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Deterrence of illegal activities is frequently carried out by many atomistic 
auditors (tax auditors, law enforcement agents, etc.). Not much is known 
either normatively about the best way to incentivize atomistic auditors, nor 
positively about what these incentives actually look like in real world 
organizations. This paper focuses almost exclusively on the positive question. 
It proposes a game-theoretic model of decentralized deterrence and an 
empirical test, based on the equilibrium of the model, to identify the incentives 
of individual auditors. In the special (but important) case of tax enforcement, 
the paper fully characterizes the equilibrium of a strategic auditing game and 
provides a method to calibrate its parameters based on audit data. 

Applying the model and method to Italian auditing data provides ‘proof of 
concept’: the methods are practical and tractable. We are able to provide an 
estimate of tax evasion based on (non-random) audit data alone. 
Counterfactual simulation of the model quantifies the costs and benefits of 
alternative auditing policies. We compare decentralized enforcement with a 
counterfactual commitment policy, and compute the loss from the former. 
Thus we are able to quantify the costs of decentralizing enforcement. 
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1 Introduction

Economic theory has long studied the problem of optimally (or at least e¤ectively) gener-
ating deterrence, going back to the works of Becker (1968) and Ehrlich (1979). Border and
Sobel�s (1987) seminar article poses this question within an auditing game, a game where the
deterrence-generating action can be conditioned on a report by the auditee. A large body of
theoretical literature follows in their footsteps (Andreoni and Feinstein 1998 provide a good
review). This body of literature should be considered relevant, if nothing else because it has
many important applications: auditing is a core mission of many important organizations
including law enforcement agencies, tax authorities, and various regulators.

The auditing literature has not, to date, been brought to data. One reason, perhaps, is
that the relevant data have been scarce and what is available (audit data) represents a
highly selected sample of the population subject to audit. Another reason might be that
the theoretical auditing literature is �too normative,�in that it largely ignores a key aspect:
incentivizing auditors. The auditing literature simply assumes that there is a unitary actor
(a single auditor or regulator) who can e¤ortlessly commit to any auditing policy. However
in many environments, enforcement is not actually carried out by a unitary actor but by
a multitude of individual �auditors� (police o¢ cers, tax inspectors, etc.) whose individual
behavior has negligible impact but whose aggregate behavior generates deterrence. Little is
known about how these auditors are incentivized in these organizations. Theory suggests
that incentivizing these �atomistic�auditors can be di¢ cult.

Example 1 (Di¢ culty of incentivizing auditors) A tax authority faces a distribution
of �rms with unknown income, each of which makes a report and pays taxes based on it. The
tax authority chooses which �rms to audit based on the �rms�report, and subject to a budget
constraint on audits. A well-known result (see Border and Sobel 1987) is that the strategy that
maximizes tax returns is the following �extremal� strategy: all �rms which report less than
some threshold T are audited with a probability large enough that no �rm wants to underreport
below that threshold; and, no �rm which reports at or above the threshold is audited. Given
this strategy, no �rm is ever caught underreporting (all cheating �rms make sure to report no
less than, and in fact exactly T ). Suppose now we wanted to decentralize this auditing policy,
which means we want individual auditors to carry out the required audits at a cost, say, of
" per audit. If we reward these auditors based on the evasion they uncover, then they will
want to deviate from the deterrence-maximizing auditing policy and audit some �rms which
report at or above the threshold. If we don�t reward them at all, then they would shirk, and
no evasion would be deterred or detected.

This example illustrates the challenge in decentralizing incentives: whereas in the familiar
(single-agent) agency problem, giving the agent a fraction of the principal�s payo¤ is an
e¤ective incentive scheme, when there are many agents this need not be so. In our case,
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rewarding auditors based on detection does not automatically promote the agency�s mission
and may, to a degree, con�ict with it. Now, if theory tells us that decentralizing deterrence
can be challenging, two questions arise. A normative one: how should deterrence be optimally
decentralized? And a positive one: how do real world organizations decentralize deterrence?
We take up the second question.

The empirical literature is silent on how incentives are actually decentralized. Direct observa-
tion is di¢ cult, in part because these incentives are implicit, that is, given through promotion
or through non-fully contractible schemes. We propose an empirical strategy for testing (and
possibly rejecting) hypotheses about how deterrence is actually decentralized. Moreover, we
do this in the context of an equilibrium auditing model, which means that the method does
not rely on sources of exogenous variation. With this premise in mind, we do the following:

1. We introduce a general auditing game in which deterrence arises as the result of equi-
librium play by many atomistic auditors. The model is general enough to encompass
settings such as tax auditing, police searches, and selective prosecution. We provide
an empirical test to diagnose the exact form of the incentives given to the individual
auditors. The test is based on the properties of the equilibrium.

2. We show theoretically that, in this auditing game, rewarding individual auditors based
on their �marginal contribution�to the organizational mission is not the best way of
promoting the institutional mission. For example, in the context of a tax auditing
game we show that rewarding auditors in proportion to the amount of tax evasion they
detect (which is their marginal contribution to the institutional mission of minimizing
aggregate amount of taxes evaded) may be inferior to rewarding them every time they
detect a cheater. This result suggests that the simple incentive scheme which rewards
the detection of cheaters need not be a bad strategy for decentralizing deterrence.

3. We then restrict attention to the special (and important) case of tax auditing. We de-
velop a new game-theoretic model in which auditors are rewarded for detecting cheaters.

4. We provide a method for calibrating this new tax auditing model. The calibration is
based on audit data. These data represent a highly selected sample: very few �rms are
audited, and the decision to audit depends both on the auditor�s strategy and on the
�rm�s reported tax base. Our method uses the structure of the equilibrium to correct
for these selection biases.

5. We apply the tools developed above to auditing data from INPS, the Italian agency that
audits �rms to ensure that they paid their labor taxes. First we apply the diagnostic test
mentioned in part 1 and �nd that we cannot reject the hypothesis that INPS auditors
maximize the number of cheaters detected. This empirical �nding is supported by the
theoretical �nding mentioned in part 2. Then, under the assumption that the INPS
data are generated by the equilibrium of the game mentioned in part 3, we use the
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calibration method mentioned in part 4 to back out the unobservable deep parameters
of the model, such as the distribution of true tax bases of �rms.

6. We do the counterfactual exercise of asking how much more revenue INPS could collect
if it somehow could solve the decentralization problem and, rather than leaving it
to its auditors to choose whom to audit, it could centrally implement a �deterrence
strategy�inspired by the literature on optimal auditing. This is the strategy introduced
in Example 1: only �rms which report below a threshold are audited, and these are
audited with high probability. Based on the �deep parameters�recovered in part 5, we
�nd that switching to such a �deterrence strategy�does increase tax revenue relative
to the equilibrium of the no-commitment game. Quantitatively, however, the gain is
small (in the order of 5%). This is partly because the calibration method of part 4
suggests that INPS is already capturing more than 80% of the theoretical maximum
revenue attainable, and so there is little room for improvement.

1.1 Contributions of the paper

The main contribution of the paper is to connect auditing theory with data. We develop
an equilibrium model, and a method for estimating the key parameters of that model from
auditing data alone. The method takes careful account of the multiple sources of equilibrium
selection that generate the auditing data.

We believe our paper is the �rst to bring to data any game-theoretic model of auditing.
Our analysis suggests that the ideas developed in the theoretical auditing literature can
actually inform empirical research, although too little emphasis has been placed until now
on decentralized models, that is, agency models in which auditing is carried out by many
agents.

Applying the model and method to Italian auditing data provides �proof of concept:� the
methods are practical and tractable. We are able to provide an estimate of tax evasion based
on (non-random) audit data alone.

Counterfactual simulation of the model quanti�es the costs and bene�ts of alternative au-
diting policies. We compare decentralized enforcement with a counterfactual �commitment
policy,� and compute the loss from the former. Thus we are able to quantify the costs of
decentralizing enforcement.

Aside from these �big picture�contributions, the technical results contained in Proposition
1 and Section 5 are novel.
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1.2 Related literature

There are many theoretical models of auditing.1 Almost always these models assume that the
tax agency can directly commit to an auditing policy. These models, therefore, do not address
the issue of decentralized enforcement. However there are two exceptions: Scotchmer (1986)
and Erard and Feinstein (1994) study the equilibrium of a game in which the tax agency
cannot commit. The key di¤erence with the model analyzed in Sections 5 and 6 is that
our auditors maximize the probability of �nding a cheater, whereas in these other works the
agency maximizes the expected returns from auditing. This is an important di¤erence: not
only are the testable implications di¤erent but, furthermore, there are normative reasons to
explore our set of assumptions (refer to Example 5).2 None of the models in this literature
explores empirical applications.

There are a few theoretical models of delegated auditing. Melumad and Mookherjee (1986)
study the optimal incentive scheme to be used in delegating to a single auditor. In their case
the auditor has an impact on the aggregate, and so she can be incentivized by conditioning
her compensation on aggregate outcomes. We focus instead on the atomistic auditors case
where such incentives would not be e¤ective. Sanchez and Sobel (1993) study a model of
delegated tax auditing in which the (single) auditor seeks to maximize tax revenue, whereas
the principal also cares about the distributional impact of taxes, i.e., whether the rich or the
poor bear the burden. This divergence of objectives leads the principal to underfund the
auditor�s budget.

The idea that delegated deterrence is imperfect is not new. In the context of police enforce-
ment, Persico (2002) shows that if individual police o¢ cers maximize successful interdiction
then crime need not be minimized. This result can be interpreted as exposing the limits of
decentralized deterrence. In the context of antitrust enforcement, Harrington (2010) makes a
related point; he shows that the objective of an antitrust authority to maximize the number
of successfully prosecuted cartels can be at odds with the social objective of minimizing the
number of cartels that form.

The identi�cation result presented in Proposition 1 is somewhat related to a test for racial
bias developed by Knowles et al. (2001). See also Anwar and Fang (2006) for a di¤erent but
related test for racial bias. The connection is that racial bias in these papers is a parameter
in the police objective function, and so these tests address a special case of the question
addressed in Proposition 1. Relative to this strand of the literature, the result of Proposition

1We de�ne an auditing game as a game of incomplete information in which �rms choose how much of
their income to report, and an auditor decides which �rms to audit based partly on the reports. If the �rm
is not audited then the report determines the taxes paid. The report also determines a penalty, which is
levied only if the �rm is audited and did not report honestly. The �rst model of optimal auditing is Border
and Sobel (1987), and many variants have followed. See Andreoni, Erard and Feinstein (1998) for a survey
of work in this area.

2Example 5 shows that it may be better for a principal to make his agents maximize the probability of
�nding a cheater rather than the expected returns from auditing, even if the principal maximizes the latter!
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1 is not parametric (it is about estimating an unknown function h rather than a parameter)
and, also, is derived in a much more general environment.

More broadly, the present paper is related to the literature on tax compliance. This vast
literature is surveyed in two recent papers (Andreoni et al. 1998, Slemrod and Yitzhaki
2002). One approach to measuring tax compliance has been to estimate the elasticity of
taxable income to marginal tax rates. This elasticity captures all the distortions created by
income tax system, including avoidance and evasion. See Saez, Slemrod and Giertz (2011) for
a survey of this approach. Recently, an innovative strand of literature has taken advantage
of random experiments to estimate tax evasion. Slemrod et al. (2001) study the e¤ects of
�threat-of-audit� letters in Minnesota and show an increase in compliance following these
letters. Kleven et al. (2011) study a more extensive Danish income tax auditing experiment.
These papers are conceptually di¤erent from the present paper because they use unanticipated
changes in audits. Such �out of equilibrium�are very good for measuring compliance, but by
construction this approach cannot say much about the behavior/incentives of auditors which
is the focus of the present paper. So we view this strand of the literature as complementary
to our work.

2 A General Auditing Game

We now present a rather general framework that can encompass most auditing games which
are present in the literature. For expositional convenience we start by describing a simple
version of the game where we assume only one audit class, then extend it to allow for several
audit classes.

2.1 The framework, simpli�ed

The players are: a mass of auditors and a mass of auditees, both with measure 1. Each
auditee has a true type x and reports a number r: The auditee�s true type is unobserved by
the auditor unless the auditee is audited. These true types are distributed with density f (x) :
The function �(x; r; p) denotes the auditor�s expected payo¤ from auditing with probability
p an auditee who reports r and has type x: The function �(x; r; p) represents the expected
payo¤ of an auditee with type x who reports r and is audited with probability p. Each
auditor selects a probability p (r) with which he is going to audit reports r; subject to the
constraint that the auditor can make no more than B audits. Thus B captures the relative
scarcity of auditing resources. The function r (x) denotes the report of an auditee with true
type x:

A Nash equilibrium of this game solves the following program:
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p� (�) 2 argmax
p(�)

Z b

a

�(x; r (x) ; p (r (x))) f (x) dx

subject to:
Z b

a

p (r (x)) f (x) dx � B

r (x) 2 argmax
r
�(x; r; p� (r)): (NOCOMM)

In words, each auditor selects the function p (�) that maximizes his expected payo¤, subject
to a budget constraint and subject to the constraint that the auditees are best responding
to the aggregate function p� (�) which aggregates the actions of all auditors. Of note, the
auditor regards the function p� (�) as given when choosing his strategy p (�) : This assumption
re�ects the atomistic size of each auditor.3

The budget constraint says that the individual auditor�s total e¤ort cannot exceed B: This
constraint will hold with equality in equilibrium, and therefore B can be interpreted as
specifying a target level of e¤ort which is determined by a principal. Speci�cally, consider
an environment in which the auditors trade o¤ the payo¤ function � against a cost of e¤ort
c
�R b

a
p (r (x)) f (x) dx

�
. The principal�s problem is to set � in order to induce a desired level

of e¤ort e�. This is a classic agency problem in which the principal elicits e¤ort by promising
�: After the payo¤ function � has been set by the principal, the agent�s problem reduces to
the one we study with B = e�.

We now present some applications of this general framework.

Example 2 In the tax auditing context let r represent a tax report, x the true tax base
of the taxpayer, t the tax rate and � the penalty that is applied to those who underreport.
We take t and � to be determined exogenously (statutorily). Then we have �(x; r; p) =
p (x� tx� � (x� r)) + (1� p) (x� tr) for r � x; where � represents the expected cost of
underreporting. Moreover,

1. If auditors maximize the revenue from the audits then �(x; r; p) = p�(� + t)max (x� r; 0) :

2. If auditors maximize the total returns (taxes paid plus revenue from audits) then �(x; r; p) =
tr + p � (� + t)max (x� r; 0) :

3. If auditors maximize the success rate of audits then �(x; r; p) = pI(x�r)>0:

Example 3 In the context of selective prosecution (a district attorney who selects which cases
to prosecute), r represents the case�s observable characteristics, x the true underlying facts to

3Since the auditors have mass 1, we are justi�ed in de�ning p� (�) as we do in the �rst line of the pro-
gramming problem.
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be ascertained (including whether the crime has been committed), and p the probability that a
case with characteristics r is prosecuted. The function �(x; r; p� (r)) represents the expected
cost of misrepresenting as r the case�s true type x (cover-up).

A distinctive feature of selective prosecution is that the crime has been committed already,
so there is no question of deterrence. The next example shows how to introduce deterrence
into this framework.

Example 4 In a policing context in which we care about the deterrence e¤ect of searches, we
let �(x; r; p) = p � C(x; r; p) where C(x; r; p) represent the probability that a citizen of type x
who reports type r is a criminal, given that citizens who report r are policed with probability p:
Typically we expect the function C to be decreasing in p; due to the deterrence e¤ect. In this
framework, therefore, the function C is a reduced form that embeds the potential criminals�
behavior. If we wish to ignore the possibility of misrepresentation we may let r � x: The
function �(x; r; p) represents the payo¤ of a police o¢ cer who maximizes the expected return
from his searches.

2.2 Enriching the framework

The model above is su¢ ciently general to embed most of the theoretical models of strategic
auditing. For empirical purposes, however, it is important to enrich the model by considering
several extensions.

