholds z0, z̄1, z̄(pt) can be computed as before, by finding the value of the signal at which the

firm is indifferent between p0 and the respective alternative option:

z0 =
σ2
x

2
(1− α0)− 1

αt|0
(b(p1 − p0)− ln(be(p1−p0) − b+ 1))

z̄1 =
σ2
x

2
(1− α1) +

1

αt|1
(b(p1 − p0)− ln(be(p1−p0) − b+ 1))

z̄(pt) =
α0

αt
z̃0 +

σ2
x

2
− 1

αt

[
ln

(
exp(pt)− exp(c∗0)

exp(p0)− exp(c∗0)

)
+ b(p0 − pt)

]
So the t+ k optimal pricing policy is:

p∗t+1 =


p0 if pt = p0 and ẑt ≥ z0, or pt = p1 and ẑt ≤ z̄1 or pt /∈ {p0, p1} and ẑt ≤ z̄(pt)

p1 if pt = p1 and ẑt > z̄1 or pt = p0 and ẑt < z0

pt if pt /∈ {p0, p1} and ẑt > z̄(pt)

We can now use this result to characterize the expected continuation value and find its maximizer.

Note that the value of pt that maximizes E(

[
Ṽ ({ε1, pt, yt}, c∗0)

∣∣∣∣ε1, pt

∣∣∣∣]) is either one of the two

corner solutions p0 and p1, or the interior maximum. Moreover, we can appeal to the proof of

Proposition 3 for the result that the expected continuation value achieves its interior maximum

at the limit of pt → p0. This follows because under ψ →∞ the additional signal y1 only matters

when updating beliefs at p1 itself, hence at p 6= p1 the expected continuation value is equivalent to

the one conditional on ε0, that we analyzed above. We proceed in two steps. First we show that

the two corner solutions are in fact equivalent to each other, and then we conclude by showing that
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p0 also dominates the interior solution pint. The expected value E(
[
Ṽ ({ε1, pt, yt}, c∗0|ε1, pt = p0)

]
)

is slightly different than before, because the fall back option (in case of a bad new signal yt) is

now p1. Now, Et−1(Ṽ |pt = p0) =

= Φ(
z0√

σ2
x(1− α0) + σ2

z

)(exp(p1)− exp(c∗0)) exp(−γ − bp1 + α1ẑ1 +
1

2
(σ2
x(1− α1) + σ2

z))

+ (1− Φ(
z0√

σ2
x(1− α0) + σ2

z

))(exp(p0)− exp(c∗0)) exp(−γ − bp0 + α0ẑ0 +
1

2
(σ2
x(1− α0) + σ2

z))

Φ(
αt|0(σ

2
x(1−α0)+σ

2
z)−z0√

σ2
x(1−α0)+σ2

z

)

1− Φ(
z0√

σ2
x(1−α0)+σ2

z

=
1

b− 1
exp(c∗0 − γ − bp0 + α0z̃0 +

1

2
(σ2
x + σ2

z))

(
Φ(
αt|0(σ2

x(1− α0) + σ2
z)− z0√

σ2
x(1− α0) + σ2

z

) + Φ(
z0√

σ2
x(1− α0) + σ2

z

)(bep1−p0 − b+ 1)e−b(p1−p0)

)

Similarly, E(
[
Ṽ ({ε1, pt, yt}, c∗0|ε1, pt = p1)

]
) can be computed as Et−1(Ṽ |pt = p1) =

= P (ẑt ≤ z̄1)(exp(p0)− exp(c∗0)) exp(−γ − bp0 + α0ẑ0 +
1

2
(σ2
x(1− α0) + σ2

z))

+ P (ẑt > z̄1)(exp(p1)− exp(c∗0)) exp(−γ − bp1 + α1ẑ1 +
1

2
(σ2
x(1− α1)(1− αt|1) + σ2

z))E(exp(αt|1ẑt)|ẑt > z̄1)

=
1

b− 1
exp(c∗0 − γ − bp0 + α0z̃0 +

1

2
(σ2
x + σ2

z))

[
Φ(

z̄1√
(σ2
x(1− α1) + σ2

z)
) + Φ(

αt|1(σ2
x(1− α1) + σ2

z)− z̄1√
(σ2
x(1− α1) + σ2

z)
)(bep1−p0 − b+ 1)e−b(p1−p0)

]

Substituting in the expressions for z0 and z̄1 we obtain

Et−1(Ṽ |pt = p0) = Et−1(Ṽ |pt = p1)

Lastly, note that for pt /∈ {p0, p1}, E(
[
Ṽ (c0, {εt−1, pt, yt}|ε1, pt)

]
) is the same as computed in the

proof of Proposition 3 above. As a result, the interior maximum is achieved at lim pt → p0, hence to
conclude our argument we need to compare Et−1(Ṽ |pt = p0) against limpt→p0 Et−1(Ṽ |pt /∈ {p0, p1}),
which in turn equals

(exp(p0)− exp(c∗0)) exp(−γ − bp0 +
1

2
(σ2
x + σ2

z))

(
Φ(

z̄(pt)√
(σ2
x + σ2

z)
) exp(α0z̃0) + Φ(

αt(σ
2
x + σ2

z)− z̄(pt)√
(σ2
x + σ2

z)
)

)

Let θ̂ = (b(p1 − p0)− ln(be(p1−p0) − b+ 1)) > 0, then after substituting the expressions for z0 and

z̄(pt) and simplifying, the ratio of the two expected continuation values simplifies to:

Et−1(Ṽ |pt = p0)

limpt→p0 Et−1(Ṽ |pt /∈ {p0, p1})
=

Φ(

σ2x
2

(1−α0)+ θ̂
αt|0√

σ2
x(1−α0)+σ2

z

) + Φ(

σ2x
2

(1−α0)− θ̂
αt|0√

σ2
x(1−α0)+σ2

z

) exp(−θ̂)

Φ(
α0
αt
z̃0+

σ2x
2√

(σ2
x+σ2

z)
) + Φ(

σ2x
2
−α0
αt
z̃0√

(σ2
x+σ2

z)
) exp(−α0z̃0)

(37)

The denominator is decreasing in z̃0 and thus also in ẑ0, hence for every θ̂ there is a ẑ0 big enough

such that the above ratio is strictly greater than 0. As a result, there exists a finite constant

χ0 > 0 such that when ẑ0 > χ0 it follows that pt = p0 maximizes the expected continuation value.
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Finally, let χ = max{χ0, χ1}, then if ẑ1 = ẑ0 > χ,

p0 = arg max
pt

E
[
Ṽ ({ε1, pt, yt}, c∗0)|ε1, pt

]
Since Ṽ is continuous in the cost shock c, it follows that there exists a non-singleton interval (c, c̄)

around c∗0, such that if c ∈ (c, c̄), then

p0 = arg max
pt

E
[
Ṽ ({ε1, pt, yt}, c)|ε1, pt

]
Lastly, we want to show that ∂χ

∂|p0−p1| < 0. This follows directly form the facts that (i) the numerator

of (37) is decreasing in θ̂, and that (ii) θ̂ is increasing in (p1 − p0). Hence, as we decrease the

distance between p0 and p1, we increase the RHS of (37), and thus we require a smaller ẑ = ẑ0 = ẑ

to make the ratio bigger than 1.

A.4 Household problem

The representative household consumes and works according to

max
ct+k,Li,t+k

∞∑
k=0

Et

(
βt+k

[
ct+k −

∫
Li,t+kdi

])

where ct denotes log consumption of the aggregate good, subject to the budget constraint∫
epj,t+cj,tdj + EtQt+1Dt+1 = Dt + ept+wt

∫
Li,tdi+

∫
υi,tdi,

where Qt+1 is the stochastic discount factor, Dt are state contingent claims on the aggregate

shocks, υi,t is the profit from the monopolistic intermediaries and wt is the log real wage. The

optimal labor supply condition is simply wt = ct, while the market clearing states that ct = yt.

Substituting the wage into the firm’s profit we obtain equation (21).

A.5 Proofs on learning and nominal rigidity

Proposition A1. The nominal price pi,1 = p̃j,1+r̃i,0 is a local maximizer of the worst-case expected

profits for any aggregate price p1 ∈ (p1 + ln
(

b
b−1

b−αδ−1
b−αδ

)
, p1 + ln

(
b
b−1

b+αδ−1
b+αδ

)
).

