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Abstract

We use a Markov chain model to evaluate pure persistence in hedge fund returns. We
study two forms of pure persistence: absolute persistence (positive/negative returns) and
persistence with respect to the high water mark (accounting for the amplitude of draw-
downs). In the first case, we find that hedge funds in general exhibit persistence of positive
returns, but no persistence of negative returns. In contrast, the results using the high
water mark criterion show the presence of both positive and negative persistence. In or-
der to account for the presence of serial correlation, we use a new approach based on the
method of moments and on the model of Getzmansky et al. (2004). Our findings suggest
that the smoothing contributes to an increase in absolute persistence. These results also
suggest that hedge fund managers exhibit a relatively high probability of delivering positive
returns, but a much weaker probability of increasing their high water mark, a consequence
of the non-normal distribution of their returns. Our approach also overcomes the issue of a
“strategic” discontinuity in the return distribution around zero that Bollen and Pool (2009)
identify and attribute to the fact that managers will adjust reported returns to minimize
the chance of small negative returns in order to promote the appearance of pure persistence.
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1 Introduction

The last few years have provided a challenging environment for hedge fund managers. As the
number of hedge funds approaches the 10,000 milestone and assets under management have
already surpassed the two trillion dollar mark, it is only natural that investors have become
increasingly skeptical of the ability of the hedge fund industry to continue offering significant
value. The absolute returns that have long been advertised by hedge fund managers have been
increasingly hard to come by over the last few years, and it is estimated that approximately
80% of hedge funds were in the red during 2008. The increased market volatility, the subprime
debacle and the ensuing credit crunch have recently added to an already difficult investment
environment. However, given the exorbitant fee structure of these funds, investors have come to
expect strong performance regardless of market conditions. The performance of these funds has
been scrutinized by both practitioners and academics, and hedge fund managers are increasingly
suspected of selling beta returns (returns linked to readily available market risk premia) as op-
posed to alpha (absolute) returns. Given the changing nature of the hedge fund universe, it is
vital to identify those managers who can systematically provide positive returns, also referred to
as pure persistence.

In the area of persistence evaluation, a distinction must be made between relative per-
sistence and pure persistence. In evaluating relative persistence, funds of the same strategy are
classified as winners or losers depending on their performance relative to the median return over
a given period. Evidence of persistence is found when winners and/or losers maintain their clas-
sification for two subsequent periods. Most of the studies in hedge fund literature address the
question of persistence in terms of relative persistence and adopt many of the tests employed in
mutual fund literature where this notion has been widely explored. Relative persistence studies
provide a general picture of whether past performance is a reliable indicator of future perfor-
mance within a peer-group comparison framework. It doesn’t isolate a specific fund and analyze
its performance over time; this is achieved by investigating pure persistence. Pure persistence
aims to identify funds that systematically generate positive returns. Although the study of pure
persistence may be informative in the mutual fund context, it doesn’t have the same relevance as
relative persistence in that mutual fund managers are index trackers and are evaluated relative
to their benchmark. Losses incurred by mutual fund managers are not necessarily classified as
bad as long as the managers outperform their benchmark; the fact that managers are not eval-
uated relative to an exogenous threshold explains why there is no significant literature on pure
persistence in mutual fund performance. Nonetheless, even if the studies on persistence analysis
in hedge fund performance followed the same trend, it is important to note that the managers
are not evaluated in the same manner. Hedge funds are absolute returns strategies and investors
expect absolute returns (good returns) regardless of the market’s direction. The high incentive
fees charged by hedge fund managers (which average 20%) are then supposed to justify this
privilege and the latter are not evaluated relative to a benchmark, but on their ability to deliver
absolute returns. The fact that recent studies (among which Hasanhodzic and Lo (2007)) show
that a larger proportion of hedge funds are exposed to beta driven returns calls into question the
high level of incentive fees charged to investors. In the case of hedge funds, the analysis of pure
persistence provides a more appropriate measure than relative persistence analysis, and allows
us to identify managers exhibiting superior skills in terms of absolute performance; and in the
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current context of financial crisis where investors are increasingly aware of the fact that finding a
manager able to deliver absolute returns is a challenge, pure persistence analysis becomes more
relevant than ever.