Several auditors The auditees may be subject to simultaneous auditing by other auditors,
over and above the auditor that is the focus of our interest. For example, an Italian �rm
is not only subject to INPS audits, but also to income tax audits carried out by a di¤erent
auditor, the Guardia di Finanza. In these cases we interpret the function � as expressing
the auditee�s incentives to misrepresent its income after taking into account all the other
�extraneous�audits.

Several audit classes It is important to allow for the presence of several audit classes
in which the auditor classi�es auditees according to characteristics which are observable to
the auditor. (We will also have to worry that we, the researchers, may not be able fully to
distinguish these audit classes; more on this later.)

We assume that the auditor classi�es auditees into di¤erent audit classes according to any
number of auditee characteristics which are observable to the auditor. An audit class is
simply a group of auditees who share a speci�c combination of observable characteristics.
Auditees that belong to a given audit class are distinctive in the eye of the auditor due to
the distribution of their type, which the auditor uses to make inference. Let k index the set
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of all audit classes that are distinguishable by the auditor. Their relative frequency in the
population is given by G (k) ; with

P
kG (k) = 1: Conditional on being in class k; the type

of auditees is distributed according to the probability density fk (x) : An auditee from audit
class k faces a class-speci�c audit schedule pk (�) :

Inaccurate audits We allow for audits to produce imperfect signals of a auditee�s true
type. Formally, we assume that the auditor does not observe a auditee�s type x; but rather
a number � which is correlated with x and that we call detected type. We assume that the
auditor maximizes

�(�; r; p):

Where � is the realization of a random variable �k with distribution vk (�jx; r) :

In the tax auditing context, introducing � allows for the possibility that the auditor might
not detect underreporting (in which case � � r even though x > �) or that the auditor may
in fact mistakenly �overdetect�(and in this case � > x). Note that we allow the distribution
of � to depend on the audit class k: This dependence allows for the possibility that it might
be more di¢ cult to detect fraud in certain occupations (for example, industries that use
part-time labor such as the restaurant industry, construction, agriculture).

In the presence of inaccurate audits, the auditee�s payo¤ is potentially a function of �; so we
will write

�(�; x; r; p):

The assumption of class-speci�c inaccuracies in audits is made by Macho-Stadler and Perez-
Castrillo (1997).

Residual heterogeneity of auditees In the base model the only unobserved heterogene-
ity of auditees is x, their type. A (somewhat stark) implication is that all auditees with
the same type report in the same way. We can relax this assumption by simply assum-
ing that the auditee�s unobserved characteristics are expressed by an N -dimensional vector
x =(x1; :::; xN) with density fk (x) : For ease of interpretation we assume that x1; the �rst
dimension of the vector, represents the portion of the type which is payo¤-relevant for the
auditor (in the tax auditing case, the �rm�s true tax base). The remaining dimensions cap-
ture additional heterogeneity which impacts the auditee�s choice of reporting. The auditee�s
payo¤ will then be given by �(�;x; r; p); and the auditee�s equilibrium strategy by r (x) :
The increased dimensionality permitted in this general formulation allows us to capture, as
a special case, the case in which a fraction of the auditees is honest and never underreports,
while the rest is �normal�and behaves as in the baseline model. A model with these features
is analyzed in Section 5.

After introducing all these extensions, the equilibrium of the auditing game is de�ned by the
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following constrained maximization problem.

fp�k (�)gk 2 arg maxfpk(�)gk

X
k

G (k)

Z
E [�(�k; rk (x) ; pk (rk (x)))jx; rk (x)] fk (x) dx

st:
X
k

G (k)

Z
pk (rk (x)) fk (x) dx � B

rk (x) 2 argmax
r
E [�(�k;x; r; p

�
k (r))jx; r] for each k;x;

where the integrals are understood to be of multiple variables, over the N dimensions of x:

3 Identi�cation of the Auditors�Objective Function

We take the viewpoint that the auditors�incentives are often implicit and anyway cannot be
observed directly. Our goal in this section is to use the available data to learn the objective
functions that auditor and auditees are maximizing, i.e., the functional forms � and �: We
call this the identi�cation problem. Proposition 1 at the end of this section provides an
answer to the identi�cation problem.

For ease of exposition, in this section we proceed as if r can only take integer values (dollars,
or cents, in the tax auditing framework) and � also can only take integer values.4

3.1 Assumptions

Ideally, we would like the identi�cation strategy not to depend on knowledge of the �ne details
of the problem (i.e., our knowledge of, or assumptions about the distributions G (k) and fk;
for example). In the same spirit, we would like our methods to be robust to unobservables,
that is, we want to allow for the possibility that we, the researcher, may not know as much as
the auditor and auditees know when they set their strategies. This is an important robustness
property, because we often lack access to the full data that the auditor can see. In this spirit
of �informational parsimony,� we proceed to lay out some (relatively weak) assumptions
about the structure of the game and about what features of the data we can observe.

We henceforth maintain the following assumptions. Taken together, these assumptions char-
acterize our hitherto abstract setting as an auditing game.

Assumption 1 (Deterrability) For all k; if pk (r) = 1 then no auditee in class k with
x1 > r chooses to report r:

4Thus the probability fk (�) must be understood as having a support that is countable, rather than a
continuum.
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Assumption 1 says that, if r is audited with su¢ ciently high probability, then the auditee�s
payo¤ function is such that no type will underreport r. This assumption means that every
type can be deterred from misreporting, if the probability of auditing is su¢ ciently large.
Although the assumption is stated in �behavioral terms,� it can easily be restated (though
more cumbersomely) in terms of primitives. We chose not to do so to make the statement
more transparent.

The next assumption says that the auditor�s expected payo¤ from auditing someone who
reports correctly (or even overreports) cannot be positive.

Assumption 2 (Unpro�tability of auditing auditees who report correctly) For all
k;x we have E [�(�k; r; p)jx; r] � 0 when r � x1:

Even if � systematically �exaggerates�relative to x1; Assumption 2 can hold if there is a cost
of auditing.

Assumption 3 (Auditor�s marginal reward to e¤ort is constant) �(�; r; p) is a linear
a¢ ne function of p; that is,

�(�; r; p) = A(�; r) + pC(�; r);

with A(�; r) � 0:

The term C(�; r) represents the perceived return from audits, including any costs of auditing,
whereas the term A(�; r) can be interpreted as the contribution to the auditor�s payo¤ of
a auditee who reports r and is not audited; in the tax auditing context, this would be the
tax paid before the audit, so it makes sense to assume that it is nonnegative. Assumption 3
embodies the notion of atomistic auditors. If an auditor is atomistic, then the return to his
action p must be linear in p: We view Assumption 3 as not very restrictive; this assumption
holds in Example 2 above, and in most models featuring decentralized deterrence. In any
case, this assumption can be tested with data, as discussed in the next Proposition.

What we cannot observe: latent audit classes We allow for the possibility that we,
the researcher, are only able to observe coarse partitions encompassing several audit classes.
We will denote these partitions by Ki: For example, the set of audit classes observed by
the auditor may be k1; :::; k5; but we, the researcher, are only able to ascertain whether a
particular observation belongs to K1 = fk1; k2; k3g or K2 = fk4; k5g :

What we can observe: empirical averages We assume that we, the researcher, observe
individual data on each audit. Audits are indexed by d: For each audit d we observe the
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reported income rd; the detected income �d; and what partition K (d) the audited auditee
belongs to.

Take any function h (�; r) : Think of it provisionally as the return from auditing a auditee
who reports r and is found to have a tax base �: For each r and each Ki; we want to form
the sample average of h (�; r) conditional on r and on Ki, which is de�ned as follows. Let
the set of all audits of auditees who report r and belong to partition Ki be denoted by

D (r;Ki) = fd : rd = r;K (d) = Kig :

Then the average h conditional on r and on Ki is the statistic de�ned as

h (r;Ki) =

P
d2D(r;Ki)

h(�d; rd)P
d2D(r;Ki)

1
; (1)

and we set h (r;Ki) = 0 when its denominator is zero. The quantity h (r;Ki) is to be
interpreted as the average return, as computed from the data, from auditing a auditee in
partition Ki who reports income r: Our identi�cation strategy will be based on studying the
properties of h (r;Ki) :

Of note, h (r;Ki) can be computed using solely informations about audits. It is not necessary
to have information about the distributions G (k) and fk; nor even about the probability of
being audited pk: This parsimony is an attractive feature of the methodology we propose.

We think of each point in our data as an i.i.d. realization of a random vector generated
by the equilibrium behavior of auditees and auditor. Thus, the probability that a random
element of our sample (�d; rd; K (d)) is equal to (�; r;Ki) is given byX

k2Ki
x2X�

k (r)

G (k) fk (x) p
�
k (r) vk (�jx; r) ; (2)

where p�k (r) represents the equilibrium probability that a auditee in audit class k who reports
r is audited, and X�

k (r) represents the set of x�s which in equilibrium lead a auditee in audit
class k to report r: The term G (k) fk (x) p

�
k (r) represents the probability that a auditee

belongs to audit class k and has a true tax base x which in equilibrium leads the auditee to
report r, and is audited. Using formula (2), the expected value of h (r;Ki) is given byP

k2Ki
x2X�

k (r)
E [h(�k; r)jx; r] G (k) fk (x) p�k (r)P

k2Ki
x2X�

k (r)
G (k) fk (x) p�k (r)

(3)

This formula contains all the functions G (k) ; fk (�) ; p�k (�) about which we, the parsimonious
researcher, avoid making assumptions. Expression (3) is the limit in probability of h (r;Ki)

as the sample size grows large.

12



3.2 Identi�cation result

We are now ready to present our identi�cation result. The next proposition says, roughly,
that if we �nd some statistic of the data that is equalized across audit classes, then this
statistic could well be part of what the auditor is maximizing. Intuitively, an auditor will
arbitrage his audits across audit classes, i.e., will direct his audits on the classes that promise
the highest return from the audit� whatever that return might be. This arbitraging behavior
leads, in an equilibrium where auditees respond to auditing, to an equalization of the auditor�s
margins across all audited classes.

Proposition 1 If one can reject the hypothesis that E
�
h (r;Ki)

�
is independent of r and

Ki; then one can reject the joint hypotheses that (a) the auditor can/does not commit to
an auditing schedule, and (b) Assumption 3 holds with C(�; r) = h(�; r). Conversely, if a
function h (�; r) can be found such that one cannot reject the hypothesis that E

�
h (r;Ki)

�
is

independent of r and Ki; then one cannot reject the hypotheses that (a) the auditor can/does
not commit to an auditing schedule, and (b) Assumption 3 holds with C(�; r) = h(�; r).

Proof. The proof is made by showing that, if assumption (a) and (b) hold then E
�
h (r;Ki)

�
is independent of r and Ki:

By assumption (a) the auditor cannot commit to an auditing schedule p and so the equilibrium
is characterized by the following conditions.

fp�k (�)gk 2 arg maxfpk(�)gk

X
k

G (k)

Z
E [�(�k; rk (x) ; pk (rk (x)))jx; rk (x)] fk (x) dx

st:
X
k

G (k)

Z b

a

pk (rk (x)) fk (x) dx � B

rk (x) 2 argmax
r
E [�(�k;x; r; p

�
k (r))jx; r] for each k;x: (4)

Let r�k (x; p
�
k (r)) denote the reporting strategy that solves (4). Since condition (4) involves

p� (r) ; not p (r), the behavior of auditees is a function of the auditor�s expected equilibrium
strategy, not of the actual strategy employed by the auditor. We shall therefore write, for
ease of notation, r�k (x; p

�
k (r)) = r

�
k (x) : Form the Lagrangian for the auditor�s problem:

L (fpk (�)gk ;�) =
X
k

G (k)

Z
E [�(�k; r

�
k (x) ; pk (r

�
k (x)))jx; r�k (x)] fk (x) dx

� �
"X

k

G (k)

Z
pk (r

�
k (x)) fk (x) dx�B

#
:
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Use assumption 3 to substitute into the Lagrangian, which upon rearrangement readsX
k

G (k)

Z
fE [C(�k; r�k (x))jx; r�k (x)]� �g pk (r�k (x)) fk (x) dx

+
X
k

G (k)

Z
E [A(�k; r

�
k (x))jx; r�k (x)] fk (x) dx+ �B:

The �rst term of the Lagrangian can be written asX
k

G (k)
X
r

Z
X�
k (r)

fE [C(�k; r)jx; r]� �g pk (r) fk (x) dx

X
k

G (k)
X
r

pk (r)

"Z
X�
k (r)

fE [C(�k; r)jx; r]� �g fk (x) dx
#

As the Lagrangian is linear in each pk (�) ; the necessary conditions for optimality of the
auditor�s strategy are that, if p�k (r) > 0 then E [C(�k; r)jx 2X�

k (r) ; r] � �.

Now, suppose by contradiction that the strict inequality E [C(�k; r)jx 2X�
k (r) ; r] > � holds

for some r: Then at the optimum it must be that p�k (r) = 1: Because p
�
k (r) = 1 Assumptions

1 and 2 together imply that

E [A(�k; r)jx 2X�
k (r) ; r] + E [C(�k; r)jx 2X�

k (r) ; r] � 0 (5)

for that r: But, since E [C(�k; r)jx 2X�
k (r) ; r] > � � 0, and E [A(�k; r)jx 2X�

k (r) ; r] � 0

by Assumption 3, inequality (5) cannot hold. This contradiction proves that at the optimum
it must be E [C(�k; r)jx 2X�

k (r) ; r] = � for all r such that p
�
k (r) > 0: We may rewrite this

condition as

E [C(�k; r)jx 2X�
k (r) ; r] = � for all r such that p

�
k (r) > 0: (6)

Now, remember that from (3) we had

E
�
h (r;Ki)

�
=

P
k2Ki

G (k) p�k (r)
P

x2X�
k (r)

E [h(�k; r)jx; r] fk (x)P
k2Ki

G (k) p�k (r)
P

x2X�
k (r)

fk (x)

=

P
k2Ki

G (k) p�k (r)
�P

x2X�
k (r)

fk (x)
�
E [h(�k; r)jx 2X�

k (r) ; r]P
k2Ki

G (k) p�k (r)
P

x2X�
k (r)

fk (x)
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From assumption (b) we know that h(�; r) = C(�; r); and substituting into E
�
h (r;Ki)

�
we

get

E
�
h (r;Ki)

�
=

P
k2Ki

G (k) p�k (r)
�P

x2X�
k (r)

fk (x)
�
E [C(�k; r)jx 2X�

k (r) ; r]P
k2Ki

G (k) p�k (r)
P

x2X�
k (r)

fk (x)
= �

where the last equality makes use of (6). We have shown that, if hypotheses (a) and (b) hold
then E

�
h (r;Ki)

�
is equal to a constant independent of r and Ki:

This proposition provides a straightforward identi�cation strategy: try out various �eco-
nomically reasonable� functions h(�; r) and check which, if any, has the property that it is
equalized across all reports that are audited. If such a function is found, then this is identi�ed
as C(�; r): This identi�cation strategy is robust to details, in the sense that it is robust to
the many frictions we have built into our model, and it is informationally parsimonious� it
does not require us to know G (k) ; fk (�) ; or p�k (�) ; or even solve for the equilibrium behavior
of auditees.

Of note, this identi�cation strategy is agnostic about the objective function of auditees. This
is convenient in that it is not necessary to make speci�c assumptions about the nature of the
auditees�decision problem, in order to get identi�cation. It is a drawback, however, in that
the identi�cation analysis per se does not give us any information about what the auditees
might be maximizing.

Finally, we acknowledge that Proposition 1 has a slight �data mining��avor: since little
structure is imposed on the function h; there is bound to be some h which satis�es the
independence requirement. Therefore the value of the identi�cation strategy rests on how
reasonable the resulting h is. There are several requirements that can increase our con�dence
that the speci�c h we �nd is not the outcome of data mining. First, we can do additional
�placebo�tests, showing that the expression E

�
h (r;Ki)

�
is not independent of some other

characteristic other than those which the auditor cannot arbitrage over. (The theory would
not predict such independence). Second, we can ask that the h we �nd be �simple,�such that
it could actually be used in a real-world compensation scheme. Third, one can ask that it be
�plausible:�that there be a theoretical justi�cation for why the atomistic auditors would be
endowed with that speci�c h: In our empirical application we will apply these three criteria.

