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Abstract

This paper extends the classic war of attrition to allow for a wide range of actions.

Players alternate making arbitrary payments, and their opponent may either match this

payment, or concede. We analyze both cases of complete and incomplete information. As

opposed to the classic war of attrition, the equilibrium is unique, rent-dissipation is only

partial, and weaker (lower valuation) players concede more quickly than stronger players.
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1. Introduction

In the war of attrition, learning is trivial. Because players are restricted to two actions,

quitting or waiting, each point in time corresponds to a unique information set, leaving

little room for strategic posturing. Indeed, the war of attrition is strategically equivalent to a

static game, the second-price all-pay auction. Yet it is di¢ cult to think of a single application

of the war of attrition in which players would not dispose of various instruments allowing

for signalling. In industrial organization, the war of attrition has been used to model the

dynamics of industry exit in oligopoly. Yet whichever way one models short-run competition,

the �rms�actions a¤ect their �ow payo¤s. In political economy, it has been used to model

lobbying. Yet here as well, there is no institution that would �x the amount per unit of time

that lobbyists can contribute, and in fact all empirical evidence suggests that contributions

vary over time. In biology, where the war of attrition was �rst introduced, animal �ghts are

known to involve intricate strategic patterns, with each tactic entailing speci�c �tness costs

to both parties. And �nally, in the most striking application of wars of attrition, attrition

warfare studies the most appropriate means to wear down one�s enemy to the point of collapse,

by continuous losses in personnel and material.

Costly signalling is documented in various settings, from economics to biology. In eco-

nomics, there is a broad class of bargaining models in which actions can vary over time,

providing ample opportunity for signalling and learning. However, o¤ers that have been

turned down do not a¤ect payo¤s. Bargaining does not generalize the war of attrition, and

none of the standard applications of the war of attrition can meaningfully be studied as bar-

gaining models. Yet in all of these applications, players can a¤ect payo¤s and beliefs through

their actions over time.

This paper examines the robustness of the predictions of the war of attrition to such

opportunities. We generalize the classic war of attrition by allowing players to vary the

amount of resources expanded during the game. At any point in time, players choose how

much to spend, just as in an all-pay auction. However, unlike an all-pay auction, the game is

dynamic, so that bids convey information about valuations. Bids are incremental and sunk,

and players must either keep matching their opponent�s total expenditures, or drop out of

the contest.
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Taking into explicit consideration such jump bids changes predictions dramatically, both

under complete and incomplete information. Relative to the classic war of attrition, we show

that the identity of the winner changes, as does expected delay and rent dissipation.

Under complete information about valuations, investment leads to a preemption motive.

The player with the larger value may bid an amount of resources that the other player will

not will to match. This threat is su¢ cient to guarantee that the lower-valued player has no

interest in starting competing in the contest.1 We show that these di¤ering results about rent

and delay generalize to the case of incomplete information. Further, investing resources also

has a signalling e¤ect. Players have the incentive to invest resources to show their opponent

that their valuation is high and that continuing the war is not pro�table.

1.1. Model and Results

We analyze a war of attrition (or dynamic all-pay auction) in which two impatient players

compete for an indivisible prize. Time is discrete and each player chooses one of a continuum

of possible e¤ort levels, or bids, in turn. Bids are sunk. After a player�s bid, his opponent

must either concede or at least match this bid. Therefore, our model di¤ers from the standard

discrete-time version of the war of attrition in two respects. First, our model has alternating

moves. More importantly, players choose the amount of resources to expand at each period of

time. As usual, the game ends when a player drops out. Our extensive form is related to the

games analyzed in Harris and Vickers (1985) and Leininger (1991) in the context of patent

races under complete information. More recently, Dekel, Jackson and Wolinsky (2006 b,c)

have analyzed dynamic all-pay auctions with a similar sequential structure, in the context of

vote buying.2 Finally, our model can be viewed as a natural extension of the dollar auction

to the case of private values.

1McAfee (2000) makes a similar point: �From an economic perspective, the defect in the theory arises

because the low cost player is forbidden by assumption from fully exploiting his low cost. The low cost player

might like to present a show of force so large that the high cost player is forced to exit, but the usual game

prohibits such endogenous e¤ort. In most actual wars of attrition, players have the ability to increase their

e¤ort, so as to force the other side out.�
2See also Dekel, Jackson and Wolinsky (2006, a) for an interpretation of this extensive form as an all-pay

auction with jump bidding.
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To put our contribution in perspective, it is important to compare our results to those of

the classic war of attrition. For the comparison to be meaningful, the appropriate benchmark

is the war of attrition with alternating moves. The war of attrition is better known in its

simultaneous-move version, but di¤erences between the two versions vanish as the length

between periods converges to zero, which is the focus of the analysis.

Results under complete information typically focus on the equilibria in mixed strategies.

(The game admits other asymmetric equilibria, in which one player gives up immediately

with high probability.) On the one hand, such equilibria exhibit delay, a desirable property

in applications. On the other hand, as has long been recognized, some of its predictions fail

to be convincing. In equilibrium, neither player gets an expected bene�t from the game, no

matter how asymmetrical players�valuations are. Further, the higher a player�s valuation,

the more unlikely he is to win the war.

We show that these conclusions are reversed when players can modulate their e¤ort levels.

First of all, the subgame-perfect equilibrium is unique under complete information. Second,

delay essentially disappears, as one of the players quits no later than in the second period.

Third, rent is only partially dissipated. In fact, if players are su¢ ciently patient and have

unequal valuations for the prize, there is no rent dissipation whatsoever. The stronger player

wins then at no cost. Taken together, these results cast serious doubts about the appropri-

ateness of the war of attrition in many of its traditional applications.

Our model generates interesting and intricate strategic behavior under incomplete infor-

mation. In the classic war of attrition, incomplete information is often viewed as a puri�cation

device of the mixed-strategy equilibrium under complete information. That is, the outcome

of both formulations are distributionally equivalent (see Fudenberg and Tirole (1991) and

Milgrom and Weber (1985)), with the added �nding that best-replies are increasing, e.g. the

higher a player�s valuation, the longer he stays in the race. In our model, the undefeated equi-

librium (Mailath, Okuno-Fujiwara and Postlewaite, 1993) is unique.3 Our predictions di¤er

3The larger the set of actions, the larger the signalling opportunities: therefore, under incomplete in-

formation, it is necessary to impose a re�nement that rules out �implausible� updating rules. Undefeated

equilibrium has been previously de�ned only for signalling games (with one-sided incomplete information); we

therefore provide an extension of its de�nition to games with two-sided incomplete information. Observe that

this solution concept -as all other belief-based re�nements- does not re�ne the set of equilibria in the classic
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from the classic war of attrition: (i) the expected delay is shorter; (ii) rent dissipation is also

smaller.4 Finally, (iii) our model allows us to study the variation of contributions over time,

which cannot be done, by assumption, in the classic war of attrition. If perceived (ex-ante)

di¤erences are large enough, instant concession takes place without the need of signaling.

If these di¤erences are small, however, signaling does take place. A player with the hand

gains from being perceived as strong, but loses from such a perception if his opponent has

the hand. Escalation is usually understood as the possibility that the resources spent in a

contest may end up exceeding the value of winning.5 Our model allows us to identify condi-

tions under which, in equilibrium, bids themselves are increasing over time. To understand

this last result, observe that, as time passes, all but the highest valuations drop out, so that

e¤ective preemption calls for increasing bids.

1.2. Literature

First and foremost, this paper relates to the literature on the war of attrition, which we review

�rst. As players are allowed to vary their e¤ort levels, the present model is also connected to

contests and in particular to all-pay auctions. Finally, it is also useful to link our contribution

to other papers developing ideas of preemption, signalling and escalation in other contexts.