As mentioned above, the majority of studies investigate relative persistence in hedge fund
returns. Brown, Goetzmann and Ibbotson (1999), Agarwal and Naik (2000) and Liang (2000)
use parametric tests (cross-sectional regressions) and non-parametric tests (Cross Product Ratio,
Chi-square test, Kolomogorov-Smirnov test) to investigate the presence of relative persistence
in hedge fund returns. They find no evidence of relative persistence at annual horizons even if
Agarwal and Naik (2000) find that hedge fund returns persist in the short term. More recently,
Kosowski, Naik and Teo (2007) use a Bayesian approach to improve the accuracy of alpha esti-
mates. They find evidence of long term relative persistence and argue that one reason why the
previous studies did not find the same results is that they relied on relatively imprecise perfor-
mance measures. As for pure persistence, De Souza and Gokcan (2004) use the Hurst exponent
combined with a D-statistic to study a relatively small sample of funds. They find that the funds
exhibiting the strongest persistence of positive returns during the in-sample period (36 months)
showed a better risk-adjusted profile in the out-of-sample period. However, the accuracy of the
results remains a problem in their evaluation because one of the disadvantages with the Hurst
exponent is that it requires a large sample to obtain significant results.

In this paper, we address the performance of hedge funds in terms of pure persistence.
The contribution of our study is threefold. Firstly, we evaluate pure persistence in hedge funds
with a new approach using a Markov chain model. Persistence is then evaluated in terms of
transition probabilities. These probabilities have the advantage of not assuming an a-priori dis-
tribution of returns and are easily interpretable. Moreover, we define two types of persistence
for our analysis: absolute persistence (positive/negative returns) and persistence with respect to
the high water mark. It is well known that several hedge fund strategies, in particular arbitrage
strategies, tend to generate positive returns of small amplitude; but when they face losses, the
latter are often of larger amplitude. The analysis of absolute persistence does not capture this
aspect because it does not take into account the amplitude of positive or negative returns and
focuses only on the sign of returns. It follows that two managers exhibiting the same sequence
of positive and negative returns over a given period would obtain the same evaluation in terms
of absolute performance, regardless of the fact that one may have incurred substantially greater
losses. One way to address this issue is to take into account the size of returns and to evaluate
persistence with respect to the high water mark. The high water mark represents the greatest
value reached by an investment during a period. A manager who tends to generate small, positive
returns but faces large losses during the investment period will have trouble surpassing his high
water mark. It could take considerable time for certain managers to reach their high water mark
after a significant drawdown. The analysis of persistence with respect to the high water mark
will then consist of assessing the ability to sustainably increase the high water mark.

Secondly, we develop a method to test the significance of persistence estimates according
to the length of the sample. This helps to avoid the problem one may face when using the Hurst
exponent in small samples. For this purpose, we use a one-tailed t-test which makes it possible
to see whether a transition probability is statistically superior to 0.5.
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Finally, we evaluate persistence before and after taking into account the serial correlation
in hedge fund returns. Several studies (Asness, Krail and Liew (2001), Brooks and Kat (2002),
Okunev and White (2003), Getmansky, Lo and Makarov (2004)) identify the presence of signifi-
cant serial correlation in hedge fund returns, which basically leads to an underestimation of their
real risk. Getmansky et al. (2004) argue that the most likely source of serial correlation in hedge
fund returns is the smoothing of returns due to illiquidity and to the managers’ personal motiva-
tion to optimize their performance over several periods. Illiquidity because many hedge strategies
invest in illiquid assets such as non-quoted assets in private equity, some emerging market stocks
and bonds, real estate and infrastructure, etc. In the event managers smooth reported returns,
the disclosed volatility will be smaller than the realized volatility and hence, would upwardly bias
the measure of pure persistence. Getmansky et al. (2004) propose an econometric model based
on an MA(2) approach to unsmooth returns. Their model assumes that the observed return is
a weighted average of “true” returns. Okunev and White (2003) use a method developed by
Geltner (1993) in order to obtain a new corrected series. In this study, we use a model based on
the method of moments to unsmooth returns. The advantage of our model is that it allows us
to determine if it is possible to obtain satisfactory solutions (positive weights) when one tries to
unsmooth returns. Indeed, hedge fund returns don’t have the same order of serial correlation,
and imposing an order of serial correlation for all funds as in Getmansky et al. (2004) could lead
to unsatisfactory results. In their paper, they obtain negative weights for some funds whereas
theoretically, and according to the assumption of their model, all weights should be positive.
They argue that this can be attributed to a mis-specification of the model and that a different
unsmoothing model may be more appropriate. In addition, contrary to the model of Getman-
sky et al. (2004), our model doesn’t assume normality for the estimation of weighting coefficients.