Proof. Let υ∗(ε0, s1, pi,1) denote the worst-case expected profit, conditional on the history ε0 and

the current state s1 = {ωi,1, p1, y1, p̃j,1} , evaluated at some nominal price pi,1. Conditional on pi,1−
p̃j,1, the worst-case beliefs are given by equations (25) and (26). Take a first-order approximation

of the change in profits, υ∗(ε0, s1, pi,1) − υ∗(ε0, s1, p̃j,1 + r̃i,0), evaluated around pi,1 = p̃j,1 + r̃i,0.
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This equals [
ep̃j,1+r̃i,0−p1

ep̃j,1+r̃i,0−p1 − ey1−ωi,1
− (b+ αδ∗)

]
(pi,1 − p̃j,1 − r̃i,0) ,

where δ∗ = δ sgn (pi,1 − p̃j,1 − r̃i,0) .

It then follows that for any p1 ∈ (p, p), where we define

p = p1 + ln

(
b

b− 1

b− αδ − 1

b− αδ

)
; p = p1 + ln

(
b

b− 1

b+ αδ − 1

b+ αδ

)
,

we have
ep̃j,1+r̃i,0−p1

ep̃j,1+r̃i,0−p1 − ey1−ωi,1
∈ (b− αδ, b+ αδ),

which makes the first-order derivative of the change in profits negative to the right of p̃j,1 + r̃i,0

and positive to its left. This gives the necessary and sufficient conditions for p̃j,1 + r̃i,0 to be a

local maximizer.

Proposition A2. Let δindex = δ sgn (p1 − p̃j,1). Up to a first-order approximation around p1 = p̃j,1,

the difference ln υ∗(ε0, s1, r̃i,0 + p1)− ln υ∗(ε0, s1, r̃i,0 + p̃j,1) equals[
er̃i,0

er̃i,0 − ey1−ωi,1
− b− αδindex

]
(p1 − p̃j,1) < 0.

Proof. First, analyze the worst-case expected profit under a policy rule that implements indexa-

tion, i.e. pindexi,1 = r̃i,0 + p1, given by

υ∗(ε0, s1, p
index
i,1 ) =

(
er̃i,0 − ey1−ωi,1

)
ex̂
∗
0(pindexi,1 ,y1,p1,p̃j,1)

where x̂∗0(pindexi,1 , y1, p1, p̃j,1) equals .5 (σ̂2
0 + σ2

z) + ct − br̃i,0 − γ + α [y0 − (−γ − br̃i,0)] plus

min
δ′∈[−δ,δ]

min
φ(pt−p̃j,t)∈[−γp,γp]

−αδ′ (p1 − p̃j,1) + αδ′ [φ(p1 − p̃j,1)− φ(p0 − p̃j,0)]

The joint worst-case demand shape and co-integrating relationship are given by

δindex = δ sgn (p1 − p̃j,1) ; φindex(p1 − p̃j,1)− φindex(p0 − p̃j,0) = −2γp sgn (p1 − p̃j,1) .

Given the presence of the kink we compute a log-linear approximation of υ∗(ε0, s1, p
index
i,1 ) around

p1 = p̃j,1. At its right we have
d ln υ∗(ε0, s1, p

index
i,1 )

dp1

= −αδ

while at its left, the derivative is

d ln υ∗(ε0, s1, p
index
i,1 )

dp1

= αδ
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The constant term in the approximation is given by evaluating ln υ∗(ε0, s1, p
index
i,1 ) at p1 = p̃j,1 :

ln
(
er̃
∗
i,1 − ey1−ωi,1

)
+ ct − br̃i,0 − γ + α [y0 − (−γ − br̃i,0)]− 2αδγp.

Second, let us analyze the worst-case expected profit under the original policy, p∗i,1 = r̃i,0 + p̃j,1,

which targets the same r̃i,0 but by adjusting the nominal price to the review signal p̃j,1. We have

υ∗(ε0, s1, p
∗
i,1) =

(
er̃i,0+p̃j,1−p1 − ey1−ωi,1

)
ex̂
∗
0(p∗i,1,y1,p1,p̃j,1)

where x̂∗0(p∗i,1, y1, p1, p̃j,1) equals .5 (σ̂2
0 + σ2

z)+ ct− b (r̃i,0 + p̃j,1 − p1)−γ+α [y0 − (−γ − br̃i,0)] plus

min
δ′∈[−δ,δ]

min
φ(pt−p̃j,t)∈[−γp,γp]

αδ′ [φ(p1 − p̃j,1)− φ(p0 − p̃j,0)] = −2αδγp

Note that υ∗(ε0, s1, p
∗
i,1) does not have a kink in the p1 space. Approximate around p1 = p̃j,1 to

obtain a derivative is:
d ln υ∗(ε0, s1, p

∗
i,1)

dp1

= − er̃i,0

er̃i,0 − emy1
+ b

The constant term is given by evaluating ln υ∗(ε0, s1, p
∗
i,1) at p1 = p̃j,1, as:

ln
(
er̃i,0 − ey1−ωi,1

)
+ ct − br̃i,0 − γ + α [y0 − (−γ − br̃i,0)]− 2αδγp.

We now compute the difference ln υ∗(ε0, s1, p
index
i,1 ) − ln υ∗(ε0, s1, p

∗
i,1), up to their first-order ap-

proximation: (
er̃i,0

er̃i,0 − ey1−ωi,1
− b− αδindex

)
(p1 − p̃j,1) < 0

using the worst-case demand shape δindex = δ sgn (p1 − p̃j,1) and Proposition A2. The latter shows

that the condition for having the optimal price r̃i,1 be at the kink r̃i,0 is that the derivatives at the

right, based on demand elasticity −b− δ, and at the left, using the elasticity −b+ δ, are negative

and, respectively, positive.

A.6 Dispersion of forecasts

Here we detail how we use empirical evidence from Gaur et al. (2007) on survey data to evaluate

the size of our calibrated ambiguity parameter γ. Gaur et al. (2007) use item-level forecasts of

demand data from a skiwear manufacturer, called the Sport Obermeyer dataset. The dataset

contains style-color level forecasts for 248 short lifecycle items for a selling season of about

three months. The forecasts are done by members of a committee specifically constituted to

forecast demand, consisting of: the president, a vice president, two designers, and the managers

of marketing, production, and customer service. Raman et al. (2001) provides details on the

forecasting procedures and on the dataset.
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Our model connects to the data in Gaur et al. (2007) as follows. They observe forecasts

made prior to the product being introduced. Their statistic for the dispersion of these forecasts is

reported as a coefficient of variation. Our model relates to this measure through the set of multiple

priors. Indeed, in our model, prior to observing any realized demand signals, the firm entertains

a set of forecasts about quantity sold. We connect this set to the dispersion of forecasts made

by the committee described above. In particular, in our model the firm entertains the following

time-zero set of forecasts on the level of demand

[exp(−γ − bp+ 0.5σ2
z), exp(γ − bp+ 0.5σ2

z)]

While in the data the set consists of only seven forecasters, we have a continuum. But we can

compute the coefficient of variation (CV) of these forecasts and compare it against the reported

statistic. In particular, using a uniform distribution over the forecasts in the set above, the CV,

normalized by the average forecast, equals

CV =
1√
3

eγ − e−γ

(eγ + e−γ)

Gaur et al. (2007) report in their Table 4 that the average level of coefficient of variation,

scaled by the average forecast, across the products in the dataset equals 37.6%. Plugging in the

calibrated value of our ambiguity parameter γ = 0.614, we obtain a CV equal to 31.58%.

A.7 Empirical link between aggregate and industry prices

In this section, we use US CPI data to show that the relationship between aggregate and industry

prices is time-varying and unstable over short-horizons. In particular, an econometrician would

generally have very little confidence that short-run aggregate inflation is related to industry-level

inflation, even though he can be confident that the two are cointegrated in the long-run. Thus, our

assumption on the uncertainty over φ(.) puts the firm on an equal footing with an econometrician

outside of the model.