The literature on the war of attrition is vast. Standard expositions can be found in May-

nard Smith (1974), Riley (1980) and Hendricks, Weiss and Wilson (1988). The discrete-time

version has been thoroughly investigated by Hendricks and Wilson (1985). Various exten-

sions are discussed in Fudenberg and Tirole (1986), Kornhauser, Rubinstein and Wilson

(1989), Ponsatí and Sákovics (1995) and Myatt (2005). Because the war of attrition provides

an explanation for delay, the war of attrition has been very successfully applied to various

economic issues: strikes in labor economics (Kennan and Wilson, 1989); exit in declining

industries (Fudenberg and Tirole (1986) and Ghemawat and Nalebu¤ (1985, 1990) for in-

stance); macroeconomic stabilization (Alesina and Drazen, 1991); standard adoption (Farrell

and Saloner, 1988).

war of attrition.
4This result is in line with other models of jump-bidding in auctions. The revenue in auctions where

jump-bidding is allowed is in general lower than in auctions in which jump-bidding is forbidden.
5This is a central message in the literature on the dollar auction.
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However, the shortcomings of the basic war of attrition are well-known. For instance, in

industrial organization, Ghemawat and Nalebu¤ (1990) argue that �there is a large payo¤ in

extending the models of exit beyond the all-or-nothing production technology�. A �rst step

in this direction has been made by Whinston (1988), who considers �rms that are allowed to

shed capacity in small units. Not surprisingly, he shows that this possibility may reverse the

usual conclusions drawn from the classic war of attrition.

The inability of the war of attrition to capture signaling has already been stressed by

Maynard Smith (see, for instance, chapters 9 and 12 in Maynard-Smith (1982)), who ar-

gues that many animal contests are characterized by assessment strategies. Such strategies

are observed during the �rst phase of a contest: early behavior signals di¤erences between

contestants and may settle the contest without further escalation. The classic war of attri-

tion, as elegant as it is, fails to allow for such phenomena. Following Zahavi (1975, 1977),

a large body of literature in biology has investigated the theoretical and empirical validity

of the handicap principle: provided that it is costly to produce, a signal does provide useful

information during animal con�icts.

There is a large literature about games in which players can choose the amount of resources

to expand This literature started with Tullock (1980) who introduced the contest model. The

probability of winning the contest depends on the endogenous levels of e¤ort. The literature

on contests is too vast so summarize it here. See Nitzan (1994) for a survey of the literature.

Our model is closer to another branch of the literature, that all-pay auctions as the basic

model for contests6. The main di¤erence with contests à la Tullock is that the larger bid in an

all-pay auction insures a victory in the context with probability one. However, the literature

on contests relies mostly on static games. Players choose once and for all the amount of

resources to use in the contest. There are few models of dynamic contests, in which both the

timing and the level of resources expanded are decision variables.

We are not the �rst to extend the war of attrition in that direction. Jarque, Ponsatí and

Sákovics (2003) analyze a war of attrition in which there are various possible level of conces-

sions. The game is resolved when concessions by both players are su¢ cient for an agreement

to take place. The extensive form is less restrictive and allows for a richer information struc-

6See Moulin (1986), Hillman (1988) and Baye et al. (1996) for early models of the all-pay auction.
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ture. However, a mediator is used, and players do not observe the concessions made by their

opponent. The only information available to players is whether the war is still ongoing or it

has ended. This limits the strategic options and behavior based on preemption or signalling.

Another way to model dynamic contests with endogenous e¤orts are tugs-of-war. In McAfee

(2000) and Konrad and Kovenock (2005), the contest is modelled as a sequence of �ghts.

With every �ght won, a player edges closer to victory. These models di¤er from the war of

attrition in the sense that a player needs to win a given number of contests in order to get

the prize, while in a war of attrition, a player can give up at any time. As in our model,

players can choose at each stage the amount of resources they want to expand. Both papers

restrict attention to complete information. Therefore, no signalling takes place.

The �rst paper to look at the strategic role of preemptive bids is Dixit (1987). O�Neil

(1986) and Harris and Vickers (1985) also consider dynamic all-pay contests, in which bids

are used for preemption purposes. Closer to our model is Leininger (1991) and Dekel, Jackson

and Wolinsky (2006a). These two papers analyze a game with an extensive form very similar

to the one we use but restrict attention to the case of complete information. They also

emphasize the role of budget constraints and their importance in such dynamic contexts.

The preemptive motive of a jump bid is also reminiscent of the strategic burning of money

in bargaining. On a super�cial level, the two behaviors have a similar logic: expanding

resources to force concessions from one�s opponent. However, as analyzed in Avery and

Zemsky (1994), the logic of money burning in bargaining comes from the multiplicity of

equilibria. Burning money enables a player to go to a more favorable equilibrium. In dynamic

contests, preemption comes from the fact that the opponent gives up because he is not able

to match the initial bid.

Analyzing the impact of private information in a dynamic contest is an important con-

tribution of the paper. Many models of the war of attrition allow for private information,

but signaling is impossible, as each period corresponds to a unique information set. The role

of signalling in a dynamic all-pay auction is also considered in Hörner and Sahuguet (2007).

There, the game lasts only for two periods. This makes it easier to highlight the di¤erent

types of signaling, including blu¢ ng (pretending to be strong) and sandbagging (pretending

to be weak). The in�nite horizon of the present paper destroys all incentives to sandbag
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since on can no longer take advantage of being perceived as weak. This opportunity only

arises with a �nite horizon. The literature on signaling in dynamic contests is small and we

are the �rst to analyze signaling issues in the war of attrition. Signaling in dynamic games

has been mainly developed in the context of bargaining models, for instance by Admati and

Perry (1987), Chatterjee and Samuelson (1987) and Grossman and Perry (1986). Admati

and Perry (1987) is a bargaining model with one-sided incomplete information. The seller�s

valuation is common knowledge and the buyers has two possible valuations. Low valuations

delay their response to the uninformed seller�s proposal in order to communicate that their

valuation is low and gain in subsequent negotiations. Compared to our model, the price

proposed (the bid in our model) does not play the role of the signal. The informed buyer

signals his valuation using the delay in his response. It is also interesting to note, in Admati

and Perry, signalling tends to increase delay, while in our model of war of attrition, delay is

reduced by the possibility to signal. Closer to our model are bargaining models in which the

signalling takes place through the o¤ers made. Chatterjee and Samuelson analyze a bargain-

ing game that is very close to a war of attrition. Incomplete information is two-sided, but

attention is restricted to a limited choice of o¤ers. Grossman and Perry is does not restrict

players in their o¤ers, and the re�nement used is almost identical to ours.

The dynamics of bids in our model is intricate. In particular, we can observe patterns

of escalation - bids that are becoming larger over time. The phenomenon of escalation is

not well understood. The dollar auction model is the usual way to think about escalation.

This game, introduced by Shubik (1971), has very simple rules: the auctioneer auctions o¤ a

dollar bill to the highest bidder, with the understanding that every bidder pays his bid and

that bidders can revise their bids at any point in time. Shubik points out that escalation

may occur, as all bids are sunk. In his de�nition, escalation means that players may keep

expanding resources even after they have spent more than the value of the prize they are

competing for. The dollar auction has been further analyzed by O�Neill (1987) and Leininger

(1989). In order to use backward induction, these papers assume that each bidder faces a

(known) budget constraint. The equilibrium outcome does not display escalation (there is

only one bid that is never covered), and depends very much on the levels of budget. Equilibria

in mixed strategies are not studied. Demange (1992) studies a dollar auction with incomplete
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information. In her model, there exists a deadline, such that, if this deadline is reached, the

value of their private information decides the winner. This game displays multiple equilibria,

but stability and forward induction uniquely select an equilibrium outcome. The choice of

bids is binary, so that this game resembles a �nite-horizon war of attrition. In all these

papers, escalation is also interpreted in terms of total resources becoming larger and larger.

Since these models do not allow players to choose the amount of resources to expand, it is

not possible to analyze the dynamics of bids �in particular whether resources expanding per

period of time are increasing or decreasing over time.

Finally, Kambe (1999) and Abreu and Gul (2000) study bargaining models with incom-

plete information and behavioral types. Some of the comparative statics are similar. The

weaker player exits at the beginning of the game with positive probability, and the stronger

player gets a higher payo¤. In our model, unlike in bargaining, real resources are spent with

each incremental bid, so that delay is not the only source of ine¢ ciency.

1.3. Outline

Section 2 sets up the model and summarizes the relevant results of the war of attrition. Section

3 analyzes the model, starting with complete information, through one-sided incomplete

information and then with two-sided incomplete information. Section 4 o¤ers some concluding

comments. An appendix gathers the proof of most results. For the tedious proof in the case of

two-sided incomplete information, the reader is referred to an additional appendix, available

at http://neumann.hec.ca/pages/nicolas.sahuguet/attritionappendix.pdf.

