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Abstract

This paper analyzes a dynamic auction in which a fraction of each bid is sunk. Jump bidding

is used by bidders to signal their private information. Blu¢ ng (respectively Sandbagging)

occurs when a weak (respectively strong) player seeks to deceive his opponent into thinking

that he is strong (respectively weak). A player with a moderate valuation blu¤s by making

a high bid and drops out if his blu¤ is called. A player with a high valuation should vary

his bids and should sometimes sandbag by bidding low, to induce lower bids by his rival.

Keywords: Auctions, Asymmetry, Jump Bidding, Blu¢ ng, Sandbagging
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�Another issue related to bidding strategy is whether to be bold or cautious in opening

bidding. The man who strongly desires an item will jump in with both feet, as it were, or

try to rout the enemy by starting out with a high, possibly loud, bid intended to �knock

out�his opponents. Sometimes he even tops his own bid. This approach may discourage

competitors at the outset and prevent them from ever getting caught up in the spirit of

the bidding. In a very di¤erent strategy, a prospective buyer, even though determined to

purchase an item, bids tentatively and cautiously in order to feel out the opposition. He

hopes that by indicating a low regard for the o¤ering he will lull opponents into a false sense

of security.� - Ralph Cassady, Jr.

1 Introduction

The received view in auction theory is that, in English auctions, a bidder should submit a

bid that barely exceeds the previous one by the minimum increment, unless his valuation

is reached, at which point he should stop bidding. This view, however, fails to account for

blu¢ ng and sandbagging, the two well-known bidding tactics described by Cassady in the

introductory quotation. It also fails to account for jump bidding, the phenomenon that, in

many auctions, bidding occurs in repeated jumps.

There are two theories to explain jump bidding. The �rst theory interprets such bids as

coordination devices: Avery (1998), in a common values setting, shows that the opening bid

may be used to coordinate upon the asymmetric equilibrium to be played in a second round.

According to the second theory, jump bidding may follow from the costs of submitting and

revising bids (Fishman (1988), Hirshleifer and Png (1989), Daniel and Hirshleifer (1998)).

This second theory also provides an explanation for the bidding delays one observes in

�spontaneous auctions�such as takeover contests. In takeover contests, or in larger auctions,

such as the U.S. government P.C.S. spectrum auction, bidding costs may be substantial. As

a result, the costs of bidding must be weighed carefully by bidders; hence the delay and the

jump bids.1

1The cost of bidding for big private �nance initiatives in the U.K. is so high, for instance, that it has
led companies to be much more selective about the projects for which they tender, a phenomenon described
by Timmins et al. (2002) for the Financial Times. Besides the cost of obtaining �nancing for the bids,
Hirshleifer and Png mention several kinds of cost of takeover bidding: �(...) fees to counsel, investment
bankers, and other outside advisors, the opportunity cost of executive time.�
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The element common to these two theories is that jump bidding is used to signal one�s

strength in the auction. In Avery�s model, a high opening bid is followed by a less aggressive

strategy by the competitor. When bidding is costly, a high bid is used to deter other bidders

from entering, or remaining in, the bidding contest. In both theories, signaling is monotonic

in the sense that bidders with higher types (valuation or signal) bid more.

We propose an alternative way of looking at signaling in bidding contests. Our main

contribution is to show that non-monotonic signaling can exist. Blu¢ ng and sandbagging

strategies are used by bidders.

We analyze two-round auctions. Two bidders compete for an object. Each player knows

what the object is worth to him, but this valuation is private information. In the �rst period,

one of the bidders has the opportunity to make an opening bid. His rival must then either

match the bid, or quit the auction. If the �rst bid is matched, a sealed bid auction determines

the winner in the second round. In the simplest version of the model, the �rst bidder may

initially submit one of two bids, either high or low.

Bidding high has two potential e¤ects. 1) It may deter the other player from continuing

the auction, allowing the �rst player to win with no further bidding. This is the deterrence

e¤ect. 2) The bid might be covered, which can lead to an escalation e¤ect. If the opening bid

is interpreted as a sign of strength, the second player correctly infers that to have a chance of

winning he has to bid aggressively in the second round. While the deterrence e¤ect bene�ts

the �rst player, escalation makes it more expensive for him to win.

Bidding low, the alternative option, has a sandbagging e¤ect. This kind of bid certainly

does not deter the second player. However, if he interprets the low bid as a sign of weakness

in the �rst player, he may decide to weaken his own bid in the second round, so as not to

waste resources. This reduces the costs of winning and makes sandbagging an attractive

option for players with a high valuation.

In standard signaling games, the sender always tries to convince the receiver that he is

strong; in our terms, that he has a high valuation. In our game, however, the incentives

to signal are more sophisticated. In particular, a player with a high valuation can bene�t

both from being perceived as very strong and from being perceived as very weak. This

leads to complex equilibrium behavior where both direct and inverted signaling are present.

Players with a weak valuation will make low opening bids, while those with intermediate level

valuations will �blu¤�by making high opening bids to achieve deterrence, but withdraw from
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the auction if their bid is called, thereby avoiding escalation. Players with high valuations

will choose randomly between high and low opening bids, enjoying both the deterrence e¤ect

of a high bid and the sandbagging e¤ect of a low one. Thus, the bidding strategies are not

monotonic. The second player�s decision whether or not to cover is less interesting. If the

prize is worth enough to him he will cover; if not he will pass.

Our results apply to any contest in which expenditures or investments are sunk as part of

the bidding process, for example, auctions, legal contests, lobbying contests and technology

races.2 Blu¢ ng is a tactic often used in auctions (See Avery (1998) for several examples).

Sandbagging is often used in legal proceedings, when a litigant withholds legal arguments

until they reach the courts of appeal (see for instance U.S. AirWaves, Inc. vs. F.C.C., United

States Courts of Appeal, No. 98-1266). By waiting to raise arguments and present evidence

in the reply not contained or raised in the moving papers, a defense counsel might �sandbag�

the trial court.

Our result sheds light on two-stage auctions. The importance of two-stage auctions is

now well recognized. Ye (2004) documents a variety of examples of two-stage auctions in

which bidding takes two rounds. The auctioneer typically uses the �rst bid to select the

participants of the second round. For instance, Central Maine�s Power placed its entire

2.110 megawatt asset portfolio for sale in such a two-stage auction. Similarly, in California,

Paci�c Gas and Electricity divested all of its fossil generation plants using such a procedure.

Ye discusses the players�incentives to misrepresent their valuations in the �rst stage. Ye�s

focuses on the impact of the �rst stage on the entry decision (which is assumed to be costly)

of bidders. One way to reinterpret our model is to consider �rst-stage bids as entry costs

and see costly entry as a way to manipulate the beliefs of other potenital bidders.

While Ye models the �rst bid as non-binding, Perry, Wolfstetter and Zamir (2000) con-

sider instead the case in which the �rst period bid serves as the minimal allowable bid in the

second stage, as we do. Ca¤arelli (1998) documents another example of such a two-stage

auction, used for the privatization of the Italian industrial conglomerate ENI. In the �rst

round, all agents submitted sealed bids and the highest two were selected for the second

round. All �rst-round bids were made public, so that signaling becomes potentially impor-

2Consider, for instance, the contest between Boeing and Airbus to develop a super jumbo. The niche is
an appropriate market to be occupied by a single company, and the development costs amount to $12 billion
for Airbus, which are sunk whether or not its plane ends up being preferred to Boeing�s rival o¤ering or not
(The Economist, June 1995).
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tant. Yet Perry, Wolfstetter and Zamir assume that only losing bids are revealed, destroying

thereby incentives to signal. However, they mention that revealing all the bids can have

interesting consequences, for instance of revealing the ranking of valuations. Landsberger,

Rubinstein, Wolfstetter and Zamir (2001) analyze such a game in which the ranking of valu-

ations is known to bidders This does not really address the problem of signaling in two-stage

auctions since it implicitly assumes that �rst-stage bidding has to be monotonic. One of our

main results is that monotonic equilibria would not occur in such situations and we show

that players incentives to misrepresent their valuations in the �rst stage are complex, since

both sandbagging and blu¢ ng strategies are used in equilibrium.

The importance of blu¢ ng and sandbagging strategies is well established in the game of

poker. A detailed comparison with poker models can be found in Section 7. To summarize

brie�y: the incentives are reversed in poker. A player with a strong hand would like his

opponent to submit high bids, and a player who suspects his opponent to hold a strong hand

has an incentive to submit low bids. Auctions exhibit the opposite features. As a result, in

the poker game most closely resembling ours (Newman (1959)), the lowest and the highest

types submit high bids, while intermediate types submit low bids. By submitting high bids

with low types, a player �jams�his opponent�s inferences, so as to encourage bidding. In our

model, it is the intermediate types who are the most aggressive in their initial bids, while

high types are more likely to submit a low bid, so as to win more cheaply afterwards.

The non-monotonic equilibrium is reminiscent, to a certain extent, of the results of Baliga

and Sjöström (2003). They analyze a model of an arms race with a simultaneous cheap

talk stage beforehand. In the two message cheap talk game, they derive an equilibrium in

which both weak and very tough types use the �dove�message while intermediate types

use the �hawk�message. The context is very di¤erent since the arms race model is a game

of coordination and communication is two-sided. Players want to coordinate if possible,

and messages help in that respect. The non-monotonicity comes from the presence of very

tough types who do not look for coordination; they mimic low types (sandbagging) and take

advantage of the situation when their opponent is fooled in believing they are facing a dove.

Another related paper on non-monotonic signaling is Feltovich and al. (2002). In the

context of a standard signaling model, they show that when some additional signal is exoge-

nously provided, there might exist non-monotonic equilibria in which low and high types do

not use the standard, endogenous signal, while intermediate types do. The logic is however
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quite di¤erent. In their model, high types are not trying to fool the other party into believing

that they are a weak type. Rather, they rely on the exogenous signal to be distinguished

from low types and rely on the counter-signal to separate from intermediate types, while

saving on the cost of the endogenous signal.

The particular auction we analyze is related to the dollar auction. The dollar auction

is also a dynamic auction but the prize has a common value for all bidders. However,

Demange (1992) introduces private information in the dollar auction and analyzes �escalation

equilibria�in which players can end up paying more than the value for the prize. This is a

standard result in the war of attrition. This de�nition of escalation is not what we have in

mind: in our setup, a jump bid triggers escalation in the sense that it leads to more aggressive

bidding. After a jump bid, players bid more aggressively than after an ordinary bid. Another

di¤erence is that Demange analyzes a game with two possible types and two possible bids.

Our set-up allows for more complex signaling strategies that can not be analyzed in her

framework.

The structure of the paper is as follows. In the next section we provide some speci�c

examples to illustrate our results. We �rst show that in a two-stage-auction, the incentives

to manipulate beliefs are such that monotonic equilibria cannot exist under the �rst-price

winner-only-pays rule. We then show how signaling through jump bidding takes place in

dynamic auctions under various formats (all-pay �rst-price, winner-only-pays �rst-price)

in the case of discrete types. In Section 3, we introduce the general model. Section 4

characterizes the di¤erent kinds of signaling that might take place in equilibrium. Section

5 shows that under a number of additional assumptions, there exists a unique equilibrium

satisfying a common re�nement. Section 6 shows that our main �ndings also hold when

players are not restricted to a binary choice of opening bid, by deriving an equilibrium in

non-partitioning strategies. Section 7 compares our results to the literature on auctions and

blu¢ ng. Section 8 concludes. Proofs are in appendix.

2 Illustrating the Results: Examples and Counter-Examples

Consider a dynamic auction with two bidders. Bidders have private, independent valuations

for an item. Bidder 1 initially submits a bid, either an ordinary bid of 0, or a jump bid of

K > 0. If he bids K, bidder 2, upon observing this bid, decides either to bid K as well (to
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cover, ormatch) or to quit. If he quits, bidder 1 wins the item. If bidder 2 covers, or if bidder 1

chooses the ordinary bid, a second bidding stage begins: both players simultaneously submit

an unrestricted (non-negative) bid, and the high bidder wins the item. Ties are randomly

broken. A more detailed description of this game is provided in Section 3. The game tree is

depicted in Figure 1.
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Figure 1 : Game tree

Player 1 has a �rst-mover advantage in this game due to the signaling possibilities that

a jump bid o¤ers. The main message of the paper is to show that, under various auction

formats, if the jump bid is not fully deterrent (that is, player 2 covers with some probability

after a jump bid), then the equilibrium signaling is typically non-monotonic, exhibiting

intriguing strategic features. Before describing those features, it is helpful to understand why

the equilibrium cannot be in threshold strategies, even in the familiar case of the (winner-

only-pays) �rst price auction.

2.1 First-price auction: Non-existence of equilibria in threshold

strategies

Since the auction is dynamic, it is necessary to be more speci�c about what we mean by

a winner-�rst-price auction in this context. If Player 1 does not bid K, the winner is

determined by a winner-only-pays �rst-price auction. If Player 1 bids K, and Player 2 quits,

Player 1 wins and pays K, while Player 2�s payo¤ is 0. If Player 1 bids K and Player 2
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covers, the item is assigned in the second stage by a winner-only-pays �rst-price auction

with nonnegative bids. The winner pays the sum of his bids. The loser�s payo¤ is zero. Ties

are broken randomly.

Suppose that the players�valuations are drawn from some common, positive and con-

tinuous distribution over the support [0; 1], K < 1. We argue that no equilibrium in which

Player 1 submits the jump bid with positive probability, and Player 2 covers such a bid with

positive probability, can be an equilibrium in threshold strategies: that is, an equilibrium

in which Player 1 submits the jump bid if and only if his valuation exceeds some threshold

� < 1, while Player 2 covers the jump bid if and only if his valuation exceeds some threshold


 < 1. Suppose indeed that such an equilibrium existed.