4 Setting the Auditors�Incentives

Proposition 1 demonstrates how the data can be used to identify the objective function
which is actually pursued by auditors. In this section we ask what objective function the
principal would actually want to give the auditors. We do not seek a full characterization of
the optimal objective function, because the characterization is sure to be highly sensitive to
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modeling assumptions and thus, we feel, of little practical relevance. We ask, instead, a more
limited question. Taking the perspective of a principal who is charged with implementing an
institutional mission, we ask whether it is optimal for the principal to give individual auditors
�a stake�in the institutional mission. We show that, generically, the answer is no. In fact, in
the context of tax auditing we show that it may be better to incentivize the auditors based
on the number of cheaters they have uncovered, even though this is not �a stake� in the
institutional mission, which is to minimize the amount of taxes evaded. This answer is in
contrast with the standard prescription from single-agent agency theory, which is that, in the
absence of �frictions�such as di¤erences in risk aversion, etc., the optimal incentive scheme
is to �sell the �rm�(or at least a stake in it) to the agent. The root of the di¤erence lies
in the fact that, when the agents (auditors) are many, giving the auditors �a stake� in the
institutional mission does not account for the deterrence e¤ect.

4.1 The centralized problem

Let us start with the centralized problem� a planner�s or principal�s problem, unconstrained
by the decentralization incentives. The principal sets an aggregate auditing strategy p (r)
which speci�es the probability of being audited for an auditee who reports r, to maximize the
average of a �mission function.�The mission function �M(x; r; p) embodies the institutional
payo¤ from auditing with probability p an auditee who has type x and reports r: In the
tax auditing framework, for example, the conventional assumption about the institutional
mission is maximization of total returns so that �M(x; r; p) = tr + p � (� + t)max (x� r; 0) :
Formally, the equilibrium of the centralized auditing problem is de�ned by the following
constrained maximization problem.

p� (�) 2 argmax
p(�)

Z b

a

�M(x; r (x) ; p (r (x))) f (x) dx

subject to:
Z b

a

p (r (x)) f (x) dx � B

r (x) 2 argmax
r
�(x; r; p (r)): (COMM)

The principal�s choice of strategy is subject to a budget constraint, and also subject to the
constraint that the auditees are best responding to the aggregate function p (�). Notice a
key di¤erence between constraint (COMM) and constraint (NOCOMM) on page 6: whereas
the latter involves p� (�) ; the one in the present problem involves p (�) : In words, equation
(NOCOMM) represents the case in which the auditor cannot a¤ect the aggregate auditing
schedule, whereas equation (COMM) represents the case in which it can.

The �rst order conditions of the Lagrangian associated to the centralized problem are given
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by
@

@p (br (z))
Z b

a

�
�M(x; br (x) ; p (br (x)))� �p (br (x))� f (x) dx = 0 for all z;

where br (z) denotes the solution to the incentive compatibility constraint (COMM). Problem
(COMM) depends on the function p (�), a property which re�ects the deterrence e¤ect of
choosing a policy p: The �rst order conditions of the Lagrangian can be rewritten as follows.

�
�M3 (x; br (z) ; p (br (z)))� �� f (z) + Z b

a

�M2 (x; br (x) ; p (br (x))) @br (x)
@p (br (z)) f (x) dx = 0 for all z:

(7)
The term @br (z) =@p (br (z)) inside the integral re�ects the deterrence e¤ect: changing the audit
schedule p (�) at the single point br (z) a¤ects the report of types z: Moreover, all the reports
by the other types are also a¤ected through non-local e¤ects on the incentive compatibility
constraint (COMM). The integral accounts for the non-local changes.

4.2 The decentralized problem

By comparison, the �rst order conditions for the decentralized problem on page 6 are given
by

[�3(x; r
� (z) ; p (r� (z)))� �] f (z) = 0 for all z; (8)

where r� (z) denotes the solution to the incentive compatibility constraint (NOCOMM).
Unlike in (7) there is no integral term in this equation because in the decentralized problem
no individual auditor can a¤ect r� (z) :

4.3 Why giving the auditor a stake in the agency mission is not
the optimal incentive scheme in the decentralized problem

Suppose that the auditor in the decentralized problem is incentivized at the marginal rate
of �M3 ; which de�nes the auditor�s individual contribution to the institutional mission. Then
in equilibrium equation (8) needs to hold with �3 = �M3 . But then generically equation (8)
cannot hold. This simple observation is recorded next.

Conclusion 1 Setting up a reward system based on the auditor�s individual contribution to
the institutional mission, will generally not implement the solution of the centralized problem.
The reason is that the marginal contribution of an atomistic agent does not account for the
deterrence e¤ect.

A practical implication of this observation can be seen in the tax auditing framework. In that
framework the conventional assumption is that the institutional mission is maximization of
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total returns from taxation: �M(x; r; p) = tr+p � (� + t)max (x� r; 0) : >From this it follows
that �M3 (x; r; p) = (� + t)max (x� r; 0); this means that rewarding the auditor�s individual
contribution to the institutional mission means, in fact, rewarding the auditor in proportion
to the amount of tax evasion he uncovers. As we have seen, there is no presumption that
this should be an optimal scheme, and indeed, there should be a presumption that the
principal should be able to do better than this. We now present an example in which another
�simple� incentive scheme, namely rewarding agents based on the number of cheaters they
�nd, regardless of the magnitude evaded, does better in terms of the institutional mission: it
yields higher total returns from taxation.

Example 5 Let�s consider the following set-up introduced in Erard and Feinstein (1994).
The tax base x is uniformly distributed on [0; 1]. The tax rate is t = 50% and the �nes are
� = 50% of the underreported amount. The resources of the auditor are such that B = 10%
of the reports can be audited. Suppose that there is a fraction � = 50% of �rms that report
honestly their tax base independently of the auditors�strategy. Let�s assume �rst that auditors
maximize the amount of evasion he uncovers, which means that an auditor�s objective function
is given by �M3 (x; r; p) = (� + t)max (x� r; 0). Then in equilibrium tax payers underreport
in by a constant amount T; so that r = x � T (they report 0 if x � T ) and the probability

of auditing a �rm which reports r is given by p (r) = 1
2

�
1� exp

�
r�(1�T )

T

��
: The total tax

revenue (taxes +�nes) associated with the auditor�s objective is R = 0:174: See Appendix A
for details.

Let�s now consider the alternative objective of maximizing detection,
�
�M3 (x; r; p) = pI(x�r)>0

�
.

In equilibrium, tax payers underreport by a constant ratio, r = �
�+1
y. The auditing strategy

consists in a probability of auditing reports p (r) = 1
2

�
1�

�
�+1
a
r
���

: The revenue associated
is R = 0:179. See Appendix A for details.

The revenue is 3% larger when the auditor maximizes detection than when he maximizes
the revenue generated by the audits. The intuition for why auditors who seek to maximize
detections (MD) create more deterrence than those who seek to maximize returns from audits
(MR) is as follows. MR leads auditors to audit large �rms (more precisely, �rms who report
large amounts, which in a monotone strategy equilibrium is the same thing), because these
�rms are more likely to evade more taxes. This �size e¤ect� is absent if auditors MD.
Therefore, we should expect that in equilibrium auditors who MD are more willing to audit
small �rms, compared to auditors who MR. Therefore when auditors MD the aggregate audit
strategy places greater probability of auditing on small �rms. This means that the aggregate
audit strategy under MD is closer to the extremal strategy of the Border-Sobel setup with
commitment discussed in Example 1.

Example 1 can be interpreted as showing that if a principal seeks to deter tax evasion, it can
be better for that principal to reward his agents for detecting cheaters, rather than for �nding
large underreports. To draw this conclusion, it is necessary to consider the wage bill that
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the principal needs to pay. We assume that the principal sets the rewards in both systems
so as to exactly compensate the auditors for their e¤ort, but only just. The auditor�s e¤ort
in Example 1 is represented by the 10% fraction if �rms which is audited. Since the e¤ort
is kept constant when we compare the two incentive schemes, the wage bill for the principal
will also be constant. Therefore Example 1 can be interpreted as showing that, when the
principal switches to rewarding detection the wage bill remains the same, and deterrence
increases.

5 A Special Auditing Game: Tax Auditing to Maxi-
mize Detections

This section develops and analyzes a new theoretical model of tax evasion and enforcement.
Relative to the general model introduced in Section 2, the tax auditing model is special in that
the auditees (�rms) are assumed to pursue a very speci�c objective, which is to minimize the
amount of taxes paid (inclusive of penalties for detected underreporting). We also initially
restrict attention to a single audit class.

There is a continuum of �rms with true tax base x distributed according to the density f (x)
on the interval [a; b]. A �rm reporting a type r pays taxes t � r. We make the stipulation
that in equilibrium no �rm can report below a; the lowest possible income; in other words,
all �rms must pay at least the taxes corresponding to income a:

Following Erard and Feinstein (1994), we assume that there is a proportion � of honest �rms
and a proportion (1� �) of strategic �rms5. Honest �rms always report the true value x
and pay taxes t � x. A strategic �rm chooses which tax base r to report to the tax authority
in order to minimize its expected taxes. In doing so, the �rm recognizes that it faces a
probability schedule p (r) that relates the report r to the probability of being audited. Firms
are aware that in case of an audit, the true characteristic x will be discovered and then
taxes will be assessed on the true level x and a penalty added which is proportional to the
amount of evasion. Thus in case of an audit, a �rm x that reported r � x, pays a total of
t � x + � (x� r). We will construct a separating equilibrium in which strategic �rms report
their income according to a strategy � (x) that is strictly increasing in x.

The auditor observes the report of the �rms and chooses an audit schedule p (r). We assume
that the auditor does not have the power to commit to an audit schedule, and that the
auditor maximizes the number of successful audits. The �rst assumption situates this model
as a special case of the decentralized model analyzed in Section 3; the second assumption

5We follow Erard and Feinstein (1994) and call �rms that lways report their true tax base as honest. This
source of behavior can come from the inability of some �rms to undereport, because of third pary reporting
or other administrative reasons. See Kleven et al. (2011) for a more complete discussion of the inability to
evade taxation.
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ensures that the auditor�s objective function satis�es Assumption 3.

The auditor chooses how many �rms to audit by equalizing the expected probability of a
successful audit to a (constant) marginal cost of an audit. This marginal cost is denoted by
(1� q) ; and it can be any number between zero and one. We choose this formulation for ease
of exposition. This formulation is seen to be equivalent to the more common formulation
in which the auditor has a budget constraint on the number of �rms it can audit, once we
reinterpret the Lagrange multiplier on the budget constraint as the marginal cost of an audit.

5.1 The �rm�s problem

A �rm with type x chooses which r � x to report so as to maximize

p (r) (x� tx� � (x� r)) + (1� p (r)) (x� tr) . (9)

We will construct an equilibrium in which all strategic �rms will misreport. In that case
the constraint r � x is never binding and the �rst-order conditions associated with (9) are
necessary conditions for a maximum. They are

p0 (r) (r � x) (t+ �) + p (r) (t+ �)� t = 0, (10)

which can be rewritten as

x� (r) = r +
p (r)� t

�+t

p0 (r)
, (11)

where x� (r) denotes the true type of a strategic �rm which in equilibrium reports r < x� (r) :
We note for future reference that if p (r) � t

�+t
then it is optimal for the �rm to report its

true tax base r:

Concavity of the objective function with respect to r is a su¢ cient condition for the �rst
order conditions to identify a global maximum. Concavity means that, for all x and r < x,
the second derivative of the objective function with respect to r must be negative:

p00 (r) (r � x) + 2p0 (r) � 0. (12)

5.2 The auditor�s problem

Observing a report r, the auditor realizes that it can come from an honest �rm with true
type x = r; or from a strategic �rm that underreported taxes with true type x� (r) > r. Since
the auditor seeks to maximize the probability of a successful audit and does not have the
power to commit to an audit schedule, the auditor�s best response is to only audits reports
which have the highest probability of being made by cheating �rms. This implies that, in
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equilibrium, all reports audited with positive probability need to lead to the same probability
of success.

The auditor uses Bayes�Rule to assess the probability that a �rm reporting r underreported
its taxes. Among the honest types, the mass who report in the interval of length � centered
around r are approximately f (r) ��: Among the strategic types, the mass who report in that
same interval are approximately f (x� (r)) �x� (�) ; where we denote x� (�) = x� (r +�=2)�
x� (r ��=2) : Therefore, the probability of an honest type conditional on reporting in the
interval is

�f (r)�

�f (r)� + (1� �) f (x� (r))x� (�) :

Dividing by � and letting �! 0 yields

�f (r)

�f (r) + (1� �) f (x� (r)) dx�(r)
dr

. (13)

A constant success of audits means that on the range of reports audited, the probability of
honest types must be constant and equal to q 2 (0; 1) : Indeed, if this probability were larger
(respectively, smaller) than q then the expected success rate on every audit would be lower
(resp., larger) than the marginal cost of an audit, which cannot be the case in equilibrium.
Therefore, in equilibrium it must be

�f (r)

�f (r) + (1� �) f (x� (r)) dx�(r)
dr

= q (14)

Denoting
� (1� q)
(1� �) q = ;

we can rewrite (14) as

f (x� (r))
dx�

dr
=
� (1� q)
(1� �) qf (r) = f (r) : (15)

5.3 Equilibrium

Let us start by establishing the support of the reporting strategies must be an interval of
the form [a; ��(b)]. Remember that in equilibrium no �rm can report below a; the lowest
possible income. Since a �rm with income a will not report above its true income, it must
be �� (a) = a: Further, the range of the reporting strategy must be an interval. To see this,
observe that if a report r is not used by any strategic �rm, then p� (r) must be zero since the
audits at that report would be only of honest �rms. But a zero auditing probability would
lead all �rms that report more than r to want to deviate to that report. This means that if
tax report r is made in equilibrium, then all reports below r are also used by some �rm.
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Let us further observe that in any equilibrium with some evasion it must be

p� (�� (b)) = 0: (16)

This boundary condition comes from the following observation. If p� (�� (b)) > 0 and �� (b) <
b; then we would have an immediate contradiction since a �rm with type b would rather
report a tiny bit higher than ��(b) avoiding all audits.

Next comes a formal de�nition of the equilibrium in this game.

De�nition 1 For any q 2 (0; 1) ; an equilibrium of the auditing game is a reporting strategy
�� (�) with associated inverse strategy ���1 (�) = x� (�) ; and an auditing schedule p� (�) with
support [a; ��(b)] that solve the �rm�s �rst and second order conditions (11) and (12), the
auditors�indi¤erence condition (15), and the boundary condition (16).

The next proposition shows that an equilibrium exists and characterizes it.

Proposition 2 (Equilibrium of the auditing game) For any q 2 (0; 1) there exists an
equilibrium of the auditing game. It is given by a reporting strategy �� (�) and an auditing
schedule p� (�) that solve:

�� (x) = F�1 (F (x) =)

p� (r) = max

(
t

� + t
[1� exp

 
�
Z F�1(1=)

r

1

���1(y)� y dy
!
]; 0

)

 =
� (1� q)
(1� �) q :

Proof. Let us �rst characterize the equilibrium reporting strategies. Integrating both sides
of (15) yields

F (r) = F (x(r)) + k: (17)

Since x� (a) = a; it follows from (17) evaluated at r = a that k = 0. Therefore, for a generic
r > a we have

x� (r) = F�1 (F (r)) ; or equivalently (18)

�� (x) = F�1
�
F (x)



�
. (19)

We now characterize the equilibrium auditing schedule. Using (18) to substitute into (11)
we get

p�0 (r)

p� (r)� t
�+t

=
1

F�1 (F (r))� r : (20)
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Integrating both sides yields:

ln

�
t

� + t
� p� (r)

�
= �

Z ��(b)

r

1

F�1 (F (y))� ydy + k

p� (r) =
t

� + t
�K exp

 
�
Z ��(b)

r

1

F�1 (F (y))� ydy
!