2. The model

2.1. The set-up

Two players, indexed by i 2 f1; 2g, compete for an indivisible prize. The winner is determined
by the following game G. Time proceeds in discrete periods t 2 f1; 2; :::g: Bidders alternate
in their moves. In each odd period, t = 1; 3; : : :, player 1 chooses a bid b1 = 0. In the same
period, after observing this bid, player 2 must choose between conceding (or quitting) and

matching (or covering). Covering means that player 2 pays exactly b1 as well. If player 2
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quits, the game ends. In even periods t = 2; 4; : : :, the same extensive-form game is played,

with the roles of players reversed7. Therefore, in odd periods, player 1 has the hand, while

player 2 has the hand in even period. Players discount future periods at a common, constant

rate � 2 (0; 1). If the game ends, the last player to bid wins the prize. All actions are observed
and all bids are sunk8.

This extensive form is equivalent to stopping the contest after successive rounds where

each bidder has had a chance to increase his bid but has decided not to do so. Despite its

speci�c extensive form, this model is a natural application of the dollar auction model in the

context of private values. It is also very similar to the (complete information) game analyzed

in Leininger (1991) in the context of patent races. Recently, in a series of papers on vote

buying, Dekel, Jackson and Wolinsky (2006) have analyzed dynamic all-pay auctions with a

similar structure.9

How much a player values the prize is private information. Player i�s valuation (or type)

vi is either 1, with probability �i 2 (0; 1), or � 2 (0; 1) with complementary probability.10

Valuations, or types, are independently distributed. A player�s payo¤ is the di¤erence between

his (discounted) valuation, if the case arises, and the discounted sum of his bids.11

Formally, the set of histories for player 1 of length t, H1
t , is de�ned to be the set of

positive sequences (b1; b2; : : : ; bt�1) of length t� 1 if t is odd (with H1
1 being a singleton set

containing the �empty history�), or the set of positive sequences (b1; b2; : : : ; bt) of length t if

t is even. If t is odd, the history is a list of all bids submitted and covered in the previous

periods. If t is even, the history also includes the outstanding bid. Similarly, H2
t is the set

of positive sequences (b1; b2; : : : ; bt) of length t if t is odd, or the set of positive sequences

7Equivalently, we could �merge� the decision nodes of quitting/covering and of bidding by requiring that

a player must either quit, or bid at least as much as the previous bid submitted by his opponent.
8 It should be clear that assuming instead that only a fraction of the bids is sunk is equivalent to rescaling

valuations.
9See also Dekel, Jackson and Wolinsky (2006,a) for an interpretation of this extensive form as an all-pay

auction with jump bidding.
10The two-type information structure is clearly a limit of the analysis. However, adding more types will

not change the qualitative insights of the result. Most dynamic signalling models also restrict attention to a

2-type model.
11This is equivalent to assuming that valuations are known, while disutilities of payments (costs measured

in �utils�) are not.
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(b1; b2; : : : ; bt�1) of length t� 1 if t is even.
A pure strategy for player 1 is a pair of mappings �1 = (b1; c1), with b1 : V �[2N0+1H1

t !
R+, c1 : V �[2NH1

t ! fc; qg, where c denotes covering, q denotes quitting, and V = f1; �g. A
strategy for player 2 is similarly de�ned. Mixed strategies are de�ned in the obvious way. An

in�nite history is a countably in�nite sequence of elements of R+; the set of these is denoted

H1. A terminal history is a �nite sequence of elements of R+; the set of these is denoted

Hy. A strategy pro�le � = (�1; �2) de�nes a probability distribution over H = H1 [Hy in

the usual manner. A terminal history is reached if a player chooses to quit at some point,

and an in�nite history is reached otherwise.

Given a history h 2 H of length t, let b� (h) denote the bid submitted in period � < t. If

h 2 H1, player i�s type vi 2 V �s payo¤ along history h is12

Vi (h; vi) =

1X
�=0

����1b� (h) ;

which may or may not be in�nite. If h 2 Hy is of length t, then, if t is odd,

V1 (h; v1) = �
t�1v1 �

1X
t=0

���1b� (h) , V2 (h; v2) = �
1X
t=0

���1b� (h) ;

while if t is even,

V1 (h; v1) = �
1X
t=0

���1b� (h) ; V2 (h; v2) = �
t�1v2 �

1X
t=0

���1b� (h) .

Players choose strategies to maximize their expected discounted payo¤. When information

is complete, the solution concept used is subgame-perfectness. Under incomplete information,

a stronger re�nement will be introduced.

While the model is quite stylized, it is general enough to encompass a variety of situations.

Example 1 (Industrial Organization)

Consider a standard alternating-move Cournot duopoly. Because of the �xed costs in-

volved, the market cannot accommodate both �rms permanently. As quantities a¤ect the

market price, each �rm�s choice a¤ects its rival�s pro�t, as well as its own. After its rival�s
12Note that the cost that corresponds to matching the e¤ort of one�s rival in period t is discounted with

respect to cost of the e¤ort chosen in period t + 1: If we decided to merge both decisions, the payo¤ would

have to be slightly modi�ed.
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choice, a �rm can either leave the market, or take losses directly related to its rival�s choice.

Therefore, �rms alternate in�icting losses to themselves and their rival, until one chooses to

leave.

Example 2 (Political Economy)

Another example that matches the dynamics of the model would be a lobbying contest.

Suppose that two lobbyists try to in�uence the choice of a politician. The lobbyists alternate

increasing their o¤ers to the politician. The politician would then award the prize whenever a

lobbyist would decide not to outbid his rival, by at least matching the previous contribution.

In this application, it would make sense to merge the matching decision and the bidding

decision (see footnotes 3 and 6). See for instance, Leininger and Yang (1994) for a complete

information model along those lines and Dekel, Jackson and Wolinsky (2006c) for a model of

vote buying with the same sequential structure.

Example 3 (Biology)

It is well-known that, in most applications of the war of attrition to biology, the assump-

tion of constant, exogenous cost is not satis�ed (Maynard-Smith and Harper, 2003). Consider

for instance the �ghts between male house crickets. Hack (1997) reports no less than thirteen

tactics used during those �ghts, each involving a speci�c loss in �tness for the initiator and its

rival. Fights turn out to involve fascinating tactical patterns that remain little understood.

2.2. The classic war of attrition

To facilitate comparison with the classic war of attrition, we �rst solve the game where at

each round, players face a binary choice between quitting and paying a �xed cost c > 0. This

is a special case of the model presented above, when the set of possible bids is the singleton

fcg. As the analysis of this special case follows standard arguments, we omit the calculations.
To rule out trivialities, we assume that c � vi�= (1� �), i = 1; 2, which is always satis�ed

provided discounting is low enough.

Complete Information: For each i, there exists an asymmetric equilibrium in which

player i always covers and player �i immediately quits. In addition, there exists an equi-
librium with delay, in which players randomize their covering decisions with probability

�i = c (1 + �) = (�v�i). A player�s expected payo¤ (when it his turn to bid) equals c=�.
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The expected delay, �nally, equals (2� �2) = (�1 + �2 � �1�2).
Denoting by � the length of each period, so that c = C� and � = e�r�, we observe that,

as � tends to zero, a player�s expected payo¤ also tends to zero and delay tends to in�nity.

Since both players�expected payo¤ tend to zero, it follows that surplus is fully dissipated

in the war of attrition. Observe also as pointed out earlier that �i decreases with v�i: the

stronger the opponent, the less likely a player quits.

One-sided Incomplete Information: As before, there exist two asymmetric equilibria

in which one of the players quits immediately provided c is small enough. The equilibrium

with delay displays at most two phases: in the initial phase, the informed player�s low type

randomizes his covering decision while his high type covers with probability 1: When the

unconditional probability of the informed player�s low type drops below a certain threshold,

the second phase starts: the informed player�s low type gives up immediately while his high

type randomizes. In both phases, the uninformed player randomizes his covering decision.

As before, both players�payo¤s tend to zero as � decreases (independently of the type) and

delay tends to in�nity.

Two-sided Incomplete Information: As before, there exist two asymmetric equilibria

in which one of the players quits immediately provided c is small enough. The equilibrium

with delay displays now up to three phases. In the initial phase, both players� low types

randomize their covering decision while the high types cover with probability 1. As soon as

at least one of the players�low type�s unconditional probability drops below a certain thresh-

old, this low type quits immediately and the game proceeds as under one-sided incomplete

information. Delay, payo¤s and dissipation display the same limiting features as before.