Our analysis uses the Bureau of Labor Statistics’ most disaggregated 130 CPI indices as well

as aggregate CPI inflation. The empirical exercise consists of the following regression method. For

a specific industry j, we define its inflation rate between t− k and t as πj,t,k and similarly πat,k for

aggregate CPI inflation. For each industry j, we run the rolling regressions:

πj,t,k = βj,k,tπ
a
t,k + ut

over three-year windows starting in 1995 and ending in 2010, and note that results are very similar

if we use windows of 2 or 5 years instead. We repeat this exercise for k equal to 1, 3, 6, 12 and 24

months. Finally, for each of these horizons we compute the fraction of regression coefficients βj,k,t
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(across industries and 3-year regression windows) that are statistically different from zero at the

95% level.

We find that for 1-month inflation rates, only 11.4% of the relationships between sectoral and

aggregate inflation are statistically significant. For longer horizons k, these fractions generally

remain weak but do rise over time: 26.4%, 40.6%, 58.5% and 69.1% for the 3-, 6-, 12- and 24-

month horizons respectively. This supports our assumption that while disaggregate and aggregate

price indices might be cointegrated in the long run, their short-run relationship is weak.

In fact, not only is the relationship statistically weak in general, but it is highly unstable. This

can be seen in Figure A.1, which shows the evolution of the coefficient βj,k,t for k = 3 for 3-year-

window regressions starting in each month between 1995 and 2010, for four industries. Not only

are there large fluctuations in the value of this coefficient over our sample, but sign reversals are

common. In general, at any given date, there is little confidence that the near-future short-horizon

industry-level inflation would be highly correlated with aggregate inflation, even though the data

is quite clear that the two are tightly linked over the long-run.
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Figure A.1. 3-year rolling regressions of 3-month industry inflation on 3-month aggregate inflation
for four categories. The solid line plots the point estimate of regression coefficient on aggregate
inflation. The dotted lines plot the 95% confidence intervals.

A.8 The typical pricing policy at the stochastic steady state

In this section, we analyze in more depth the optimal pricing policy at the stochastic steady state.

We start by noting that at any point in time, the equilibrium of our model is described by a whole

distribution of beliefs over the unknown demand function, varying across firms. The reason is that

firms have faced different histories of idiosyncratic shocks, and thus have made different pricing
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decisions, resulting in heterogeneous histories of signals. To understand the average behavior, here

we analyze the action of a firm at the typical history of observations.

Since firms learn in terms of the estimated relative prices r̃it (as per Section 3), the information

sets of different firms are characterized by the unique r̃it values seen in the past, together with the

resulting demand signals at those prices. A striking characteristic is that even though the average

life span of firms in our model is 133 periods, the histories contain only 6 unique estimated relative

prices on average. Moreover, the most often posted r̃it accounts, on average, for 74% of all past

observations. Hence, the typical history features one dominant “reference” estimated relative price

point that the firm tends to revert to.

To visualize this typical behavior, we average over the histories of observations of the different

firms in order to come up with a “typical” history of observations - the precise details of the

procedure are presented in Online Appendix B.6 (on the authors’ website). We then compute the

optimal pricing policy conditional on having observed this typical price history, as a function of

the level of idiosyncratic productivity, keeping aggregate variables constant at their mean values.

This is true in particular for the gap between the aggregate price level and the unambiguous signal

of the industry price, pt− p̃j,t, which is kept fixed at its average level. Under this assumption, the

statements below about the estimated relative price r̃it are also statements about the behavior of

the nominal posted price pit between industry price reviews.

The resulting pricing policy, plotted in Figure A.2, exhibits several key characteristics. First, it

features a large flat spot that covers the middle part of the support for idiosyncratic productivity

(recall E(wit) = 0) – this corresponds to the “dominant” estimated relative price point (the one

that is on average posted 74% of the time) and it occurs at r̃i = 0.11. It is intuitive that the firm

has established a large flat spot at a price that is optimal for productivity values wit close to the

mean, as they are the ones it is most likely to face.

Second, the policy also features five smaller flat spots corresponding to the other previously

observed five price points. Those estimated relative prices are sticky and attractive, but because

each is optimal for fewer and less likely wit realizations, the firm tends to post these prices less

often. Combined with infrequent observations of the industry price pjt, these features of the policy

function generate both stickiness and memory in nominal prices between reviews. The price is

not only likely to be “stuck” at one of the flat spots but, even conditional on moving, the price is

likely to go to one of the other flat spots (since a large part of the productivity support maps to

one of them), thus revisiting past values.

Third, there are several jumps in the pricing policy, typically occurring as a switch from

one flat spot to another. The largest jumps, however, correspond to a move from a flat spot

to a brand new estimated relative price further out in the tails, and can be explained by the

experimentation motive: the typical firm has not collected much information about demand at

very high or low values of r̃it. Given this high uncertainty, the firm would generally not like to price

in those regions, but large enough shocks will eventually force it to. However, the high remaining
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Figure A.2. Optimal pricing policy function at the stochastic steady state

uncertainty about demand in those parts of the price space makes experimentation attractive, and

rather than extending its pricing decision continuously, the firm finds it optimal to adjust a lot,

thus learning more about the distant regions of the price space.

Fourth, in addition to the jumps, the pricing policy also features several continuous downward-

sloping portions which are behind the small price changes seen in the simulations. The most

pronounced of those continuous portions occurs immediately to the right of the main flat spot in

the middle. Intuitively, when the firm experiences a moderate productivity shock, it remains in

the neighborhood of its “safe” reference price that it knows best instead of exploring remote price

points. This is due to the local nature of learning – the firm has reduced uncertainty not only

right at the reference price, but also in its neighborhood, and would rather not move far away

unless productivity changes by a substantial amount.

Lastly and importantly, the policy function also shows that the average firm has far from perfect

information about its demand curve. This is evident from the significant difference between the

typical policy function and the full information RE policy (dashed black line). The reason behind

this substantial residual demand uncertainty is that the history of observations is endogenously

sparse. The optimal policy leads the firm to often repeat estimated relative prices, resulting in

a history of observations that provides a lot of information about the average level of demand

at those select prices, but leaves the firm uncertain about the shape of its demand. Hence our

mechanism, which operates specifically through the uncertainty about the local shape of demand,

has a strong bite even at the steady state of the model, when firms have seen long histories of

demand observations. In fact, because of the local nature of learning and the endogenous location

of demand signals, learning proceeds so slowly that the mechanism survives even if firms live for

thousands of periods. We explore this implication further in Online Appendix B.7 (on the authors’
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website) by setting λφ = 0. In the same appendix we also show that the accumulation of new

information could in fact change the optimal position of some of the reference prices.

A.9 Cell-based evidence on hazard functions
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Figure A.3. Distributions of the cell-based hazard slopes. A slope is defined as the difference
between the price change frequencies of old (τ ≥ Γ) and young (τ < Γ) prices. Empirical (left)
and simulated (right) distributions.

In Figure A.3, we plot the distributions of cell-based slopes obtained using the approach of

Campbell and Eden (2014). A cell is a specific product sold in a given store, while the slope

is computed as the difference between the price change frequencies of older and younger prices.

An “old” price is one that has survived at least Γ weeks. In order to obtain a more complete

comparison between the data and the model simulations than just the average slope, we plot both

the empirical (left column) and simulated (right) distributions of the cell-based hazard slopes, for

Γ = 4, 5, 6.
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B Online Appendix B (Not for publication)

B.1 Exploration incentives

In Section 2.4 we assumed ψ =∞ for analytical tractability. Relaxing that assumption generally

reduces the experimentation incentives of the firm, in the sense that it flattens the continuation

value Ṽ . The reason is that when ψ < ∞, observing a signal yt at a price pt is informative not

only about x(pt) itself, but also about other prices p around pt, with the informativeness dropping

to zero as the distance |p− pt| goes to infinity. Moreover, a higher ψ implies that the correlation

between x(p) and x(p′) at distinct p and p′ decreases faster with the distance between p and p′.

Hence, higher ψ increases the specificity of new information, making it more localized.

Lower ψ on the other hand, makes the information at a given pt more useful at any p. As a

result, this erodes the firm’s incentive to experiment with new prices – it could learn most of the

same information by repeating one of its established, safe prices anyways. Formally, this means

that the continuation value function Ṽ becomes flatter. In fact, as we show in Proposition B1

below, in the limit ψ → 0 the continuation value is a perfectly flat line.