K is set equal to t
�+t
; to ensure that p� (�� (b)) = 0 as per the boundary condition (16).

Finally, Lemma 3 in Appendix A veri�es that, given the audit schedule p� (�), the �rm�s
reporting strategy �� (�) satis�es the second order conditions (12).

Equation (19) shows that a larger value of  corresponds to a lower value of �� (x) ; that is,
greater underreporting in equilibrium. This makes sense: a large  corresponds by de�nition
to a low value of q; which means a high marginal cost of an audit. Equation (19) also implies
that, in any equilibrium in which there is some underreporting,  must be greater than 1.
Finally, equation (19) pins down the report of the highest income �rm,

��(b) = F�1 (1=) :

This expression shows that, as the marginal cost of funds increases, the interval of the reports
being audited shrinks. All strategic �rms report in that interval, and thus as that interval
shrinks, strategic �rms become a greater percentage of the set of �rms who report in that
interval. Only honest �rms report above that interval.

If F is log-concave then we can further characterize the equilibrium strategies. Log-concavity
means that f(x)=F (x) is decreasing in x. The assumption of log-concavity is relatively mild,
in that many common cumulative distribution functions are log-concave, including: the Uni-
form, the Power distribution, the Normal, the Gamma, the extreme value, the exponential,
the Pareto, and many others. (For a collection of results related to log-concave distributions
see Bagnoli and Bergstrom 1989). If F is log-concave then we can show that the amount of
underreporting is increasing in the true income.

Lemma 1 (increasing cheating) If F is log-concave then x���(x) is increasing in x, that
is, strategic �rms with higher true tax base underreport by more.

Proof. See Appendix A.

6 CalibrationMethodology for the Tax AuditingModel

For the purpose of calibrating the model we specialize the analysis to the case in which
the �rms�tax base is distributed according to a Power distribution. The c.d.f. of a Power
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distribution on [a; b] is given by F (x) =
�
x�a
b�a
��
with � > 0. The power distribution is log-

concave, and its density can be decreasing or increasing depending on whether � is smaller or
greater than 1. The uniform distribution arises when � = 1: Despite being a one-parameter
distribution, the Power distribution will prove su¢ ciently �exible for the purpose of matching
our data.

Proposition 3 (Equilibrium of the auditing game with Power distribution) Suppose
the tax base of �rms is distributed on [a; b] according to a power distribution F (x) =

�
x�a
b�a
��
:

For any q 2 (0; 1) there exists an equilibrium of the auditing game. It is given by a reporting
strategy �� (�) and an auditing schedule p� (�) that solve:

�� (x) = a+
�

�+ 1
(x� a)

p� (r) = max

�
t

� + t

�
1�

�
�+ 1

�

r � a
b� a

���
; 0

�
� =

1

(1=�) � 1

 =
� (1� q)
(1� �) q :

Proof. See Appendix A.

We want to use the equilibrium strategies in Proposition 3 to calibrate the unknown para-
meters �; �; �.

For realism�s sake we need to introduce audit classes in our calibration exercise. This is
because it is unrealistic that a huge �rm (automobile production, say) could report just one
employee and fool the auditor into thinking that it is a mom-and-pop store. Therefore we
need to incorporate the possibility that �rms are observably di¤erent to the auditor, so that
a report of 1 worker from General Motors triggers an audit for sure, whereas a report of 1
worker from a mom and pop store might not. We therefore introduce audit classes. An audit
class is made up of �rms which share some characteristic observable to the auditor (legal
structure, location, productive sector, energy consumption etc.), di¤erent from the �rm�s
report, that is correlated with their true tax base. Formally, an audit class k is de�ned by
three parameters known to the auditor: ak and bk the lowest and highest possible true types
of �rms in the class, and the parameter �k which characterizes the Power distribution within
that class. No �rm in audit class k can report below ak; (implicitly, because the auditor audits
such underreports with probability 1) but �rms are otherwise free to report anywhere within
(ak; bk) : In this formulation, the size of the interval (ak; bk) implicitly measures the auditor�s
residual uncertainty about a �rm�s true tax base, after all available (non-report) information
has been evaluated to assign the �rm to an audit class. General Motors is presumably in
an audit class where ak equals thousands of employees, and so this formulation avoids the
possibility of GM reporting very few employees.
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Unfortunately, we may often not know what audit classes the auditor assigns �rms to. There-
fore, in our calibration exercise we choose to be crude in the way we incorporate audit classes.
We de�ne an audit class as all �rms which would be audited with positive probability if they
report within a given interval (ak;Mk). We can then partition the set of reports into con-
tiguous non-overlapping intervals (ak;Mk) ; (ak+1;Mk+1) ; ::: thus partitioning the entire set of
reports into distinct audit classes. In this way, each audit class is associated with an interval
of audited reports.6

Having identi�ed an audit class with an interval (a;M) ; we now we detail the methodology
used to infer all relevant parameters of the audit class. The procedure is based on matching
moments from audit data. The �rst moment is the fraction of audited �rms who report in
the interval (a;M) and are found not to have underreported.7 According to the model, the
ratio of honest to strategic �rms among those audited is given by

�
RM
a
p� (r) dF (r)

(1� �)
RM
a
p� (r) dF (���1 (r))

(21)

This ratio should equal the ratio of honest to strategic �rms in the sample of audited �rms,
which we denote by C1:

The second moment is the average number of employees reported by audited �rms who report
in (a;M) : Call this C2: In the theory, this quantity is given by

(1� �)
Z b

a

�� (x) dF (x) + �

Z M

a

rdF (r) : (22)

The third moment we match is the average underreport of audited �rms. We call this quantity
C3: The theoretical expression that corresponds to this amounts isZ b

a

[x� �� (x)] dF (x) : (23)

6This de�nition is convenient for calibration purposes, but it is somewhat unnatural from the viewpoint
of the auditors. For the auditors, an audit class is de�ned in terms of some observable characteristic, which
then gives rise to a speci�c distribution of true tax bases. From their perspective, our construction amounts
to imposing that the distribution of true tax bases in the audit class which we associate with (ak;Mk) is
in fact (ak; bk) ; where bk > Mk because Mk = �� (bk) < bk: From the viewpoint of an auditor then, the
structure we have given results in separate audit classes each characterized by a Power distribution with
support (ak; bk) and parameter �k: Each interval (ak; bk) partly overlaps with the next interval (ak+1; bk+1) ;
but in equilibrium no strategic �rm in audit class k and true tax base in (ak+1; bk) reports above Mk = ak+1.

7This fraction should be close to, but smaller than �; the unconditional fraction of honest �rms in the
model. This is because a �rm is in our sample only conditional on being audited. In the model, the fraction of
�rms that are honest conditional on being audited is smaller than �, because the honest �rms with a high tax
base report (truthfully) a large number and are not audited. Therefore, strategic �rms are disproportionally
present among the �rms being audited.
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Equations (21)= C1, (22)= C2, and (23)= C3, together with the condition �� (b) = M; form
a system of four equations in four unknowns. After substituting for p� (�) and �� (�) from
Proposition 3 and after much algebra (detailed in Appendix A.2), the system of equations is
reduced to the following.

�

(1� �)
�
�+1
�

�� = C1

(1� �) (1 + C1) (a+ �C3) = C2 (24)
(M � a)
�

�

� + 1
= C3

The parameters a;M;C1; C2; C3 will be empirically observable, and the unknown parameters
are �; �; �: The system of equations (24) represents our calibration tool. If a solution exists
to this nonlinear system of equations, then the solution identi�es the �deep parameters�
of the model without error. If a solution does not exist, then we may look for estimatesb�; b�; b� which minimize some weighted sum of the distances between expression (21) and C1,
expression (22) and C2, and expression (23) and C3:

7 Illustrative Application: The INPS Auditing Data

We view the preceding analysis as developing a replicable, almost mechanical procedure for
the structural estimation of decentralized auditing games: measure (the auditors�incentive
scheme using Proposition 1), cut (build a model and solve for the equilibrium, as we did in
Section 5), and �t (calibrate the model using audit data). In this section we illustrate the
procedure by applying it to the INPS data.

7.1 The INPS data

Our data comes from labor-tax auditing of Italian �rms. In Italy it is the employers�respon-
sibility to pay labor taxes on its employees. These taxes are analogous to Social Security
contributions in the US, but they are higher (they hover around 40% of the worker�s gross
compensation).8 Every year the Italian Social Security Institute (INPS) inspects a number of
�rms in order to verify that they paid their labor taxes. An employer found underreporting
is assessed a �ne equal to the money underreported plus 33% of it. Our dataset is composed
of the universe of INPS audits in 2000-2005, except for two sectors: agriculture and self-
employed workers.9 This unique dataset was created in order to get some insight into labor

8For most workers these taxes amount to 40-42% of gross wages, but they are 38% for workers classi�ed
as �artisans,�and only 23% for speci�c types of workers who are not permanently employed. Our data does
not distinguish among these various types of workers.

9These two sectors are subjected to a separate auditing process on which we have no data.
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tax evasion and undocumented work.10

Each observation is an audit. Audits are carried out by auditors who select the �rm out
of a large list of �rms, visit the �rms� location and check for violations. The auditor can
interview the workers he �nds and check administrative and accounting records. For each
audit, the data consists in some �rm characteristics (number of declared workers, production
sector, regional location) and some characteristic of the audit and its outcome (length of the
time window that is the object of audit,11 the amount of underreported taxes, the number
of undeclared workers detected). In all, we have 474,645 inspections developed on 396,065
di¤erent �rms, an average of around 80,000 per year.12 Most of these �rms (90%, or about
430,000) report 10 or fewer workers, re�ecting the well-known prevalence of small �rms in
Italy.

To match the model to the data we need measures of what income the �rms reported and of
what evasion was found, if any. For evasion detected we will use two related variables. The
variable amount of evasion (evasioni) is the amount of money that INPS assesses it is owed,
if any. The variable success (risultato) is a dummy created based on the previous variable,
and it equals 1 if the audit resulted in an assessed �ne in any amount. The dataset does
not contain the reported income, but it contains the number of employees the �rm reported
having. We will use this as a proxy for reported income. The variable sectors (settori) codes
the ATECO industry sector codes to which the audited �rm belongs.13

In order to be consistent with the theoretical framework of optimal auditing, our sample
should only contain audits which are discretionarily initiated by INPS with the goal of
uncovering underreports. However, the administrative process that generates our data is
multi-faceted, and thus we need to decide what to do with audits that are not discretionar-
ily initiated by INPS with the goal of uncovering underreporters. Our strategy will be to
exclude them from the sample. We detail this process in Appendix B.1. It is important to
note that the rationale for eliminating non-discretionary audits is not (only) to err on the
side of caution; this strategy also has a theoretical justi�cation, because eliminating these
audits does not invalidate the analysis we intend to carry out. As mentioned on page 8 when
we discussed the interpretation of �; these excluded audits may in�uence the behavior of the
�rms, but that will not matter for our analysis: the impact of the extraneous audits folds
into the de�nition of �; and Proposition 1 holds regardless of their presence.

After eliminating non-discretionary audits we are left with 176,230 discretionary audits which

10For a more precise description of the data and of the process of building the dataset, see Di Porto (2009).
11Every audit examines only a speci�c time window, say, the two most recent years of activity. If a �rm is

audited twice, the window of the second audit cannot by law overlap with the �rst audit�s.
12Since there are around 1,660,000 Italian �rms, this means that INPS audits almost 5% of them every

year.
13There are nine such sectors, with the numbers from 1 to 9 corresponding to, respectively: Energy,

Water, Gas; Mining and Chemical Industries; Manufacturing and Mechanical Industries; Food and Textiles;
Construction; Wholesale and Retail Trade; Transportation; Finance and Insurance; and, �nally, Services.
They correspond to the 1981 version of the ATECO codes.
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are initiated by INPS based only on documentary information about the �rm. These audits
are allocated following a strategy devised by the top management at INPS. The strategic
guidelines, which are updated throughout the year, direct auditors in a given region to focus
on speci�c types of businesses, such as truckers, or ice-cream parlors, etc. These discretionary
audits correspond to the auditing activity contemplated in the auditing models. Therefore,
we will restrict attention to these audits. To the extent that the auditing strategy is centrally
designed, our model with a single auditor �ts well the institutional environment.14 There
is no explicit statement, however, about INPS�s objective function:it is left to us to infer it
empirically from the data.

Table 1 reports the summary statistics. We divide the 176,230 audits into audits of small
�rms, which we de�ne as �rms which declare 10 or fewer employees, and audits of large
�rms. Small �rms represent a very large fraction of all Italian �rms (and roughly 90% of
our entire sample). For 175,991 of these �rms we know their sector (the remaining 239 are
missing the sector variable). Among these �rms we have 151,806 small �rms and 24,185
large �rms. Audits of small and large �rms di¤er in the industry composition, as one would
expect, with small �rms being a larger fraction of the audited population in certain sectors.
The probability of a successful audit is smaller for small �rms: among all 176,230 audits,
40% of the small �rms audit result in a �ne being paid, and 54% of large �rms audits. When
evasion is measured by the amount of the �ne, there is more evasion detected in the large
�rms sample. Moreover, when an evasion is detected, the �ne paid averages 17,683 euros for
small �rm audits and 108,297 euros for large �rms audits.

The distribution of reported sizes is given in Figure 1.

7.2 Using Proposition 1 to identify auditors�objective function

We check whether there is any objective h which is being equalized across audit classes.
Inspired by Example 5, we conjecture that this objective is the detection of a cheater, inde-
pendent of the amount of cheating.15 Accordingly, the dependent variable in Table 2 is the
fraction of audited �rms which are found cheating in a given region/year. The independent
variables are the fraction of audited �rms in each region/year which belong to each sector. In
speci�cation (2) we control for reported �rm size, to check whether the return from auditing
large �rms is di¤erent. In both speci�cation we introduce region �xed e¤ects to capture the

14While on paper the auditing strategy is decided centrally, the reader may wonder about the incentives of
individual auditors to potentially subvert the centrally-decided strategy. Individual auditors are compensated
on a �xed wage plus a �productivity premium�based on the amount of unpaid taxes recovered in their region.
We view these incentives as rather low-powered for two reasons. First, an individual auditor has a negligible
e¤ect on how much is recovered in his entire region. Second, as a practical matter the auditor�s union
has always resisted the notion that the productivity premium might be withheld. Perhaps as a result, the
productivity premium has historically never been denied to any region.
15In the language of Section 3 we posit that h (�; r) = 1 if r < �; and zero otherwise.
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Small Firms Large Firms

Sector 1: Energy, water, gas
453
(0.3%)

83
(0.3%)

Sector 2: Mining and chemical industries
1,600
(1%)

656
(2,7%)

Sector 3: Manufacturing and mechanical industries
8,563
(5.7%)

3,303
(13.7%)

Sector 4: Food and textile
16,807
(11.1%)

4,419
(18.3%)

Sector 5: Construction
35,427
(23.3%)

6,910
(28.6%)

Sector 6: Wholesale and retail trade
69,385
(45.7%)

5,087
(21%)

Sector 7: Transportation
1,587
(1%)

775
(3.2%)

Sector 8: Finance and Insurance
5,927
(3.9%)

1,684
(6.7%)

Sector 9: Services
12,057
(7.9%)

1,268
(5.2%)

Total
151,806
(100%)

24,185
(100%)

Success of audit (Risultato)
(std. dev.)

0.40
(0.49)

0.54
(0.50)

Amount of evasion (Evasioni) in euros
(std. dev.)

6,953
(35,950)

57,601
(306,704)

Amount of evasion conditional on > 0
(std. dev.)

17,683
(55,650)

108,297
(413,972)

Number of employees (Dipendenti)
(std. dev.)

3.09
(2.35)

51.13
(346.32)

Table 1: Summary Statistics. Large �rms are those with more than 10 reported employees.
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Figure 1: Distribution of reported number of employees.

idea that the game is being played within region, so an inspector from one region cannot
arbitrage by auditing a �rm from another region.

