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a b s t r a c t

We present evidence on the dynamic pricing strategies of airlines. We collect high-frequency price and
load-factor data directly from the websites of the main players for one of the busiest flight corridors in
the US. Using this information we characterize the determinants of pricing decisions. Our focus is on the
role that competition plays in these decisions. We show that prices for some airlines are responsive to
rival prices and load factors. Specifically, we find that even after controlling for the number of days
remaining until the flight and the number of seats remaining, some airlines increase their prices as their
rivals’ available seats disappear.

! 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers the way in which firms set prices for fixed
stocks of perishable products. This is a common situation experi-
enced by airlines that must decide on prices as the date of the flight
approaches and the number of available seats declines. In these
situations airlines start with a fixed number of seats that will
“perish” at a given and known time in the future e the date of the
flight. At each point in time, they set a list price in an effort to
maximize revenue. In setting price they face conflicting incentives.
As their stock of seats decreases, the incentive is to increase the
price to take advantage of late buyers with high willingness-to-pay.
On the other hand, there is incentive to lower prices as the prob-
ability that unsold seats will be purchased in the future decreases
as the flight date nears. The tradeoff depends mainly on how
demand changes over time. Consumers differ in their arrival times
and their willingness-to-pay for seats. When deciding whether to
buy now they must forecast the evolution of seat prices until the
flight date. There is a chance that they will have the opportunity to
purchase the seat at a lower price. The seat may also, however,
become more expensive, or may no longer be available.

This situation is further complicated by competition. With
multiple airlines, consumers face numerous options when shop-
ping for seats. Firmsmust consider the prices of their rivals and also
their remaining stocks of seats. The competitive pressure may
change over time as the stocks of some firms become depleted.

To shed light on these issues we construct a dataset of high-
frequency prices and real-time capacity data using information

collected directly from websites of major airlines. Our analysis is
empirical, and we focus on the evolution of prices and price
dispersion as the flight date approaches, of load factors and their
dispersion, of prices as the realized/expected load factor changes,
and of prices as the prices or load factors of rival firms change.

2. Data

Our full dataset contains information on airfares and seat
availability for a number of airlines, routes, times and dates of
departure. Information is collected directly from thewebsites of the
main airlines in the US: American Airlines, Delta, United, South-
west, Continental and US Airways. A flight corresponds to an
“airline/route/day and time of departure” combination and focuses
exclusively on one-way flights to minimize the number of possible
combinations.1

First, we collect price information. When prices for multiple seat
types are available, such as for Southwest, the lowest price is
extracted. All fares include applicable taxes. In addition to fare
quotes, we also derive a measure of load factor by extracting
information from seat maps for each flight.2 Our procedure
computes the number of economy seats indicated as unavailable
and divides this number by the number of economy seats on the
plane. While some types of seats are invariably indicated as
unavailable (e.g. emergency exit row) on each flight, this systematic
measurement error is absorbed by the constant term in the
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1 The routes used for this analysis do not have minimum-stay or Saturday-
stayover rules. In other words, one-way fares are on average half the price of
return trips.

2 Load factor information is not available for Southwest.
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analysis. One might be concerned that certain blocks of seats might
be withheld and then appear suddenly on the site as available. We
observe no such patterns in our dataset. Our seat-map measure is
obviously inferior to having daily load factor information directly
from the airlines themselves, but such data are, to our knowledge,
not available.

Our dataset covers flights departing on Tuesdays and Fridays on
multiple dates between June 4, 2010 and March 25, 2011. For
a given flight i with departure on date t, information is extracted
multiple times in the months prior to t. The frequency of data
extraction varies across routes. However, for the routes in the New
YorkeChicago corridor, data extraction was executed at a very high
frequency, up to bi-hourly. We make use of this dimension of our
dataset to analyze empirically very fine reaction patterns in airlines’
pricing behavior.

Given the size of the dataset and to maximize data quality, we
narrow our analysis to Friday flights on four routes/airlines for
which we believe competition is particularly fierce: LaGuardia-
O’Hare on American (AA), United (UA) and Delta (DL), as well as
LaGuardia-Midway on Southwest (SW). These are very busy routes:
AA, UA, DL and SW typically operated 17, 16, 5 and 15 daily flights
respectively over the period.3 The result is 695,947 observations for
competing flights on which to draw relevant and reliable
conclusions.4

In the literature, when this sort of data is used, a flight occurring
at some point in the future is selected and fare observations at
different points in time prior to departure are recorded from an
online booking service or the airlines’ websites. Compiling these
data yields what is known as a “temporal-fares-offered curve.” The
difference here is that we have information on load factors and so
can consider the evolution of capacity and of prices as both own-
and rival-load factors change. Puller et al. (2009) also use a census
of all transactions conducted through one of the major computer
reservation systems for a third of domestic US ticket transactions
and use information on fare, origin and destination, airline, flight
number, dates of purchase, departure and return, booking class. A
proxy of the realized load factors based on the number of tickets
sold for each route and the share for their reservation system was
also included, as well was an estimate of the average load factor at
each point in time. Escobari (2007) uses a panel dataset obtained
from Expedia.com and was able to calculate the sold out proba-
bilities for flights; and from the T-100 from the US Bureau of
Transportation Statistics he estimates average load factors at
departure.