Proposition B1. The expected continuation value E
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
becomes flat in

respect to the time t price pt as ψ → 0:

lim
ψ→0

∂E
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
∂pt

= 0

Proof. First we will prove that with ψ <∞, the expected continuation valueE
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
is differentiable. The key intuition is that if the firm selects a time t price away from p0, thus

obtaining a signal at a new price pt 6= p0, in expectation this would not create a second kind in

the expected future worst-case demand. The only kink in the time t expectation of the future

worst-case demand appears at the already observed p0, since it evolves recursively as:

x̂∗t (p) = x̂∗t−1(p) + αt(p)(yt − x̂∗t−1(p))

where

αt(p) =
(σ2

x + σ2
z/N0)σ2

x exp(−ψ2(p− pt)2)− σ4
x exp(−ψ2((p− p0)2 + (pt − p0)2))

σ4
x(1− exp(−2ψ2(pt − p0)2)) + σ2

xσ
2
z
N0+1
N0

+ σ4
z/N0

is the signal-to-noise ratio applicable to the new signal at pt, when updating beliefs about x(p)

at some price p.

There is obviously a kink at p0in x̂∗t (p), since x̂∗t−1(p) has a kink there. However, there is no

1



other kink, because the firm correctly perceives that

yt ∼ N(x̂∗t−1(pt), σ̂
2
t−1(pt)).

In other words, there is no possibility for a kink arising from the signal innovation term, since

the signal is evaluated against the proper worst-case belief at time t, leaving only one kink in the

expectation of the future worst-case demand. Of course, that is what happens only in expectation

– once the signal is realized, and the firm perceives some surprise, the time t + k worst-case will

indeed feature two kinks. Still, in expectation, the kink is smoothed over, hence does not affect

the time t pricing incentives of the firm.

We are going to use the notations for signal innovation level, ẑt, and the signal-to-noise ratios

defined above. Also recall that E
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
= β

1−βE

[
ν∗t+k(p

∗
t+k, c

∗
0)

∣∣∣∣ε0, pt

]
, where

p∗t+k is the resulting static optimal price, given the updated information set {ε0, pt, yt}. And to

simplify notation, we will again use the shorthand Et−1(Ṽ ) to denote the expected continuation

value E
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
.

To show that the expected continuation value is differentiable, we will show two things. First,

we show that the derivatives of Et−1(Ṽ |pt > p0) and Et−1(Ṽ |pt < p0) in respect to pt exist

everywhere. Second, we show that

lim
pt↑p0

∂Et−1(Ṽ |pt < p0)

∂pt
= lim

pt↓p0

∂Et−1(Ṽ |pt > p0)

∂pt
.

Let’s start with showing that ∂Et−1(Ṽ |pt>p0)
∂pt

exists everywhere. The firm has perfect foresight

on ct+k = c∗0, and since p0 = ln(b/(b − 1)) + c∗0 absent any information in the new signal yt the

optimal price at t+ k would be p0. Thus, the worst-case expected profit given a choice of pt > p0

can be written as:

Et−1(Ṽ |pt > p0) = Φ(z(pt))Et−1(ν∗t+k(p
∗(pt), c

∗
0|pt > p0, ẑt < z(pt)) + (Φ(z̄(pt))− Φ(z(pt)))Et−1(ν∗t+k(p0, c

∗
0|pt > p0)

+ (1− Φ(z̄(pt)))Et−1(ν∗t+k(p
∗(pt)|pt > p0, ẑt > z̄(pt))

where z(pt) and z̄(pt) are the threshold values for the innovation of the signal at pt such that: (1)

if ẑt > z̄(pt), the demand realization at pt is so good that it pulls the optimal price away from p0,

and to an interior optimal price p∗(pt) closer to the new, good signal at pt; (2) if ẑt < z(pt), the

new demand realization is so bad that it pushes the optimal price away from both p0 and p1, to

a new interior optimal p(pt)
∗ < p0 < pt. For ẑt realizations in between these two threshold, the

optimal price at time t+k is at the kink p0. We will prove that all of the components in the above

expression are differentiable.

It is straightforward to show that the expected profit function (at any price p), Et−1(ν∗t+k(p, c
∗
0)|pt >

p0), is differentiable in respect to pt:
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Et−1(ν∗t+k(p, c
∗
0)|pt > p0) = (ep − ec∗0) exp(x̂∗t−1(p) + αt(p)ẑt +

1

2
(σ̂2

t (p) + σ2
z))

The only components that are a function of pt are the signal to noise ratio, αt(p) and the

posterior variance σ̂2
t (p), and both of those are differentiable in respect to pt everywhere. The

signal-to-noise ratio αt(p) was already defined above, and it is obviously differentiable, and the

posterior variance can be obtained by the familiar recursive formula:

σ̂2
t (p) = σ2

x(1− α0(p))(1− αt(p))

where

α0(p) =
σ2
x

σ2
x + σ2

z/N0

e−ψ(p−p0)2

is the signal-to-noise ratio applicable to the y0 signal. This only depends on pt through αt(p),

hence it is differentiable as well.

Next, consider the optimal interior price p∗ – it satisfies the first order condition

p∗ − (c∗0 + ln(
x̂∗
′
t−1(p∗) + α′t(p

∗)ẑt + 1
2
σ̂2′
t (p∗)

1 + x̂∗
′
t−1(p∗) + α′t(p

∗)ẑt + 1
2
σ̂2′
t (p∗)

)) = 0 (38)

We can show that the derivative ∂p∗

∂pt
exists by using i) the implicit function theorem and ii) the

fact that x̂∗t−1(p) has no kinks for p > p0. To save on notation let

θ∗(p∗, pt) =
x̂∗
′
t−1(p∗) + α′t(p

∗)ẑt + 1
2
σ̂2′
t (p∗)

1 + x̂∗
′
t−1(p∗) + α′t(p

∗)ẑt + 1
2
σ̂2′
t (p∗)

be the effective markup at the optimal price. By the implicit function theorem

∂p∗

∂pt
= −

∂θ∗

∂pt

1− 1
θ∗
∂θ∗

∂p∗

The derivative of ∂θ
∗

∂pt
is only a function of the derivatives α′t(p) and σ̂2′

t (p) which exist everywhere

since their expressions (as defined above) are infinitely differentiable. The derivative ∂θ∗

∂p∗
depends

on the second derivatives of αt(p) and σ̂2
t (p), and the time-t information worst-case demand,

x̂∗t−1(p) – which is infinitely differentiable everywhere outside of p1 = p0. Hence, for pt > p0 the

interior optimal price p∗ is differentiable in respect to pt.

Next, we work with the upper threshold z̄(pt), which is implicitly defined by the equality

Et−1(ν∗t+k(p0|pt > p0, ẑt = z̄(pt)) = Et−1(ν∗t+k(p
∗|pt > p0, ẑt = z̄(pt))

⇐⇒
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(ep0−ec∗0) exp(x̂∗t−1(p0)+αt(p0)z̄(pt)+
1

2
(σ̂2

t (p0)+σ2
z)) = (ep

∗−ec∗0) exp(x̂t−1(p∗)+αt(p
∗)z̄(pt)+

1

2
(σ̂2

t (p
∗)+σ2

z))

which can similarly be shown to be differentiable in respect to pt by the implicit function

theorem. Similar argument can be shown for the lower threshold z(pt) as well.

Thus, we conclude that ∂Et−1(Ṽ |pt>p0)
∂pt

exists everywhere. Similar arguments can be used to

show that the mirror image derivative, ∂Et−1(Ṽ |pt<p0)
∂pt

exists everywhere as well. Hence the only

thing that remains to be shown, is that

lim
pt↑p0

∂Et−1(Ṽ |pt < p0)

∂pt
= lim

pt↓p0

∂Et−1(Ṽ |pt > p0)

∂pt
.

Note that outside of the limit pt → p0 the thresholds z(pt) and z̄(pt) are different for the

two cases i) pt > p0 and ii) pt < p0. Intuitively, the optimal interior price p∗ could be different

depending on whether the firm received a very good signal (ẑt > z̄(pt)) for a price higher or lower

than p0. Importantly, the distance |p∗ − p0| could also be different, because (at least locally) the

slope of worst-case demand to the left of p0 is different from that to the right of p0. So resulting

interior prices, and also the thresholds for ẑt at which they become optimal are different – i.e. the

problem is not symmetric around p0.