According to the theory, whatever heterogeneity determines the variation in the dependent
variables within a region, observables should not predict the probability of �nding a cheater.
Table 2 is broadly supportive of this statement since no sectoral variable is signi�cant in
either speci�cation (1) or (2). In fact, a Wald test carried out on speci�cation (2) does
not reject the hypothesis that the sectoral coe¢ cients are jointly equal to zero. However,
the coe¢ cient on the dummy �large �rm�is signi�cant in speci�cation (2), indicating that
�rms which report more than 10 employees are more likely to be found cheating. This is an
indication that �rm size matters.

The large R2 in Table 2 is attributed to region �xed e¤ects. This is in line with the the-
ory: institutional considerations suggest that auditors should not be able to arbitrage across
regions, and the data bear this out. >From a statistical viewpoint, we learn that there is
variation to be explained, but sectors don�t explain it; in this sense, the signi�cance of region
�xed e¤ects serves as a sort of �placebo test�for the non-signi�cance of sectoral variables.

Albeit at a very exploratory level, Table 2 reveals that �rm size matters. To further explore
the question of �rm size, we split the sample into large and small �rms. Moreover, we make
each individual audit into a data point, with the result that now we have a very large number
of observations. Table 3 reports the results for this regression. The dependent variable in
the regression of Table 3 is the success variable (risultato). According to our test, if the �rm
maximizes the probability of detecting evasion, then the probability of detection should be
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Table 2:
Dependent Var: Fraction of Audited Firms Found Cheating

VARIABLES (1) (2)

Fraction of audits in sector 1 2.33 1.39
(0.121) (0.489)

Fraction of audits in sector 3 -0.43 1.13
(0.776) (0.485)

Fraction of audits in sector 4 -1.14 0.99
(0.391) (0.389)

Fraction of audits in sector 5 -0.86 1.00
(0.512) (0.459)

Fraction of audits in sector 6 -1.12 1.00
(0.431) (0.489)

Fraction of audits in sector 7 2.81 2.50
(0.242) (0.310)

Fraction of audits in sector 8 -1.21 0.14
(0.445) (0.939)

Fraction of audits in sector 9 -1.23 0.98
(0.389) (0.443)

Large �rm indicator 1.50***
(0.000)

Time trend -0.02* -0.01
(0.066) (0.224)

Constant 1.43 -0.73
(0.296) (0.588)

Region Fixed E¤ect yes yes

Observations 120 120
R-squared 0.2411 0.387
Number of id 20 20

Robust pval in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
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the same for any reported number of employees (dipendenti) and for any sector (the variables
sector#). In our empirical speci�cation we allow for additional �exibility by controlling for
the interaction between number of employees and sectors (the variables sector# * employees).
This allows for the probability of detection to vary with the number of employees in a sector-
speci�c way.

Focusing �rst on small �rms (column 1), we �nd that, despite the �exibility allowed by
our speci�cation, few of the coe¢ cients (4 out of 20) are signi�cantly di¤erent from zero
at the 10% level. Furthermore, the R2 coe¢ cient is very small (0.01). We interpret this
widespread lack of explanatory power as evidence that most of the independent variables in
our regression do not help improve the probability of detection. One must not overemphasize
this interpretation, because the F statistic indicates joint signi�cance of the independent
variables. Nevertheless, Table 3 does point to the di¢ culty for an auditor of predicting the
probability of the success of an audit based on the variables we have, so that any audit
is perceived as �equally likely to succeed�by the auditor. Based on Proposition 1, this is
consistent with the assumption that auditors maximizes the probability of a successful audit,
and that INPS does not have, or does not make strategic use of, the power to commit so that
the game is indeed one of decentralized auditing. In Table 7 of Appendix 7.2, we verify the
robustness of this �nding by controlling for region, for a time trend, and to restricting the
population to �rms which report 5 or fewer employees. Of note, the region coe¢ cients are
generally signi�cantly di¤erent from zero, which again we interpret as a successful �placebo�
test.

Column (3) is identical except that the dependent variable is amount of evasion (evasioni),
the amount of money that INPS assesses it is owed. According to Proposition 1, if auditors
maximize detections, then under a mild regularity condition there should be a positive cor-
relation between number of reported employees and amount of the misreport, i.e., �rms who
report more workers also misreport by more. The coe¢ cient on the number of employees
is positive and close to signi�cant at the 10 percent level, and moreover coe¢ cients on the
interaction terms are all positive and most are robustly signi�cant. This evidence supports
the �nding that �rms who report more employees also underreport by more. Also, to the
extent that most coe¢ cients on the terms involving the number of employees are not zero,
column (3) supports the conclusion that auditors are not maximizing the amount of evasion
detected.

Summing up, for the �small �rms�sample, which comprises about 90% of the �rms in Italy,
the empirical results are generally in line with the theory. The results suggest that INPS
behaves, in the aggregate, as a group of auditors which maximize the probability of �nding
tax cheaters in a decentralized way.

Large �rms are di¤erent: from the summary statistics we know that, on average, the prob-
ability of a successful audit is larger for large than for small �rms ( 54% versus 40%). This
fact was also picked up in Table 1. This implies that, in principle, an auditor could substitute
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Table 3:
Dependent Var: Detection Success and Amount of Evasion

VARIABLES (1) Success (2) Success (3) Evasion
Small �rms Large �rms Small �rms

Number of employees 0.01 0.00*** 808.54
(0.293) (0.003) (0.106)

sector 2 0.03 0.07 -876.32
(0.425) (0.246) (0.685)

sector 3 0.03 0.17*** -17.19
(0.405) (0.002) (0.991)

sector 4 0.07** 0.10* -788.27
(0.045) (0.061) (0.579)

sector 5 0.04 0.09 -1,072.68
(0.237) (0.102) (0.434)

sector 6 0.02 0.11* -1,552.09
(0.474) (0.055) (0.249)

sector 7 0.26*** 0.18*** 4,871.02**
(0.000) (0.002) (0.038)

sector 8 0.09** 0.29*** -2,936.28
(0.018) (0.000) (0.222)

sector 9 -0.02 0.17*** -3,803.10***
(0.585) (0.004) (0.006)

sect2 * employees 0.01 0.00 1,471.74*
(0.364) (0.169) (0.053)

sect3 * employees 0.01 -0.00** 1,443.75**
(0.483) (0.020) (0.013)

sect4 * employees 0.01 -0.00** 1,162.01**
(0.431) (0.027) (0.028)

sect5 * employees 0.01 -0.00 603.42
(0.585) (0.801) (0.237)

sect6 * employees 0.01 -0.00* 325.63
(0.244) (0.055) (0.519)

sect7 * employees -0.00 -0.00 1,958.26**
(0.821) (0.650) (0.013)

sect8 * employees 0.01 -0.00*** 3,355.36***
(0.443) (0.000) (0.002)

sect9 * employees 0.03** 0.00** 1,086.04**
(0.019) (0.045) (0.048)

Constant 0.29*** 0.41*** 3,525.65***
(0.000) (0.000) (0.008)

Observations 151,806 24,185 151,806
R-squared 0.014 0.013 0.017

Robust pval in parentheses. *** p<0.01, ** p<0.05, * p<0.133



a search of a small �rms with a search of a large �rm and increase his probability of success.
One might attribute this di¤erence to the (unobserved) cost of carrying out an audit in a
larger �rm. This interpretation is not consistent with the evidence presented in Table 2,
however. The regression in Table 3 column (2) is identical to column (1), except that it is
performed on the sample of �rms which report more than 10 employees. First, we notice
that the coe¢ cients of the variable number of employees, as well as those of the variables
interacted with number of employees, are very small. This means that size per se does not
appreciably raise the probability of a successful audit above the 41% level (the constant in
the regression which, incidentally, is about equal to the average success rate among small
�rms). Rather, the �excess return�from audits comes through some of the sector dummies.
This observation casts doubt on the interpretation that the di¤erence in success rates of
audits is due to the larger cost of performing audits on bigger �rms. Adding to the puzzle,
the sector with the biggest �excess return�to an audit is sector 8, corresponding to Finance
and Insurance. It is possible that the cross-sector di¤erences in returns to an audit that are
present in the large �rm sample re�ect an unobserved �complexity of audit�cost that varies
across large �rms in di¤erent sectors. It is di¢ cult to rule out the existence of such unob-
servable di¤erences; however, we saw no evidence of them in the small �rms sample. In our
own reading, the evidence from column (c) provides weak support for the no-commitment,
success-maximizing model within the large �rm population.

Separately from the results in Tables 2 and 3, including the �placebo�tests, is the hypothesis
persuasive that auditors maximize the probability of �nding a cheater, at least among small
�rms? We think so. First, this compensation scheme is �simple,�such that it could actually
be used in a real-world compensation scheme. Second, it is �plausible�in the sense that if a
principal seeks to deter tax evasion, it can be better for that principal to reward his agents
for detecting cheaters, rather than for �nding large underreports (see Example 1).

7.3 Backing out the calibrated parameters

The system of equations (24) is our calibration tool. We think of a;M;C1; C2; C3 as empiri-
cally observable parameters, and we want to know which values of the unknown parameters
�; �; � are compatible with any given constellation of these observable parameters. If a so-
lution exists to this nonlinear system of equations, then the solution identi�es the �deep
parameters�of the model without error. If a solution does not exist, then we may look for
estimates b�; b�; b� which minimize some weighted sum of the distances between expression (21)
and C1, expression (22) and C2, and expression (23) and C3:

We choose to divide our sample into three audit classes: �rms which report in the intervals
(0,10), (11-25), and (26-50). We do not pursue the analysis of audit classes with reports
larger than 50 employees since these reports are only about 2% of our sample.

To illustrate how the calibration exercise is implemented, consider for example the audit
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Class 0-10 Class 11-25 Class 26-50
� 0:62 0:5 0:47
� 0:48 0:61 1
� 4: 88 4:68 5:48
b 12 28 54:38

Table 4: Calibrated parameters.

class (a = 0;M = 10) ; which is composed of all the �rms who have true tax base between
1 and b > 10; and which are audited only when they report below 10. In this case we can
compute that C1; the ratio of honest to strategic �rms among the �rms which report less
than 11 employees in our data, equals 0:6=0:4:We have C2; the average number of employees
reported by �rms who report in (0; 10) ; is given by 3.09 employees. Finally we need a value for
C3; the average number of underreported employees. This we do not have in the data, but we
approximate it by taking the total amount evaded conditional on evading a positive amount
(17,683 euros), and dividing it by 26,500 (the gross average salary in Italy in 200716); we thus
obtain a proxy for C3 which in this case equals 0.67 �employee-equivalent underreports.�

Given these parameters, the system of equations (24) can be solved numerically to yield
[� = 0:621 51; � = 4: 874; � = 0:484 91] : Details about the numerical solution are provided in
Appendix C. The computed value of �means that the fraction of honest �rms is 62%, slightly
higher than the 60% of �rms which are found not to cheat when audited. The di¤erence is
due to the fact that strategic auditing hits precisely those �rms which are more likely to
misreport. The parameter � is best understood in terms of the fraction �= (�+ 1) ; which
represents the fraction of the true tax base reported by strategic �rms. In this case this
fraction equals 0.83, which means that strategic �rms report 83 percent of their true tax
base. The highest true tax base in the audit class (unobserved because �rms who report this
much are not audited) equals 10� (�+ 1) =� = 12: Finally, the fact that � < 1 implies that
the density of true tax bases is decreasing.

The same methodology can be applied to audit classes (a = 11;M = 25) and (a = 26;M = 50) :

In this last audit class, unlike in the �rst two, solving the system of equations (24) yields a
parameter � which leads to a poor �t of (25) to the data. We explain how we dealt with this
issue in Appendix C. Finally, all the parameters recovered through this calibration exercise
are presented in Table 4.

7.4 Fit of the calibrated model

Given the parameters collected in Table 4, we plot the predicted distribution of reports by
audited �rms, and compare it to the distribution of reports in our data. This is a meaningful
test of �t because the calibration procedure was not designed to match the shape of the report

16�Domanda di lavoro e retribuzioni nelle imprese italiane�, Rapporto Unioncamere 2008, page 23.
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distributions, but rather certain moments of it. Therefore, the forthcoming comparison can
give us a sense of how well our model (including the restriction to the Power distribution)
�ts the data.

The equilibrium probability of observing an audit of a �rm which reports r is given by

p� (r) �
�
(1� �) f

�
���1 (r)

� @���1 (r)
@r

+ �f (r)

�
; (25)

The �rst multiplicative term represents the probability of being audited conditional on re-
porting r: The term in brackets represents the density of �rms which report r; which is a
mixture of strategic and honest �rms. Figure 2 plots this function as the green line against
the histogram of the empirical distribution of reported sizes. For small �rms and for medium
�rms the �t is rather good, particularly considering that our calibration procedure was not
designed to match the shape of this histogram but rather just one moment, its average. For
large �rms (reports between 26 and 50) the �t is not good when we apply the parameter
con�guration with � > 1. The �t becomes better when we apply the parameter con�guration
obtained by relaxing the matching of C2 in (24), which in the �gure is referred to as �relaxed
identi�cation.�We refer to Appendix C for details about the di¤erence between third and
fourth panel.

Figure 2 also plots the predicted distribution of true tax bases (the orange curve). As
expected, this curve extends further to the right than the histogram, up to some b > M:

This is because the model predicts that some �rm have a tax base greater between M and b.
Among these �rms, the strategic ones will report between a and M and they will be audited
with positive probability, so their audits will show up in our histogram. The honest among
these �rm will report above M , and their audits will not show up in the histogram.

8 Counterfactual Exercises With INPS Data

8.1 Counterfactual I: compute the amount of tax evasion

In this section we compute the revenue raised in equilibrium as a fraction of the total revenue
theoretically achievable if every �rm paid their taxes in full.

The maximal amount of tax revenue theoretically achievable in our model is what all �rms
would pay if they were honest, which isZ b

a

tr � f (r) dr: (26)
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Figure 2: The histogram represents the empirical percentage of audited �rms who report a
certain size; the green line the predicted percentage of audited �rms by reported size; the
orange line the predicted distribution of true �rm size.

The money actually raised in equilibrium is given by

�

Z b

a

tr � f (r) dr + (1� �)
Z M

a

tr � f
�
���1 (r)

� @���1 (r)
@r

dr

+(1� �)
Z M

a

p� (r)
�
(t+ 0:33)

�
���1 (r)� r

��
� f
�
���1 (r)

� @���1 (r)
@r

dr: (27)

The �rst addend is the amount of taxes raised from honest �rms. The second addend is the
amount of taxes declared up-front by strategic �rms. The the third addend is the money
raised from audited cheaters.

At this point we could simply use the calibrated parameters from Table 4, plug them into the
strategies derived Proposition 3, and evaluate these expressions numerically. However, this
would not be fully satisfactory because the resulting expression for p� (r) would be too large
relative to ballpark estimates. Indeed, while detailed data about p� (r) are not available,
crude statistics that are publicly available suggest that only 2% of �rms who declare less
than 10 employees are audited every year. According to our model, however, the probability
of auditing must be in the order of 30% to generate the comparatively mild underreporting
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Class 0-10 Class 11-25 Class 26-50b� 6:87 8:45 6:95
Amount raised from honest �rms � � 1:57 � � 6:97 �� 16:08
Amount raised from strategic �rms
in equilibrium

(1� �) 1:32 (1� �) � 6:55 (1� �) � 15:26

Table 5: Calibrated parameters, and counterfactuals.

found in the data. This observation raises the question of why Italian �rms are so compliant,
given the low probability of being audited and the mild penalties for being found in violation.
We do not have an answer to this question except by resorting to unmeasured psychological,
legal, etc. costs of being found in violation of the tax code. So in what follows we will
calibrate a new parameter, b� which captures the penalties plus the non-monetary costs of
being found cheating.