Observe �rst that Player 1 cannot submit the jump bid with probability one. Indeed, if

Player 2 does not cover the jump bid for sure, submitting the jump bid yields a negative

expected payo¤ to Player 1 if his valuation is low enough, as he may forced to pay K in the

event that Player 2 concedes. If Player 2 were to cover for sure, then it cannot be optimal

for Player 1 to submit the jump bid for sure as well: otherwise, at least one player must

win with positive probability with an arbitrarily low valuation, yielding again a negative

expected payo¤. Therefore, it must be that � > 0.

We are thus led to consider two possible �continuation games". In one of them, Player 1�s

valuation is drawn from [0; �], while Player 2�s valuation is drawn from [0; 1]. In the second

one, Player 1�s valuation is drawn from (�; 1], while Player 2�s valuation is drawn from [
; 1].3

It follows from standard arguments that, in the �rst case, Player 1 with valuation v1 = �

must submit with positive probability a total bid 0 + b1 that wins with probability p1 = 1,

while if his valuation v2 slightly exceeds �, he submits a total bid b2 (including K) that wins

with probability p2 < 1. As usual, incentive compatibility then requires:8<: p1 (v1 � b1) � p2 (v1 � b2) ;

p2 (v2 � b2) � p1 (v2 � b1) ;

or (p1 � p2) v1 � p1b1 � p2b2 � (p1 � p2) v2;

which is impossible since p1 > p2 and v2 > v1.

3Type � must be indi¤erent across jump bids, so it is irrelevant for the argument whether he submits 0
or K. For de�niteness, we assume he submits 0.
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This means that, if Player 2 were to follow the corresponding strategy, Player 1 would

want to deviate from his own strategy in one of two cases: either it is su¢ ciently cheap and

deterrent to submit the jump bid that it is worth doing so with a signal just below �, or it is

worth �lowballing�in the �rst period by bidding 0 rather than K when the valuation is just

above � in order to win in the second period with a relatively low bid.

We will argue in this paper that such behavior (sandbagging) is in fact part of the equi-

librium. Tractability, however, prevents us from solving for the equilibrium in this general

set-up, at least with a �rst-price auction. We can do so in a discrete example (see below),

and we can also solve more generally in the case of the all-pay auction format. In each case,

the equilibrium will be non-monotonic. In such a non-monotonic equilibrium high types

(the highest valuations) randomize between the jump bid and the ordinary bid. Intermedi-

ate types use the jump bid with probability one, thus creating the non-monotonicity in the

bidding strategies.

To make high types indi¤erent, it is necessary that an ordinary bid and a jump bid

have bene�ts and costs that cancel out. A jump bid has a clear bene�t, which is that it

is sometimes not covered and enables the �rst player to win the auction without further

competition. The relative cost of the jump bid compared to the ordinary bid is the result

of a more aggressive bidding strategy from player 2 after a jump bid. This comes from the

fact that on average, the ordinary bid is used by lower types than the jump bid. A signaling

equilibrium obtains when the deterrence e¤ect and the escalation e¤ect associated with the

jump bid have the same cost/bene�ts ratio as the sandbagging e¤ect associated with the

ordinary bid. Even if player 1 is indi¤erent between initial bids, it does not mean that the

signaling has no e¤ect. His payo¤ is strictly higher when he uses the signaling strategy than

when he does not. The following examples illustrate this result under various auction rules.

2.2 The �rst-price, all-pay auction

We �rst consider the case of a �rst-price, all-pay auction. That is, both winner and loser

forfeit all their bids, including K if that case occurs.

Speci�cally, we assume that bidder 1 has one of three possible types: a low valuation of
1
4
with a probability of 1=10, an intermediate valuation of 1

2
with a probability of 1=10, or a

high valuation of 1. Bidder 2 has either a low valuation of 3=5 or a high valuation of 3=2,

with equal probability. Let the jump bid be K = 1=10. If bidder 2 does not cover, bidder
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1 wins the object and pays K, and bidder 2�s payo¤ is 0. If bidder 2 covers (or if bidder 1

chooses to bid 0), a simultaneous �rst-price all-pay auction takes place in the second stage.

How should bidder 1 choose his initial bid? Suppose he makes a jump bid of K. If bidder

2 perceives it as a sign of strength upon observing it, he may then prefer to quit, allowing

bidder 1 to win at low cost. However, if bidder 2 covers the jump bid, more aggressive

bidding will ensue in the second stage. Suppose, on the other hand, that bidder 1 bids 0.

This bid has no deterrence e¤ect; but if Player 2 perceives it as a sign of weakness, he will

believe that he can win with a �less aggressive�bid in the second stage, thus saving costs.

The following strategy pro�le (along with the corresponding beliefs) is a sequential equi-

librium. Player 1�s low type bids 0, the intermediate type bids K and the high type ran-

domizes between bids, bidding K with probability 7=8. Player 2�s low type covers a bid

of K with probability 1=5 and the high type covers for sure. After bidding K, Player 1�s

intermediate type submits a losing bid (0 in this example) in the second round, whenever

it is reached. An equilibrium displaying such features is referred to as an equilibrium with

covering, formally de�ned in Section 4.

Figure 2 summarizes this equilibrium. Player 1 submits a jump bid with probability 4=5

and Player 2 covers with probability 3=5. Because di¤erent types bid and cover di¤erently,

the players�beliefs vary across subgames. For instance, Player 2 assigns zero probability

to Player 1�s intermediate type in the subgame following an ordinary bid (subgame 0), and

assigns zero probability to Player 1�s low type in the subgame following a jump bid which

is covered (subgame K). Player 1 assigns a higher probability to Player 2�s high type in

subgame K than in subgame 0.

The bidding in the subgames re�ects these beliefs:

- In subgame 0, bids only range from 0 to 7=10. Player 1�s low type bids either 0 or

continuously randomizes over [0; 1=10], while the high type continuously randomizes over

[1=10; 7=10]. Meanwhile, Player 2�s low type continuously randomizes over [0; 2=10], while

the high type continuously randomizes over [2=10; 7=10].

- In subgame K, bids range from 0 to 1. Player 1�s intermediate type bids 0, and the high

type bids either 0, or continuously randomizes over [0; 1]. Player 2�s low type continuously

randomizes over [0; 1=6], while the high type continuously randomizes over [1=6; 1].

From the bidding distributions given in the appendix, it follows that, by bidding 1=10

(= K) in the subgame 0, Player 1 wins with probability 2=5. This implies that Player 1�s
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high type is indeed indi¤erent between both an ordinary and a jump bid: by bidding 0

and then K, he wins with probability 2=5, while by bidding K and then 0, he wins with

probability 2=5 as well (the probability that Player 2 quits).

It follows also from the bidding distributions that, by bidding 0 in subgame K, Player

2�s low type wins with probability 1=6: this implies that his payo¤ from doing so equals
3
5
� 1
6
= K, so that, at the covering stage, he is indeed indi¤erent between quitting or not.

Finally, observe that, if Player 1�s intermediate type were to bid in subgame 0, he would

bid K (since this is the intersection of the low type�s and the high type�s bidding supports),

and win with probability 2=5; as we have seen, this is also his expected payment and prob-

ability of winning if he submits the jump bid. Therefore, it is optimal to submit a jump

bid.
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Figure 2 : Equilibrium with covering

That Player 1�s initial bid is not monotonic in his valuation is a novel and rather surprising

feature of the equilibrium. Somewhat paradoxically, Player 1�s initial bidding strategy cannot

be monotonic precisely because his �overall�probability of winning in the auction must be
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monotonic in his valuation. To see this implication, suppose, for the sake of argument, that

the high type vH always uses a jump bid, and suppose that Player 2 covers (at least with

positive probability) when his valuation is high. Then Player 1�s high type is willing to follow

a course of action (among others) which has a probability of winning strictly less than one

(say �): he bids K �rst, and then, if necessary, submits a bid in the interior of his bidding

support in the second stage say bK .4 At the same time, either of Player 1�s low type or

intermediate type, vL, is willing to follow a course of action that has a winning probability of

one: he bids 0 �rst, and then submits the highest bid ever submitted in the ensuing auction

(since Player 1�s high type always bids K by assumption, one of the lower types must be

Player 1�s highest type in the auction following a bid of 0), say b0. Because preferences satisfy

the single-crossing condition, this yields a contradiction. We would have vL� b0 � �vL� bK
and vH � b0 � �vH � bK).

In fact, in a monotonic equilibrium, the incentive for high types to deviate would be

too great because the bene�t of sandbagging would be very large. Therefore, either Player 2

never covers a bid of K, or, if such a bid is ever observed, the high type must be randomizing

between both initial bids.

In addition, whenever covering occurs with positive probability, some types of Player 1

must be �blu¤ers�, that is, must submit a losing bid in the second round. Otherwise, Player

2�s lowest type who covers would not recoup the cost of covering. Hence, the equilibrium

has to be non-monotonic.

Since the high type randomizes between both initial bids, he is indi¤erent between them.

The bene�ts of a jump bid are that with probability 2=5; Player 2 quits and Player 1 wins

with a bid of only K. However a covered jump bid leads to an escalation, while an ordinary

bid leads to a softening of the bidding competition. Bidding is less aggressive in subgame 0

than in subgame K, because players perceive their opponent as weaker in the former than

in the latter. For example, a bid of 7=10 is su¢ cient to win for sure in subgame 0, while for

a sure win in subgame K it is necessary to bid 1. In the �static�game, the minimum bid

required for a sure win is 173=200, which is strictly in between that of subgames 0 and K.

The strength of Player 1 in a subgame can be measured by the reversed hazard rate

order: as a random variable, Player 1�s valuation in subgame 0 is smaller than in the static

4Recall that, in a �rst-price all-pay auction, the bid distribution has no atom at the upper extremity of
the players�bidding supports.
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game, which in turn is smaller than in subgame K.5

In addition to the equilibrium with covering just described, there exists another sequential

equilibrium, in which Player 1 uses the ordinary bid with probability 1. Such an equilibrium,

in which Player 1 never makes a jump bid and thus Player 2 never needs to cover, is termed

a non-revealing equilibrium.The strategy pro�le supporting such a non-revealing equilibrium

are given in the appendix. Such a pro�le is legitimate if out-of-equilibrium actions are

interpreted as trembles. If bids are interpreted as rational signals, this equilibrium seems

less reasonable, because Player 1�s higher types have an incentive to submit a jump bid.

The idea that out-of-equilibrium actions should be interpreted as rational signals un-

derlies, for instance, the concept of Perfect Sequential Equilibrium, de�ned by Grossman

and Perry (1986), and further discussed in Section 5. Roughly speaking, in our set-up, a

sequential equilibrium fails to be a Perfect Sequential Equilibrium if there exists an out-of-

equilibrium action for Player 1, and associated beliefs for Player 2, such that, if Player 2

were to take a best-response to these beliefs after observing this action, Player 1 would have

an incentive to deviate from the equilibrium and take this action if and only if his type is an

element of the support of these beliefs. (The de�nition of Perfect Sequential Equilibrium,

given in Section 5, imposes additional requirements that are derived from Bayes�rule) In-

deed, Player 1�s intermediate and high types strictly prefer the equilibrium with covering

described above to the non-revealing equilibrium that is described in the appendix: Player

1�s high type�s payo¤ is 60=200, compared to 27=200, and Player 1�s intermediate type�s

payo¤ is 20=200, compared to 5=200: (Player 1�s low type is indi¤erent, as his payo¤ is 0 in

both equilibria.) While this is insu¢ cient evidence per se to rule out the non-revealing equi-

librium as not being perfect sequential, it suggests that such beliefs can be found, because

Player 1�s higher types have, in a sense, a strong incentive to bid K. Indeed, we prove in the

appendix that, for these parameters, the non-revealing equilibrium is not a Perfect Sequen-

tial Equilibrium, and therefore, the equilibrium with covering is the only such equilibrium.

However, if K is much larger (say, K = 1), it is then clearly in the best interest of Player 1

never to use the jump bid.

5For discrete random variables X and Y taking on values in a set A, X is smaller than Y in the reversed
hazard rate order if, for all n 2 A,

P fX = ng
P fX � ng �

P fY = ng
P fY � ng :
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For this speci�c example, observe that Player 2�s high type covers in any equilibrium,

because his valuation exceeds the sum of K and Player 1�s high valuation. Nevertheless,

equilibria with assured deterrence, in which Player 2 never covers, exist for other parameters.

For instance, it is straightforward to check that, if K equals 1
2
instead of 1=10, it is an

equilibrium for Player 1�s to bid K for sure if his type is high, and to bid 0 otherwise, and

for Player 2 never to cover (supported by the belief that, if the bid is covered, Player 2�s

type is high).

In the rest of the paper, we generalize the following ideas to more general environments:

1. For small enough values of K, there exists an equilibrium with covering, in which

Player 1 bids K for sure if his type falls into an intermediate range, and loses for sure

in the second round when covering occurs (blu¢ ng). For higher valuations, Player

1 randomizes between bidding 0 (sandbagging) and bidding K, with a probability

independent of his type. For lower types, Player 1 bids 0 for sure.

2. There exists a unique Perfect Sequential Equilibrium. For small values of K, it is

the equilibrium with covering. For higher values, it is an equilibrium with assured

deterrence, in which Player 1 submits K if his type is high enough, and Player 2 never

covers. For even higher values ofK, the equilibrium is non-revealing, as Player 1 always

submits a bid of 0.