3. The results

Because our interest is not primarily centered on the role of discounting, we focus in what

follows on the equilibrium behavior with low discounting (i.e., discount factors close to one).13

In the proofs, however, the (unique) equilibrium strategies are identi�ed for arbitrary discount

factors.
13As in Rubinstein (1982), other equilibrium outcomes exist for � = 1.
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3.1. Complete Information

In this subsection, we brie�y describe the outcome of the game of complete information.

While straightforward, the analysis already con�rms that the predictions of the classic war

of attrition hinge upon the binary nature of bids. In addition, this characterization provides

a �rst step in the analysis of the game with incomplete information. There are essentially

two cases to distinguish, depending on whether the players�valuations are identical or not.

Theorem 3.1. Suppose that v1 > 0 and v2 > 0 are known.

1. v1 = v2 =: v: along the unique equilibrium path, player 1�s initial bid induces player 2

to quit with probability one. This bid tends to v=2 and player 1�s payo¤ tends to v=2

as � tends to 1.

2. v1 < v2: along the unique equilibrium path, for some �� < 1, player 1�s initial bid is 0,

player 2 covers with probability one, and player 1�s payo¤ is 0 if � > ��.

3. v1 > v2: along the unique equilibrium path, for some �� < 1, player 1�s initial bid is 0,

player 2 quits with probability one, and player 1�s payo¤ is 1 if � > ��.

As mentioned, the proof and detailed description of equilibrium strategies, valid for all

� 2 [0; 1), can be found in appendix.
This simple case demonstrates that the main predictions of the classical war of attrition

rely on the lack of �exibility in the choice of e¤ort:

- when players are of unequal strength, no e¤ort is exerted all. All bids are 0 and the

�weaker�player concedes as soon as possible. The outcome is therefore e¢ cient, and there

is no rent dissipation whatsoever.

- in the special case of equal valuations, the outcome is determined by the temporal

monopoly. The �rst player to move wins the prize, but submits a bid equal to half the

common valuation. Therefore, dissipation is only partial.

In either case, the game does not last more than two periods, since at least one player

concedes as soon as this opportunity arises. In addition, it is plainly clear that (perceived)

strength can only bene�t a player: the stronger he is, the less likely he is to drop out.
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To readers familiar with Rubinstein (1982), it will come as no surprise that players �agree�

immediately (in fact, the argument proceeds along the same lines than Shaked and Sutton

(1987)): a strictly positive bid only makes sense if it induces the rival to concede with positive

probability. If the rival is willing to do so, his continuation payo¤ must be zero. Therefore,

a slightly higher bid would induce him to concede with probability one, and the game must

end in no more than two periods. The role of valuations is very similar to the role of steps in

Fudenberg, Gilbert, Stiglitz and Tirole (1983) and Harris and Vickers (1985). When players

are of equal strength, the �rst one to move �takes a step� su¢ ciently large to deter his

opponent from mimicking him. When players are of unequal strength, the stronger one will

�nd it advantageous to match any step (less than his own valuation) taken by his weaker

opponent, and the latter may as well concede whenever it is possible.

3.2. Incomplete Information

3.2.1. Solution Concept

When information is incomplete, subgame-perfectness is not su¢ cient to re�ne the set of

Nash equilibria. We thus impose a re�nement on equilibrium strategies and beliefs that

generalizes the concept of Undefeated Equilibrium (Mailath, Okuno-Fujiwara, Postlewaite

(1993)).14 Our re�nement serves two purposes:

First, we wish that our solution concept be recursive: that is, when a player�s belief is

degenerate, the continuation strategy pro�le should be as in the equilibrium of the game

where this player�s information is complete. For instance, if the incomplete information is

initially one-sided, the equilibrium play in continuation games for which the player�s belief is

degenerate should be the same as in the game with complete information. Similarly, with two-

sided incomplete information, the continuation strategies once a player�s belief is degenerate

should be as in the equilibrium with one-sided incomplete information (provided the latter

admits a unique equilibrium).

Second, we wish that our solution concept eliminates all sequential equilibria that do not

satisfy the following idea, which motivates the concept of undefeated equilibrium (as well

as the concept of Perfect Sequential Equilibrium of Grossman and Perry (1986)): roughly,

14Mailath, Okuno-Fujiwara and Postlewaite only de�ne undefeated equilibria for pure signalling games.
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a sequential equilibrium should be pruned if a player has an out-of-equilibrium action such

that, provided his opponent interprets this action as evidence that the player�s type precisely

belongs to some subset M , then all types in M , and only those types, prefer playing this

action to the equilibrium outcome. In addition, this alternate play should correspond to some

sequential equilibrium as well. For excellent discussions of this idea, see either Grossman and

Perry (1986), Mailath, Okuno-Fujiwara, Postlewaite (1993), or Van Damme (1991).

Formally, let �i : H
i
t ! [0; 1] be the player i�s belief function: to each history hit 2 H i

t , it

assigns a probability to player �i�s high type. A sequential equilibrium is a pair e = (�; �)

where �i is optimal given �i and �i is consistent. Denote by SE (G) the set of sequential

equilibria such that the support of the players�beliefs is non-increasing along every history.

Let V ei
�
hit; vi

�
be the expected payo¤ of player i�s type vi, given strategy pro�le e, conditional

on history hit.

Given two sequential equilibria e = (�; �) and e0 = (�0; �0), e0 defeats e if there exists

i 2 f1; 2g, hit 2 H i
t , ai 2 R+ [ fc; qg such that:

i. hit occurs with positive probability under e and e
0;

ii. 8vi 2 V : �i
�
vi; h

i
t

�
assigns zero probability to ai;

iii. K :=
�
vi 2 V ;�0i

�
vi; h

i
t

�
assigns positive probability to ai

	
6= ;;

iv. �0�i
��
hit; ai

��
= ��i

�
hit
�
� (1) =

�
��i

�
hit
�
� (1) +

�
1� ��i

�
hit
��
� (�)

�
, for any � (1),

� (�) 2 [0; 1] satisfying:

vi 2 K and V e
0

i

��
hit; ai

�
; vi
�
> V ei

��
hit; a

0
i

�
; vi
�
! � (vi) = 1; and vi =2 K ! � (vi) = 0;

where a0i 2 R+ [ fc; qg is an action assigned positive probability by �i
�
vi; h

i
t

�
.

v. The continuation equilibria induced by e
0
after histories such that at least one player�s

belief support has strictly decreased are themselves undefeated.

The �rst requirement states that e and e0 are two alternative equilibria for which the

history hit could occur. However, while ai is inconsistent with e, it is consistent with e
0 (ii.

and iii.). The fourth requirement states that the beliefs of player �i under equilibrium e0,

conditional on observing
�
hti; ai

�
, are precisely the beliefs he would hold by updating his

beliefs under equilibrium e, given hti, by using Bayes�rule, assuming that the types choosing

ai are exactly those types which bene�t from playing according to e0 rather than according to

e (iv. allows a type which is indi¤erent to randomize). Finally, the �fth requirement -along
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with the restriction to sequential equilibria with non-increasing belief supports- implies that,

as soon as a player assigns probability zero to some type of his opponent, his continuation

strategy must be equal to a strategy in some undefeated equilibrium of the game with one-

sided incomplete (or, if the case occurs, complete) information. This allows us to solve the

game �recursively�, starting with the case of complete information. An element of SE (G)

which is not defeated by another element in SE (G) is undefeated. Observe that, under

complete information, an undefeated equilibrium reduces to a subgame-perfect equilibrium.

In the remainder of this paper, an equilibrium is an undefeated equilibrium.

3.2.2. One-sided Incomplete Information

In this subsection, we consider the case in which one player�s valuation is known -player

1�s- while player 2�s valuation is uncertain.15 There are two cases to consider, depending on

whether player 1�s valuation is high or low.

Assume �rst that player 1�s valuation is high (1), while player 2�s valuation is either

high (1) as well, with probability � 2 [0; 1], or low (� < 1) with complementary probability.
Equilibrium strategies can be categorized in �ve classes, depending on parameters. Yet

despite this variety of behaviors, the model delivers several robust predictions:

- Play never lasts more than two periods. Whenever player 1 has the hand, he submits

a bid that induces at least his opponent�s low type to concede. Therefore, if player 2 ever

covers, his valuation must be high (player 2 is strong) and his next bid leads player 1 to

concede. If player 2�s valuation is low (player 2 is weak), and he has the hand, he either

submits a bid that induces player 1 to concede, or he bids nothing and necessarily concedes

in the next period. Therefore, in some cases (when � and/or � are su¢ ciently large), if player

2 has the hand, the outcome is ine¢ cient (that is, he wins the prize even if his valuation is

low).