Recently, Bollen and Pool (2009) raise an important issue regarding the reporting of hedge
fund returns. Specifically, they identify the presence of a discontinuity in the distribution of re-
turns around zero, implying that managers will adjust reported returns to minimize the chance
of small negative returns in order to promote the appearance of pure persistence. The test that
they propose is a t-test that measures whether the frequency of returns just below and above
zero are different than those expected given the smoothed kernel estimate of the underlying dis-
tribution. The test is similar to the one used by Burgstahler and Dichev (1997) who document
a similar discontinuity in the distribution of corporate earnings. Although our raw data show a
sharp discontinuity in the distribution of reported returns at zero, the discontinuity disappears
for the unsmoothed returns, indicating that our unsmoothing procedure eliminates the concern
regarding discontinuity in the distribution of hedge fund returns.

Our study reports interesting results. First, we find that even if the smoothing of returns
can contribute to increase the absolute persistence, it is not necessary to unsmooth the returns
of all funds. Strategies that invest in liquid securities generally exhibit a lower level of serial
correlation. Our results show that imposing a MA(2) model to unsmooth their returns leads to
an underestimation of the volatility of true returns. Second, the results based on our sample
data suggest that hedge fund managers exhibit a relatively high probability of positive returns.
However, even if negative returns don’t persist, the managers exhibit some difficulties in increas-
ing the investor’s wealth in a sustainable way because periods of positive returns are sometimes
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interrupted by large drawdowns. When we account for this asymmetry in returns, through the
persistence analysis with respect to the high water mark, we find a much weaker probability of
increasing the high water mark in comparison with the probably of delivering positive returns.
This interesting finding suggests that the persistence with respect to the high water mark is
most effective than the absolute persistence analysis because it accounts for the particular profile
of hedge fund returns and indicates the manager’s ability to sustainably increase the investor’s
wealth.

The rest of the paper is organized as follows. Section 2 describes the methodology used to
test the significance of the transition probabilities and in section 3, we present the methodology
used to unsmooth returns. Section 4 presents the data and section 5 shows the results of the
analysis. We conclude the study in section 6.

2 Methodology to measure pure persistence

Contrary to De Souza and Gokcan (2004), pure persistence will firstly be evaluated herein in
terms of the probability of positive or negative returns over two periods. There are many ad-
vantages of using probabilities in the performance evaluation. They make no assumptions as to
the distribution of returns and are more easily interpretable for an investor than the combined
analysis of the Hurst exponent and the D-statistic. Moreover, probabilities allow for an approxi-
mation of the odds that a fund obtains desirable returns, which is not the case for other measures
such as the mean of returns. The mean may provide the average performance of a manager over
a period, but it doesn’t indicate how the manager performs on a regular basis. For example, an
average of 2% indicates that on aggregate, the manager’s performance is above zero, but it does
not indicate at which frequency he obtained positive returns or what his odds are of providing
positive returns. For instance, a fund could exhibit the following returns: -2%, -1%, 15%, -1.2%
-0.8%. This gives a positive mean return of 2%, but the fund experiences negative returns 4
months out of 5, (with a probability of 80%.)