In contrast to Escobari we collect information on a large number
of flight dates, which allows us to calculate expected load factors at
different points prior to departure. In addition, the availability of
multiple flight dates in our dataset allows us to include airline/time
of day fixed effects in our regressions. Although Puller et al. do
measure expected load factor, their measure is based on the
assumption that on all flights the share of seats occupied by their
computer reservation system is equivalent to its share in the
aggregate data. More importantly, the main difference between our
dataset and the one in Puller et al. is that we observe posted prices
while they observe transaction prices. While there are many
important advantages to using transaction data, for our purposes
list prices are preferable. Since our focus is on the competitive

effects that arise in dynamic pricing, we are interested in the way
prices respond not only to own load factors, but also to rival-load
factors and prices.

The other contribution of our dataset and analysis is that they
highlight the role of competition in the evolution of fares. There has
been only limited analysis of the role of rival prices in airlines’ price
setting decisions (Button and Vega, 2007), and on the influence of
rival-load factors. For instance, McAfee and te Velde’s (2006) study
of the extent to which fares of substitutes are correlated focuses
only on substitute airports and substitute time slots rather than
substitute carriers. They find some correlation between fares for
flights at rival airports and between fares for flights on the same
route but at different times. In contrast, we look specifically at
whether changes in rival prices or load factors increase the likeli-
hood of own-price changes.

3. Dynamics of prices and load factors

3.1. Prices

Fig. 1 plots the average price across departure times and dates
for a given route/airline as a function of the number of days left
before departure. First, we notice that ticket prices are mostly flat
up to about six to seven weeks before the flight date. Then, prices
tend to rise, at first modestly before strongly trending upward in
the last three weeks. The result is that the average fare increases
approximately twofold over the last six weeks.5 While the general
pricing pattern is comparable across airlines, there are differences.
For example, fares on American Airlines remain flat for longer: the
upward trend becomes noticeable only in the last 20 days. On the
other hand, Delta seems to implement more gradual price
increases.6

Additionally, prices become more variable as the departure date
approaches, and this variability differs across airlines. This pattern
could arise because airlines change prices more often as the flight
date approaches, or because each price change is relatively larger.
To distinguish between these explanations, we exploit the high-
frequency nature of the data and compute the number of hours
between two price changes for each route, and take the average
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Fig. 1. Average airfare as a function of the number of days before departure.

3 If an airline decides to add a flight at some point, it automatically enters our
dataset.

4 This market is also chosen since both New York and Chicago are served by
airports with direct flights to a very large number of destinations, the issue of
connecting flights is less likely to be problematic. This could be a problem as we
cannot determine whether a seat is sold as part of a multi-stop flight, in which case
the observed posted price may not be relevant.

5 This finding is consistent with results found in the empirical literature on
dynamic pricing in the airline industry (Button and Vega, 2007).

6 We do not find meaningful differences in the behavior of fares as a function of
the time of departure (e.g. early morning versus middle of the afternoon).
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across all flights for a given airline. This provides the average
duration of a price spell: if an airline resets fares more often, the
average spell will be of shorter duration.7 Table 1 offers statistics on
price spells across airlines for: the week leading to the departure
date, as well as one-to-four weeks andmore than four weeks before
departure. First, for each airline, price spells become shorter as the
flight date approaches. This fine-tuning strategy is probably
implemented tomaximize revenues per seat whilemaking sure it is
not left with unfilled capacity the day of departure. Also, there is
important heterogeneity across airlines. For example, in the last
week before departure, a typical price spell lasts only 15.6 days for
AA, compared to 30.6 for UA. These differences are also present at
longer horizons.

3.2. Load factors

Most prior work only analyzes the load factor at the time of
departure with low frequency data (e.g. how full on average is
a particular plane on a given flight over the first quarter of 2010). In
contrast, our dataset allows us to track the history of load factors
over time for a given flight. For example, for the 11:15am American
Airline flight between LGA and ORD on September 14, 2010, we
have information on the number of empty seats on the plane d days
before departure in addition to the number of seats on the plane.
This allows us to compute a proxy of the load factor.

Fig. 2 shows the evolution of the average normalized load factor
(across flights and departure dates) for each of the three routes we
focus on.8 Not surprisingly, the fraction of seats sold generally
increases over time. American Airlines and United Airlines exhibit
very similar patterns, with an acceleration of the upward trend
starting around 6 weeks before the departure date. Delta, on the
other hand, sees a more gradual rise, starting about 80 days before
departure.