- The larger � and/or �, the more likely it is that player 1 chooses a high bid that induces

player 2 to concede independently of his type. Conversely, if player 2�s valuation is likely

to be low, or if the di¤erence between high and low valuation is su¢ ciently large, player 1

15Because the equilibrium strategies also specify how player 2 behaves when it is his turn to bid, there is

no loss of generality in doing so.
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�takes his chances�and submits a low bid that deters player 2 only if his valuation is low.

- The larger � and/or �, the more likely it is that, whenever player 2 has a low valuation,

he chooses to mimic the bid he would submit if his valuation was actually high.

- Player 1�s payo¤ decreases in � and in �, whether he has the hand or not.

- Player 2�s high type�s payo¤ increases in � when he has the hand. It may decrease or

increase in �. However, if he does not have the hand, his payo¤ decreases in both � and �.

- Player 2�s low type�s payo¤ increases in � and �.

- Rent dissipation is partial, as the expected revenue never exceeds 12 .

Most of these results are fairly intuitive. As mentioned, the e¤ect of � on the payo¤ of

player 2�s high type is ambiguous: a high � decreases player 1�s payo¤ when he has the hand

(as he must then submit a higher bid to deter even if his opponent�s low type), and this

makes it easier to force him to concede. On the other hand, a high � makes it harder for

player 2�s high type to credibly signal his type through his bid (as player 2 can easily mimic

him), which decreases his payo¤. Observe that player 2�s high type would like to be perceived

as strong (high �) when he has the hand, but as weak (low �) when he does not have the

hand. This is rather natural: being perceived as strong makes it more likely that player 1

prefers to concede when player 2 has the hand. However, if player 1 has the hand, he may

then prefer a high bid that deters player 2 independently of his valuation, a behavior that is

clearly detrimental to player 2�s high type.

A more formal, but tedious description of the equilibrium strategies follows, which the

reader may choose to skip.

Equilibrium outcomes can be distinguished along two dimensions: if player 1 bids in such

circumstances, does he submit a bid which induces player 2 to quit independently of his type,

to cover if and only if his type is high (i.e., his valuation is 1), or to cover independently of his

type?16 In the �rst case, the equilibrium (outcome) is said to be with full deterrence; in the

second, with partial deterrence, and in the third, with no deterrence. Second, if player 2 were

to bid in the same circumstances, would he submit the same bid independently of his type,

or would he submit a di¤erent bid depending on his type? In the �rst case, the equilibrium

16Of course, it is also conceivable that player 2 randomizes his decision to quit (for some type). However,

such behavior does not arise in equilibrium.
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(outcome) is separating, while in the second, it is pooling. If his bidding behavior is more

intricate, the equilibrium is semi-pooling. The following theorem describes the equilibrium

outcome systematically.

Theorem 3.2. The equilibrium exists and the distribution over outcomes is unique.17 If:

1. � < 1
2 , � <

1
2 , the equilibrium is separating, with partial deterrence;

2. � < 1
2 ; � =

1
2 , the equilibrium is separating, with full deterrence;

3. � = 1
2 , � = 1� �, the equilibrium is pooling, with full deterrence;

4. 1� � > � = 1
4 +

1
2 (1� �), the equilibrium is pooling, with partial deterrence;

5. 1
4 +

1
2 (1� �) > � =

1
2 , the equilibrium is semi-pooling, with partial deterrence,

when � is close enough to one.

These �ve cases partition the parameter space. The �ve parameter regions, labeled re-

spectively I-V, are represented in Figure 1.

17That is, except possibly for parameters lying on the boundary of two regions, for which two equilibria

may exist. Recall also that this is a characterization for � ! 1.
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Figure 1: One-sided incomplete information with a known strong type
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Thus, when the valuations of player 2 are dissimilar enough (� < 1
2), his bids are sep-

arating, as the low type cannot mimic the high type, who behaves as if the game were of

complete information between players with valuation 1 (the low type is left with bidding 0).

If in addition player 2�s low type is likely enough (� < 1
2), player 1 submits a low, risky bid

of 0, which player 2 does not cover if he is of the low type; if he is of the high type however,

player 2 covers and wins with his next bid. If player 2�s low type is unlikely, (� = 1
2), player

1 bids as if the game were of complete information between players with valuation 1.

Equilibrium behavior is more sophisticated when the possible valuations of player 2 are

similar enough (� � 1
2), so that player 2�s low type may potentially mimic player 2�s high

type�s behavior. If it is likely that player 2 is of the high type (� = 1� �), play proceeds as
in the game of complete information between two players with valuations 1, as player 2 �nds

it worthwhile to behave this way even if his valuation is lower. If the low type is su¢ ciently

likely (1� � > �), deterring player 2�s low type only becomes su¢ ciently attractive, despite
the risk of being covered and losing to player 2�s high type. However, because player 1�s

payo¤ increases in the probability that player 2 is of low type, the pooling bid which player 2
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must submit, if he were to play �rst, to induce player 1 to quit increases in this probability as

well. Therefore, when � and � are both su¢ ciently small (14 +
1
2 (1� �) > � =

1
2), player 2�s

low type randomizes between a bid submitted by player 2�s high type, and bidding 0, which

reveals his type. Thereby, he lowers the bid necessary to induce player 1 to quit, as player 1

revises his belief about player 2 being of the low type downwards, upon observing the higher

bid.

Assume now that player 1�s valuation is low (�), while player 2�s valuation is either high

(1) as well, with probability � 2 [0; 1], or low (� < 1) with complementary probability. If

discounting is su¢ ciently low, the equilibrium characterization is then trivial:

Theorem 3.3. The equilibrium exists and the distribution over outcomes is unique. Along

the equilibrium, player 1 always submits 0, a bid that is covered by player 2 independently

his type. Player 2 bids 0, independently of his type, a bid that induces player 1 to concede

with probability one.

Therefore, player 1, who is known to be weak, bids nothing and concedes as soon as

possible. This occurs despite the fact that player 2 may be weak as well with high probability.

Thus, comparing this outcome with the outcome with complete information between weak

players, it follows that player 2�s low type�s payo¤ drastically improves whenever there is a

chance, no matter how small, that he may be strong (provided that players are su¢ ciently

patient). This e¤ect is reminiscent of some results in the literature on reputation (for instance,

Fudenberg and Levine 1986)).

3.2.3. Two-Sided Incomplete Information

This subsection considers the case of two -sided incomplete information: that is, player 1�s

valuation is high (1) with probability �1, and low (� < 1) otherwise, while player 2�s valuation

is high (1) with probability �2, and low (�) otherwise. Even when the incomplete information

is two-sided, the equilibrium outcome is unique. However, this outcome depends on parame-

ters in a rather intricate way. Roughly, for each parameter region identi�ed in the case of

one-sided incomplete information, there are now several cases to distinguish, depending on

the value of �2.
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As before, several conclusions emerge:

- Delay may reach, but not exceed three periods. Indeed, if a player with a high valuation

has the hand, the bid he submits induces his opponent to concede with positive probabil-

ity (that is, his bid forces at least his opponent�s lower type to concede). Thus, the only

equilibrium bids that are covered independently of the opponent�s type are submitted by the

player�s low type, who plans to concede in the next period.

- The higher �2, the more likely it is that player 1�s high type�s bid induces his opponent

to concede independently of his type. This is only the case for player 1�s low type�s bid if

� is high enough: if � is too low, player 1�s low type cannot mimic player 1�s high type. In

general, the lower �, the more similar the bids submitted by player 1�s di¤erent types.

- Player 1�s payo¤ when he has the hand increases with �1, and decreases with �2, inde-

pendently of his own type.

- Rent dissipation is partial.

As with one-sided incomplete information, the e¤ect of �, the low valuation, on players�

payo¤ is ambiguous. On the one hand, a higher � implies that it is �cheaper� to deter the

opponent, as his payo¤ from covering are lower. On the other hand, it also makes it �more

expensive�for a player�s high type to signal his valuation. If a player does not have the hand,

his payo¤ may increase or decrease with �1 and �2, whether his valuation is high or low.