We explain in Section 6 how we calibrate the parameter b� (essentially, b� is chosen so as to
generate the observed amount of underreporting given an aggregate amount of yearly audits
equal to around 2% of the total population of �rms). Our calibration yields values for b� above
6. This means that the perceived cost for being found cheating is estimated to be more than
6 times the amount underreported. This is a very large number compared to the monetary
�ne which is 0.33. We will return to this issue in the conclusions.

Plugging our calibrated parameter b� into the expression for p� (r) yields a �realistic�auditing
strategy. We then compute values for the money raised in equilibrium (expression 27) and for
the tax revenue theoretically achievable if all �rms were honest (expression 26). The results
for all audit classes are presented in the table below.

Table 5 implies, for the 0-10 class for example, that the ratio of revenue actually raised over
maximal revenue achievable (expression 27 over 26) is given by

� � 1:57 + (1� �) 1:32
1:57

= 0:94;

where we have used � = 0:62 from Table 4. This means that, despite the relatively modest
auditing budget and despite the decentralization problem, INPS is achieving 94% of the
maximal revenue achievable if all �rms reported truthfully. Results for the other audit classes
are similarly high.

The root of this perhaps surprising result can be traced back to the raw data. For �rms in
the (0; 10) audit class C3; the average underreport, equals 0.67, meaning that the average
strategic �rm in that class reports 0.67 fewer employees than it actually has. Moreover, 62% of
�rms are actually honest, which means that the average number of underreported employees
is actually about 0:67 �0:62 = 0:42: Since these �rms have on average 3.1 reported employees,
and slightly more actual employees, on average these �rms underreport less than 14% of their
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actual workforce. This modest amount of underreporting is consistent with the small margin
for improvement we �nd in our counterfactual exercise.

8.2 Counterfactual II: the costs of decentralization

In this section we relax the constraint that the auditing schedule be incentive compatible for
the auditors. We seek, instead, to identify the revenue-maximizing auditing schedule within
a class of �simple�strategies which are generally not decentralizable.

The class of strategies we focus on is composed of strategies all of which result in the same
number of �rms audited in equilibrium. In this sense, all strategies in a class are equally
expensive in terms of resources. Moreover, every strategy in the class is �simple�in that it
is a step function of the reported tax base.

De�nition 2 Fix B; the number of �rms to be audited, and denote b� = t=(t+b�). The class
of simple strategies S (B) denotes the set of auditing strategies in which: (a) all reports below
some T are audited with the same probability p � b� ; (b) no reports above T are audited; (c)
exactly B �rms are audited. The simple strategy in which p = b� is referred to as the extremal
strategy.

Restricting attention to simple strategies rules out sophisticated strategies in which the audit
probability is �nely modulated based on the report. Despite this limitation, we think simple
strategies are of special policy relevance precisely because of their simplicity.

A noteworthy strategy is the extremal strategy. This strategy audits all reports below a
threshold T with such high probability as to deter any cheating among the audited reports.
Indeed, the extremal strategy has been shown to be revenue-maximizing in a setup very
similar to ours (see Border and Sobel 1981, Macho-Stadler and Perez-Castrillo 1997). How-
ever, the extremal strategy is not necessarily revenue-maximizing in our setup: there may be
another strategy which raises more revenue using the same amount of audits. This is shown
in Example 6 in Appendix A.17 Therefore, it is an open question whether the extremal is
revenue-maximizing in our setup. We show in this section that, given our calibrated para-
meter values, the extremal strategy is revenue-maximizing among all simple strategies that
are as expensive as the equilibrium outcome in terms of auditing resources.

The strategic �rms�behavior under a simple strategy is characterized by a threshold bx. Types
with tax base lower than bx will report a (the minimum possible report) and pay ta; plus if

17The non-standard feature of our setup is the presence of the honest �rms. Honest �rms are not responsive
to auditing (they never cheat anyway), yet they soak up auditing resources. Therefore the presence of honest
�rms dilutes the deterrence power of the auditing. Moreover, the extent of dilution depends on the distribution
of honest �rms� it will be stronger around those report levels where honest �rms are more concentrated.
Therefore the presence of honest �rms shapes the optimal auditing schedule.
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Class 0-10 Class 11-25 Class 26-50b� 0:055 0:045 0:054
Amount raised from strategic �rms
in equilibrium

(1� �) 1:32 (1� �) � 6:55 (1� �) � 15:26

Amount raised from strategic �rms
under the extremal strategy

(1� �) 1:47 (1� �) 6:80 (1� �) 15:78

Table 6: Calibrated parameters, and counterfactuals.

they are audited they also incur a (subjective) cost
�b� + t� (x� a); types higher than bx will

report T (or slightly above that) and pay tT without ever being audited. Therefore the types

who choose to report a rather than T are those for whom ta+ p
�b� + t� (x� a) � tT; hencebx solves

T � a = pb� (bx� a) ; (28)

where we denote b� = t=�b� + t� : A simple strategy must meet the budget constraint, which
is the sum of audits of strategic and honest �rms: the latter are audited when their tax base
is below T; and so the budget constraint reads

B = p [(1� �)F (bx) + �F (T )] (29)

Finally, the revenue raised by a simple strategy is given by

R = (1� �)
�
ta+ p � (t+ �)

Z bx
a

(x� a) f (x) dx+ t (T � a) (1� F (bx))�+ �tE (X) : (30)

When F corresponds to the Power distribution, we can use expressions (28) and (29) to
explicitly solve for T and bx as a function of p:We can then express the revenue as a function
of p alone, and maximize it as a function of p: Of course, only the portion of revenue raised
from strategic �rms (the expression in brackets in 30) will vary with p. The corresponding
pictures, one for each auditing class, are displayed in Figure 3; these pictures make use of
the calibrated parameters and set B equal to the fraction of �rms audited in our data (see
Appendix E for details.)

The revenue in each panel of Figure 3 is increasing as p grows towards b� ; showing that revenue
increases as we approach the extremal strategy. This suggests that, among the set of simple
strategies which cost the same as the equilibrium strategy, the extremal strategy should be
revenue-maximizing.

However, we note that the revenue exhibits a discontinuity at p = b� :18 The presence of
18The existence of this discontinuity is instructive. The discontinuity is caused by two factors. First,

when p = b� all �rms report truthfully, while for any p 2 [0;b�) a bunch of �rms cheat and report a: Still,
this discontinuity in behavior need not per se result in revenue discontinuities, since the �rms�payo¤s is
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Figure 3: Revenue across di¤erent �simple strategies,�indexed by p: In each panel, p ranges
up to �:

this discontinuity requires the revenue raised from the extremal strategy to be computed
separately. This is done in Appendix E, and the results are reported in Table 6. Comparing
the third row in Table 6 with Figure 3 reveals the discontinuity in revenue at p = b� ; and
proves the next observation.

Conclusion 2 Given our calibrated parameters and setting an auditing budget equal to the
equilibrium one, the extremal strategy raises more revenue than any other simple strategy
with the same budget.

Comparing the second and third rows in Table 6 shows that the extremal strategy always de-
livers more revenue than the equilibrium strategy for the same amount of auditing resources.
Yet the improvement is small. Focusing on the amount raised from strategic �rms, which
are the only ones whose report is a¤ected by auditing anyway, the improvement from the

continuous at p = b� : The �rm�s payo¤ is continuous because at p = b� a bunch of �rms are indi¤erent between
reporting truthfully or cheating and risking the penalty b�: The revenue is almost the opposite of the �rms�
payo¤s, except the revenue is computed using penalty � < b�; therefore, revenue is not continuous at p = b� :
Since � < b�, compared to the �rms, the auditor strictly prefers to raise revenue through truthful reporting
rather than through the penalties imposed on the cheaters. This observation accounts for the discontinuity
in payo¤s at p = b� : The interest of this observation is that, when �rms incur non-economic costs from
being audited and found in violation of the law, then the game between auditor and audited is no longer a
zero-sum game, and this has implication for the kind of audit strategies that are likely to be optimal in the
mechanism-design problem. In particular, relative to the zero-sum version of the mechanism-design problem,
there should be a preference for strategies that deter, rather than punish.
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commitment strategy is slightly above 10% for the 0-10 audit class (1.32 to 1.47), and smaller
still for the other audit classes. Moreover, both these amounts are quite close to the one ob-
tained from honest �rms, which represents the theoretical maximum revenue obtainable. In
this sense, despite the fact that in the decentralized equilibrium the wrong objective function
is maximized, our calibration suggests that the amount of money left on the table is not too
large. Of course, this conclusion is true only given the equilibrium auditing budget. It is
possible that, were INPS to reduce the fraction of �rms audited, the gains from moving to
an extremal strategy might be larger.

9 Conclusion

We view this paper as a �rst attempt to bring to data the theoretical literature on strategic
auditing. The goal is important because having a model that can claim to quantitatively
capture the strategic interaction between auditors and audited would allow us to (a) un-
derstand how well a given auditing policy is succeeding; and (b) to perform counterfactual
experiments of enormous policy relevance (think tax evasion).

We believe this paper makes progress along several fronts. First, the paper proposes a shift in
focus from a stylized one-auditor model with commitment to a more realistic many-auditors
model with incentives. Theoretically, decentralized incentives could be very complicated. In
practice, giving auditors complicated incentive schemes is challenging for an organization. So
how complicated decentralized incentives are in actual organizations is an empirical question.
In this paper we o¤ered a test based on equilibrium behavior which can reject, or fail to reject,
hypotheses about the shape of the auditor�s incentives.

Second, the paper provides a method for recovering what the auditors�incentives actually
are, based on audit (administrative) data. Third, in the special but important case of tax
evasion, the paper introduces a variant of existing models and a method to calibrate it based
on audit data. The method reads the data through the lens of equilibrium behavior and, in
so doing, accounts for the huge selection process that generates the data. The parameters
recovered through the calibration process allow us to perform counterfactual experiments.

When applied to the Italian data, the calibrated model seems able to capture accurately
the behavior of the auditors �playing against� the 90% of �rms with 10 employees or less.
The model does less well on its ability to explain the game involving the 10% of �rms
with more than 10 employees, in the sense that it is harder to make precise sense of the
auditor�s behavior vis a vis these �rms. The model we calibrate contains two parameters, �
and b�; which capture respectively a reluctance on the part of �rms to underreport taxable
income, and an overassessment (relative to the mere economic consequences) of the cost of
being caught cheating. In our calibration these parameters are assigned large values, which
we interpret as suggestive that other factors, besides mere economic calculus, in�uence the
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�rms� decision to cheat on their taxes. We believe this �nding is not an artifact of our
calibration procedure, but rather re�ects a real economic phenomenon. The high estimate
of the �degree of honesty�of �rms is in line with empirical work and lore in the taxation
literature suggesting that taxpayers behave as if they were overestimating the expected cost
of being caught cheating. If replicated in other datasets, this phenomenon will deserve further
attention.

A caveat to our counterfactual analysis, but not to the rest of the paper, is that when we
change INPS�s auditing strategy we keep �xed the distribution of true tax bases of �rms
(which we obtain from the calibration exercise). Realistically we should expect that, if a
permanent change in auditing behavior was implemented, �rms would respond by changing
the number of employees. Since we do not take this channel into account, our counterfactual
results should be interpreted as �short run�results.

On top of the novel results presented in the context of tax compliance and auditing, the paper
has the ambition of developing what we hope can become a replicable procedure for calibrat-
ing strategic auditing models: measure (the auditors�incentive scheme using Proposition 1),
cut (build a model and solve for the equilibrium, as we did in Section 5), and �t (calibrate
the model using audit data). We believe that this procedure can be applied to other auditing
environments, but clearly this will not always be straightforward. A step of this procedure
which we think is likely to require �custom tailoring�is that, given any objective function for
the auditors, the procedure calls for solving the equilibrium of the auditing game. Solving
for this equilibrium may not be routine.
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APPENDIX

A Omitted Proofs

A.1 Details of Example 5

Maximizing monetary returns of audits:

Reporting Strategy: �rms underreport by T if y � T; report 0 if y � T .

Auditing strategy:

p (r) =
1

2

�
1� exp

�
r � (1� T )

T

��
The equilibrium is an application of results found in Erard and Feinstein (1994).

We now compute the parameter T so that the number of audits corresponds to 10% of �rms
audited:

Z 1�T

0

1

2

�
1� exp

�
x� (1� T )

T

��
dx+

T

2
(
1

2

�
1� exp

�
T � 1
T

��
) = 0:1

T = 0:669607

We now compute the revenue collected when this auditing strategy is used (tax collected +
�nes):

R = �t

Z 1

0

xdx

+(1� �)T T
2

1

2

�
1� exp

�
�(1� T )

T

��
+

Z 1�T

0

1

2

�
1� exp

�
r � (1� T )

T

��
(r=2 + T ) dr

+

Z 1�T

0

r=2

�
1� 1

2

�
1� exp

�
r � (1� T )

T

���
dr

= 0:17424

Maximizing detection

Reporting strategy: �rms with income y report r = �
�+1
y.
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Auditing strategy: p (r) = 1
2

�
1�

�
�+1
a
r
���

The equilibrium is an application of results derived in section 5.

We now compute the parameter � so that the number of audits corresponds to 10% of �rms
audited

Z �=(a+1)

0

1

2

�
1�

�
�+ 1

�
r

����
�+ (1� �) �+ 1

�

�
dr = 0:1

� = 0:441 39

The revenue is calculated as follows:

R = (1� �)
Z �

�+1

0

[p (r)

�
tr + (t+ �)

�
�+ 1

�
r � r

��
+ ((1� p (r)) tr)]f (r) dr + �t

Z 1

0

xdx

R = 0:17896:

Lemma 2 If X is distributed on [a; b] according to F (x) =
�
x�a
b�a
��
, then E (X) = a +

�
�+1

(b� a) :

Proof.

E (X) =

Z b

a

xdF (x) = a+

Z b

a

(x� a) dF (x) = a+
Z b

a

(x� a)
�

1

b� a

��
� (x� a)��1 dx

= a+

�
1

b� a

��
�

Z b

a

(x� a)� dx = a+
�

1

b� a

��
�

Z b�a

0

y�dy

= a+

�
1

b� a

��
� �
 
y�+1

� + 1

����b�a
y=0

!
= a+

�
1

b� a

��
�

� + 1
(b� a)�+1 = a+ �

� + 1
(b� a)

Lemma 3 Given the audit schedule p� (�), the �rm�s reporting strategy �� (�) satis�es the
second order conditions (12).

Proof. From, 12, we need to show that (t+ �) [p00 (r) (r � x) + 2p0 (r)] � 0. We have

p�0 (r) = � t

� + t
exp

 
�
Z �(b)

r

1

(x(y)� y)dy
!

1

(x(r)� r) ;
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p�00 (r) = � t

� + t
exp

 
�
Z �(b)

r

1

(x(y)� y)dy
!�

1

(x(r)� r)2
+
@

@r

1

((x(r)� r))

�
:

We can then compute

p00 (r) (r � x (r)) + 2p0 (r)

=
t

� + t
exp

 
�
Z r(b)

r

1

(x(y)� y)dy
!
(r � x (r))

�
1

(x (r)� r)2
� @

@r

1

(x (r)� r)

�
:

The sign of (p00 (r) (r � x) + 2p0 (r)) is the opposite as the sign of
�

1
(x(r)�r)2 �

@
@r

1
(x(r)�r)

�
:

Now, we have

1

(x (r)� r)2
� @

@r

1

(x (r)� r) =
1

(x (r)� r)2
+

x
0
(r)� 1

(x (r)� r)2

=
x
0
(r)

(x (r)� r)2
> 0:

Thus reporting r� (x) is indeed a local maximum for a �rm with true tax base x. If any
other local maxima exist which do not satisfy the �rst order conditions, they must be at the
corners of the feasible report sets, either r = 0 or r = x: But neither can be a local maximum,
for otherwise there would have to be at least one other solution to the �rst order conditions
between r� (x) and 0, or r� (x) and x; whereas we know that r� (x) is the unique solution to
the �rst order conditions. Therefore, reporting r� (x) is also a global maximum for a �rm
with true tax base x.