When looking at the dispersion of load factors, we notice some
significant differences across airlines. Fig. 3 shows how much
variability there is in load factors for a given flight (e.g. 7am AA

flight between LGAeORD) across flight dates, per number of days
before departure. For all airlines, dispersion tends to rise initially,
between 75 and 20e30 days before departure. That is, there seems
to be more uncertainty about load factors. Then, as the departure
date approaches, load factors seem less and less dispersed across
weeks, possibly as airlines adjust prices often to make sure the
planes will be full. The fall is particularly pronounced for AA, and
somewhat less so for UA.

4. Analysis

Table 2 reports results for basic regressions of airfares on load
factors and the number of days to departure.9 We include
quadratic terms as well to capture nonlinearities. One objective is
to determine whether the proxy for the load factor contains
valuable information or only represents noise. In addition, we
want to establish the marginal contribution of the load factor
measure, since from Fig. 2 we know that it is highly correlated to

Table 1
Duration of price spells (hours).

Mean Median Standard deviation

Less than 1 week before departure
AA 15.6 7.1 20.4
DL 24.2 12.8 27.3
SW 16.3 5.1 23.4
UA 30.6 22.1 29.3
All 19.5 9.4 24.3
1e4 weeks before departure
AA 24.0 10.1 40.3
DL 41.4 19.3 57.7
SW 43.0 20.4 58.9
UA 55.9 28.7 65.4
All 34.9 14.2 52.5
More than 4 weeks before departure
AA 72.9 44.6 97.1
DL 88.6 46.2 113.5
SW 113.9 56.9 152.9
UA 118.5 85.6 139.8
All 91.2 48.8 120.0

Notes: AA, DL, UA and SW correspond to American Airlines, Delta Airlines, United
Airlines and Southwest respectively. Flights are from LaGuardia (LGA) to either
O’Hare (ORD) or Midway (MDW).
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Fig. 2. Average normalized load factors as a function of the number of days before
departure.

Fig. 3. Cross-sectional dispersion of load factors as a function of the number of days
before departure.

7 Nakamura and Steinsson (2008) offer a discussion of price spells in the context
of micro CPI data.

8 Based on seat maps, load factors are never equal to zero because some seats (e.
g. emergency rows) are always indicated as not available. Hence, we normalize load
factors and express them on a scale of 0%e100%.

9 One observation here represents a flight (airline/route/day and time of depar-
ture) for a given data extraction date and time.
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the number of days to departure. Yet, a comparison of the first two
columns shows that the addition of the load factor leads to a large
increase in fit.10 Also, load factors are strongly significant for all
airlines; for instance, for a Delta flight ten days before the
departure date, an increase in load factor from 50% to 60% implies
an average increase in fares of about $18.

We investigate the role of competition in shaping the decision
to set fares. We are interested in answering the following ques-
tions: “Is airline i likely to charge a price higher than usual when
airline j already does so?” and “Is airline i more likely to charge
higher ticket prices when its competitors have planes fuller than
usual?” Our dataset is particularly well suited to study such issues
because we observe high-frequency posted prices for a large
number of flight dates and the universe of competitors on the
LGAeCHI route. First, however, we define a range of competing
flights across airlines; it would be inappropriate to consider, for
example, the response of AA on its 7 am flight to the price charged
by Southwest on its 9 pm flight. Hence, for the present analysis we
focus on the set of flights departing between 6:30 am and 8:30 am
on Friday.

For a given airline/route/flight time, we have numerous obser-
vations on fares and loads for multiple departure dates. This allows
us to compute expected load factors (LOADEXP) and normal prices
(PEXP) for a given number of days before departure by averaging
load factors and fares across flight dates.11 For example, we can
determine how full the LGAeORD 7 am flight on AA normally is one
week before departure, and the normal fare charged. Then, for each
observation in our dataset we define LOADDEV ¼ LOAD # LOADEXP

and PDEV ¼ 100(P # PEXP)/PEXP which represent the deviation of the

load factor and ticket price from their usual levels for this number
of days before departure.12

Table 3 summarizes the results from regressions of an airline’s
price deviation on lags of load and price deviations of all airlines. In
addition to showing a high degree of fit, our results suggest that
competition matters for dynamic pricing: some airlines do respond
systematically to the situation of their competitors. For example, all
else equal a 10% increase in AA’s fares above their usual level leads
on average to a statistically significant 0.7% price hike by DL. In
terms of capacity, UA responds to a 10-percentage-point increase in
the load factor of AA flights by raising its own fares by 2.3%. In other
words, if AA flights are already close to full, it represents an
opportunity for UA to take advantage of the weakened competition
(lower unfilled capacity) by raising prices. More generally, we
clearly notice considerable heterogeneity in pricing strategies.