A more formal, but tedious description follows, which the reader may choose to skip.

To be more speci�c, suppose �rst that �1 and/or � are su¢ ciently low. If �2 is low

enough, player 1�s initial bid is independent of his own type and deters only player 2�s low

type. If player 2�s valuation is high, he will cover this bid and submit a lower bid that deters

player 1�s low valuation. If player 1�s valuation is high, however, he will cover this bid as

well, and submit a large bid that leads to concession.

For an intermediate range of values for �2, player 1�s low type randomizes his initial

bid, submitting a zero bid -and conceding next period- with positive probability. Thus, the

bid common to both types leads player 2 to become more pessimistic, which makes it less

appealing for him, after covering, to deter only player 1�s low type. In this way, the common

bid is attractive to both types of player 1.

Finally, if �2 is su¢ ciently high, player 1�s high type prefers to submit a fully deterrent
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bid. Depending on how large � is, player 1�s low type may either choose to mimic player 1�s

high type, randomize between mimicking and bidding nothing, or bid nothing.

Suppose now that �1 and/or � are su¢ ciently high. As in the previous case, player 1

submits partially deterrent bid if �2 is low enough, independently of his type. If player 2�s

type is actually high, he will cover this bid and submit then a large bid that induces player

1 to concede. If �2 is in an intermediate range of values, player 1�s high type randomizes his

bid. Therefore, the common bid leads player 2 to be more optimistic, so optimistic indeed

that player 2�s high type is precisely indi¤erent between a fully and a partially deterrent bid,

and this indi¤erence is resolved in a way that makes player 1�s high type indi¤erent, in the

�rst period, between the two bids he randomizes over. Finally, if �2 is large enough, player

1�s high type submits a large bid that deters player 2, mimicked in this by player 1�s low type

provided � is large enough.

The actual equilibrium strategies are more complex than this description may suggest.

We categorize the equilibrium outcomes according to the deterrence e¤ect of player 1�s initial

bid. As along any equilibrium path, the continuation games starting in period 1 turn out to

be either of complete information or of one-sided incomplete information, we will not describe

further the equilibrium outcomes.

For simplicity, let F.D. stand for full deterrence, P.D. for partial deterrence, and 0D. for

no deterrence. Because player 1 may submit di¤erent bids depending on his type, we say

that the equilibrium is (X.D.,Y.D.), where X , Y is either F, P or 0, if player 1�s high type�s

bid is X.D., and player 1�s low type�s bid is Y.D.; for instance, the equilibrium is (F.D.,P.D.)

if the initial bid of player 1�s high type induces player 2 to quit independently of his type,

while player 1�s low type�s bid induces player 2 to quit if and only if he is of the low type. For

some parameters, player 1 may randomize between bids having di¤erent deterrence e¤ects.

If player 1�s high type randomizes between a bid which is X.D., and a bid which is X�.D.,

while player 1�s low type�s bid is Y.D., we write ((X.D.,X�.D.) ;Y.D.) (where X, X�and Y are

either F, P or 0). The notation (X.D.; (Y.D.,Y�.D.)) has a similar interpretation when player

1�s low type randomizes.

Even when the discount factor is close to unity, the equilibrium behavior is rather intricate.

Speci�cally, we have:
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Theorem 3.4. The equilibrium exists and the distribution over outcomes is unique. If:

1. � < 1
2 ; �1 <

1
2 , then the equilibrium is (P.D.;P.D.) for �2 < �1, (P.D.; (P.D.; 0D.)) for

�1 5 �2 < 1
2 ; and (F.D.; 0D.) for �2 =

1
2 ;

2. � < 1
2 ; �1 =

1
2 , then the equilibrium is (P.D.;P.D.) for �2 <

1
2�� (1� �1), ((F.D.;P.D.) ;P.D.)

if 12 � � (1� �1) 5 �2 <
1
2 and (F.D.; 0D.) for �2 = 1

2 ;

3. � = 1
2 , �1 =

1��
� , then the equilibrium is (P.D.;P.D.) for �2 < 1� �, and (F.D.;F.D.)

for �2 = 1� �;

4. � = 1
2 ,

1��
� > �1 = 1��, then the equilibrium is (P.D.;P.D.) if �2 < �1�, ((F.D.;P.D.) ;P.D.)

for �1� 5 �2 < 1� �, and (F.D.;F.D.) for �2 = 1� �;

5. � = 1
2 , 1�� > �1 =

3�4�
2 , then the equilibrium is (P.D.;P.D.) if �2 <

1��
� (1� �1) and

(F.D.;F.D.) for �2 = 1��
� (1� �1);

6. � = 1
2 , �1 <

3�4�
2 , then the equilibrium is (P.D.;P.D.) if �2 < �1 + 1 � 1= (2�), and

(F.D.; (F.D.; 0D.)) for �2 = �1 + 1� 1= (2�) ;

when � is close enough to one.

The following �gure delimits the main parameter regions.
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4. Concluding remarks

This paper has shown that the predictions of the war of attrition are sensitive to the array of

actions available to the players and describe the features of the signaling behavior that arises

under incomplete information. Several testable implications are derived.

Attention has been limited to the simple, but restrictive case of two types. While it seems

plausible that the case with �nitely many types proceeds along similar lines, it is not clear

what results would emerge with a continuum of types. We suspect that the conclusions would

resemble those of Grossman and Perry�s (1986) bargaining model, in which intervals of types

pool on the same bid (with lower intervals pooling on smaller bids), and every bid induces a

lower interval of the opponent�s types to give up, but this remains an open problem.

It is worthwhile pointing out that, from a theoretical point of view, our set-up and results

can be reinterpreted in terms of jump bidding in all-pay auctions: while the classic war of

attrition does not allow players to submit jump bids, and the highest bid is continuously

increased until all but one player drop out, such bids are available to players in our model. In

this sense, we show that jump bids will be used in the unique subgame-perfect (respectively,

undefeated) equilibrium, and that they dramatically decrease the expected revenue of the

auctioneer. This result is to be compared to Daniel and Hirshleifer (1998) that derives

similar results with (winner-only pays) ascending auctions when it is costly to submit or

revise a bid. In their model, players alternate increasing their bids, until one bidder passes.

They also �nd that jump bids are used, communicate bidders�private information rapidly

and decrease revenue.
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Appendix
Complete Information
To avoid trivialities, we assume that � 6= �. We consider two cases, depending upon

players have the same valuation or not.

1. Suppose that both players� valuations, denoted �, are identical: Let �Vi (V i) denote

the supremum (in�mum) of i�s payo¤ over all subgames of all (subgame-perfect Nash)

equilibria [undefeated equilibrium obviously implies subgame perfectness] in which it

his turn to make an o¤er. Obviously, 0 5 V i 5 �Vi 5 �. We have, for i 2 f1; 2g:8<: V i = �� � �Vi;
�Vi 5 �� �V i;

because any o¤er strictly larger than � �Vi is necessarily accepted by player i, while any

o¤er strictly below �V i is rejected. This implies that �Vi = V i = �= (1 + �); therefore,

the unique equilibrium speci�es that players bid b� = ��= (1 + �) and cover if and only

if b < b�.

2. Suppose that players have di¤erent valuations. Speci�cally, assume that player 1�s

valuation is 1 while player 2�s valuation is � < 1: we have V 1 = 1� � �V2, �V1 5 1� �V 2,
�V2 5 (�� �V 1)

+, V 2 = � � �V 1: Simple manipulations yield that V1 := �V1 = V 1 =

1 ^ (1� ��) =
�
1� �2

�
and V2 := �V2 = V 2 = (�� �)

+ =
�
1� �2

�
; indeed, if:

1. � > � : We get V1 � �V1 = V 1 = (1� ��) =
�
1� �2

�
, and V2 = (�� �) =

�
1� �2

�
.

Player i o¤ers b�i = �V�i and covers if and only if b�i < �Vi.

2. � < � :We get V1 = 1, V2 = 0, and player i o¤ers b�i = �V�i and covers if and only

if b�i < �Vi.