Proof of Lemma 1.

Proof. Proving that x� r (x) is increasing is equivalent to show that r0 (x) � 1. We have :

r
0
(x) =

f (x)

f (r (x))

From decreasing hazard rate property we have

f (r (x))

F (r (x))
� f (x)

F (x)
;

using the fact that F (x) = F (�(x)), we get:

f (r (x)) � f (x) :
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whence r
0
(x) � 1.

Proof of Proposition 3.

Proof. >From (20) we get

p�0 (r)

p� (r)� t
�+t

=
1

(1=�) (r � a) + a� r

=
1

(r � a)
1

(1=�) � 1 ;

and integrating both sides yields

ln

�
t

� + t
� p� (r)

�
= ln (r � a) 1

(1=�) � 1 + �;

where � denotes a constant of integration. Taking exponential on both sides leads to

p� (r) =
t

� + t
�K (r � a)� ;

where K = (exp�) is a constant that will be computed momentarily and we denote

� =
1

(1=�) � 1 :

Note that � > 0 because  > 1: Finally, from (19) we have

�� (x) = a+
1

(1=�)
(x� a) = a+ �

�+ 1
(x� a) :

The constant K is computed using the fact that p� (�� (b)) = 0. Rewrite this condition as

t

� + t
�K

�
�

�+ 1
(b� a)

��
= 0;

whence K = t
�+t

�
�+1
�(b�a)

��
. Substituting back into the probability of auditing yields

p� (r) =
t

� + t

�
1�

�
�+ 1

�

r � a
b� a

���
:

Example 6 Let F be uniform on [0; 1]: Set t = � = b� = 0:5: Assume B = 0:1, which means
that up to 10% of �rms can be audited, and a fraction � of honest �rms equal to 0:5:

The �extremal strategy� is to audit with probability p = � = 0:5 all �rms which report less
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than T = 0:2: Under this strategy the strategic �rms in [0; 0:2] will report truthfully, and
so 0.1 on average, while all others will report T: Total revenue raised from strategic �rms
equals t [0:2 (0:1) + 0:8T ] = 0:09. Total audits, including strategic and honest �rms, under
this strategy are exactly 0.1.

Consider now the following simple strategy: audit with probability p = 0:4 all �rms who
report less than T = 0:2222: Using (28), it follows that all strategic �rms with type less thanbx = 0:27778 report zero and so the average revenue from them is p (t+ �)

� bx
2

�
; while the

rest report T: Total revenue raised from strategic �rms is bxp (t+ �) � bx
2

�
+(1� bx) tT = 0:097:

Total audits under this strategy are (p � bx) (1� �) + �pT = 0:1:
A.2 Deriving the System of Nonlinear Equations (24)

In this appendix we show how we go from the three equations (21)= C1, (22)= C2, and
(23)= C3, together with the condition �� (b) =M; to the system of equations (24).

Equation (21) reads

�
RM
a
p� (r) dF (r)

(1� �)
RM
a
p� (r) dF (���1 (r))

=
�
RM
a
p� (r)

�
1
b�a
��
� (r � a)��1 dr

(1� �)
RM
a
p� (r)

�
1
b�a
��
�
�
�+1
�

��
(r � a)��1 dr

=
�

(1� �)
�
�+1
�

�� : (31)

Equation (22) reads

(1� �)
Z b

a

�� (x) dF (x) + �

Z M

a

rdF (r)

= (1� �)
Z b

a

�� (x) dF (x) + �

Z b

a

�� (x)

�
�

�+ 1

��
dF (x)

=

"
(1� �) + �

�
�

�+ 1

��#Z b

a

�� (x) dF (x)

=

"
(1� �) + �

�
�

�+ 1

��#Z b

a

�� (x) dF (x)

=

"
(1� �) + �

�
�

�+ 1

��# �
a+

�

�+ 1

�Z b

a

xdF (x)� a
��

(32)

where the second integral in the second line re�ects the change of variables r = �� (x) =
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a+ �
�+1

(x� a) ; dF (r) = dF
�
a+ �

�+1
(x� a)

�
= d

�
�
�+1

x�a
b�a
��
=
�

�
�+1

��
dF (x) :

Equation (23) readsZ b

a

[x� �� (x)] dF (x)

=

Z b

a

�
x� a� �

�+ 1
(x� a)

�
dF (x)

=

�
1� �

�+ 1

� Z b

a

(x� a) dF (x) = 1

�+ 1

�Z b

a

xdF (x)� a
�
. (33)

Equations (31), (32), and (33), together with the condition �� (b) =M; form a system of four
equations in four unknowns. This system is given by

a+
�

�+ 1
(b� a) = M

�

(1� �)
�
�+1
�

�� = C1"
(1� �) + �

�
�

�+ 1

��# �
a+

�

�+ 1

�Z b

a

xdF (x)� a
��

= C2

1

�+ 1

�Z b

a

xdF (x)� a
�
= C3

Substitute from the fourth into the third equation to get the equivalent system

a+
�

�+ 1
(b� a) = M

�

(1� �)
�
�+1
�

�� = C1"
(1� �) + �

�
�

�+ 1

��#
[a+ �C3] = C2

1

�+ 1

�Z b

a

xdF (x)� a
�
= C3
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Substitute from the second into the third equation to get the equivalent system

a+
�

�+ 1
(b� a) = M

�

(1� �)
�
�+1
�

�� = C1

(1� �) [1 + C1] [a+ �C3] = C2

1

�+ 1

�Z b

a

xdF (x)� a
�
= C3

Use the formula E (X) = a + �
�+1

(b� a) to substitute into the fourth equation to get the
equivalent system

a+
�

�+ 1
(b� a) = M

�

(1� �)
�
�+1
�

�� = C1

(1� �) [1 + C1] [a+ �C3] = C2
1

�+ 1

�
�

� + 1
(b� a)

�
= C3

Eliminate the �rst equation by substituting into the fourth, to get the equivalent system

�

(1� �)
�
�+1
�

�� = C1

(1� �) (1 + C1) (a+ �C3) = C2
(M � a)
�

�

� + 1
= C3;

which is the system of equations (24).
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B Ancillary Material Related to the Application to
INPS Data

B.1 Creating the sample

Our sample is determined as follows. First, we drop the roughly 171,000 observations in
which �rms are audited in a month in which they declare zero workers. These are not audits
of self-employed workers, which as we mentioned do not appear in our data. Rather, these
are �rms which closed down (or went bankrupt) before the month in which they are audited,
and who therefore report zero workers in the month in which they are audited. Unfortunately
we do not know what number of workers they did report before they closed down, so even if
we wanted to correlate the audit with their true report we could not do that. But, in fact,
in many cases a post-bankruptcy audit is not an audit aimed at uncovering underreports of
taxes, but rather part of a procedure aimed at recovering unpaid taxes (about which there is
no uncertainy in INPS�s records) out of the bankruptcy process. For both these reasons we
eliminate observations where dipendenti equals zero.

Next we use the variable origine to screen out several types of interactions between INPS
and the public which are not audits in the sense of our models. We keep in the sample only
the roughly 175,000 audits which are coded as controlli incrociati and mirate. These are the
audits that are discretionarily intiated by INPS with the goal of uncovering underreporters.

What is left out is, �rst, about 5,000 audits coded fallimenti which are initiated in connection
with bankruptcy and which we eliminate for the same reason mentioned above� these are
part of bankruptcy process and not true audits. Next, we have 27,000 interactions coded
scoperture which are triggered when INPS detects a mismatch between the number of workers
declared by the �rm and the amount of taxes paid. This mismatch is not cheating in the
sense that our models intend it: a �rm who wanted to cheat would underreport both the
number of workers and the taxes paid. Moreover, these audits are triggered automatically
and they are not discretionary. So we eliminate them from the sample. A third type of
anomalous audit is the almost 79,000 segnalazioni, �whistleblower audits�initiated following
a complaint, typically by an alleged employee who claims that they were not declared to the
tax authority� in other words, that the �rm underreported its employee count. These audits
are (a) not discretionary, because INPS is required by law to follow up; and (b) they are
based on a piece of information (the whistleblower) which is not contemplated in auditing
models, including ours. Therefore, we eliminate whistleblower audits for our sample.
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B.2 Robustness checks for Section 7.2

Dependent Var: Detection Success

VARIABLES (1) Regions (2) Year (3) <5 employees

number of employees 0.01 0.01 -0.01
(0.353) (0.275) (0.564)

sector 2 0.05 0.04 -0.01
(0.229) (0.278) (0.862)

sector 3 0.04 0.04 -0.03
(0.286) (0.246) (0.494)

sector 4 0.08** 0.08** 0.00
(0.025) (0.020) (0.972)

sector 5 0.05 0.05 -0.01
(0.121) (0.123) (0.890)

sector 6 0.04 0.04 -0.04
(0.260) (0.298) (0.421)

sector 7 0.27*** 0.27*** 0.19***
(0.000) (0.000) (0.000)

sector 8 0.10*** 0.10*** 0.03
(0.008) (0.005) (0.601)

sector 9 -0.00 -0.01 -0.08*
(0.912) (0.786) (0.085)

sector 2 * employees 0.01 0.01 0.04
(0.402) (0.372) (0.130)

sector 3 * employees 0.01 0.01 0.04*
(0.490) (0.484) (0.051)

sector 4 * employees 0.01 0.01 0.05**
(0.388) (0.448) (0.027)

sector 5 * employees 0.01 0.01 0.03
(0.612) (0.580) (0.115)

sector 6 * employees 0.01 0.01 0.05**
(0.263) (0.252) (0.021)

sector 7 * employees -0.00 -0.00 0.04
(0.839) (0.820) (0.107)

sector 8 * employees 0.01 0.01 0.04**
(0.467) (0.484) (0.039)

sector 9 * employees 0.03** 0.03** 0.06***
Continued on next page
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Table 7 -

VARIABLES (1) (2) (3)

(0.019) (0.021) (0.003)
Region 2 0.08***

(0.000)
Region 3 0.19***

(0.000)
Region 4 0.02**

(0.029)
Region 5 0.15***

(0.000)
Region 6 -0.03***

(0.004)
Region 7 0.19***

(0.000)
Region 8 0.04***

(0.000)
Region 9 0.10***

(0.000)
Region 10 0.22***

(0.000)
Region 11 -0.10***

(0.000)
Region 12 0.16***

(0.000)
Region 13 0.05***

(0.000)
Region 14 0.13***

(0.000)
Region 15 0.06***

(0.000)
Region 16 0.20***

(0.000)
Region 17 0.09***

(0.000)
Region 18 0.25***

(0.000)
Continued on next page
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Table 7 -

VARIABLES (1) (2) (3)

Region 19 0.23***
(0.000)

Region 20 0.07***
(0.000)

Year -0.02***
(0.000)

Constant 0.18*** 40.85*** 0.33***
(0.000) (0.000) (0.000)

Observations 151,806 151,806 127,366
R-squared 0.034 0.018 0.011

Robust pval in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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C Numerical Solutions to the Nonlinear System of Equa-
tions (24)

C.0.1 Class below 10

Consider the audit class (a = 0;M = 10) ; which is composed of all the �rms who have true
tax base between 1 and b > 10; and which are audited only when they report below 10. In
this case we can compute that C1; the ratio of honest to strategic �rms among the �rms which
report less than 11 employees in our data, equals 0:6=0:4: We have C2; the average number
of employees reported by �rms who report in (1; 10) ; is given by 3.09 employees. Finally
C3; the total amount evaded conditional on evading a positive amount is 17,683 euros, which
translated into employee-equivalents yields 0.67 employees.

�

(1� �)
�
�+1
�

�� =
0:6

0:4

(1� �)
�
1 +

0:6

0:4

�
�0:67 = 3:09

10

�

�

� + 1
= 0:67

Solution is: f[� = 0:621 51; � = 4: 874; � = 0:484 91]g

C.0.2 Class 11-25

For the audit class identi�ed by audited reports in (a = 11;M = 25), which represent about 9
percent of our sample, we have that C1; the ratio of honest to strategic �rms equals 0:47=0:53:
We have C2; the average number of employees reported, is given by 15.39 employees. Finally
C3; the total amount evaded conditional on evading a positive amount is 29,950 euros, which
translated into employee-equivalents yields 1.13 employees. Solving the system of equations
(24) yields [� = 0:499 37; � = 0:607 88; � = 4: 684 0] : The highest true tax base in the audit
class (unobserved because �rms who report this much are not audited) equals 11+ (25� 11)
(�+ 1) =� = 28:

�

(1� �)
�
�+1
�

�� =
0:47

0:53

(1� �)
�
1 +

0:47

0:53

�
(11 + � � 1:13) = 15:39

(25� 11)
�

�

� + 1
= 1:13
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Rewrite slightly as

�

(1� �)
�
�+1
�

�� = 0:886 79

(1� �) (1:886 79) (11 + � (1:13)) = 15:39

14
�

� + 1
= � (1:13)

Solution is: f[� = 0:499 37; � = 0:607 88; � = 4: 684 0]g

C.0.3 Class 26-50

For the audit class identi�ed by audited reports in (a = 26;M = 50), which represent about 3
percent of our sample of audits, we have that C1; the ratio of honest to strategic �rms equals
0:43=0:57: We have C2; the average number of employees reported, is 36 employees. Finally
C3; the total amount evaded conditional on evading a positive amount is 58,000 euros, which
translated into employee-equivalents yields 2: 19 employees. Solving the system of equations
(24) yields [� = 0:551 45; � = 9: 017 1; � = 4: 643 8] :

Solving the system of equations (24) yields

�

(1� �)
�
�+1
�

�� =
0:43

0:57

(1� �)
�
1 +

0:43

0:57

�
(26 + �2:19) = 36

(50� 26)
�

�

� + 1
= 2:19

, Solution is: f[� = 0:551 45; � = 9: 017 1; � = 4: 643 8]g

The parameter � being greater than 1 will lead to a poor �t of (25) to the data. What we
learn from this is that sometimes, matching the moments in (24) perfectly has a signi�cant
cost in terms of �t. One way around this problem is to relax the matching of the moments in
(24). If we accept the second equation in (24) to equal 35: 235 rather than 36, which seems
like a small cost, then (24) yields a solution which produces a better �t of (25) to the data.
This is done in the next subsection.

C.0.4 Class 26-50 relaxing C2 = 36

Here we follow a di¤erent procedure. We �x � = 1; whereby from the third equation in (24)
we get

24
1

1 + 1
= � (2:19)

58



Solution is: � = 5: 479 5. Substitute this into the �rst equation

�

(1� �)
�
5: 479 5+1
5: 479 5

� = 0:43

0:57

Solution is: � = 0:471 48: Substitute into the LHS of the second equation to get

(1� 0:471 48)
�
1 +

0:43

0:57

�
(26 + (5: 479 5 � 2:19)) = 35: 235:

So if we allow C2 to equal 35: 235 rather than 36, then the parameter constellation we
identi�es solves the �relaxed� system (24). The solution [� = 0:471 48; � = 5: 479 5; � = 1]
produces a better �t of (25) to the data. The implication is that, for this audit class, our
model underpredicts slightly the reported number of employees.