The expected revenue generated by the equilibrium with covering (187=300 w 0:62) is

smaller than the expected revenue in the static (or non-revealing) auction (319=450 w 0:71,
calculations omitted). This result is mainly driven by the ine¢ cient allocation of the item,

whenever blu¢ ng succeeds. As we will see in a more general set-up, when players are

symmetric, the equilibrium with covering always raises a lower expected revenue than the

non-revealing equilibrium, but the loss is not monotonic in the value of the jump bid.

2.3 Other auction formats

This paper is primarily based on �rst-price all-pay auctions, or a slight generalization thereof.

All-pay auctions are remarkably tractable when distributions are asymmetric. It is not

possible, for instance, to analyze this dynamic auction using a (winner-only-pays) �rst-price
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auction with absolutely continuous distributions.6 It is however possible to do so with

discrete types, as we now show.7

Preliminary to providing the example, we should note that two important conditions must

be satis�ed if non-monotonic bidding featuring blu¢ ng and sandbagging is to be achieved.

1. Because the jump bid must credibly signal strength, it must involve a cost that prevents

it from being used by Player 1�s low type. This cost need not be incurred automatically,

as in an all-pay auction, or in an auction with a �xed cost of bidding; it can be of a

probabilistic nature, as in a �rst-price winner-only-pays auction, where the jump bid

has to be paid in the event that Player 2 quits.

2. A player�s bidding strategy must re�ect the perceived strength of his opponent. The

stronger he believes his opponent to be, the more aggressive the bids a player submits.

The second condition is necessary both for blu¢ ng to act as a deterrent and for sand-

bagging to be e¤ective; since a jump bid signals Player 1�s strength, Player 2�s low type

may prefer to quit, even if covering is not costly (as in a winner-only-pays auction), be-

cause it expects a zero continuation payo¤ from covering. Conversely, after an ordinary bid,

both players submit moderate bid, which makes an ordinary bid attractive to Player 1�s

high type. This second condition is a well-known characteristic of winner-only-pays �rst-

price auctions, when distributions are ordered by reversed hazard rate (see Krishna (2002),

p. 47). However, this condition fails in a winner-only-pays second-price auction, where a

weakly dominant strategy is to bid one�s value, independently of one�s beliefs about the

other player. Therefore, sandbagging cannot be e¤ective in a winner-only-pays second-price

auction. Hence, in this case, non-monotonic bidding (and hence equilibrium with covering)

is not possible8.

6In fact, with a standard �rst-price auction and absolutely continuous distributions, the existence of a
Bayesian Nash equilibrium in relevant subgames is unknown, as current existence results require that the
lower extremity of the player�s type support be identical across players. See Krishna (2002), Appendix G,
for details and references.

7A similar equilibrium can be constructed with a second-price, all-pay auction. The details are available
from the authors.

8Arozamena and Cantillon (2004) make a somewhat related point. They analyze a dynamic game in
which a �rm can invest to lower its cost distribution prior to a procurement auction. They show than in the
case of a �rst price auction, this will make the other �rm bid more agressively, while in the case of a second
price auction, investments do not change bidding behavior since �rms bid their true cost.

14



The equilibriumwith covering is robust to most equilibrium re�nements, including Perfect

Sequential Equilibrium, but it may not be unique. Details are in Appendix.

Example 1 (�rst price winner-only-pays auction):

Each player has three possible valuations: v0 = 0, v1 = 1=2 and v2 = 1. Each valuation is

equally likely for player 1: p0 = p1 = p2 = 1=3, where pi is the probability of valuation vi. As

for player 2, his valuation is either v2 with probability 1=2, or v0, v1 with probability 1=4 each

(the main features of the equilibrium only depend on the sum of the low and intermediate

valuation probabilities of player 2). Assume K = 1=10.

There is a (non-monotone) equilibrium with covering: Player 1 bids 0 if his valuation is

v0; he bids K with probability q 2 (0; 1) if his valuation is v1and randomizes with probability
p 2 (0; 1) between 0 and K if his valuation is v2, where q > p. Player 2 covers if and only if

his valuation is 1 (and submits then a strictly positive bid). Finally, if Player 1�s valuation

is v1, he submits a losing bid whenever his initial bid K is covered. As before, intermediate

types v1 are willing to blu¤ in an attempt to deter their opponent, and lose for sure if covering

occurs. The high type v2 is indi¤erent between a jump bid that is deterrent but triggers

aggressive bidding and an ordinary bid that leads to cautious bidding. Of course, covering

is not directly costly to Player 2�s low or intermediate type, but the jump bid changes his

beliefs in such a way that, if he were to cover, his payo¤would then be zero. Therefore, he is

willing to quit. Observe that in this example, player 1�s intermediate type randomizes as well,

although the equilibrium is non-monotonic (q > p). With a continuum of types, both the

type and the number (measure) of blu¤ers become endogenous, so it is natural to interpret

q as a fraction, and p as a true randomization. Examples where q = 1 can be constructed

as well, but involve therefore a nondegenerate choice of parameters (unless one allows more

than three types). Nevertheless, it is important to point out that equilibria with covering

are always mixed equilibria, in the sense that intermediate types (�blu¤ers�) are indi¤erent

between both initial bids, even if in equilibrium they may bid K with probability one. As

with all mixed equilibria, the probabilities are determined by equilibrium considerations, not

by optimality conditions alone.

The intuition for the non-monotonic equilibrium is the same as in the previous example.

The bidding after a jump bid is more aggressive than after an ordinary bid, but with some

probability a jump bid is not covered and the auction is won at a low cost. The non-

monotonic structure of signaling is necessary. Player 1 must be perceived as weaker after an
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ordinary bid. To achieve that, it must be that the intermediate type use the jump bid.

3 The Bidding Game

3.1 The Model

Two risk-neutral bidders (Player 1 and 2) compete for an object prize. The bidders�valua-

tions, denoted respectively v for Player 1 and w for Player 2, are drawn independently from

distributions F and G with support [0; 1]. We assume that F and G are continuously di¤er-

entiable (with densities f and g). Valuations are private information. As in the examples,

the auction is modeled as a two-stage game. In the �rst stage of the game Player 1 makes an

opening bid. For now, we restrict bid choices to be either low (an ordinary bid normalized

to 0) or high (a jump bid K > 0). If Player 1 uses the jump bid, Player 2 decides whether

to cover or not. Covering means bidding K as well. If Player 2 does not cover, Player 1

wins the object. If he covers, or if Player 1�s opening bid is 0, the game enters a second

stage that consists of a simultaneous auction. This second bid is unrestricted: players may

bid any amount at this stage. The winner pays the sum of his bids, while the loser pays

a fraction � 2 (0; 1] of his opening bid and of his second bid.9 This formulation is a slight
generalization of the �rst-price all-pay auction, since we only require that at least a fraction

of the opening bid is sunk. The prize is awarded to the highest bidder. In the case of a tie,

the winner is chosen randomly. There is no discounting, and players�payo¤s are quasi-linear.

3.2 Background to the Model

There are two crucial assumptions for this model: (i) bidding is costly, and (ii) in the last

stage, bidders submit their bids simultaneously.

The �rst assumption has already been discussed in the examples. For a jump bid to

credibly signal strength, submitting such a bid must be costly (recall that this cost can be

in expected terms, as in the example of a winner-only-pays �rst-price auction).

The second assumption captures the idea that no bidder gets the opportunity to bid

�last�. In such an alternative situation, the game can be solved by backward induction.

Given this unfair advantage, the �last�bidder knows precisely how much to bid in order to

9It is only necessary, for our results, that a fraction of the initial bid is sunk.
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win the auction, and his penalized rival has therefore no incentive to attempt to manipulate

his beliefs. Therefore, we view our model as relevant for bidding contests in which there is a

deadline of some sort, and no player is given the exclusive authority to make �nal decisions.

Legal, lobbying and takeover contests are good examples of such situations.

In Section 6, we drop the assumption that the jump bid takes only one value. The other

assumptions of the model are made for simplicity. Allowing for a longer, but �nite, horizon

does not change the qualitative results. In particular, allowing Player 2 to overbid, rather

than only match, Player 1�s jump bid is a special case of such a longer horizon. (The analysis

of the game in which players get the opportunity to simultaneously submit a jump bid is

available from the authors and does not add to the insights of this simpler model.)

3.3 Strategy and Equilibrium

A strategy for Player 1 speci�es, as a function of his type, the probability of a jump bid

in the �rst period, and the bid he makes in the two subgames in which he is called upon

to bid again. That is, let 
 be the measure space that results when we impose Lebesgue

measure on the unit interval I. Then the strategy for Player 1 consists of a measurable

function p1 : 
� [0; 1]! f0; 1g, (s; v) 7! p1 (s; v), which maps a uniform draw from the unit

interval and a valuation into an action, 0 or 1, that corresponds respectively to bidding 0

and to bidding K, and two measurable functions bi1 : [0; 1] ! R+, i = 0; K, which map a

valuation into a nonnegative bid, for each of the subgames i = 0; K. To guarantee that the

equilibria in the subgames may be characterized by �rst-order-conditions, we further assume

that the distribution function in each subgame is piecewise continuously di¤erentiable in the

valuation, that is,
R v
0

R 1
0
p (s; t) dsdF (t) is piecewise continuously di¤erentiable in v.

Player 2�s strategy speci�es whether or not he covers (if required) and how much he bids

in the two subgames, as a function of his valuation w. A strategy for Player 2 consists of

mappings p2, bi2, i = 0; K, with the obvious interpretations.

If Player i�s valuation is s; his bid in the subgame following an opening bid of k = 0 or K

is denoted by bki (s). A (Perfect Bayesian) equilibrium consists of strategies and beliefs for

each player, such that 1) strategies are sequentially rational in that the bid choices maximize

the expected payo¤s given beliefs about the other player�s valuation and strategy, and 2)

beliefs are correct and updated according to Bayes�rule. We call a winning bid one that has

a positive probability of being the highest. A losing bid is any bid which is not a winning
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bid.

4 Characterization of Signaling

In this section, we characterize the general features that signaling may exhibit. Player 1 can

use bids to send information to Player 2 in two ways. (i) He can use a jump bid to deter

Player 2 from entering the auction. (ii) By using an ordinary bid he can hope to induce

Player 2 to believe that he is weak, thus softening the competition in the second stage of the

game. Our main interest lies in the jump-bidding decision of Player 1, characterized by the

function p1. Of course, the bidding decision p1 is closely related to the covering decision p2

by Player 2.

We show that only three kinds of equilibrium exist: equilibrium with covering, non-

revealing equilibrium, and equilibrium with assured deterrence. An equilibrium with covering

is an equilibrium in which Player 1 makes a jump bid with positive probability for some

of (i.e., a positive measure of) his valuations, whereupon Player 2 covers for some of his

valuations. A non-revealing equilibrium is an equilibrium in which Player 1 never makes a

jump bid, and thus Player 2 does not need to cover. Finally, an equilibrium with assured

deterrence is an equilibrium in which Player 1 makes a jump bid with positive probability

for some of his valuations, and Player 2 never covers.

Theorem 1 Every (Perfect Bayesian) equilibrium is either an equilibrium with covering, a

non-revealing equilibrium, or an equilibrium with assured deterrence. More precisely, every

(perfect Bayesian) equilibrium is characterized by numbers � �, 
 2 (0; 1], � 5 �, such that,

Z 1

0

p (s; v) ds =

8>><>>:
0 for v 2 [0; �] ;
1 for v 2 (�; �] ;

2 (0; 1) for v 2 (�; 1] :Z 1

0

p2 (s; w) ds =

8<: 0 for v 2 [0; 
] ;
1 for v 2 (
; 1] :

In addition, 
 < 1 if and only if � < � < 1, in which case Player 1 makes a losing bid in

the subgame K if and only if v 2 (�; �].

In words, Player 1 makes an ordinary bid if his valuation is su¢ ciently low, a jump bid
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for sure (i.e., with probability one) if his valuation falls within some intermediate interval,

and randomizes between the ordinary and the jump bid for his highest valuations. If Player

2 covers, Player 1 bids nothing in the �nal stage if and only if his valuation falls within

the intermediate interval. Player 2 covers if his valuation is large enough. Of course, the

intervals (�; �), (�; 1) and (
; 1) could be empty (a non-revealing equilibrium). When (�; �),

(�; 1) are non-empty but (
; 1) is empty we have an equilibrium with assured deterrence.

Whenever some type of Player 1 bids K and some type of Player 2 covers, the intervals (�; �)

and (�; 1) are non-empty (this characterizes an equilibrium with covering).

Proof. See appendix.

This theorem shows that signaling, in equilibrium, can take only two forms. When the

decision to submit a jump bid is monotone in Player 1�s valuation, the only signaling that

takes place is for deterrence. Players with high valuations use a jump bid that is not matched

by Player 2. This form of signaling corresponds to the rationale for jump bidding already

present in the literature of costly bidding, and is similar to the examples in Avery (1999)

with degenerate second-stage equilibria.

The second form of signaling that may take place is more intricate. Bidders with interme-

diate valuations blu¤. By choosing an early bid that only bidders with high valuations would

otherwise make, they use the deterrence e¤ect generated by bidders with high valuations,

who will bid aggressively even if their bid is covered. Player 2 covers only if his valuation

is high enough, so in that event it is in the blu¤er�s best interest to give up. Bidders with

high valuations sandbag. When they bid low, they use the behavior of bidders with low

valuations. Such a bid leads Player 2 to believe that there is a high probability that he faces

a weak opponent. Acting on this belief, he bids less aggressively in the second round, thus

conserving resources. Of course, both blu¢ ng and sandbagging are rational. They corre-

spond to the two di¤erent ways in which a player can try to manipulate his rival�s beliefs.