One-sided incomplete Information: v1 = 1, v2 = � or 1:
Assume that player 1 has valuation 1 for sure and player 2 has valuation 1 with proba-

bility � (player 2h) and valuation � 2 (0; 1) with probability 1 � � (player 2l). Player 2 is
the informed player, and player 1 is the uninformed player. To avoid trivialities, we assume

furthermore that � 6= �; � 6= �= (1 + �). We denote by Vi the payo¤ of player i (the contin-
uation game considered is clear from the context) when it is his turn to o¤er, and Wi his

31



payo¤ when it is his turn to cover. A bid by player i is fully deterrent (F.D.) if it induces

�i to quit with probability one, independently of his type. It is partially deterrent (P.D.) if
it induces �i to quit if his type is �, and to cover otherwise (both choices being made with
probability one). It is zero deterrent (0D.) if it induces �i to cover with probability one,
independently of his type. Player i�s equilibrium bid b is separating if both types of player i

are assigned positive probability by player �i, and b is submitted with positive probability
by one of player i�s type, but not by the other. Player i�s equilibrium bid b is pooling if both

types of player i submit this bid b with probability one, and both types are assigned positive

probability by �i. Finally, if �i assigns positive probability to both types of i, any other bid
is referred to as semi-pooling.

Narrowing down the set of possible equilibria

We proceed in steps. It is straightforward to verify that all deviations considered in the

sequel are part of an equilibrium, as described is the next subsection.

1. V12
�
1= (1 + �) ; 1 ^ (1� ��) =

�
1� �2

��
: Let �Vi (V i) denote the supremum (in�mum)

of i�s payo¤ over all continuation games of all (Perfect Bayesian) equilibria and over

all possible beliefs of player 1 in which it i�s turn to make an o¤er. Because 2h can

always mimic the behavior of 2l, it is clear that �V2h = �V2l . Then V 1 = 1 � � �V2h and
�V2h 5 1 � �V 1, which immediately implies V 1 = 1= (1 + �). Because V 2h = V 2l , a

similar reasoning yields that �V1 5 1 ^ (1� ��) =
�
1� �2

�
.

2. W2l = 0 in any equilibrium: If W2l > 0, then 2l covers with probability one, and

must therefore win with positive probability in the continuation game. But since V 1 =
1= (1 + �), 2l�s subsequent bid has to be at least �= (1 + �). This implies that V 1 5
0� �2= (1 + �) + �2 = �3= (1 + �) < �= (1 + �) which is a contradiction.

3. Any separating bid by 2h must be F.D.: Suppose not, and let bq be a separating

bid by 2h which is covered by 1 with probability 1�q. Similarly, pick a (not necessarily
separating) bid bp submitted with positive probability by 2l which is covered with

probability 1�p. BecauseW2l = 0, p��bp = q��bq, by revealed preference. Therefore,
bq � bp = (q � p)� > (1� p)�� (1� q). Therefore, there exists a bid b > bq such that
1 � b > q � bq and p� � bp > � � b. Thus, the bid b constitute a pro�table deviation
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for 2h, as it is preferred to the �equilibrium�bids by 2h (after the separating bid bq,

W2h = 0), but not by 2l, since if 1 perceives it as being only submitted by 2h, 1 will quit

with probability one (bq > b); thus, the proposed bids cannot be part of a undefeated

equilibrium.

4. Any separating bid by 2l must be 0D. and equal to 0: It is clear that a bid

which is 0D. and separating must be equal to 0. Suppose now that 2l submits with

positive probability a separating bid b which is not 0D.; this bid must be then at least

�b = �
�
1 ^ (1� ��) =

�
1� �2

��
, which is the discounted payo¤ of 1 in the continuation

game between 1 and 2l, as 1 would cover with probability one any lower bid. However,

by 1., player 1 quits with probability one if he observes any bid b0 > �b. Thus, the

bid b equals �b and is F.D.. Consider any bid bq submitted with positive probability

by 2h, which is covered with probability 1 � q by 1. Clearly, bq < b, and the total

discounted probability of winning of 2h after bidding bq is strictly less than 1 no matter

the subsequent equilibrium play. This violates single-crossing, as either player 2h strictly

prefers to bid b rather than bq (and any of its subsequent play), or 2l has a strict

preference for the latter over the former.

5. In any (even) period, there exists at most one bid submitted with positive

probability by both types: In any undefeated equilibrium, a separating bid b by 2h

(F.D. by 3.) must be either �= (1 + �), or such that 2l is indi¤erent between submitted

b or not. Otherwise, if b > �= (1 + �) a bid b� ", for " > 0 small enough, is a pro�table
deviation for 2h (it has to be interpreted as a separating bid from 2h, and it is F.D.

as it exceeds �= (1 + �)). If b = �= (1 + �), then, as any strictly lower bid is covered

with probability one by 1 according to 1., any other bid submitted must be 0D., and

therefore unique and equal to 0. As it is necessary, by 1., for player 2h to bid at least

�= (1 + �) for player 1 not to cover with probability one, he will bid �= (1 + �) with

probability one, and the bid 0 is a separating bid by 2l. In equilibrium, these bids

will be submitted in period 2. Suppose then from now on that, whenever 2h submits a

separating bid b, player 2l is indi¤erent between this bid and any bid he submits with

positive probability. If any of these bids is also submitted with positive probability by

2h, a violation of single-crossing of preferences follows, as in 4.; therefore, in this case as
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well, any other bid must be separating, submitted by 2l, 0D. and equal to 0. Observe

that any bid by player 1 is either F.D., 0D., or leaves player 2l indi¤erent between

covering or not. In particular, in case 2l covers a bid he is not supposed to cover in

equilibrium, but 2h is, his next bid will be the same as the F.D. bid submitted by 2h.

Therefore, in any event, player 2l is willing to mimic the behavior of 2h. Hence, by

single-crossing of preferences, if 2l and 2h are both willing to submit two distinct bids,

the total discounted probability of winning must be the same across bids. In particular,

it cannot be that one of these bids is F.D., for this would imply that all are, and players

would strictly prefer the lowest such one. Let q < 1 be the highest total discounted

probability of winning given such a bid submitted by both types of 2 (the maximum

is taken over future bids as well). We can construct a F.D. bid b > bq such that 2h

strictly prefers b to bq, and 2l is indi¤erent between b and bq. (pick the highest bid

2l is willing to submit, if it is F.D., rather than bidding bq and following equilibrium

behavior afterwards). Therefore, such behavior cannot be part of an equilibrium. For

future reference, this argument also establishes that any bid submitted with positive

probability by both 2l and 2h must be either F.D. or 0D. and equal to 0, and shows

that whenever 2h submits a separating bid b, it must equal b = �= (1 + �) _ �

6. Five cases remain:

1. 2h and 2l submit an F.D. bid b with probability one, where b is the discounted payo¤

of 1 if 1 were to cover.

2. 2l randomizes between the 0D. bid 0 and the F.D. bid � while 2h bids � with

probability one.

3. 2l submits the 0D. bid 0 with probability one and 2h submits the F.D. bid �= (1 + �)_
� with probability 1.

4. 2l and 2h submit the 0D. bid 0 with probability one, and

5. 2l submit the 0D. bid 0 with probability one, while 2h randomizes between the 0D.

bid 0 and the F.D. bid �= (1 + �) _ �.

Case 5, however is not possible; if �= (1 + �) = �, then any bid strictly below �= (1 + �)_
� is covered by player 1 with probability one, and player 2h would therefore have a strict
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incentive to bid �= (1 + �) with probability one. If �= (1 + �) < �, then both types of

player 2 are indi¤erent between two bids, which is impossible given the argument in 6.

Therefore, only cases 1-4 can be part of equilibrium behavior.

Existence and uniqueness of the equilibrium

We call pooling an equilibrium in which a pooling bid is submitted by 2 (in period 2),

and separating an equilibrium in which only separating bids are submitted by 2 (in period

2). Similarly, we call an equilibrium in which the initial bid by 1 is covered only by 2h and

not by 2l an equilibrium with partial deterrence, and an equilibrium in which both types of

player 2 do not cover an equilibrium with full deterrence (all covering choices being made

with probability one). In what follows, we denote V1, V2h , V2l the equilibrium payo¤s in a

continuation game where the player is bidding and b1, bh2 , b
l
2 the corresponding equilibrium

bids, when player 1 assigns probability � to 2h. An equilibrium can be characterized by

pooling, or separation, and by full deterrence, or partial deterrence, or it may involve some

randomization. In light of the possibilities not rule out by the previous arguments, we

investigate the necessary and su¢ cient conditions for existence of each kind of equilibrium in

turn.