C.1 Plotting Expression (25)

We want to work out expression (25) in the case of Power distribution. Since ���1 (r) =
a+ �+1

�
(r � a) ; we have

f
�
���1 (r)

� @���1 (r)
@r

=

�
1

b� a

��
�

�
�+ 1

�
(r � a)

���1
�+ 1

�

=

�
�+ 1

�

�� �
1

b� a

��
� (r � a)��1 =

�
�+ 1

�

��
f (r) (34)

Then

p� (r) �
�
(1� �) f

�
���1 (r)

� @���1 (r)
@r

+ �f (r)

�
= p� (r) �

"
(1� �)

�
�+ 1

�

��
+ �

#
f (r)

where

p� (r) =
t

� + t

�
1�

�
�+ 1

�

r � a
b� a

���
;

and

f (r) =

�
1

b� a

��
� (r � a)��1 :
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D Details About Counterfactual Section I

In this appendix we describe how we compute b� and then to compute expressions 27 over 26.b� is set so as to match the fraction of �rms audited in our model to aggregate statistics
available from INPS. In our model, the fraction of �rms audited among those that report
between a and M is constructed starting from (25) and is given byRM

a
p� (r) �

h
(1� �) f (���1 (r)) @�

��1(r)
@r

+ �f (r)
i
drRM

a

h
(1� �) f (���1 (r)) @���1(r)

@r
+ �f (r)

i
dr

: (35)

Crude statistics that are publicly available suggest that every year about 2-3 percent of �rms
who declare less than 10 reported employees are audited. When audited, we know from our
data that the average �rm�s books are checked going back somewhat longer than 2 years.
This �backward looking� span of the audit increases the deterrence power of auditing; we
factor in this e¤ect very crudely by setting the �e¤ective�probability of auditing to 5 percent.
Therefore we set expression (35) equal to 5 percent. We substitute out for p� (r) and write
this condition asRM

a

�
1�

�
�+1
�

r�a
b�a
��� � h(1� �) f (���1 (r)) @���1(r)

@r
+ �f (r)

i
drRM

a

h
(1� �) f (���1 (r)) @���1(r)

@r
+ �f (r)

i
dr

=
� + t

t
0:05 (36)

We set t = 0:4 to capture an approximately 40% tax rate on gross wages, and we let �
range freely to achieve the desired equality. The parameter b� so obtained will capture the
33% penalty on the amount underreported, plus additional costs (psychological, legal, etc.)
involved in being found in violation of the tax code. We expect therefore that b� � 0:33.
D.1 Ancillary derivations used to compute expression 27

Expression (27) reads

�

Z b

a

tr � f (r) dr

+(1� �)
Z M

a

�
tr + p� (r)

�
(t+ �)

�
���1 (r)� r

���
� f
�
���1 (r)

� @���1 (r)
@r

dr

= �

Z b

a

tr � f (r) dr

+(1� �)
�
�+ 1

�

�� Z M

a

�
tr + p� (r)

�
(t+ �)

�
�+ 1

�
(r � a)� (r � a)

���
� f (r) dr
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Since ���1 (r) = a+ �+1
�
(r � a) and f (���1 (r)) @�

��1(r)
@r

=
�
�+1
�

��
f (r) ; (27) reads

�

Z b

a

tr � f (r) dr

+(1� �)
Z M

a

�
tr + p� (r)

�
(t+ 0:33)

�
�+ 1

�
(r � a)� (r � a)

���
�
�
�+ 1

�

��
f (r) dr

= �

Z b

a

tr � f (r) dr

+(1� �)
Z M

a

�
tr + p� (r)

�
(t+ 0:33) (r � a)

�
�+ 1

�
� 1
���

�
�
�+ 1

�

��
f (r) dr

= �

Z b

a

tr � f (r) dr

+(1� �)
Z M

a

�
tr + p� (r)

�
(t+ 0:33) (r � a)

�
1

�

���
�
�
�+ 1

�

��
f (r) dr

= �t

Z b

a

r � f (r) dr + (1� �) t
�
�+ 1

�

�� Z M

a

r � f (r) dr

+(1� �) (t+ 0:33)
Z M

a

p� (r)

�
(r � a)

�
1

�

��
�
�
�+ 1

�

��
f (r) dr

Lemma 4
RM
a
r � f (r) dr =

�
�
�+1

�� h
a+ �

�+1
�
�+1

(b� a)
i

Proof. Z M

a

r � f (r) dr

=

�
1

b� a

��
�

Z M

a

r � (r � a)��1 dr

=

�
1

b� a

��
�

�Z M

a

(r � a)� dr +
Z M

a

a � (r � a)��1 dr
�

=

�
1

b� a

��
�

�Z M�a

0

y� dy + a

Z M�a

0

y��1 dy

�
=

�
1

b� a

��
�

"
y�+1

� + 1

����M�a

y=0

+ a
y�

�

����M�a

y=0

#

=

�
1

b� a

��
�

"
(M � a)�+1

� + 1
+ a

(M � a)�

�

#

=

�
1

b� a

��
� (M � a)�

�
M � a
� + 1

+ a
1

�

�
=

�
M � a
b� a

��
�

�
M � a
� + 1

+ a
1

�

�
:
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Since M = a+ �
�+1

(b� a) ; we can rewrite the above expression as�
�

�+ 1

��
�

� �
�+1

(b� a)
� + 1

+ a
1

�

�
=

�
�

�+ 1

�� �
�

�
�+1

(b� a)
� + 1

+ a

�
=

�
�

�+ 1

�� �
a+

�

�+ 1

�

� + 1
(b� a)

�
:

D.2 Audit class below 10

Solving equation (36) numerically based on the parameters calibrated in Section 6, we getb� = 6:87. This means that the perceived cost for being found cheating is estimated to be 6.87
times the amount underreported.

The �rst addend of (27) is the amount of taxes raised from honest �rms; using Lemma 2,

the �rst addend equals �t
h
a+ �

�+1
(b� a)

i
= �t � 3: 918 7 = � � 1: 567 5. Combining Lemma

4 with (34), the second addend of (27) equals (1� �) t
h
a+ �

�+1
�
�+1

(b� a)
i
= (1� �) t � 3:

251 6; this is the amount of taxes paid by strategic �rms.

Finally, the third addend of equation (27) is the money raised from audited cheaters and
equals (1� �) (t+ 0:33) times the following:Z 10

a

0:4

6:87 + 0:4

�
1�

�
�+ 1

�

r � a
b� a

���
� (r � a)

�
1

�

�
�
�
�+ 1

�

�� �
1

b� a

��
� (r � a)��1 dr:

We set the following values as de�nitions into the Scienti�c Word solver: � = 4: 874; � =

0:484 91; b = 12; a = 0 and solve numerically. The integral is evaluated to be equal to
2: 813 2 � 10�2: Therefore the third addend is equal to (1� �) (t+ 0:33) (0:02813). The
total money raised from strategic �rms is the sum of the second and third added, and after
substituting t = 0:4 this amount equals

(1� �) 1: 321 2:

62



D.3 Audit class 11-25

The relevant parameters for this class are [a = 11; � = 0:499 37; � = 0:607 88; � = 4: 684 0] :
The highest true tax base in the audit class (unobserved because �rms who report this much
are not audited) equals 11 + (25� 11) (�+ 1) =� = 28 = b:

Probability of being audited about 2%, double it to 4%.

Replace 0.05 with 0.04 in equation (36) and solve numerically to get b� = 8:447.
The �rst addend in (27) is the amount of taxes raised from honest �rms; using Lemma 2, it

equals �t
h
a+ �

�+1
(b� a)

i
= �t�17: 427 = ��6: 970 8. The second term is the amount of taxes

paid by strategic �rms, and it equals (1� �) t
h
a+ �

�+1
�
�+1

(b� a)
i
= (1� �) t � 16: 296 =

(1� �) �6: 518 4: (see Appendix D.1) for details on all computations in this Section). Finally,
the the third term is the money raised from audited cheaters and is equal to (1� �) (t+ 0:33)
times

Z 25

11

0:4

8:447 + 0:4

�
1�

�
�+ 1

�

r � a
b� a

���
� (r � a)

�
1

�

�
�
�
�+ 1

�

�� �
1

b� a

��
� (r � a)��1 dr:

Solving numerically yields (1� �) (t+ 0:33) 0:038:

The total money raised from strategic �rms in equilibrium is

(1� �) [t � 16: 296 + (t+ 0:33) (0:038)]
= (1� �) [(0:4) � 16: 296 + (0:4 + 0:33) (0:038)]
= (1� �) � 6: 546 1

D.4 Audit class 26-50

Solving equation (36) numerically based on the calibrated parameters in Section 6, we getb� = 6:954.
The �rst addend in (27) is the amount of taxes raised from honest �rms; using Lemma 2, it

equals �t
h
a+ �

�+1
(b� a)

i
= �t� 40: 19 = �� 16: 076 .
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The second term is the amount of taxes paid by strategic �rms, and it equals (1� �) t
h
a+ �

�+1
�
�+1

(b� a)
i
=

(1� �) t � 38:0 = (1� �) � 15: 2 :

Finally, the third term is the money raised from audited cheaters and is equal to (1� �) (t+ 0:33)
times

Z 50

26

0:4

6:954 + 0:4

�
1�

�
�+ 1

�

r � a
b� a

���
� (r � a)

�
1

�

�
�
�
�+ 1

�

�� �
1

b� a

��
� (r � a)��1 dr:

Solving numerically yields (1� �) (t+ 0:33) 0:087:

The total money raised from strategic �rms in equilibrium is

(1� �) [t � 38:0 + (t+ 0:33) (0:087)]
= (1� �) � 15: 264

E Details on Counterfactual Section II

Assume F has a Power distribution. Fix B and consider the class of �simple�audit strategies,
each of which is characterized by bx, T and p: We want to get to a closed form expression for
the revenue (30) as a function of (known parameters and) p alone. To this end, we need to
express bx and T as a function of p: From the budget constraint (29) we get

(1� �)
�bx� a
b� a

��
+ �

�
T � a
b� a

��
=
B

p

Using (28) to substitute for T � a yields

(1� �)
�bx� a
b� a

��
+ �

�
pb� (bx� a)b� a

��
=

B

p�
(1� �) + �

�pb� ��
��bx� a

b� a

��
=

B

p�bx� a
b� a

��
=

B

p
�
(1� �) + �

�
pb� ���

Hence, we have
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bx� a = (b� a)

0@ B

p
�
(1� �) + �

�
pb� ���

1A1=�

(37)

bx = a+ (b� a)

0@ B

p
�
(1� �) + �

�
pb� ���

1A1=�

(38)

T � a =
pb� (b� a)

0@ B

p
�
(1� �) + �

�
pb� ���

1A1=�

(39)

Now let�s turn to the revenue. Expression (30) contains an integral which we want to solve
for analytically. From the proof of Lemma 4 we haveZ x

a

(y � a) � f (y) dy =

�
x� a
b� a

�� �
x� + a

(� + 1)

�
� a

�
x� a
b� a

��
=

�
x� a
b� a

�� �
x� + a

(� + 1)
� a
�

=

�
x� a
b� a

�� �
x� � a�
(� + 1)

�
=

�
x� a
b� a

��
�

(� + 1)
(x� a) :

Substituting into (30) yields

R = (1� �)
�
ta+ p � (t+ �)F (bx) �

(� + 1)
(bx� a) + t (T � a) (1� F (bx))�+ �tE (X) :

Taking into account expressions (37)-(39), we have expressed the revenue as a function of
p only. The term in brackets, corresponding to the revenue raised from strategic �rms, is
plotted in Figure 3.

E.1 Computing the revenue raised with the extremal strategy in
the class below 10

The extremal strategy audits with probability t=
�
t+ b�� all �rms who report less than T (a

threshold yet to be determined) and does not audit any �rm which reports T or more. As

explained in Section 5.1, if p (r) � t=
�
t+ b�� then a �rm with true tax base r will report

truthfully. Therefore, under the extremal strategy there is no cheating among �rms who
report below T; and the success rate of audits is zero. The threshold T is determined by the
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budget constraint. According to equation (35), in equilibrium a fraction equal to

0:05

Z M

a

�
(1� �) f

�
���1 (r)

� @���1 (r)
@r

+ �f (r)

�
dr (40)

of all �rms in the audit class is audited. This equation reduces to

0:05

"
(1� �)

Z 10

a

�
�+ 1

�

�� �
1

b� a

��
� (r � a)��1 dr + �

�
M � a
b� a

��#

= 0:05

"
(1� �) + �

�
10

12

��#
= 0:05 [(1� �) + � (0:915 39)] = 0:05 � 0:947 41 = 0:047;

where we substituted � = 0:621 5. The number 0.047 needs to equal to the fraction of �rms
audited under the extremal strategy. Under the extremal strategy, all �rms (strategic or not)
with tax base below T will report truthfully and be audited with probability t

t+�
: No other

�rm will report in that range. Therefore, the fraction of �rms audited under the extremal
strategy is given by the equationZ T

a

t

t+ b�f (r) dr =
t

t+ b�F (T )
=

t

t+ b�
�
T � a
b� a

��
:

Equating this to 0.047 and solving for T yields

T = a+ (b� a)
 
t+ b�
t
0:047

! 1
�

= 12

�
0:047

0:4 + 6:87

0:4

� 1
�

= 8: 671 0:

The money raised from strategic �rms under the extremal strategy equals the amount de-
clared by �rms with tax base below T; plus the amount declared by �rms with tax base
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greater than T; which is exactly T: Formally,

(1� �)
�Z T

a

trf (r) dr + tT (1� F (T ))
�

= (1� �)
"
t

Z T

a

r

�
1

b� a

��
� (r � a)��1 dr + tT

 
1�

�
T � a
b� a

��!#

= (1� �)
"
t

�
T � a
b� a

��
�

�
T � a
� + 1

+ a
1

�

�
+ tT

 
1�

�
T

12

��!#
= (1� �) t [2: 418 8 + 1: 264 0]
= (1� �) 1: 473 1:

E.2 Other audit classes

We can repeat the same procedure for the other two audit classes. This is done in Appendix
D.3 and D.4. For the audit class 26-50, The results for all audit classes are presented in the
table below.

E.3 Audit class 11-25

According to equation (35), a fraction equal to

0:04

 
(1� �) + �

�
M � a
b� a

��!
= 0:037

of all �rms in the audit class is audited. This number needs to equal to the fraction of �rms
audited under the extremal strategy. Under the extremal strategy, the fraction of �rms
audited is given by the equation

t

t+ b�F (T ) = t

t+ b�
�
T � a
b� a

��
:

Equating this to 0.037 and solving for T yields

T = a+ (b� a)
 
t+ b�
t
0:037

! 1
�

= a+ (b� a)
�
0:4 + 8:447

0:4
0:037

� 1
�

= 23:224:
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The money raised from strategic �rms under the extremal strategy equals

(1� �)
�Z T

a

trf (r) dr + tT (1� F (T ))
�

= (1� �)
"
t

�
T � a
b� a

��
�

�
T � a
� + 1

+ a
1

�

�
+ tT

 
1�

�
T � a
b� a

��!#
= (1� �) t (12: 784 + 4: 219) = (1� �) 0:4 � (12: 784 + 4: 219) = (1� �) 6: 801 2

where the �rst equality follows from Lemma 4.

So, summing up, the money raised from honest �rms is 6: 970 8: That raised from strategic
�rms in equilibrium is 6: 546 1: That raised from strategic �rms under the extremal strategy
is 6: 801 2:

E.4 Audit class 26-50

In this audit class we focus on the parameter constellation corresponding to � = 1. According
to equation (35), a fraction equal to

0:046

 
(1� �) + �

�
M � a
b� a

��!
= 0:042

of all �rms in the audit class is audited. This number needs to equal to the fraction of �rms
audited under the extremal strategy. Under the extremal strategy, the fraction of �rms
audited is given by the equation

t

t+ b�F (T ) = t

t+ b�
�
T � a
b� a

��
:

Equating this to 0.042 and solving for T yields

T = a+ (b� a)
 
t+ b�
t
0:042

! 1
�

= a+ (b� a)
�
t+ 6:954

t
0:042

� 1
�

= 47: 914:

The money raised from strategic �rms under the extremal strategy equals

(1� �)
�Z T

a

trf (r) dr + tT (1� F (T ))
�

= (1� �)
"
t

�
T � a
b� a

��
�

�
T � a
� + 1

+ a
1

�

�
+ tT

 
1�

�
T � a
b� a

��!#
= (1� �) t (28: 537 + 10: 917) = (1� �) 15: 782
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where the �rst equality follows from Lemma 4.

So, summing up, the money raised from honest �rms is 16: 076: That raised from strategic
�rms in equilibrium is 15: 264: That raised from strategic �rms under the extremal strategy
is 15: 782:

69


	DP8901prelims
	DECENTRALIZED DETERRENCE, WITH AN APPLICATION TO LABOR TAX AUDITING

	Taxevasion