Another advantage of using probabilities in the relation between past and future returns is
that contrary to serial correlation, which is only relevant for elliptical distributions and measures
the linear dependence between the returns, probabilities apply to other distributions and can
measure dependence that may be non-linear; and we know from available literature that hedge
fund returns are often non-Gaussian due to the use of derivatives and dynamic trading strategies
(Fung and Hsieh (1997), Agarwal and Naik (2004), etc.).

The evaluation of persistence is done through a Markov chain model. Persistence is then
measured in terms of transition probabilities. A Markov chain is a stochastic process where the
prediction of the future depends on the present and is independent of the past. The set of possi-
ble values that the random variable can take is referred to as the state space and the Markovian
property is defined as follows:

Pr[Xt+1 = j|X0 = i0, ..., Xt−1 = it−1, Xt = i] = Pr[Xt+1 = j|Xt = i] (1)
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where t represents the time for the states i0, . . . , i t−1, i, j. We will use a two-state Markov chain
to evaluate persistence. Let Rt, denote the return of the fund at time t and I t a dichotomous
variable that follows the process:

It = 1 if Rt > 0 (2)

It = 0 if Rt ≤ 0

The series derived from this transformation follows a two-state Markov chain and identifies
strictly positive returns as 1 and negative or null returns as 0. The corresponding transition
matrix is:

M =

[
p11 p10

p01 p00

]
with

p11 = Pr[It+1 = 1|It = 1]

p10 = Pr[It+1 = 0|It = 1]

p01 = Pr[It+1 = 1|It = 0]

p00 = Pr[It+1 = 0|It = 0]

The elements in the diagonal of the transition matrix (p11 and p00) identify the presence
of positive and negative persistence of returns. p01 and p10 indicate the probabilities of obtaining
a gain after a loss, and vice versa. The transition probabilities are calculated to maximize the
following likelihood function:

L(ST , pi, π) = log π +
11∑

ij=00

Nij log pij +Mij log(1− pij) (3)

where ST is the set of realized I t, and π the probability of the initial state. The latter
can take the following values:

• If the initial state I 1 = 1

π = π1 =
1− p00

2− p11 − p00

(4)

• If the initial state I 1 = 0

π = π0 =
1− p11

2− p11 − p00

(5)

N ij and M ij are the occurrences associated with the various transitions. It is important
to notice that π is a function of the transition probabilities1.

1For more information, refer to Time Series Analysis, J. D. Hamilton, Princeton University, 1994.
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In this context of persistence analysis of hedge fund returns with limited historical data,
it is important to ensure the significance of the transition probabilities. For this purpose, we
developed an approach to test whether or not persistence estimators are statistically significant.
To our knowledge, the existing tests in the literature for Markov chains consist mostly of inde-
pendence or random walk tests and are generally based on likelihood ratio tests or χ2- tests2. For
example, we know that p11 > 0.5 indicates positive persistence and p00 > 0.5 indicates negative
persistence. Therefore, testing for positive persistence is equivalent to performing the following
unilateral test:

H0: p11 ≤ 0.5
H1: p11 > 0.5

The corresponding t-statistic is:

t =
p̂11 − 0.5

σ̂p11
˜ tc(n− 1) (6)

Hence, we require the volatility estimate σ̂p11 . To this end, we firstly estimate the asymp-
totic value of V ar [

√
n (p̂11 − p11)] where p11 is the asymptotic value of the transition probability.