However, in the limit pt → p0 the candidate interior prices and thresholds converge to the

same values. The candidate interior price is given by the first-order condition (38), the minimum

threshold limpt→p0 z(pt) = z is defined as

Et−1(ν∗t+k(p0|pt = p0, ẑt = z) = Et−1(ν∗t+k(p
∗|pt = p0, ẑt = z)

⇐⇒

(ep0 − ec∗0) exp(x̂∗t−1(p0) + αt(p0|p0 = pt)z +
1

2
(σ̂2

t (p0|p0 = pt) + σ2
z))

= (ep
∗ − ec∗0) exp(x̂t−1(p∗) + αt(p

∗|p0 = pt)z +
1

2
(σ̂2

t (p
∗|p0 = pt) + σ2

z))

and the upper threshold, z̄(pt), converges to infinity – intuitively a new positive signal at p0 only

strengthens the desire to pick price p0. New information will only destroy the kink at p0 if it is

sufficiently bad, while good new information will strengthen it.

With that in mind we can show

lim
pt↑p0

∂Et−1(Ṽ |pt < p0)

∂pt
= φ(z)Et−1(ν∗t+k(p

∗(pt)|pt = p0, ẑt < z))
∂z

∂pt
+ Φ(z) lim

pt→p0

∂Et−1(ν∗t+k(p
∗(pt)|pt = p0, ẑt < z)

∂pt

+ φ(z)Et−1(ν∗t+k(p
∗(pt)|pt = p0, ẑt ≥ z))

∂z

∂pt
+ (1− Φ(z)) lim

pt→p0

∂Et−1(ν∗t+k(p
∗(pt)|pt = p0, ẑt ≥ z)

∂pt

= lim
pt↑p0

∂Et−1(Ṽ |pt > p0)

∂pt
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which follows from (i) all limits exist and (ii) limpt↑p0 z(pt) = limpt↓p0 z(pt) = z as argued above.

Lastly, we need to take the limit ψ → 0. In this case, the signal-to-noise ratio function becomes

flat, i.e. αt(p) = αt for all p, and the same holds for the posterior variance σ̂2
t (p) = σ̂2

t , since

now information at a price p′ is equally useful at all prices p. As a result, it follows directly

that limψ→0 z = −∞ – i.e. since the signal realization erodes the expected profit equally at all

prices, it does not make any price p∗ better than p0. By extension, limψ→0
∂z
∂pt

= 0. Lastly, since

limψ→0
∂αt(p)
∂pt

= 0, it also follows directly that limψ→0
∂Et−1(ν∗t+k(p∗(pt)|pt=p0,ẑt≥z)

∂pt
= 0.

Essentially, the position of the new signal pt no longer matters, as a result

lim
ψ→0

∂E
[
Ṽ ({ε0, pt, yt}, c∗0)|ε0, pt

]
∂pt

= 0

B.2 Joint uncertainty over demand shape and relative price

In section 3.4 we have developed the solution to the worst-case beliefs when the firm observes

one previous unambiguous estimated relative price, which here for brevity we call an estimated

relative price. In this appendix we show how the analysis extends to multiple prices. The analysis

follows the similar logic as in the real model, detailed in appendix A.1, with the added analysis of

the worst-case belief of the unknown industry price. We do so by presenting details on the case

of updating beliefs in the third period of life, when the firm has seen demand realizations at two

previous prices pi,0 and pi,1, with corresponding quantities sold there yi,0 and yi,1. In addition, the

firm observes the history of aggregates, {y0, y1, y2, p0, p1, p2}, and signals on the industry price level,

{p̃j,0, p̃j,1, p̃j,2}. We will use the helpful r̃i,t = pi,t − p̃j,t notation for the unambiguously estimated

relative price. In particular, without loss of generality, suppose that the prior observations imply

unambiguously estimated relative price such that r̃i,0 < r̃i,1, where the analysis for the opposite

case is analogous.

The firm is interested in updating beliefs at a current price pi,2. Consider first a case where

pi,2 implies an estimated relative price r̃i,2 > r̃i,1. The expectation of demand is a function of the

worst-case prior m(r) at the true (unobserved) relative prices ri,2, ri,1, and ri,0.

The worst-case prior at ri,2 is again simply m∗(ri,2) = −γ − bri,2, (implying lowest prior level

of demand at the current price). The resulting demand estimate ignoring all known aggregate

effects, is given by

−γ − bri,2 + α0yi,0 + α1yi,1 − α0 [m(ri,0)− bφ(p0 − p̃j,0)]− α1 [m(ri,1)− bφ(p1 − p̃j,1)] ,

where α0 and α1 are weights on the perceived innovations in the signals yi,0 and yi,1, respectively.
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The prior belief about demand at ri,0 and ri,1 can be written as

m(ri,0) = −γ − bri,0 + δ′0(ri,1 − ri,0); m(ri,1) = −γ − bri,1 + δ′1 (ri,2 − ri,1)

where δ′0, δ
′
1 are the local derivatives of the mean prior around ri,0 and ri,1 respectively (they do

not have to be the same).

We can use the definition of ri,t ≡ pi,t − pj,t and substitute pj,t from equation (16) to simplify

the portion of the demand estimate over which nature chooses the joint worst-case demand shapes

δ′0 and δ′1, together with the short-run co-integrating relationship φ(pt − p̃j,t), as follows:

min
δ′0,δ
′
1

min
φ(pt−p̃j,t)

−α0δ
′
0(r̃i,1−r̃i,0)−α0δ

′
0φ(p0−p̃j,0)−α1δ

′
1(r̃i,2−r̃i,1)+α1δ

′
1φ(p2−p̃j,2)+(α0δ

′
0 − α1δ

′
1)φ(p1−p̃j,1)

We obtain the solution for the joint worst-case

δ∗1 = δ∗0 = δ; φ∗(p2 − p̃j,2) = −γp;φ∗(p0 − p̃j,0) = γp

φ∗(p1 − p̃j,1) = γpI(α0 < α1)− γpI(α0 > α1)

where I(α0 < α1) denotes the indicator function of whether α0 < α1.

Intuitively, if the current entertained estimated relative price r̃i,2 is higher than the highest

previously estimated relative price, then the joint worst-case beliefs over the demand shape and

the unknown industry price index have the following characteristics. First, the prior demand

shape between the three prices is steep. Second, the current industry price index is low and the

price index at the lowest previously estimated relative price is high. In this way, the relative price

between today and the lowest different estimated relative price is high, which, together with the

steep demand curve, leads to the largest possible losses. Third, the worst-case belief about the

industry price index at the previously estimated relative price that sits in the middle of the two

extreme prices is a function of the updating weights. If these weights are the same then this belief

is not determinate, as it does not matter for the posterior estimate.

Consider now the case where the entertained pi,2 implies an unambiguously estimated relative

price r̃i,2 < r̃i,0. We follow the same steps as above to write the demand estimate and obtain the

minimization objective

min
δ′0,δ
′
1

min
φ(pt−p̃j,t)

−α0δ
′
0(r̃i,2−r̃i,0)+α0δ

′
0φ(p2−p̃j,2)−α1δ

′
1φ(p1−p̃j,1)−α1δ

′
1(r̃i,1−r̃i,0)−(α0δ

′
0 − α1δ

′
1)φ(p0−p̃j,0)

The joint worst-case beliefs are given by

δ∗1 = δ∗0 = −δ; φ∗(p2 − p̃j,2) = γp;φ
∗(p1 − p̃j,1) = −γp

φ∗(p0 − p̃j,0) = γpI(α0 < α1)− γpI(α0 > α1)
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Intuitively, if the current estimated relative price is lower than the lowest previously estimated

relative price, then the worst-case prior demand is one with a flat shape between these three

prices. In addition, the current unknown industry price index is high and the index at the highest

previously estimated relative price is low. In this way, the relative price between today and highest

different price is low, which together with the flat curve means the gain in demand is as low as

possible. Finally, the belief about the industry price index at the intermediate price between the

two extremes is a function of the updating weights. When these weights are the same then this

belief is not determinate.