The chance that blu¢ ng succeeds may satisfy a bidder with an intermediate valuation, but

not one with a high valuation, who wants to have a high probability of winning, achieved

either through repeated large bids, or through sandbagging. High types randomize and thus

are indi¤erent between both initial bids. This does not mean that the signaling has no e¤ect

since through the manipulation of beliefs, player 1 achieves higher payo¤ than he would if

he was never using the jump bid.

Apart from the case of an all-pay auction, where � = 1, it is di¢ cult to show the
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existence of any kind of equilibrium, because, in any asymmetric continuation game, �rst-

order-conditions reduce to a second-order O.D.E.; this implies, in particular, that showing

the existence of an equilibrium with covering means showing the existence of a solution for

a third-order, nonlinear O.D.E., which we are unable to do.10

In the case of important special case of an all-pay auction (� = 1), it is possible to further

characterize the equilibrium. In particular, the randomization of Player 1�s high types takes

a particularly simple form, as they do all use the same probability:

Lemma 2 If � = 1; then
R 1
0
p (s; v) ds = p for some constant p 2 (0; 1), for (almost all)

v 2 (�; 1] :

Proof. See Appendix.

In addition, it is possible to show the existence and uniqueness of an equilibrium with

covering in the case of the power distribution function, F (v) = G (v) = v�; � > 1, provided

the jump bid is not too large.11

Theorem 3 If � = 1, and the valuations are distributed according to a common power

function distribution F (v) = v�, there exists �K > 0, such that for any K 2 (0; �K] a unique
equilibrium with covering exists.

Proof. See Appendix.

4.1 Sandbagging and blu¢ ng

In an equilibrium with covering, bids sometimes escalate. According to circumstances, Player

1 may either sandbag or blu¤. By de�nition, attempts by the �rst player to deter his

opponent from competing will sometimes fail. When this happens, his jump bid is lost, the

players adjust their beliefs and bidding starts afresh. The intuition behind the structure of

equilibria with covering is the following.

Player 1�s early bid depends on his valuation. (i) Players with low valuations simply

cannot a¤ord a jump bid of K, and hence make an ordinary bid. This is obvious for players

10In fact, even if the distribution of valuations in a subgame happened to belong to some common family
of distributions, a closed-form solution would still not follow (unless � = 1), since the lower ends of the
support would not coincide.
11The uniform distribution is a special case when � = 1. Some arguments involve dividing by �� 1, but

they are easily adapted to the uniform distribution.
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whose valuation is smaller than K, but even players with higher valuations do not automat-

ically use a jump bid, since Player 2 might cover. (ii) Players with intermediate valuations

always make a jump bid. They are blu¢ ng, hoping to deter Player 2 and inducing him to

quit, thus winning. By choosing a jump bid that would otherwise be made only by players

with high valuations, they use the deterrence e¤ect generated by high valuations, who are

prepared to bid aggressively even if their opponent covers. Player 2 will cover only if he has

a su¢ ciently high valuation, so in that event it is in the blu¤er�s best interest to give up.

Jump bidders with intermediate valuations never bid further if covering occurs. (iii) High

types randomize. They are indi¤erent between a jump bid and an ordinary bid. Hence, they

sometimes try to deter Player 2, and sometimes keep a low pro�le. This second behavior is

motivated by sandbagging: Player 2 falsely believes that he is facing a weak opponent and

hence bids moderately, allowing Player 1 to win at low cost.

The covering decision by Player 2 is simple. Players with low valuations do not cover,

whereas those with high valuations do. Note that the �lowest� type who decides to cover

beats all blu¤ers. Being the lowest type to cover, he only wins if Player 1 bids zero. Player

2�s covering decision is thus, for some threshold 
: In the second period, players update

their beliefs using Bayes�rule and play a �rst-price all-pay auction. There are two possible

subgames: either Player 1 paid K and Player 2 covered, or Player 1 has bid 0.

Figure 3 depicts the bids in the subgame after a jump bid for the case of the uniform

distribution (� = 1). The dashed line is bK2 and the connected line is b
K
1 .

0:2 0:4 0:6 0:8 10

0:5

bK1
bK2

� � 


Figure 3 : Bid functions after a jump bid

Similarly, Figure 4 depicts bids in the subgame following an ordinary bid.
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0:3

bK1

bK2

� �

Figure 4 : Bid functions after an ordinary bid

These �gures aid the understanding of why players with high valuations are indi¤erent

between both bids. In subgame K, type � of Player 1 wins against all types below 
 (who

do not cover). In subgame 0, type � bids K and beats all types below 
; who also bids K.

Those of Player 10s types that are larger than � win against the same types of Player 2 in

both subgames. Two incentives explain Player 10s behavior when he has a high valuation.

On the one hand, he motivates less aggressive bidding by making an opening bid of 0. On

the other hand, by bidding K; he could win without further bidding. The thresholds are

such that, ex ante, players with high valuations �nd both bids equally attractive.

Note that intermediate and high types are in fact indi¤erent between initial bids, and

that the initial bids do not change the outcome of the auction. However, the signaling

strategy used by player 1 is e¢ cient in the sense that he does better than in a static auction.

Sandbagging and blu¢ ng strategies are present for equilibrium reasons and not because

there exist strict incentives to use them. We now analyze in more details how the signaling

equilibrium changes the payo¤ of players.

4.2 Winners and Losers

Who wins and who loses in this game? The natural benchmark is the simultaneous, static,

�rst-price all-pay auction, in which all bids are sunk and the highest bidder wins. In an

equilibrium with signaling, Player 1�s intermediate valuations are better o¤ than in the

static auction. They take advantage of high valuations since they can use the deterrence

e¤ect of the jump bid. To see that they are better o¤, note that the smallest type of Player
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2 that covers is higher than the intermediate types (the blu¤ers). That means that in an

equilibrium with covering intermediate types have a higher probability of winning than in the

static auction, making them better o¤. High valuations are also better o¤. They randomize

their initial bids. They take advantage of the deterrence e¤ect when they use the jump

bid and take advantage of the sandbagging e¤ect when they use the ordinary bid. (The

calculations justifying these claims are omitted - They are very similar to those in the proof

of theorem 4). It is not surprising that the intermediate and high valuations bene�t from

the opportunity of bidding early. Losers are found among the low valuations, who are hurt

by the high valuations who use the ordinary bid, as this exerts an upward pressure on bids

in that subgame. The situation is reversed for the second player. High valuations may have

to �rst reveal themselves through the cover, which is sunk. Low valuations, however, are

able to better adjust their bid, which enables them to avoid wasting resources when a high

bid reveals the �rst player to be at least of the intermediate valuation.

We believe that these results on winners and losers derived for all-pay auctions extend

to other auction formats (as was illustrated in the examples of section 2).

In some applications, one may want to maximize the revenue of the game, i.e., the total

expected payments of the players. An example of such an application is lobbying, from the

politician�s point of view. In others, one may want to minimize it; for example, in military

con�icts. With respect to revenue maximization, as the static �rst-price, all-pay auction is an

optimal auction, by the Revenue Equivalence Theorem (See Myerson (1981)), it is obviously

best to set K = 0, so that the dynamic game essentially collapses to the static one.12 Of

course, this is valid only as far as the initial distributions of valuations are the same for

both players. When bidders are asymmetric, the static all-pay auction is not optimal and

the dynamic auction could generate higher revenues. It is straightforward to show that a

moderate, intermediate value of K minimizes revenue.

12The all-pay auction is the optimal auction when distributions are symmetric and regular and no reserve
price can be used by the seller. Symmetry is assumed in our set-up and the power distributions we use in
our analysis also satisfy the regularity (or increasing virtual valuations, x� 1�F (x)

x ) condition.
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5 The structure of equilibria

Equilibria with covering are certainly the most interesting ones, displaying intriguing strate-

gic features. In this section, we �rst characterize non-revealing equilibria and equilibria with

assured deterrence.13 We then introduce an equilibrium re�nement (Perfect Sequential Equi-

librium) that yields a striking existence and uniqueness result, where the selected equilibrium

depends on the particular value of the jump bid K.

5.1 Non-revealing Equilibria

In a non-revealing equilibrium, the �rst player always makes an ordinary bid. The game

is then essentially equivalent to a static, �rst-price all-pay auction. This equilibrium is

reasonable when K is very large, so that the high bid is unattractive. On equilibrium path,

the bids are b(v) = �
�+1

v�+1: For K � �
�+1

; this equilibrium does not even depend on out-

of-equilibrium beliefs and bids. Indeed, bidding K gives at most v �K to type v of Player

1 which is less than v�+1.
�+1

; the payo¤ he receives in a non-revealing equilibrium. Hence, any

belief would do to ensure that a non-revealing equilibrium exist.

5.2 Equilibria with Assured Deterrence

In an equilibrium with assured deterrence, the �rst player sometimes uses a jump bid that

the second player never covers. The �rst player must follow a �threshold�strategy: he bids

high if and only if his valuation is su¢ ciently high. This kind of equilibrium makes sense

for relatively high values of K. Although a high bid has an assured deterrence e¤ect, it is

costly enough to be chosen only by the highest valuations of Player 1. Player 2 has therefore

two good reasons to give up after a high bid: covering is expensive, and the opponent is

strong. Observe in particular that the second player does not cover even if his valuation is

one, i.e. even if he is certain to have a higher valuation than the �rst player�s. This is due

to the asymmetry between players. When the second player has the opportunity to cover,

his updated beliefs are pessimistic after the jump bid. Denote the threshold by �. Solving

for h, and computing the bid of type �, after a change of variable and simpli�cation it must

13We retain the assumption of all-pay auctions and power-function distributions used in the previous
section.
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be that:

K =
�

�� 1

Z 1

1��
x

1
��1

�
x� (1� �)

�

� 1
��1

dx:

Observe that the derivative with respect to � of the right-hand side is equal to

�

(�� 1)2
Z 1

0

x
1

��1

�
x� (1� �)

�

� 1
��1�1 1� x

�2
dx > 0:

Therefore, a solution � 2 (0; 1) to the equation exists provided that

Z 1

0

�x�dx =
�

�+ 1
= K:

To complete the description of the equilibrium we must specify beliefs held by Player 1 in

case Player 2 covers that lead to a payo¤ for Player 2 smaller than K. When we specify that

Player 1 hold beliefs that Player 2�s type are distributed according to a power distribution

on [
; 1] ; and compute the limit payo¤ after covering when 
 tends to 1, we get:

lim

!1

�� � ��

1� ��
� 
 =

�
(1� ��) ��1

�
+ 1
� �
��1 � ��

1� ��
:

It is then enough that these payo¤s are smaller than K for an equilibrium with assured

deterrence to exist. The exact bounds on K can be found in the appendix in the proof of

theorem 4 , in which we construct Perfect Sequential Equilibria that are also Perfect Bayesian

Equilibria.

5.3 Existence and Uniqueness of a Perfect Sequential Equilibrium

Since all three types of equilibria are possible, which one is most likely to emerge? Obviously,

this depends on the value of the parameter K. (Perfect Bayesian) Equilibria with covering

exist if and only ifK 5 �K, equilibria with assured deterrence exist if and only ifK < �
�+1
, and

non-revealing equilibria always exist. However, the beliefs used to construct non-revealing

equilibria for low K are not plausible. Such equilibria make sense for large K, when early

bidding is not worthwhile, but seem unreasonable otherwise. The Intuitive Criterion does

not have any bite in this game because, while it constrains the support of beliefs that can

be held after a deviation, it does not impose any restriction on the relative likelihood of
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the valuations that belong to this support. With a continuum of valuations, this leaves

considerable leeway.

One might wish to impose the condition that, if a player has incentives to deviate for two

distinct valuations, his opponent�s beliefs after observing such a deviation should preserve the

relative likelihood of these valuations. This is the main idea behind Perfect Sequential Equi-

librium (P.S.E.), de�ned by Grossman and Perry (1986). The logic behind this re�nement is

straightforward. Fix a Perfect Bayesian Equilibrium and suppose that a player deviates. His

opponent hypothesizes that the move was made by some subset C of the player�s valuations,

and revises his belief according to Bayes�rule conditional upon the player�s valuation being

in C. If the Perfect Bayesian Equilibrium that follows given these beliefs is preferred to the

original equilibrium by precisely the valuations in C, then the original equilibrium fails to

be perfectly sequential. The point is that this deviation allows the player�s valuations in C

to separate themselves convincingly from the other valuations, so that it is not credible for

his opponent to hold any other belief after such a deviation. This eliminates equilibria based

on such beliefs. This re�nement is inspired by a forward induction argument. Deviations

should be interpreted not as trembles, but as rational signals to in�uence beliefs.

For the de�nition of P.S.E., let  j
�
or �j

�
be the beliefs of Player j about Player i 6= j;

and Ti and Tj the types spaces.