1. Pooling and Full deterrence

When � � �=(1 + �) and � � �(1 � �), there exists a undefeated equilibrium with

pooling and full deterrence with :

V1 =
1

1 + �
; V2h =

1

1 + �
; V2l = ��

�

1 + �
;

b1 = bh2 = b
l
2 =

�

1 + �
:

Players cover any bid smaller than their discounted payo¤ in the continuation game.

Proof : In order to get full deterrence, 2h should have no incentive to cover : �V2h � b1.
This determines the payo¤ of the uninformed player : V1 = 1�b1 = 1��V2h . Similarly,
2h deters the uninformed player by bidding �V1, which yields a payo¤ V2h = 1 � �V1.
Solving this system gives the values of V1, V2h , b1 and b

h
2 . The values of b

l
2 and V2l

follow, since in a pooling equilibrium 2l bids as 2h.By construction, the covering decision

are optimal. The necessary conditions are that V2l = 0, which gives the �rst restriction
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� � �=(1+�) and that the uninformed player prefers full deterrence to partial deterrence
:

V1 � 1� �� �V2l ,
1

1 + �
� 1� �� ��+ �2

1 + �
, � � �(1� �);

which gives the second restriction � � �(1� �).

2. Pooling and Partial Deterrence

When � � �(1����(�� �
1+� )) and � � �(1��), there exists a undefeated equilibrium

with Pooling and Partial deterrence with:

V1 = 1� �� �(��
�

1 + �
); V2h = 1� �(1� �� �(��

�

1 + �
));

V2l = �� �(1� �� �(��
�

1 + �
));

b1 = �(��
�

1 + �
); bh2 = b

l
2 = �(1� �� �(��

�

1 + �
)):

Players cover any bid smaller than their discounted payo¤ in the continuation game.

Beliefs supporting such an equilibrium are the following: if the informed player bids

more than bh2 , then the uninformed player believes he is facing 2h with probability one,

and for any other bid he believes he assigns probability one to 2l. Similarly, if the

informed player covers a bid higher than the discounted equilibrium payo¤ of 2l, the

uninformed player assigns probability one to 2h.

Proof: By construction. Partial deterrence means that on the equilibrium path, after

the uninformed player bids, only the high type covers. The play in the ensuing con-

tinuation game is as under complete information. By covering, 2l�s payo¤ would be

�(� � �
1+� ) � b1. Therefore, b1 = �(� � �

1+� ) is the smallest bid deterring 2l. The

pooling bid is then easily computed, since it is the smallest bid which 1 does not cover.

The two necessary conditions are that 2l�s payo¤ be positive, and that the uninformed

player prefers partial deterrence to full deterrence.

3. separating and Full deterrence

When � � �
1+� and

1
1+� � 1�� , there exists a undefeated equilibrium with separation
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and full deterrence with :

V1 =
1

1 + �
; V2h =

1

1 + �
; V2l = 0;

b1 = b
h
2 =

�

1 + �
; bl2 = 0:

Players cover any bid smaller than their discounted payo¤ in the continuation game.

Beliefs supporting such an equilibrium are the following: if the informed player bids

less than �
1+� , then the uninformed player assigns probability one to 2l. Beliefs after a

higher bid are irrelevant since the game ends after any such bid.

Proof : In a separating equilibrium with full deterrence, 2l�s must be zero and 0D, and

2h�s bid must be F.D.; bids and payo¤s are easily computed. The necessary conditions

are that 2l cannot pro�tably deviate by mimicking 2h and that 1 prefers full deterrence

to partial deterrence.

4. separating and Partial deterrence

When � � �
1+� and

1
1+� � 1�� , there exists a undefeated equilibrium with separation

and partial deterrence with :

V1 = 1� �; V2h =
1

1 + �
; V2l = 0;

b1 = 0; b
h
2 =

�

1 + �
; bl2 = 0:

Players cover any bid smaller than their discounted payo¤ in the continuation game.

Beliefs supporting such an equilibrium are the following: if the informed player bids

less than �
1+� , then the uninformed player assigns probability one to 2l. Beliefs after a

higher bid are irrelevant since the game ends after any such bid.

Proof : The same argument as above establishes that bl2 = 0. To deter 2l, Player 1 does

not need to make a positive bid. To determine bh2 , observe that player 1, if he were to

cover the bid, would earn a payo¤ of 1
1+� . As before, the two necessary conditions are

that 2l has no pro�table deviation and that player 1 prefers partial to full deterrence.

5. Mixed Strategy equilibrium : semi-pooling and Partial deterrence.
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When � = �
1+� and � 5

�
�
1��+ �2

1+�

�
1+� , there exists such a undefeated equilibrium with

V1 = �=�; V2h = 1� �; V2l = 0;

b1 = �

�
�� �

1 + �

�
; bh2 = �; b

l
2 =

8<: 0 with probability �;

� with probability 1� �:
:

Proof : We look for an equilibrium in which 2l randomizes between a F.D. bid, also submitted

by 2h, and a 0D. bid of 0. Mixing is chosen so that, after observing the F.D. bid, the

uninformed player updates his belief to �
0
= �

�+(1��)(1��) > �. This new belief turns out to

be the smallest belief that leads to a pure strategy equilibrium. That is:

� (1 + �) = �

�
1� �0 + �2

1 + �

�
; or

�� (1 + �)
�

+
�2

1 + �
+ 1 =

�

�+ (1� �) (1� �) ; or

� =
1

1� � �
�� (1 + �)

(1� �)
�
(1 + �) � + �3 � � (1 + �)2

� :
By construction, 2l is indi¤erent between both bids,as his payo¤ is zero. The other necessary

and su¢ cient conditions are readily veri�ed.

These results are summarized in the following �gure.
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Parameters Payo¤s: Bids:

I: separating,

Partial deterrence

� 5 �
1+�

� 5 �
1+�

8>><>>:
V1 = 1� �
V2l = 0

V2h =
1
1+�

8>><>>:
b1 = 0

b2l = 0

b2h =
�
1+�

II: separating,

Full deterrence

� 5 �
1+�

� = �
1+�

8>><>>:
V1 =

1
1+�

V2l = 0

V2h =
1
1+�

8>><>>:
b1 =

�
1+�

b2l = 0

b2h =
�
1+�

III: Pooling,

Full deterrence

� = �
1+�

� = � (1� �)

8>><>>:
V1 =

1
1+�

V2l = �� �
1+�

V2h =
1
1+�

8>><>>:
b1 =

�
1+�

b2l =
�
1+�

b2h =
�
1+�

IV: Pooling,

Partial deterrence

� 5 � (1� �)

� =
�
�
1��+ �2

1+�

�
1+�

8>>>>>><>>>>>>:

V1 = 1� �
��
�
�� �

1+�

�
V2l = �� �V1
V2h = 1� �V1

8>>><>>>:
b1 = �

�
�� �

1+�

�
b2l = �

�
1� �� �

�
�� �

1+�

��
b2h = b2l

V: semi-Pooling,

Partial deterrence

� = �
1+�

� 5
�
�
1��+ �2

1+�

�
1+�

8>>>>>><>>>>>>:

V1 = 1� ��
�
�
�� �

1+�

�
V2l = 0

V2h = 1� �

8>>><>>>:
b1 = �

�
�� �

1+�

�
b2l = 0 (�) or � (1� �)
b2h = �
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One-sided incomplete Information: v1 = �, v2 = � or 1:
The arguments are similar to, but much simpler than the arguments used in the previous

case. They are therefore omitted, and the following table summarizes the relevant results.

Restrictions Payo¤: Bids:

I: No

deterrence

� = 1� �
� 5 �

8>><>>:
V1 = 0

V2l = �

V2h = 1

8>><>>:
b1 = 0

b2l = 0

b2h = 0

II: Partial

deterrence

� 5 1� �
(�+ �)� 5 �

8>>>>>><>>>>>>:

V1 = (1� � � �)�

+�2
�
���
1��2

�+
V2l = �� b2l
V2h = 1� b2h

8>>><>>>:
b1 = ��� �2

�
���
1��2

�+
b2l = �V1

b2h = �V1

III: Full

deterrence

� = �
(�+ �)� = �

8>><>>:
V1h =

���
1��2

V2l = �� b2l
V2h =

1���
1��2

8>><>>:
b1 =

�(1���)
1��2

b2l = �V1h

b2h = �V1h
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