The final case is when the current entertained price r̃i,2 is between r̃i,0 and r̃i,1. The same steps

as above deliver:

min
δ′0,δ
′
1

min
φ(pt−p̃j,t)

−α0δ
′
0(r̃i,2−r̃i,0)−α0δ

′
0φ(p0−p̃j,0)−α1δ

′
1φ(p1−p̃j,1)−α1δ

′
1(r̃i,1−r̃i,0)+(α0δ

′
0 + α1δ

′
1)φ(p2−p̃j,2)

and the worst-case beliefs:

δ∗0 = δ; δ∗1 = −δ;φ∗(p0 − p̃j,0) = γp;φ
∗(p1 − p̃j,1) = −γp

φ∗(p2 − p̃j,2) = γpI(α0 < α1)− γpI(α0 > α1)

Intuitively, if the current price is in between the two previously estimated relative prices, then the

worst-case prior demand is steep to the left and flat to the right. This concern for losing demand

then also activates a concern that the industry price index is high at the left and low to the right.

The belief about the current industry price index is a function of the updating weights. If these

weights are the same then this belief does not matter. If the updating weight is larger on the

previously low estimated relative price, then the worst-case is that the current index is low. This

way the firm is worried about losing a lot of demand since it already acts as if it faces a steep

part of the curve. If the weight is larger on the previously high estimated relative price, then the

worst-case is that the current index is high. This way, the firm is concerned that it does not gain

much demand since it already acts as if it faces a flat part of the demand curve.

By induction, we can build the worst-case belief of the firm in this fashion for any length of

the previous history of observations, with the key result that the worst-case expected demand will

have kinks around the unambiguous estimates of the previously observed prices r̃i,t.

B.3 Counter-factual economies where indexation is optimal

Naturally, if either of our two key primitives on the structure of the economy or the structure

of uncertainty is modified, then we recover full nominal flexibility. For example, if there is no

industrial structure and firms understand they compete directly against all other firms in the

economy, then the observed aggregate price pt is the price index of the firm’s direct competitors.
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On the other hand, even if there is industrial structure with unknown industry-level demand

functions, but the firms are somehow fully confident that movements in pt translate one-to-one in

movements in the underlying pj,t, then pt provides an unambiguous signal of the relevant pj,t.

Below we analyze both of these alternative economies in detail. In particular, first we consider

an economy where firm i directly competes against the aggregate price index pt. Alternatively, on

the information side, we assume that the firm still competes against the unobserved pj,t, but is

now endowed with full knowledge of the true DGP φ(pt− p̃j,t) = pt− p̃j,t. Using the law of motion

of pj,t in equation (16), the firm is now confident that pj,t = pt.

As in our benchmark model, in both of these alternative economies the uncertainty about the

demand curve xj retains the perceived kinks in expected profits at the unambiguous estimated

relative prices. However, unlike in our benchmark model, in both cases the perceived kinks now

lead the firm to change pi,t one-to-one in response to the observed pt. Indeed, by equation (27)

the perceived kink at the previous r̃i,0 implies a kink at the nominal price pi,1 = pi,0 + p1− p0. As

a result, indexation is now optimal. Hence, while ambiguity about the shape of demand generates

real rigidity, it is its interaction with uncertainty about the link between aggregate and industry

prices that turns it into a nominal rigidity.

Proposition B2. Consider a counterfactual economy, where the firm knows that the unique co-

integrating relationship is φ(pt−p̃j,t) = pt−p̃j,t, ∀t. For a given realization of the current state s1 =

{ωi,1, p1, y1, p̃j,1}, the difference in worst-case expected profits ln υ∗(ε0, s1, pi,1)−ln υ∗(ε0, s1, p1+ri,0),

up to a first-order approximation around p1 + ri,0, is[
eri,0

eri,0 − ey1−ωi,1
− (b+ αδ∗)

]
(pi,1 − p1 − ri,0) ,

where δ∗ = δ sgn (pi,1 − p1 − ri,0).

Proof. In this counterfactual economy the firm has the same ambiguity about demand shape as

in the benchmark model but is endowed with the knowledge that

φ(pt − p̃j,t) = pt − p̃j,t, ∀t. (39)

Therefore this firm now knows that the unobserved industry price equals the observed aggregate

price, since

pj,t = p̃j,t + φ(pt − p̃j,t) = pt.

As a result, the estimated relative price simply equals

ri,t = pi,t − pt. (40)

Let us analyze the property of this economy in the simple two period model. The resulting
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worst-case expected profit is given by

(
epi,1−p1 − emci,1

)
ex̂
∗
0(pi,1,y1,p1,p̃j,1), (41)

where the conditional payoff x̂∗0(pi,1, y1, p1, p̃j,1) equals .5 (σ̂2
0 + σ2

z) plus

min
δ′∈[−δ,δ]

exp {y1 − b (pi,1 − p1)− γ + α [y0 − (−γ − bri,0)]− αδ′ (pi,1 − p1 − ri,0)} (42)

The worst-case demand shape is therefore given by

δ∗ = δ sgn (pi,1 − p1 − ri,0) .

Having described the worst-case expected profit, the proof follows from taking the derivatives

of expected profit in (41) and payoff in (42) with respect to the action pi,1.

Different from the benchmark economy, we note that in this counterfactual the worst-case

expected profit does not depend directly on the aggregate price. Indeed, the optimal choice of

the relative price in equation (42) is independent of p1. In this economy indexation is built in, as

instructed per equation (40) where, holding constant the relative price, the nominal price moves

one to one with p1. Therefore, not surprisingly, a nominal price policy that deviates from indexation

is suboptimal. To show this, consider a firm that lives in this counterfactual economy but does not

index to the aggregate price. Instead, it targets the same ri,0 but by setting pnoindexi,1 = ri,0 + p̃j,1.

Put differently, this firm uses only the review signal as the source of relevant information for pj,1

but targets the same relative price. Proposition A5 below details how the non-indexing policy is

strictly suboptimal.

Proposition B3. In the counterfactual economy, the difference ln υ∗(ε0, s1, p1+ri,0)−ln υ∗(ε0, s1, p̃j,1+

ri,0), up to a first-order approximation around p̃j,1, equals(
eri,0

eri,0 − ey1−ωi,1
− b− αδnoindex

)
(p1 − p̃j,1) > 0

where δnoindex = −δ sgn(p1 − p̃j,1).

Proof. The firm that sets pnoindexi,1 is subject to the same informational assumption as the firm

that indexes, and, therefore, it still knows that the co-integrating relationship is given by (39).

Compared to the indexing policy, this firm simply follows a different nominal pricing policy. The

resulting worst-case expected profit is

υ∗(ε0, s1, p
noindex
i,1 ) =

(
eri,0+p̃j,1−p1 − ey1−ωi,1

)
ex̂
∗
0(pnoindexi,1 ,y1,p1,p̃j,1)

where x̂∗0(pnoindexi,1 , y1, p1, p̃j,1) equals .5 (σ̂2
0 + σ2

z) + y1− b [ri,0 + p̃j,1 − p1]− γ+α [y0 − (−γ − bri,0)]
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plus

min
δ′∈[−δ,δ]

−αδ′ (ri,0 − (p1 − p̃j,1)− ri,0) .

The worst-case demand shape is therefore simply

δnoindex = −δ sgn (p1 − p̃j,1) . (43)

Compute now the log-linear approximation with respect to p1, for this worst-case expected profit

υ∗(ε0, s1, p
noindex
i,1 ), evaluated to the right and left of p̃j,1. Those derivatives are

d ln υ∗(ε0, s1, p
∗
i,1)

dp1

= − eri,0

eri,0 − ey1−ωi,1
+ b+ αδnoindex

The resulting ln υ∗(ε0, s1, p1 + ri,0)− ln υ∗(ε0, s1, p̃j,1 + ri,0), up to a first order approximation, is(
eri,0

eri,0 − ey1−ωi,1
− b− αδnoindex

)
(p1 − p̃j,1) > 0

since when p1 is larger (smaller) than p̃j,1, by the worst-case in (43) we have δnoindex = −δ or δ,

respectively. Here we have used that the optimal ri,1 sitting at the kink ri,0 implies that

eri,0

eri,0 − ey1−ωi,1
− b+ δ > 0 >

eri,0

eri,0 − ey1−ωi,1
− b− δ.

B.4 Simulated hazards

In this section, we use simulations to confirm that our econometric approach is appropriate and

allows us to recover the true slope of the hazard function, even in the presence of pervasive

heterogeneity.