De�nition 1 A Perfect Bayesian Equilibrium (P.B.E.) is a Perfect Sequential Equilibrium

(P.S.E.) if, for all Players j, and all their possible deviations, there exists no P.B.E. of the

subgame following the deviation, with beliefs  j and  i immediately prior to the deviation,

and beliefs �j and �i after the deviation such that:

1. �j (t) =  j (t) for all t 2 Ti,

2. �i (t) = 0 if  i (t) = 0 or if t 2 Tj�s expected payo¤ in the P.B.E. of the subgame

(following the deviation) is strictly smaller than his expected payo¤ in the original

P.B.E.14, and �i (t) > 0 if  i (t) > 0 and t 2 Tj�s expected payo¤ in the P.B.E. of the
subgame is strictly larger than his expected payo¤ in the original P.B.E.,

14Here and in the remainder of the de�nition, the expected payo¤ in the original P.B.E. should be under-
stood as Player 1�s expected payo¤, when he follows the strategy prescribed in the original P.B.E, conditional
on the node where the considered deviation occurs is reached.
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3. �i(t)
 i(t)

= �i(t
0)

 i(t
0) whenever �i (t

0) > 0 and �i (t) > 0; for t 2 Tj whose payo¤ in the P.B.E.
of the subgame is strictly larger than his expected payo¤ in the original P.B.E., with

equality if t0 2 Tj�s payo¤ in the P.B.E. of the subgame is strictly larger than his

expected payo¤ in the original P.B.E..

Condition (1) states that the deviator should not revise his beliefs, since he has not

learnt anything about his opponent. Condition (2) places restrictions on the support of the

beliefs to be considered: this support should (a) include players who are strictly better o¤

in the P.B.E. following the subgame, given those beliefs, than in the original P.B.E., and

(b) exclude those who are strictly worse o¤. Condition (3) states that, except possibly for

deviators that are indi¤erent to the deviation, whose likelihood may possibly decrease, the

deviators�relative likelihood should not be altered.

The following theorem establishes the structure of P.S.E. in this game.

Theorem 4 For each K = 0, there exists a unique P.S.E. This P.S.E. is the equilibrium

with covering for K < �K, the equilibrium with assured deterrence for �K 5 K < �
�+1
, and

the non-revealing equilibrium otherwise.

Proof. See Appendix.

This result, illustrated in the following �gure, is intuitive. For large K, deterrence is too

costly and the �rst player does not take advantage of this opportunity. For intermediate K,

deterrence is e¤ective. Given the entry cost that it represents and the signal of strength that

it conveys, a high bid is sure to deter the second player. Finally, for low values of K, a high

bid is not always deterrent and the equilibrium exhibits covering.

-

equilibria
with covering

equilibria
with assured deterrence

nonrevealing
equilibria

0 K̄ �/�+1 1 K
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6 Endogenous choice of jump bid

An important limitation of the analysis so far is that the jump bid, K, is exogenous. Since

the level of the jump bid determines which type of equilibrium obtains, it is important to

understand whether jump bidding also occurs when the �rst player may submit any jump

bid he pleases. Avery looks at this problem in Theorem 4.7.; given the monotonic structure

of jump bidding in his framework, endogenizing the jump bid leads to an equilibrium in

which the behavior in the limit is just a standard second-price auction without jump bid.

We show that endogenizing the jump bid does not lead to a degenerate equilibrium in our

framework. There exists a natural counterpart to the equilibrium with covering that was

obtained previously. For simplicity, we analyze the case of uniform distribution (� = 1).

Features of such an equilibrium can be deduced from the following observations:

First, Player 1 uses at most one jump bid that is deterrent with probability one. It would

otherwise be pro�table to reduce such a bid to the lowest level su¢ cient for sure deterrence.

This deterrent bid is obviously an upper bound on all bids made.

Second, since Player 2 covers if and only if his valuation is su¢ ciently large, it must be

that this threshold increases with the opening bid. Suppose, on the contrary, that there are

two opening bids k1 < k2, and associated thresholds 
1 = 
2. Then the lowest type v of

Player 1 bidding with positive probability k2 had better bid k1, since his payo¤ is v � 
2� k2
which is strictly smaller than v �
1�k1 (Notice that, being the lowest type of Player 1 in the
subgame following an opening bid of k1which is covered, his payo¤ is zero in that subgame).

Third, given the single-crossing property of expected pro�ts, the in�mum over types of

Player 1 who bids k with positive probability is an increasing function of k. Moreover, it

can be shown that these lowest types bid 0 with probability one in the subgame that might

occur after a bid of k. They correspond to the blu¤ers of the previous section.

Fourth, for any k that Player 1 bids without deterring his opponent, the support of the

types of Player 1 bids k with positive probability must include 1. Suppose instead that for

such a level k, this support has maximum �m < 1. Suppose further, as can be shown, that

expected pro�ts �(�) are continuously di¤erentiable in types, and that there exists " > 0

and a bid k0 2 [0; 1] below the deterrent bid, such that all types in ( �m; �m+ ") bid k0 with

positive probability. Consider m = �m + dv, where dv < ". Since type m, by bidding k and

bidding then, if necessary, as much as �m, obtains �( �m) + dv, it must be that d�( �m) =dv is
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larger than 1. On the other hand, by bidding k0, the marginal pro�t of type m (which by

virtue of the envelope theorem is his probability of winning) is strictly smaller than 1, for

such a bid is covered with positive probability and type m is not the largest type of Player

1 in such a subgame. Hence, if the support of types bidding k does not include 1, higher

types can pro�tably deviate by bidding k and bidding afterwards, if necessary, the minimum

to win.

Finally, conditional on a bid k, there must be a strictly positive probability that Player

1�s bid in the subgame that possibly follows is 0, for otherwise the lowest types supposed

to cover would not �nd it worthwhile. Given these considerations, we have the following

theorem:

Theorem 5 There exists an equilibrium with endogenous choice of jump bid. The support

of types making a given, non-deterrent, bid k must be an interval [� (k) ; 1], where � (�)
is increasing in k. If k is covered, type � (k) bids zero while higher types bid actively. The

conditional distribution assigns strictly positive weight on � (k), but is atomless above. Thus,

type v of Player 1 randomizes his early bid: with positive probability p(k), he bids k = ��1 (v).

He continuously randomizes on [0; ��1 (k)) according to a density  (v; k).

Proof. See Appendix.

Let us de�ne � (k) as

� (k) = p (k) +

Z 1

�

 (s; k) ds.

Hence, d� is the density over Player 1�s types who bid k, and is well de�ned as long as p

and
R 1
�
 (s; k) ds are of the same cardinality, that is, as long as 0 <

R 1
�
 (s; k) ds < 1.

p (k) =� (k) is thus the probability, conditional on observing k, that Player 1 is of type � (k).

In the equilibrium that we derive, type � bids 0 in the subgame k, and no other type bidding

k bids 0 thereafter. Hence, p (k) =� (k) is the conditional probability that Player 1 bids 0 in

the subgame k. In other words it represents the proportion of blu¤ers among types who bid

k in the �rst period.

It is interesting to note that p (k) =� (k) increases monotonically in k, ranging from 0 to

k: This means that the higher the jump bid, the larger is the proportion of blu¤ers among

the types who made this bid. Also, for any k 2
�
0; �k
�
, � (k) = 
 (k) ; which contrasts with

the case where K was unique and exogenous: the blu¤ers are of higher type than the lowest

types of their opponent. In addition, one might expect second period bids of Player 1 to be
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a decreasing function of the jump bid. This need not be so. For low k, small increases have

large e¤ects on 
. For a large type v of Player 1, that means that increasing slightly the �rst

period bid (starting from a small one) strongly increases the probability of winning without

bidding in the second period. For him to be indi¤erent ex ante, it must be that in the case

that Player 2 decides to cover, pro�ts are lower, that is, his bid is larger. The randomization

can be seen in Figure 5, where darker areas correspond to larger probabilities (that is, to

larger values of  (dx; dk)).

In this equilibrium, signaling has a very continuous form. After observing the opening

jump bid, the second Player has gained information about Player 1�s type. He can rule

out some very low types who never use that particular opening bid, but his beliefs remain

imprecise: to every bid there corresponds an interval of possible types. Nevertheless, some

information is revealed. The likelihood of the various types changes. After a given bid, some

types appear more likely than others. This type of signaling was discussed in Weber (1994).

Weber studies �non-partitioning strategies�which partially reveals information without in-

ducing posterior partitioning of the players�type spaces. The reason that signaling takes

this form is that with a continuum of potential jump bids, a monotonic equilibrium perfectly

reveals Player 1�s type. This leads to degenerate second period bidding in which Player 2

would certainly win the auction. This is exactly what happens in the model proposed by

Daniel and Hirshleifer. They exhibit a separating equilibrium in which a continuum of jump

bids is used. However, this perfectly reveals the bidder�s valuation. The other bidder then

reacts by giving up the bidding or by using a bid just large enough to win the auction. The

logic is the same in Avery�s model when he allows for a large number of potential jump bids

(Theorem 4.7.). The equilibrium is monotonic and in the limit corresponds to the static

second price auction.

We believe that the structure of signaling analyzed in our model captures well the in-

formation transmission that takes place in bidding auctions: it is a mixture of aggressive

bidding to intimidate competitors (blu¢ ng) and of cautious bidding to lull them into a false

sense of security (sandbagging). This form of signaling remains present when the choice of

jump bids is endogenous and thus seems quite robust.
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Figure 5: Randomization  (x; k) + p (k)

7 Discussion

The reader has probably noticed the resemblance between our game and the game of poker,

and indeed, the main paradigm used by game theorists to discuss informational questions in

a rigorous framework has been poker. Variations of this game have been studied by Borel

(1938), Von Neumann and Morgenstern (1944), Nash and Shapley (1950), to name just a

few. However, the game we have discussed here is based on di¤erent assumptions, played

using di¤erent strategies and gives di¤erent results. Let us brie�y review these di¤erences

in turn.

Poker is a zero-sum game. In the case of a showdown, the winner is decided by the

players�hands, which are beyond their control. That is why poker is said to be not about

managing cards, but money. Models which place restrictions on how much can be won or lost

by a player do so only to ensure tractability. A poker player can win whatever his opponent

spends; bets made in early rounds a¤ect players�behavior not only by a¤ecting their beliefs

but by raising the stakes.

In our game, on the other hand, winning is about managing the trade-o¤ between the

probability and the cost of winning. It is a non-zero sum game in which what a player spends
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is lost for everybody, and bids have no a¤ect on the stakes. This makes it possible to study

the expected bids of the auction and its e¢ ciency properties.

To discuss and compare the results, it is helpful to recall a distinction introduced by

Von Neumann and Morgenstern. In the Theory of Games and Economic Behavior (1944),

they identify two motivations for blu¢ ng in poker: the �rst one consists in bidding high

or overbidding to created a (false) impression of strength, thus conceivably inducing one�s

opponent to pass. The second stems from the need to create uncertainty in the opponent�s

mind as to the correlation between bids and hands. In their own words, �The �rst is to give

a (false) impression of weakness in (real) weakness, the second is the desire to give a (false)

impression of weakness in (real) strength�. Blu¢ ng pays o¤ because it sometimes induces

the other player to believe that his opponent�s hand is, in reality, strong, thereby exerting a

deterrent e¤ect, and because, at other times, it induces him to raise, hoping that the hand

is terrible while it is actually very good. By blu¢ ng, you can win a lot with a bad hand.

Without, you will only win very little, even with a good hand.

In models of poker similar to that proposed by Von Neumann (see Karlin and Restrepo

(1957), Newman (1959) and Sakai (1986) for extensions), blu¢ ng is optimal when a player�s

hand is really bad, and not middle-range. By contrast, in our model players with low

valuations do not blu¤ because it is too expensive to do so. As in poker, blu¢ ng pays o¤

because it may deter the opponent from competing further. Unlike poker, however, a player

who bids high with a high valuation has nothing to gain by confusing his opponent�s beliefs.

This may lead the other player to �call�, a disastrous outcome for both players. A player

with a moderate valuation gains an advantage by mimicking the behavior of a high valuation

player.

Sandbagging is relatively rare in poker. We �nd it in Nash and Shapley (1950)�s three-

player poker model. In this model all hands belong to one of just two categories: high and

low. The �rst two players may bid low, even if they have strong hands, so as to induce the

third one to raise the stakes by bidding high. As with blu¢ ng, the confusion of beliefs this

generates continues to be bene�cial even when their hands are actually low. Sandbagging

in our model has the opposite motivation: the aim is persuade the other player to bid

low, which allows the sandbagger to win at moderate cost. This strategy is particularly

attractive to a player with a high valuation, for whom winning is especially important.

Sandbagging exploits the behavior of players with low valuations. By copying this behavior,
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the sandbagger induces his opponent to bid cautiously so as to avoid potentially unnecessary

expenditure. The uncertainty created by sandbagging leads the second player to make a

stronger response to an opening bid than he would if he could be sure he was facing a player

with a low valuation. As a result sandbagging damages players with low valuations.

Avery considers a similar two-stage auction with a¢ liated values. In his model, players

choose simultaneously between an ordinary bid and a jump bid. (In an extension, players

may choose from a �nite set of more than two possible opening bids.) For a given pair of an

�aggressive�bidding function triggered by an unmatched jump bid and of an �accommodating�

bidding function used in the second-stage in the event of a matched jump bid, Avery shows

that there exists a unique symmetric equilibrium of the two-stage auction, in which signaling

takes place in the �rst-period: a player�s �rst-stage strategy is characterized by a threshold.

The player submits the jump bid rather than the ordinary bid if and only if his signal exceeds

this threshold.

While our model is very similar to Avery�s, focusing on independent private values raises

the di¢ culties that he points out (p. 186): there is no fear of the winner�s curse and it

remains a dominant strategy to bid up to one�s true value in response to a jump bid. By

introducing bidding costs, as in Daniel and Hirshleifer, we obtain results quite di¤erent from

Avery�s. In particular, the opening bid strategy is non-monotonic.