To confirm the results, we focus on price changes instead of
levels, in line with Boivin et al. (2012). As is evident from Table 1
and the high coefficient on lagged fares, prices are not changed
on a continuous basis by airlines. To disentangle price stickiness
from other effects, we define a dummy variable equal to one if
a flight’s price has been changed by airline i since the day before,
zero otherwise ðPrðDPits0ÞÞ. This dummy is then regressed on
lagged values of price changes by competitors ðDP#1

t#1Þ as well as the
squared load factor deviation ((LOADDEVt)2): if an airline’s load
factor is far from its usual level, one may argue that it should make
the company more likely to re-price.

Results in Table 4 generally confirm our findings. For example,
UA seems very responsive to price movements of competitors:
a price change by AA today makes it almost 15%more likely that UA
will modify its fare tomorrow. Delta’s decision to change its fares,
on the other hand, seems little affected by the pricing decisions of
competitors. An airline’s load factor deviation seems to have no
significant impact on the timing of fare changes.

5. Conclusion

We have described the dynamic pricing patterns observed on
the New YorkeChicago corridor. We collected high-frequency price
and load-factor data for the biggest players on this route. Our
findings suggest that the evolution of prices depends not only on
the number of days remaining until the flight, but also on the
number of seats remaining. Moreover, some of the airlineswe study
react to competitors’ prices and load factors. Specifically, we find

Table 2
Determinants of airfares. Dependent variable is fares. Regressors include load factor
(LOAD), number of days before departure (DAYS), alongwith their quadratics, as well
as flight and extraction-time dummies. Robust standard errors are calculated. *, **
and *** indicate statistical significance at the 10, 5 and 1% level respectively.

PAAt PAAt PDLt PUAt
LOADt #6.454*** #1.888*** #2.973***
LOAD2

t 0.057*** 0.0331* 0.0389***
DAYSt #3.808*** #0.794*** #1.6598*** #1.853***
DAYS2t 0.035*** 0.008*** 0.014*** 0.014***
R2 0.23 0.35 0.54 0.34

Table 3
Determinants of airfares. Dependent variable is the deviation of ticket price from
usual price (PDEV) for this flight/days to departure. Regressors include lags of PDEV,
lags of deviation of load factor from usual load factor (LOADDEV) and date of flight
dummies. Robust standard errors are calculated. *, ** and *** indicate statistical
significance at the 10, 5 and 1% level respectively.

PDEVAA
t PDEVDL

t PDEVsw
t PDEVUA

t

PDEVAA
t#1

0.689*** 0.071** #0.012 0.058*

PDEVDL
t#1

0.039* 0.778*** #0.011 0.035

PDEVSW
t#1

#0.036 #0.036* 0.825*** #0.070**

PDEVUA
t#1

0.032* 0.016 0.009 0.772***

LOADDEVAA
t#1

0.003 0.073 #0.024 0.233**

LOADDEVDL
t#1

0.137** #0.092* #0.024 0.131**

LOADDEVUA
t#1

#0.013 0.107** 0.131*** #0.168**

R2 0.86 0.88 0.95 0.89

Table 4
Competition and price adjustments. Probability of a price adjustment as a function
of deviation from usual load rate (LOADDEV), competitors’ past price adjustments
and days-to-departure dummies. Robust standard errors are calculated. *, ** and ***
indicate statistical significance at the 10, 5 and 1% level respectively.

PrðDPAAt s0Þ PrðDPDLt s0Þ PrðDPSWt s0Þ PrðDPUAt s0Þ

ðLOADDEVAA
t Þ2 #0.312 2.291* #3.063** 1.409*

ðLOADDEVDL
t Þ2 0.0267 #0.528 #0.543 #0.617

ðLOADDEVUA
t Þ2 #0.078 #0.43 0.49 #0.327

DPAAt#1s0 0.405*** 0.051* 0.087*** 0.146***

DPDLt#1s0 0.029 0.461*** 0.048** 0.039

DPSWt#1s0 0.012 0.049 0.383*** 0.069***

DPUAt#1s0 0.064** 0.001 #0.017 0.279***

R2 0.33 0.34 0.26 0.34

10 We show this only for American Airlines. Results for the other airlines are
similar and so unreported.
11 Since a given airline may have multiple flights leaving between 6:30 am and 8:
30 am, we average fares and load factors.

12 We aggregate our data up to a daily frequency. More specifically, if there are
multiple observations for the same flight at a given extraction date, we compute
average load factors and prices for that day. This leads us to have a single obser-
vation per extraction date, and makes it possible to use lagged values.
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that even after controlling for the number of days remaining until
the flight and the number of seats remaining, some airlines increase
their prices as their rivals’ remaining available seats disappear.
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