We simulate panels of 500 price changes for 100,000 products. Each product i is characterized

by a randomly-chosen unconditional price change probability, ξi, as well as a coefficient that

determines the slope of its hazard function, φi. To make the comparison between the true and

estimated slopes easier, we assume for this exercise that the hazard functions are linear at the

product level. The slope of product i’s hazard, si, is defined as:

si = (1− φi)ξi/13

As a result, the probability of a price change after a spell of length τ smaller or equal than

13 is given by ξτi = ξi − τsi. In other words, the slope is not a function of τ . For τ > 13, the

probability is assumed to be constant at ξτi = ξi − 13si (we will only estimate the hazard slopes
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for spells less than or equal to 13 periods).

Panels differ in the distributions of the baseline probabilities ξi and slope factors φi. We run

the exact same code we use for actual data on the simulated panels, including regressions with

and without product fixed effects:

Pr(pi,t 6= pi,t−1) = α + βτi,t + γi + ui,t

The results are summarized in Table B.1. Each column of the table represents a different

simulated panel. The top portion of the table describes the distribution of the baseline price change

probabilities (ξ) and slope parameters (φ) across simulated products, as well as the average, known

slope of the hazard function across products. Unless otherwise noted, all distributions used for

simulation are uniform. The middle and bottom parts report the slope estimates β̂, the standard

error of the coefficient estimate and the p-value against the null of a flat slope, for regressions

without and with product fixed effects respectively.

The first column, A, shows estimates of the slope of the hazard function when there is no

heterogeneity in either price change probabilities or slope parameters. Not surprisingly, the

coefficient β̂ correctly recovers the true value of the slope and leads us to correctly conclude

that the hazards are flat, whether product fixed effects are included or not.

Next, we introduce heterogeneity in the unconditional price change frequencies ξi. We do,

however, keep a homogenous, flat slope of the hazard function. Our simulations confirm the

presence of the survivor-bias issue discussed in the literature: without fixed effects, the estimation

finds a hazard that is declining on average (column B), even if our simulation features no

relationship between spell length and price change frequency. This is also true if we use a

distribution of the price change probabilities ξi that mimics the empirical distribution from our

dataset (column C). Here we found that a χ2 distribution with 5 degrees of freedom, scaled to

match the mean frequency found in our dataset, provides a good fit. The inclusion of product

fixed effects, on the other hand, correctly leads us to conclude that the hazards are flat on average:

controlling for product-specific hazard shifters circumvents the downward bias that arises from

heterogeneous price rigidity.

If we instead assume a homogenous declining slope, the regression manages to recover perfectly

its value of -0.0036 once we include product fixed effects (column D). Without fixed effects,

however, the hazard is estimated to be three times steeper than it actually is, at -0.0091.

Finally, we also allow for heterogeneity in the slope factors φi. The last part of Table B.1

shows results for regressions run on simulated panels with two different distributions of φi. Once

again, the fixed-effects regression correctly finds a flat average hazard when the distribution of

φi is centered at 1 (column E). Second, it is able to recover a declining hazard function when it

should (column F), with an estimate of -0.0035 vs. the actual value of -0.0036. As we saw earlier,

omitting product fixed effects would lead us to find a slope that is almost three times larger (in
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Table B.1. Estimated slopes of the hazard function for various simulated panels

A B C D E F

ξ distribution [0.15,0.15] [0.01,0.3] Empirical [0.01,0.3] [0.01,0.3] [0.01,0.3]
φ distribution [1,1] [1,1] [1,1] [0.7,0.7] [0.5,1.5] [0.2,1.2]
Actual slope (avg) 0 0 0 -0.0036 0 -0.0036

w/o fixed effects β̂ 0.00032 -0.00658 -0.00407 -0.00910 -0.00664 -0.00909
(0.00016) (0.00015) (0.00015) (0.00016) (0.00016) (0.00016)

p-value 0.042 0.000 0.000 0.000 0.000 0.000

w/ fixed effects β̂ 0.00032 0.00031 0.00026 -0.00360 0.00022 -0.00350
(0.00016) (0.00016) (0.00015) (0.00016) (0.00016) (0.00017)

p-value 0.042 0.052 0.096 0.000 0.185 0.000

absolute value) than it actually is, at -0.0091.

To conclude, our simulation exercises confirm that our econometric approach allows us to

drastically alleviate the well-known survivor bias that arises in the computation of hazards of

price changes.

B.5 Additional evidence on hazard functions

In Figure B.1 the distributions of the estimated hazard slopes across the 54 category/market

combinations. These estimates are obtained from our linear probability regression model with fixed

effects of equation (32). The left panel shows the slope estimates from unweighted regressions,

while results from weighted regressions are shown in the right panel.

B.6 Constructing the typical history of observations

In the model, the price histories and demand realizations differ across firms. One reason is the

idiosyncratic noise in demand realizations, but more importantly, the position of the demand

signals is endogenous, because it depends on the past pricing decisions of the firm. With

idiosyncratic productivity shocks, firms take different pricing decisions, and thus their information

sets evolve differently. Let

Iit =
[
r̃uniqit ,Nit, ŷit

]
be the 3-column matrix that characterizes the information set of firm i at time t, where r̃uniqit is

the vector of unique unambiguously estimated relative price points in the history of past price

decisions, r̃ti , of firm i; Nit is the associated vector of the number of times each of those unique

12



0
50

10
0

15
0

D
en

si
ty

-.016 -.014 -.012 -.01 -.008 -.006
Slope

Unweighted

0
50

10
0

15
0

D
en

si
ty

-.016 -.014 -.012 -.01 -.008 -.006
Slope

Weighted

Figure B.1. Distribution of the slopes of hazard functions across 54 category/market pairs.
Unweighted and weighted regressions.

price points has been chosen in the past; and ŷit is the average, demeaned demand realization

that the firm has seen at those unique price points. So each row of r̃uniqit is one of the unique price

levels the firm has posted in the past, the corresponding row of Nit is the number of times this

price has been seen in the past, and the corresponding row of ŷit is the average demeaned demand

realizations the firm has experienced when choosing that price. The matrix Iit fully described

the information set of the firm, and is the sufficient statistic needed to compute the worst-case

expected demand x̂it(r̃).

As discussed in the main text, a striking characteristic of Iit is that the average cardinality

of r̃uniqit is just six, hence the average firm tends to have chosen and thus seen only around six

unique price levels in the past. Another interesting characteristic, is that the average firm has not

seen each of those six price points equally often, but in fact the most often posted price accounts

for 74% of all observations, on average. Moreover, the second most often chosen price accounts

for another 19% of all observations. As a result, we observe that there is a clear hierarchy in the

amount of information collected at the different price points observed in the past.

We want to preserve this hierarchical structure when averaging the price histories of different

firms, hence we sort the rows of Iit based on the number of times each of the past price points

has been visited (given in Nit), and we call the sorted matrix Isortedit . Next, we compute the cross-

sectional average of Isortedit (element-wise) at each time period t, to come up with the information

13



set of the average firm at time t:

Īt =

∫
Isortedit di

Finally, we compute the time-average of Īt to come up with the “typical” information set in

the stochastic steady state of our model. Just as with all other moments we compute, we discard

the first 1000 periods of our simulation, and focus on the remaining 4000 to give a chance to the

model to converge to its stochastic steady state.

B.7 Speed of learning

The evolution of the pricing policy function over time

To further illustrate how learning and the resulting pricing policy evolve over time, panel a) of

Figure B.2 shows how the policy function of one the longer-lived firms in the simulation changes

from period one-hundred and fifty, to the three hundredth period of this firm’s life. The blue line

corresponds to the optimal policy at t = 150, and shows that by that period the firm had sampled

a number of different prices, and established a fair number of kinks. While we might think that

establishing such “special prices” happens once and for all, in fact the position of the kinks can

move and they could even completely disappear as new information arrives. We can see that from

the red line, which plots the policy at t = 300, and shows that by that period the two lowest flat

spots in the policy became absorbed in a new, single flat spot at an intermediate price point.

Thus, the accumulation of new information could change the optimal position of some of the

reference prices. Over time, it tends to be the case that any given neighborhood of the price space

becomes associated with one special price, and the firm does not visit other prices nearby – this

is another reason for the slow speed of learning.

A counterfactual economy with no firm exit

To showcase the slow nature of learning in our model, focus on the limiting case of no firm exit

λφ = 0, hence firms never stop accumulating new signals. As we show here, however, that by itself

is not enough to ensure that firms eliminate demand uncertainty, because profit maximization

incentives lead them to often repeat estimated relative prices r̃it that have already been visited in

the past. Thus, the history of observations that the firm sees is endogenously sparse, concentrated

in a handful of individual price points, as opposed to being distributed all over the support of the

demand curve. As a result, the firm has good information about demand at several different price

points, but remains uncertain about the shape in between those prices. Hence, our mechanism is

preserved even in the very long run.