Daniel and Hirshleifer analyze an in�nite horizon, alternating-move game in which players

must either match (or overbid) their rival�s latest bid, or pass. The auction ends when a

player passes. Players�valuations are private and independently distributed. Submitting

or revising a bid entails a �xed cost, paid independently of the �nal outcome. Daniel and

Hirshleifer show that there exists an equilibrium in which the �rst bidder opens with a fully

separating (monotonic) bid, which induces his rival either to pass, or to match if his valuation

is high enough. If he matches, the �rst bidder then passes. See Daniel and Hirshleifer and

discussions in the related literature on takeover bidding contests.

8 Concluding Remarks

The importance of jump bids is evident in the literature on auctions. Such bids are used to

signal strength and deter competitors from bidding further. However, as Cassady points out,

signaling in auctions can take another form and have another rationale. Cautious bidding
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can lull competitors into a false sense of security. We analyze a model in which both forms

of signaling are used in equilibrium. Costly bidding (in the sense that part of the bids are

sunk), and a last stage in which bidding is simultaneous, are the two central ingredients

necessary to obtain this type of signaling. Our theory complements Avery�s model of jump

bidding by introducing a new explanation for observing jump bids. We show that this type

of signaling is robust to the endogenous choice of jump bids. Blu¢ ng and sandbagging are

used simultaneously in an equilibrium with a continuum of equilibrium jump bids. Revelation

of information takes a restrictive and disjointed form. When players use non-partitioning

strategies, à la Weber (1994), observing a jump bid changes the likelihood of types, making

some types more likely following the observation of a certain bid. Note that Rosen�s (1986)

informal analysis leads to di¤erent predictions. Rosen conjectures that a strong player wants

his rival to think his strength is greater than it truly is, thereby inducing him to exert less

e¤ort, and that the same applies to a weak player in a weak �eld; a weak player in a strong

�eld seeks, on the other hand, to give out signals showing that he is even weaker than he

actually is, thereby leading his rival to slacken o¤.
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Appendix

A Examples and Counterexamples: Details

The �rst-price all-pay auction:

The equilibrium with covering As described in Section 2, Player 1�s low type bids 0,

Player 1�s intermediate type bids K, and Player 1�s high type randomizes between 0 and K,

bidding K with probability 7=8. Player 2�s low type covers with probability 1=5.

Let v0 = 1
4
, v1 = 1

2
, v1 = 1, w1 = 3=5 and w2 = 3=2. Denote by F 0 (�; vi) (FK (�; vi))

the bidding distribution of Player 1�s type vi in subgame 0 (respectively, in subgame K).

Similarly, let G0 (�;wi) (GK (�;wi)) denote the bidding distribution of Player 2�s type wi in
subgame 0 (respectively, in subgame K). We have:

F 0 (b; v0) =
2

3
+
10

3
b, b 2 [0; 1=10] ; F 0 (b; v2) =

8<: 10
3
b� 1

3
; b 2 [1=10; 2=10] ;

1
15
+ 4

3
b, b 2 [2=10; 7=10] ;

G0 (b;w1) =

8<: 8b, b 2 [0; 1=10]
3
5
+ 2b, b 2

�
1
10
; 2
10

� , G0 (b;w2) = 2b� 2
5
, b 2 [2=10; 7=10] :

FK (0; v1) = 1, FK (b; v2) =

8<: 1
21
+ 40

21
b, b 2 [0; 1=6] ;

5
21
+ 16

21
b, b 2 [1=6; 1]

;

GK (b;w1) = 6b, b 2 [0; 1=6] , GK (b;w2) =
6

5
b� 1

5
, b 2 [1=6; 1] .

The non-revealing equilibrium In the non-revealing equilibrium, Player 1 bids 0 inde-

pendently of his type. Let F (�; vi) (G (�;wi)) denote the bidding distribution of Player i�s
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type vi (respectively, Player 2�s type wi) in the subgame following a bid of 0. Then:

F (b; v0) =
50

3
b+

7

12
, b 2

�
0;
1

40

�
, F (b; v1) =

50

3
b� 5

12
, b 2

�
1

40
;
17

200

�
;

F (b; v2) =

8<: 25
12
b� 17

96
, b 2

�
17
200
; 73
200

�
;

5
6
b+ 67

240
, b 2

�
73
200
; 173
200

�
:

G (b;w1) =

8>><>>:
8b, b 2

�
0; 1

40

�
;

4b+ 1
10
, b 2

�
1
40
; 17
200

�
;

2b+ 27
200
, b 2

�
17
200
; 73
200

�
;

G (b;w2) = 2b�
73

100
, b 2

�
73

200
;
173

200

�
:

Payo¤s are �1v0 = 0, �
1
v1
= 1

40
, �1v2 =

27
200
, �2w1 =

7
200
and �2w2 =

127
200
.

To support this equilibrium, we need to specify Player 2�s beliefs if he observes K.

Suppose that if he were to observe a jump, he would assign probability 1=8 to v0, 3=8 to v1

and thus 1
2
to v2. As we will verify, Player 2 �nds it therefore optimal to cover independently

of his type. To verify that this deters Player 1 to bid K, independently of his type, it is

necessary to determine how Player 2 would bid in the second stage, given the aforementioned

beliefs. Suppose so that Player 1 is either of type v0, with probability 1=8, of type v1, with

probability 3=8, or of type v2; Player 2 is either type w1 or w2, with equal probability. Using

the previous notation, equilibrium bid distributions are:

F (0; v0) = 1, F (b; v1) =
40

9
b+

1

9
, b 2

�
0;
1

5

�
, F (b; v2) =

8<: 10
3
b� 2

3
, b 2

�
1
5
; 3
10

�
;

4
3
b� 1

15
, b 2

�
3
10
; 4
5

�
:

G (b;w1) =

8<: 4b, b 2
�
0; 1

5

�
;

2b+ 2
5
, b 2

�
1
5
; 3
10

�
;
G (b;w2) = 2b�

3

5
, b 2

�
3

10
;
4

5

�
:

In particular, Player 1�s payo¤ is �1v0 = �1v1 = 0 and �1v2 = 1=5. Observe that Player 1�s

intermediate has no incentive in bidding K (paying K does not induce Player 2 to quit, and

yields 0 afterwards). As for Player 1�s high type, he would get 1=5�1=10 = 1=10 from doing
so, while he gets 27=200 > 1=10 on the equilibrium path. Player 2�s low type�s payo¤ is
1
6
� 3
5
= 1

10
, and covering is indeed optimal. Therefore, these beliefs support the non-revealing

equilibrium.
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The non-revealing equilibrium is not a Perfect Sequential Equilibrium Starting

from the non-revealing equilibrium described above, suppose Player 2 observes a (out-of-

equilibrium) bid K. If Player 2 believes (i) that this bid cannot have been submitted by the

low type, (ii) that -if Player 1�s type is intermediate- he has randomized and submitted this

bid with probability 2=3, and (iii) that -if Player 1�s type is high- he has submitted this bid

with probability 1, then we will show that Player 2�s intermediate type is indi¤erent between

covering or not -in particular, he is willing to cover with probability 1
2
, which we assume

henceforth- and Player 2�s high type covers for sure. In addition, given this covering behavior,

and the ensuing bidding described below, Player 1 would have indeed strictly preferred not

to submit K if his type is low (i.e., he would have stuck with the action prescribed the non-

revealing equilibrium); he would have been indi¤erent between this deviation (i.e., bidding

K) and equilibrium play if his type was intermediate, and he would have strictly preferred

the deviation if his type was high. This yields then that the non-revealing equilibrium is not

perfect sequential.

If the deviation occurs and is interpreted in the way described above, Player 2 believes

that Player 1 is either of type v1, with probability 1=3, or of type v2, with probability 2=3.

Similarly, given the covering behavior speci�ed above, Player 1 assigns probability 1=3 to

Player 2 being of type w1, and 2=3 to Player 2 being of type w2 (if covering occurs). Bidding

distributions are then given by (using the notation introduced earlier):

F (b; v1) = 5b+
1

2
, b 2

�
0;
1

10

�
, F (b; v2) =

8<: 5
2
b� 1

4
, b 2

�
1
10
; 7
30

�
;

1
10
+ b, b 2

�
7
30
; 1
�
;

G (b;w1) =

8<: 6b, b 2
�
0; 1

10

�
;

3b+ 3
10
, b 2

�
1
10
; 7
30

�
;
and G (b;w2) =

3

2
b� 7

20
, b 2

�
7

30
;
9

10

�
:

Player 1�s high type payo¤ in this auction (that is, his continuation payo¤ in the game) is

1� 9=10 = 1=10. Therefore, his overall payo¤ is 1
4
� 1

10
+ 3

4
1
10
= 9=40, which strictly exceeds

27=200, his payo¤ in the non-revealing equilibrium. Player 1�s intermediate type�s payo¤ is
1
4
� 1
2
� 1

10
= 1

40
, which is exactly is payo¤ in the non-revealing equilibrium. Finally, if Player

1�s low type were to bid K, his payo¤would be 1
4
� 1
4
� 1
10
= � 3

80
, which is strictly less than his

payo¤ in the non-revealing equilibrium. Player 2�s low type�s payo¤ upon covering is 1=10;

so that he is indeed indi¤erent between covering and quitting, and Player 2�s high type has
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a strict preference for covering.

First-price winner-only-pays Auction Both players have three possible valuations: ei-

ther 0, v := 1=2 or 1, with probability p0, p1 and 1 � p0 � p1 for player 1, and s0, s1 and

1� s0 � s1 for player 2. Let s := s0 + s1.

Player 1 may submit an early bid K 2 (0; v).
Consider the following strategy pro�le: player 1�s type v and 1 submitK with probability

q and p < q respectively, and player 2 covers if and only if his type is 1.

In the subgame following a bid K, the total bid submitted by player 1�s type v is v: that

is, his second bid is v �K. His expected payo¤ is thus:

�1v = s (v �K) ;

while:

�11 = s (1�K) + (1� s)
qp1

qp1 + p (1� p0 � p1)
(1� v) :

To see where the last summand is coming from, observe that player 1�s and player 2�s high

type must have the same payo¤, since they both are willing to submit the highest bid.

However, by bidding slightly above v�K, player 2�s high type wins if and only if player 1�s
type is v, that is, he wins with probability:

qp1
qp1 + p (1� p0 � p1)

:

[In particular, it follows that player 2�s high type submits such a bid with this very proba-

bility.] The speci�cation relative to the covering decisions for player 2 are clearly optimal.

Also, it is plain that player 1�s type 0 has no incentive to bid K, since his expected payo¤

from doing so is strictly negative.

If the �rst bid is 0, beliefs about player 1�s type are updated to:

r0 =
p0

p0 + (1� q) p1 + (1� p) (1� p0 � p1)
; r1 =

(1� q) p1
p0 + (1� q) p1 + (1� p) (1� p0 � p1)

;

(A1)

and 1��0��1 for types 0, v and 1 respectively. We look for an equilibrium such that there
exists t1 > t2 > 0, G2 2 (r0; r0 + r1), with:

- both low types bid 0.
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- player 1�s intermediate type continuously randomizes over the interval [0; t1]; player 2�s

intermediate type bids 0+ with positive probability and continuously randomizes over [0; t2].

- player 1�s high type continuously randomizes over some nonempty interval [t1; �]; player

2�s high type continuously randomizes over the interval [t2; �].

We let G2 denote the probability with which player 2 wins with a bid t2, and H0 the

probability with which player 1 wins with a bid " > 0 for " arbitrarily small. While we need

H0 > s0 for the equilibrium strategies to be as described as above, this constraint need not

bother us, as we can always specify s0 small enough (instead, we will simply exhibit some s

satisfying the inequalities to be de�ned.). For instance, s0 = 0 is �ne.

Observe also that, since both players�high types have the same expected payo¤ (as they

are willing to submit the same highest bid), it must be that player 1 wins with probability

r0 + r1 by submitting a bid t1, since this is the case for player 2.

We must have:

�11 = (1� t1) (r0 + r1) ; (A2)

�1v = (v � t1) (r0 + r1)

= (v � t2) s

= vH0;

�21 = (1� t1) (r0 + r1)

= (1� t2)G2;

�2v = (v � t2)G2

= vr0:

It is straightforward to solve (A1) and (A2), but the formulas are unwieldy. Using for

instance the speci�cations:

K =
1

10
, p0 =

1

3
, p1 =

1

3
, s =

1

2
,

we obtain

q > p.
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More precisely, de�ne � :=
p
7009 ' 83:7, we have:

�11 = �21 =
193 + �

480
' :58, �1v =

1

5
, �2v =

193 +
p
577

1080
' :26; t1 =

�� 72
50

' :23;

t2 =
1

10
, G2 =

193 + �

432
' :64; r1 =

101 + 5�

2160
' :24, r0 =

193 + �

540
' :51;

q =
158� �

140
' :53; p =

�� 63
40

' :51.

It is now clear that 0 < t2 < t1, G2 2 (r0; r0 + r1), and � can then be determined.

B Proof of Theorem 1

If the jump bid is not submitted with positive probability, there is nothing to prove.

Suppose that the jump bid is submitted with positive probability in equilibrium (which

requires K < 1), and such a bid is never covered. Since a fraction of this bid is sunk, observe

that a positive measure of Player 1�s types submit the ordinary bid as well. So consider the

two corresponding auctions, auction 0 and auction K. Let �b be the highest bid submitted

by Player 1 in auction 0. Thus, Player 2 bids no more than �b+", for any " > 0, and Player 1

can win for sure by (submitting an ordinary bid and then) submitting a bid �b+ ". Since he

wins for sure by submitting the jump bid K (and nothing beyond), it follows that �b = K < 1

(indeed, if �b > K, submitting the ordinary bid and bidding �b is not optimal, while if �b < K,

submitting the jump bid is not optimal), and Player 1 wins for sure if he submits such a bid
�b in auction 0. Now, Player 2�s type 1 bids no less than �b�", for any " > 0 in auction 0 (since
Player 1 would not bid as much as �b otherwise), and he must therefore win with probability

1 by bidding �b (as bidding �b + " < 1 would strictly dominate bidding �b � " otherwise). It

follows that, among those types of Player 1 submitting an ordinary bid, all types but the

largest bid strictly less than �b (and win with probability strictly less than 1). Since Player 1

wins for sure if he submits the jump bid, it follows that types submitting such a bid must be

larger than the types submitting an ordinary bid. Therefore, Player 1 submits an ordinary

bid if and only if his type is less than some threshold �.

The reasoning is similar, but slightly more involved, when the jump bid is submitted with

positive probability in equilibrium (which requires K < 1) and also covered with positive

probability. We will consider the expected total bid and probability of winning of Player 1
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for each initial bid he may submit, where the expectation is taken with respect to Player 2�s

covering decision. Let �b0 (respectively, �bK) be the largest (total) expected bid submitted by

any type of Player 1 among those submitting an ordinary (respectively a jump) bid. [This bid

is an expected bid in the case of a jump bid, as it is the sum of the jump bid and of a bid that

depends on the realization of the covering decision.] Thus, Player 1 wins with probability 1

if he submits an ordinary bid and then bids �b0+", for any " > 0, or if he submits a jump bid

and bids slightly more than the highest bid he would submit in case of covering, for a total

expected bid of �bK + ", for any " > 0. Since Player 1�s type 1 must have a strictly positive

payo¤, it follows that either of those expected bids wins with probability 1 (for Player 1), and
�b0 = �bK (same argument as above). Let P0 and PK denote the support of the (�expected�)

probability of winning of Player 1, corresponding respectively to the ordinary and the jump

bid. By the previous argument, we have max fp j p 2 P0g = max fp j p 2 PKg = 1, and it is
standard to show that each support is an interval. Consider p 2 (min fp j p 2 P0 \ PKg ; 1],
and let v0 and vK be any type winning with probability p in the auction 0 and K (Obviously,

the corresponding (sum of expected) bids b0 and bK are equal). We claim that v0 = vK . If

not, by monotonicity of preferences, all types between the two valuations must bid b0 = bK

(with probability one), so that in at least one of the auctions, there is a positive measure

of types making the same bid, contradicting the continuity of the support. Therefore, there

exists � 2 (0; 1) such that v > � implies
R 1
0
p1 (s; v) ds 2 (0; 1) (for almost all such v).

It is clear that Player 2�s covering decision follows a threshold rule. Because 
 < 1 and a

fraction of the opening bid is sunk, if Player 2 covers, his second-round equilibrium bid must

be the higher bid with positive probability (for any type of Player 2 that covers). Therefore,

in such a subgame, Player 1 must submit a losing bid with positive probability. Let E be the

corresponding set of Player 1 types, which has positive measure. The set of types E0 � �E

such that
R 1
0
p (v; s) ds < 1, v 2 �E if and only if v 2 E0 must be of measure 0: to see this,

observe that the bid K must be in the interior of Player 1�s support of winning bids after

bidding 0 (since such a bid must win with the same probability after an ordinary bid as does

a jump bid K only) and his distribution of such winning bids is continuous at K (as Player

2 would strictly prefer K + " to K � " otherwise). This implies that the measure of Player

1�s types bidding K after an ordinary bid is zero. Therefore, E di¤ers from an interval by

a set of measure zero; we denote its upper extremity by �, and Player 1 must bid 0 with

probability one for any type below its lower extremity �.
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C Proof of Lemma 2

For the proof of this lemma, as well as for the proof of Theorem 3, it is useful to recall

a few facts about all-pay auctions (see Amann and Leininger (1996)). The support of bid

distribution is identical across bidders and the distribution of bids is continuous on this

support. Bidding is weakly increasing in types, and there cannot be any atom in the bid

distribution except at the bid of zero. Only one player can have a bid distribution with a

probability mass at zero.

In an all-pay auction, in which F1 and F2 represent the distribution of valuations, Player

1�s objective is to maximize v1 �F2
�
b�12 (x)

�
� x over x 2 R+, while Player 2�s objective is to

maximize v2 � F1
�
b�11 (y)

�
� y over y 2 R+. First-order conditions are:

F 02
�
b�12 (x)

�
�
�
b�12
�0
(x) =

1

b�11 (x)
; and

F 01
�
b�11 (y)

�
�
�
b�11
�0
(y) =

1

b�12 (y)
:

To determine the equilibrium bid functions, it is useful to introduce the mapping h (�) =
b�12 � b1 (�), which maps Player 1�s valuation into Player 2�s valuation making the same bid.
The �rst-order conditions can be rewritten as:

�
b�12
�0
(b1 (v)) =

1

v � F 02
�
b�12 � b1 (v)

� = 1

v � F 02 (h (v))
;

b01 (v) =
1�

b�11
�0
(b1 (v))

= h (v) � F 01 (v) ;

whenever the density is positive. Finally, since h0 (v) =
�
b�12
�0
(b1 (v)) � b01 (v) ; we obtain the

following ordinary di¤erential equation:

h0 (v) =
h (v) � F 01 (v)
v � F 02 (h (v))

;

which along with the boundary condition h (1) = 1 fully determines the mapping h. In

particular, the mapping h indicates whether one of the players has an atom in his bid

distribution. If max fh�1 (0)g 6= 0, then Player 1 bids 0 with positive probability. It is also
useful to note that when F1 (F2) are power distribution functions, there exists a closed-form

solution for the function h.
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Going back to the analysis of the equilibriumwith covering, let us de�ne p (v) =
R 1
0
p (s; v) ds

and denote by � the probability that Player 1 uses a jump bid, that is:

� , F (�)� F (�) +

Z 1

�

p (v) dF (v) : (A3)

Recall that if a player has a valuation between � and � he makes a jump bid for sure, and

that players with valuations between � and 1 randomize.

Let h0, hK be the mappings from Player 1�s type to Player 2�s type making the same

bid in the subgames 0; K. These h mappings determine the probability of winning. Since

the pro�ts are directly related to the probability of winning, indi¤erence between subgames

implies equality of pro�ts across subgames and hence the identity of the mapping h across

subgames. Because valuations above � are indi¤erent between both subgames, we must have

h (v) := h0 (v) = hK (v) for v > �, which implies that:

vh0 (v)

h (v)
=

p (v) f (v) =�

g � h (v) = (1�G (
))
=
(1� p (v)) f (v) = (1� �)

g � h (v) :

It follows directly that p (v) is constant and

p

1� p
(1�G (
)) =

�

1� �
: (A4)

D Proof of Theorem 3

Using the notation introduced in the proof of Lemma 2, the mapping h : [0; 1] ! [0; 1],

uniquely determined by h (1) = 1, h (�) = h (�), and

h0 (v) =

8<:
f(v)

(1��)g�h(v)
h(v)
v
, v 5 �;

1�F (�)
1��

1�F (�)
f(v)
g�h(v)

h(v)
v
, v = �;

must satisfy

h (�) = 
 and
Z �

maxfh�1(0)g

h (v)

1� �
dF (v) = K: (A5 and A6)

To see this, recall that the mapping h, which must be identical in both subgames on their

common domain, represents the correspondence between players�valuations in the auction

subgames. Since the mapping is the same in both subgames, this means that players with
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valuations between � and � do not bid in the auction after a jump bid since (by construction)

they do not bid (in fact they are not present) in the subgame after an ordinary bid. The

�rst equation is tantamount to the boundary conditions h (�) = h (�) = 
 and the second is

just that type � must be indi¤erent between both subgames, that is b (�) = K .

Because Player 2�s type 
 is indi¤erent between covering or not, his payo¤ from covering

must be equal to the payo¤ of zero he gets when he does not cover:

F (�)� F (�)

�

 = K: (A7)

An equilibrium consists of values in [0; 1] for the parameters �; �; 
; p and � that solve (A3-

A7).

It is easy to see that equations (A3,A4, A7) admit a solution �, p and 
 in the unit

interval, given �, �, provided that:

K 5 F (�)� F (�)

1� F (�)
:

In this case, � is the solution to:

G

�
K�

F (�)� F (�)

�
=

F (�)�� (F (�)� F (�))

(1� �) (�� (F (�)� F (�)))
: (A8)

Therefore, an equilibrium with covering exists if and only if equations (A5-A6) (where �

is given by (A8)) admit a solution � and � that are in the unit interval. We now check this

using the explicit solution for the function h available in the case if a power distribution. In

this case, the system of equations become:

p

1� p
(1� 
�) =

�

1� �
, � = �� � �� + p (1� ��) ; K = 


�� � ��

�
;

h (v) =

8>><>>:
�
(1�p)v��1+p��

1��

� 1
��1
, v = �;�

v��1+���1����1+p(1����1)��
1��

� 1
��1

, v 5 �;

(1� p) ���1 + p� � = (1� �) 
��1 and
Z �

maxfh�1(0)g
h (v) dF (v) = K.
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We can actually express all variables as a function of 
 and �:

K = 


�
1� 1� ��

1� 
�
1� 
��1

1� ���1

�
;

� =
1� 
�


�

�
1� ���1

1� 
��1
� 1
�
;

p =
1


�

�
1� 1� 
��1

1� ���1

�
=
1


�
1� 
��1

1� ���1

�
1� ���1

1� 
��1
� 1
�
;

� =

�
�� � 1� 
�


�

�
1� ���1

1� 
��1
� 1
��

1� 1� ��

1� 
�
1� 
��1

1� ���1

�� 1
�

:

Depending on � R 1, all these variables are in the right domain if:

� 2 [0; 
] for 0 < � < 1

� 2
"�
1� 1� 
��1

1� 
�

� 1
��1

; 


#
for � > 1.

We take 
 as the �exogenous�parameter and show that there is a � in the right interval

that satis�es the last constraint on the bid of type �. We can show that max fh�1 (0)g > 0
8� > 0. Let us focus on the case � > 1. The condition:Z �

maxfh�1(0)g
h (v) d

F (v)

1� �
= K

becomes, after a change of variable and some manipulations:

K

�
=

�

�� 1

Z 1

0

(1� x)
1

��1
�
���1 � �x

� 1
��1 dx, or

K

��
= F

�
1;� 1

�� 1 ; 2 +
1

�� 1 ;
�

���1

�
;

where � = 
��
�
1� 1�
�

1�
��1
�
1� ���1

��
, � = 


h
�
�
1� 1���

1����1 (1� 
��1)
�i1=�

, and F is the

hypergeometric function. The existence and uniqueness of a solution � 2
��
1� 1�
��1

1�
�

� 1
��1

; 


�
is then obtained by considering both sides as functions of z = 1����1

1�
��1 2
h
1; 1

1�
�

i
and con-

sidering their variations: the left-hand side is strictly decreasing and onto R+, while the

right-hand side is strictly increasing and is equal to zero for z = 1. The only nontrivial

statement is the monotonicity of the right-hand side. However, manipulation of its deriva-
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tive with respect to z gives, for z < 1
1�
� :

d

dz
F

�
1;� 1

�� 1 ; 2 +
1

�� 1 ;
�

���1

�
/ z

h
(z � 1) (1� 
�) + (1� 
) 
��1

�
1�

�
1� 
��1

�
z
� 1
��1
i

+(�� 1) (1� (1� 
�) z)
h
1�

�
1�

�
1� 
��1

�
(z � 1)

� �
1�

�
1� 
��1

�
z
� 1
��1
i
> 0.

Finally, because the left-hand side (resp. right-hand side) is everywhere increasing (resp.

decreasing) in 
, the root z is monotonically increasing in 
, that is, � is decreasing in


, which establishes that the total derivative of K with respect to 
 is positive, and in

particular, a solution to the system of equations exists if and only if K is below some critical

threshold �K.

E Proof of theorem 4

K 2 [�= (�+ 1) ; 1] : the only P.S.E. involves no opening bid. The strategies of the non-
revealing equilibria given in the text do indeed form a P.B.E. Since any deviation from those

strategies is not pro�table (we have that the payo¤ in this equilibrium equal to v�+1

�+1
is larger

than v �K; which is an upper bound on the payo¤ from a deviation) , these equilibria are

P.S.E..