To illustrate, we note that the number of unique estimated relative prices that a firm has seen

after 5000 periods is just 40 on average. Moreover, most of the signals have been observed at

just 3 separate r̃it values, one of which accounts for 48% of all observations, and the other two
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for 33% and 12% respectively. As a result, even though the firm has accumulated a lot of signals,

it remains uncertain about the overall shape of its demand. The accumulated signals are very

informative about the average level of demand in the neighborhood of the few prices that the firm

keeps repeating and collecting more information on, but this provides little guidance about the

shape of the demand function between the observed prices. Thus, the mechanism we develop,

which emphasizes uncertainty in the local shape of demand, remains present even after thousands

of periods of observations. The key intuition behind this result is the endogeneity of the history of

observations: the firms are not collecting an exogenous stream of observations randomly spread out

over the whole demand curve, but are balancing the learning incentives with profit maximization.

As a result, even when firms are infinitely-lived and accumulate thousands observations about

demand, the behavior of prices remains qualitatively similar to that in the benchmark model, with

prices displaying both stickiness and memory. To understand this pricing behavior, we use our

procedure to compute the typical optimal policy function (in terms of the estimated relative price

r̃it) from this simulation, with results plotted in panel b) of Figure B.2. As can be seen from the

Figure, the policy function is qualitatively similar to that in the benchmark case, and is essentially

a step function across the whole support of the price space. Again, this is because even though

the firms have seen much longer histories of observations, they have concentrated their pricing,

and thus information accumulation, in the set of previously observed estimated relative prices.

This results in a pricing policy that is a step-function, generating both stickiness and memory in

prices.

In the model with no exit (λφ = 0), the frequency of changing posted nominal prices is 6.5%,

and the frequency of changing modal prices is 2.8%. Meanwhile, the median size of price changes

is 10.8%, and the probability of revisiting prices posted in the past (conditional on a price change)

is 50% (most non-revisits in this case come from new industry price review signals). Hence, even

without firm exit, the model shares many of the same characteristics as the benchmark model.

We have chosen to include firm exit in the benchmark model purely out of numerical convenience,

as exit introduces faster convergence to the stochastic steady state, with moments that are more

stable at smaller simulation sizes. This helps make the estimation feasible.

B.8 Comparative statics

We now turn to comparative statics. A common theme throughout is the nuanced link between

price flexibility and memory, which as we have shown in Section 4.3, is an important determinant

of how micro-data stickiness maps into the effects of monetary policy.

As a first comparison, we consider a myopic firm by setting β = 0, which eliminates all

experimentation incentives. The key pricing moments under this parameterization are reported

in Table B.2, where we see a drop in both the frequency and median size of price changes. This is

because without a reason to explore new parts of the demand curve, firms now have less incentives
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Figure B.2. Optimal Pricing Policy Function

(a) Benchmark economy, at two intermediate points in time
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(b) Stochastic steady-state pricing policy function, λφ = 0
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Ambiguity Averse Firm
Rational Expectations Firm

Table B.2. Moments - Comparative statics

Benchmark β = 0 ψ = 0 Low δ High σω High b
Freq. regular prices changes 0.105 0.075 0.064 0.207 0.160 0.199
Median size of abs. changes 0.154 0.007 0.015 0.108 0.123 0.015
Freq. modal price changes 0.026 0.028 0.029 0.041 0.037 0.056
Prob. visiting old price 0.414 0.237 0.469 0.444 0.502 0.488
Real effect of st shock, (cumul. 52w) 7.22% 16% 21.9% 3.49% 5.52% 5.21%

Note: Moments are computed across versions of the model in which only the parameter in the column header

is changed, while all others are kept at their benchmark value. ’Low’ or ’High’ means that we halve or double,

respectively, the corresponding parameter compared to its benchmark value.

to change prices often or by large amounts. Further investigation shows that this leads firms to

concentrate their information accumulation in the middle range of productivity shocks, leading to

an ergodic policy function with two large flat spots in the middle, but no other kinks. As a result,

the frequency of modal price changes rises slightly, but memory falls significantly because there

are no other attractive prices outside of those two. Moreover, in unreported results we find that

this myopic version generates very few large price changes and does not match the product pricing

life-cycle facts, as young firms no longer have an experimentation motive to change prices more

often. Lastly, this version of the model implies a significantly stronger monetary non-neutrality,

with a cumulative real output effect in the 52 weeks following a nominal shock rising to 16%. This

is a combination of the fact that prices are less flexible overall, and that the lack of experimentation

incentives also means that price change motives are more closely aligned with aggregate nominal
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shocks.

Next, we consider setting ψ = 0 to eliminate the local nature of learning. In that case,

each signal carries the same quantity of information for any other price point, irrespective of its

distance from the current price. This setting also kills the experimentation motive (Proposition

A.1 in the Online Appendix A.3), because the new information contained in a signal is not specific

to the position of the price at which the signal was observed. It is thus not surprising that the

resulting moments are mostly similar to the ones with β = 0, as can be seen in Table B.2. The

main difference is memory, which increases to 47%. This is due to the emergent ergodic policy

function, which we find that now features numerous, smaller kinks as opposed to just two large

ones, increasing the probability of switching between kinks. The intuition can be seen from section

2.3, which shows that when ψ = 0 the perceived demand loss of moving away from a kink to a

new price is relatively steeper for larger price changes as compared to smaller adjustments. As a

result, smaller price changes are perceived as relatively safer, leading the firm to establish several

kinks in the same neighborhood, as opposed to just a single one. Lastly, the real output effect of

this model is even bigger than in the case of β = 0, due to the lower frequency of price changes

and higher memory as compared to the myopic version.

As a third comparison, we decrease the degree of ambiguity by halving δ. By Proposition 1, this

lowers the as-if cost of moving away from the previously posted price. As a result, price changes

occur more often (both regular and modal), and the size of the resulting price changes is smaller.

Interestingly, this increased flexibility implies more kinks and hence more (but smaller) flat spots

in the pricing policy. The result is higher memory, as there is a higher number of attractive prices

that were set previously. Overall, the greatly increased price flexibility leads to a significantly

smaller cumulative real output effect of 3.49%.

Fourth, we consider a version of the model with high costs volatility, and double the standard

deviation of the idiosyncratic productivity shocks, σω. This raises the frequency of modal and

posted price changes, an intuitive result that is shared with a number of other standard frameworks

(see Klenow and Willis (2016) for a discussion on the role of shocks’ distribution in standard price-

setting models). In our model, however, the increased price flexibility is also accompanied by higher

memory. The reason is that with more frequent price changes, information accumulation is spread

out over a larger set of individual prices, resulting in a policy function with more steps and thus

increased memory. Hence, even though prices change more frequently, they are also more likely

to revert to past price levels. The combination of increased price flexibility and memory nets out

to a lower overall real output effect as compared to the benchmark model, but the fall in the real

effect is smaller as compared to the case of lower δ, because of the counterbalancing increase in

memory. The lower real output effect is consistent with the empirical evidence in Boivin et al.

(2009) who find that monetary non-neutrality indeed decreases with idiosyncratic volatility.

Finally, we increase the average price elasticity of demand by doubling the value of b. The

resulting higher sensitivity to deviations from the optimal markup, which is now just 9%, leads
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to a significantly higher frequency and a smaller absolute size of price changes, as documented in

the last column of Table B.2. These results are consistent with Mongey (2018) who reports that

products facing more competition are characterized by a larger frequency of posted prices and

smaller absolute price changes. We find that, as in the δ and σw comparative statics, the increased

flexibility comes with higher memory, from having more steps in the policy function. This positive

correlation of frequency and memory is not mechanical, as shown by the ψ = 0 case where the

two moments move in the opposite direction. Overall, the monetary non-neutrality in this version

of the model is also weaker, with a cumulative real output effect of 5.21%, again owing to higher

price flexibility balanced out with higher memory. This predictions of a smaller real output effect

is consistent with Kaufmann and Lein (2013) who empirically find that monetary non-neutrality

decreases with competition.
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