Consider next a P.B.E. with K < �= (�+ 1) in which Player 1 never bids K. We show

that such an equilibrium cannot be a P.S.E.. Consider a deviation by all players with

v 2 [�; 1] to jump bid K. Suppose, �rst, that, for some 
 2 [0; 1), Player 2 always �nds
it worthwhile to cover when his valuation lies in (
; 1]. Consider the subgame between

players with those valuations, and let h : [�; 1] ! (
; 1], v 7�! h (v) such that w = h (v)

makes the same bid as a player with valuation v. De�ning � such that 
+ , h (�) ; � is

necessarily larger than �, since players with valuations arbitrarily close to 
 have pro�ts

arbitrarily close to �����
1��� � 
, which must exceed K. Also, 
 > � and we can compute

h (v) =
��

1�
�
1���

�
(v��1 � 1) + 1

� 1
��1 : We have to verify that in this subgame all players with

valuations in the interval [�; 1] achieve higher pro�ts than in the original P.B.E., where

players with valuation v earn v�+1

�+1
. In the subgame following the deviation, players with

v 2 [�; 1] achieve pro�ts �(v) = � (�) +
R v
�
h(s)�

1�
 ds, while players with valuations in [�; �]
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make zero pro�t. Ex ante pro�ts of valuations [�; 1] must exceed v�+1= (�+ 1) ; that is:


� � v +
Z v

�

(h (s)� � 
�)

1� 
�
ds�K > v�+1= (�+ 1) :

Note that the derivative of the left-hand side with respect to v is 
� + (h(v)��
�)
1�
� which is

larger than the corresponding derivative of the right-hand side, which is v�. Hence, the

inequality will hold if it holds for v = �. Consider players with valuations in [�; �]. Ex ante

pro�ts from deviating are 
� �v�K. Marginal pro�ts, 
�, once again exceed marginal pro�ts
v� in the original P.B.E., since v 5 � < 
. If players with valuation � are indi¤erent between

deviating and not deviating, players with lower valuations will prefer not to deviate. This

is equivalent to requiring that � � 
 �K = ��+1

�+1
. Hence, provided that there exist 
, � such

that 8<: � � 
� �K = ��+1= (�+ 1) ;

�����
1��� � 
 = K:

, we have found another P.B.E. in which the deviators are better o¤, the non-deviators

worse o¤were they to deviate and the beliefs of Player 2 after a deviation correspond to the

set of types who bene�t from the deviation. Thus the equilibrium is not a P.S.E.

Suppose now that it is not worthwhile for Player 2 to cover after a deviation, regardless

of valuation. It follows that the original P.B.E. is not a P.S.E. if8<: ��K = ��+1= (�+ 1) ;

(1+(1���)��1� )
�

��1���

1��� < K:

(
(1+(1���)��1� )

�
��1���

1��� = �����
1��� �
. This system guarantees that it is indeed optimal for Player

2 not to cover, regardless of valuation; that if a player has a valuation in the interval (�; 1]

he will strictly prefer the expected payo¤ from deviating to the original expected payo¤, and

that all players with valuations in the interval [0; �) will strictly prefer the expected payo¤

of the original P.B.E. to their expected payo¤ from deviating. Although it is not di¢ cult

to show which case obtains a function of K, this is not even necessary. It is enough to

note that for � = 0, expected pro�ts from deviating are smaller than expected pro�ts from

not deviating, whereas in both cases, since expected pro�ts from deviating are larger than

�� �K, they are also larger than ��+1= (�+ 1), provided that � is close enough to 1. This

49



result is based on the fact that if K is strictly less than �
�+1
. 
 being a continuous function

of K, there does then necessarily exist, for any K < �
�+1
, an � 2 (0; 1) satisfying one of the

two systems.

We �nally need to verify that there does not exist a P.S.E. providing assured deterrence

outside the interval [ �K; �
�+1
]. It is then easy to show that an equilibrium with assured deter-

rence, as speci�ed in the text, is a P.S.E.. Recall that in an equilibrium with assured deter-

rence, there exists an � 2 (0; 1) such that all Player 1�s with valuations strictly smaller than �
make a zero opening bid, while all players with valuations strictly larger than � bidK. In this

equilibrium Player 2 never covers, regardless of valuation. In simultaneous bidding between

players with valuation v 2 [0; �] and players with w 2 [0; 1] ; after a zero opening bid, the

expected pro�t of Player 1 with valuation v = � is �� �
��1

R 1
1�� x

1
��1

�
x�(1��)

�

� 1
��1

dx; since

a player with valuation � will be indi¤erent between this expected pro�t and the expected

pro�t following a bid ofK, which is ��K, it follows thatK = �
��1

R 1
1�� x

1
��1

�
x�(1��)

�

� 1
��1

dx.

Consider a deviation by Player 2 in which he covers. More precisely, suppose that players

with w 2 (
; 1] cover while players with valuations lower than 
 2 (0; 1) do not. Obviously,
if players with valuations arbitrarily close to 
 from above have expected pro�ts from the

deviation that are arbitrarily small, players with valuations strictly above 
 obtain strictly

positive expected pro�ts from deviating while players with valuations strictly below achieve

strictly negative pro�ts. These two situations compare with the zero pro�t that Player 2

achieves in the original P.B.E., regardless of valuation. In the subgame following the devia-

tion by Player 2: Player 1�s with valuations v 2 (�; 1] play against Player 2 with w 2 (
; 1] .
In this subgame, Player 2 with valuation 
+ (a valuation arbitrarily close to 
 from above)

can achieve pro�t K; only if
h (
)� � ��

1� ��
� 
 = K.

Hence, the equilibrium with assured deterrence is a P.S.E. if and only if such a 
 2 (0; 1)
cannot be found. Since the left-hand side is increasing in 
, it is both necessary and su¢ cient

that

lim

!1

�� � ��

1� ��
� 
 =

�
(1� ��) ��1

�
+ 1
� �
��1 � ��

1� ��

5 �

�� 1

Z 1

1��
x

1
��1

�
x� (1� �)

�

� 1
��1

dx:
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The latter inequality corresponds to the condition for which an equilibrium with covering

exists; which precisely states that K = �K.

Finally, when K > �
�+1
, there is no equilibrium with assured deterrence, as we saw in

section 5. Finally, equilibria with covering, as speci�ed in the text for K < �K; are obviously

P.S.E., since they are P.B.E. and every subgame is on the equilibrium path .

F Proof of theorem 5

The analysis that follows establishes the existence of equilibrium. We �rst need to compute

payo¤s in the subgames where Player 2 has covered. We reformulate the di¤erent functions

at stake in those subgames using the mapping h (�) = b�12 � b1 (�). This function maps Player
1�s type into the type of Player 2 who makes the same bid. Let F1 and F2 be c.d.f.�s on

[0; 1], with positive densities on (0; 1), F1 being the distribution of types of Player 1 and F2

the distribution of types of Player 2.

Consider a subgame following a bid of k > 0 by Player 1, and assume that types are

distributed as follows: the support of types for Player 1 is [�; 1] ; � 2 (0; 1), and its dis-
tribution has an atom of size p at �, and is continuously distributed with positive density

on (�; 1). Player 20s types are nonatomic, uniformly distributed on (
; 1]. Since type v of

Player 1 maximizes �P1 (v) = v �Pr fx > b2g� x in the subgame, an immediate consequence
of the envelope theorem is that @�P1 (v) =@v = Pr fx > b2g ; and hence, by monotonicity of
the bids in the types, �P1 (v) =

R v
�
Pr fb1 (t) > b2g dt (the superscript P is mnemonic for

ex post, since these are the pro�ts in the subgame). In this context, de�ning the mapping

h (v) = b�12 � b1 (v), we get that:

�P1 (v) =

Z v

�

h (s)� 


1� 

ds.

Having a reduced form for Player 1�s pro�ts in the subgames, we address now the �rst period

strategies. Given that a fraction 
 of Player 2�s types has not covered, Player 1�s expected

pro�t is:

�A1 (v) = 
 � v + (1� 
) � �P1 (v)� k =

Z v

�

h (s) ds+ 
 � �� k.

Assume now that � (�) ; 
 (�) ; h (v; �) ; p (�) are di¤erentiable mappings in k. Since Player 1
randomizes over early bids, his ex-ante pro�ts must be equal across early bids. So if all types
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v of Player 1 on some interval V are (overall) indi¤erent between all k�s in some common

interval K, it must be that @�A1 (v) =@v = h (v) is independent of k 2 K, for v 2 V . Also, it
must be that @�A1 (v) =@k = 0 on K�V . Using that h (v) is independent of k, this simpli�es
to: (
 (k)� h (� (k))) d�(k)

dk
+ d
(k)

dk
�� (k)� 1 = 0, that is, d
(k)

dk
�� (k) = 1. Let us de�ne � (k)

as

� (k) = p (k) +

Z 1

�

 (s; k) ds. (1)

Eq. (1) has the following interpretation.  (�; �), which was de�ned above, depends both on
k and v; as a function of k, it is the density over bids made by type v; as a function of

v, it is the density over types that, along with type �, bid k. d� is thus the density over

Player 1�s types who bid k, and is well de�ned as long as p and
R 1
�
 (s; k) ds are of the same

cardinality, that is, as long as 0 <
R 1
�
 (s; k) ds < 1. p (k) =� (k) is thus the probability,

conditional on observing k, that Player 1 is of type � (k). In the equilibrium that we derive,

type � bids 0 in the subgame k, and no other type bidding k bids 0 thereafter. Hence,

p (k) =� (k) is the conditional probability that Player 1 bids 0 in the subgame k. In other

words it represents the proportion of blu¤ers among types who bid k in the �rst period.

Accordingly, it is necessary in equilibrium that:

p (k)

� (k)
=

k


 (k)
, (2)

which states that 
 (k) is the cut-o¤ between types of Player 2 who have positive expected

pro�ts in the subgame and those who do not. Finally, we can rewrite equation (??) as:

v � @h (v) =@v
h (v)

=
 (v; k)

� (k)
� (1� 
 (k)) (3)

Since h (v) is independent of k on any interval V �K where types of Player 1 randomize, it

must also be that 1�
(k)
�(k)

� (v; k) is independent of k. In particular, we can de�ne g (v) such
that g (v) = 1�
(k)

�(k)
�  (v; k), which is independent of k on any such interval. Multiplying

equation (1) by 1�
(k)
�(k)

and using equation (2), we get

�
1� k


 (k)

�
(1� 
 (k)) =

Z 1

�(k)

g (s) ds:
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Di¤erentiating this identity with respect to k, and using that g is independent of k, we obtain

1 +
k � d
 (k) =dk


 (k)2
� d
 (k) =dk � 1=
 (k) = �g (� (k)) � d� (k) =dk:

Finally, since d

dk
� � = 1; this last equation can be rewritten as

1 +
k � d
 (k) =dk


 (k)2
� d
 (k) =dk � 1=
 (k) = g

�
1

d
 (k) =dk

�
� d

2
 (k) =dk2

(d
 (k) =dk)2
: (4)

This equation only involves the unknowns 
 and g:

Conjecturing a solution of the form 
 (k) = c � kn for some n and c; we have that � (k) =
k1�n=nc; since d


dk
� � = 1. Let �k be the largest early bid made. Then �

�
�k
�
= 1; which also

implies that 

�
�k
�
= 1. It follows that n = �k, and c = n�n, so that 
 (k) =

�
k
n

�n
, while

� (k) =
�
k
n

�1�n
. Eq.(4) then implies that

g (v) = n

�
1 +

1� v

1� n
v
2n�1
1�n

�
:

We can now solve for p and  . It must be that, for any k and associated �; p+
R k
0
 
�
�; ~k

�
d~k =

1. Di¤erentiating this identity with respect to k yields

dp (k)

dk
= � (� (k) ; k) = � � (k)

1� 
 (k)
� g (� (k)) .

Using Eq. (2), this is equivalent to

dp (k) =dk

p (k)
= � 
 (k)

1� 
 (k)
� g (� (k))

k
.

Integration of the latter equation leads, for some constant A 2 R+, to

p (k) = A �
 
1�

�
k

n

�1�n! 1
1�n

e
�(k=n)n
n(1�n) .
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Since � (k) = p (k) � 
(k)
k
= p (k) � kn�1

nn
, and

R �k
0
� (k) dk = 1, it must be that

A =

0@Z n

0

kn�1

nn

 
1�

�
k

n

�1�n! 1
1�n

e
�(k=n)n
n(1�n) dk

1A�1

:

The positive integrand is dominated by kn�1

nn
, and the integral is thus well-de�ned for n > 0.

To complete the analysis, it remains to determine the deterrence level n. In fact, in the

subgame following �k = n, no type of Player 2 follows. (The equilibrium of the subgame with

perfect information, in which only the highest types compete, is easy to solve and entails

zero pro�t ex post for Player 2. Hence, Player 2 should not enter the subgame). Hence,

the pro�t of type 1 of Player 1 is 1 � n. On the other hand, that type must be indi¤erent

between this bid and any other bid, say 0. It must thus be that

1� n =

Z 1

0

h (s) ds; (5)

where the right-hand side is the player�s ex ante pro�t from bidding 0. Since g (v) = v�@h(v)=@v
h(v)

,

we can, upon integration, determine h. The integral of the former equation, denoted I (n),

is then equal to

I (n) =

Z 1

0

xn exp

"
x
2n�1
1�n

2n� 1 �
x

n
1�n

n
� 1� n

n (2n� 1)

#
dx:

It can then be shown that

I (0) =

Z 1

0

e
x�1
x

x
dx = �e � Ei (�1) ' 0:6;

I (1) =

Z 1

0

xdx = 1=2.

Since I (�) is continuous in n, the existence of a solution to Eq. (5) then follows from the

intermediate value theorem. Uniqueness of that kind of equilibrium is numerically obvious,

and �k ' 0; 53, which is almost twice as much as the bound found in the case of exogenous
K. To sum up,
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� (k) =

�
k
�k

�1��k
; 
 (k) =

�
k
�k

��k
;

p (k) = A �
 
1�

�
k
�k

�1��k! 1
1��k

e
�(k=�k)

�k

�k(1��k) ;

 (v; k) = �k(1 +
1� v

1� �k
v
2�k�1
1��k ) � p (k) 
 (k)

k(1� 
 (k))
; on the relevant domain.

To see that second period contributions need not increase with the early bid, di¤erentiate

Player 1�s second period bid with respect to the early bid. It is straightforward to obtain

that type v�s bid decreases with the early bid k if and only if

� (k) =
Z v

�(k)

 (s; k) � h (s)
� (k)

ds;

which is not satis�ed for small enough k and large enough v.
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