This is achieved via the Delta method described below. We know that p̂11 can also be expressed
as follows:

p̂11 =
P̂11

P̂11 + P̂10

(7)

where P̂11 = Pr(It = 1; It+1 = 1) and P̂10 = Pr(It = 1; It+1 = 0) are jointed probabilities. Thus,
p̂11 is a function of P̂11 and P̂10 and we can write:

p̂11 = f(P̂11, P̂10)

By the Delta method, and with some assumptions, we can show that3:

V ar
[√
n (p̂11 − p11)

]
= V ar

[√
n
(
P̂11

)]
+V ar

[√
n
(
P̂10

)]
−2Cov

[√
n
(
P̂11

)
,
√
n
(
P̂10

)]
(8)

In the appendix, we show that when n −→∞:

V ar
(√

nP̂11

)
−→ 5

16

V ar
(√

nP̂10

)
−→ 1

16

Cov
(√

nP̂11,

√
nP̂10

)
−→ − 1

16
2The reader can refer to the work of P.G. Hoel, L. A. Goodman, C. K. Tsao and other authors. Some tests for

Markov chains can be found in the following papers: P.G. Hoel (1954) ”A test for Markoff Chains” , Biometrika,
41 pp. 430-433; Goodman, L. A. (1958) ”Simplified Runs Tests and Likelihood Ratio Tests for Markov Chains”,
Biometrika. 51 pp. 89-100 ; Tsao, C. K. (1968) ” Admissibility and Distribution of Some Probabilistic Functions
of Discrete Finite State Markov Chains”, Ann. Math. Statist. 39 pp. 1646-1653.

3The demonstration can be found in appendix A.
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This gives

V ar
[√
n (p̂11 − p11)

]
=

1

2

From this result and the central limit theorem, the following can be obtained4:

√
n (p̂11 − p11)→ N( 0,

1

2
)

Therefore

σ̂p11 =
1√
2n

(9)

We follow the same procedure for p00 (in appendix) and the results show that

√
n (p̂00 − p00)→ N( 0,

1

2
)

and

σ̂p00 =
1√
2n

(10)

3 Methodology to unsmooth returns

In this study, we estimate persistence for the smoothed and unsmoothed returns of each fund.
This enables us to verify whether the smoothing of returns has an effect on persistence and if so,
which strategies are the most affected. Getmansky, Lo and Makarov (2004) (henceforth GLM)
propose a model using maximum likelihood estimation to obtain the “unsmoothed” time series
of returns. The model of GLM assumes that the observed return in period t (Ro

t ) is a weighted
average of the “true” returns (Rc) over the most recent k +1 periods, including the current period:

Ro
t = θ0R

c
t + θ1R

c
t−1...+ θkR

c
t−k (11)

θj ε [0, 1] , j = 0, ..., k (12)

1 = θ0 + θ1...+ θk (13)

The θs can be estimated using the maximum likelihood approach. The smoothing level
(or smoothing index) is equal to the sum of the squared θj:

ξ =
k∑
j

θ2
j (14)

By construction 0 ≤ ξ ≤1. A small value of ξ implies a high smoothing level, ξ =1
indicates no smoothing. After estimating the θs, the ”true” returns (unsmoothed) are obtained
by inverting the equation in this way:

4We performed a bootstrap with a large sample of data and the variance converges towards 1/2.
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Rc
t =

Ro
t − θ̂1R

c
t−1...− θ̂kR

c
t−k

θ̂0

(15)

The unsmoothed and the observed returns have the same mean, but not the same variance.
The variance of the unsmoothed returns is higher than that of the observed returns (σ2

c ≥ σ2
o)

and the relation between both variances is as follows: σ2
o = ξσ2

c .
To estimate the θs, GLM first centered the observed returns to come up with a new time

series:
Xt = Ro

t − µ (16)

Given the process described before the equation becomes:

Xt = Ro
t − µ = θ0(R

c
t − µ) + θ1(R

c
t−1 − µ)...+ θk(R

c
t−k − µ) + (θ0 + θ1...+ θk)µ− µ

Setting Rc
t − µ = ηt, Rc

t−1 − µ = ηt−1, ... Rc
t−k − µ = ηt−k, we get :

Xt = θ0ηt + θ1ηt−1...+ θkηt−k (17)

1 = θ0 + θ1...+ θk (18)

ηt ∼ N(0, σ2
η) (19)

where the last assumption is added for purposes of estimation of the MA(k) process.

In their model, GLM estimate the θs for 909 hedge funds with a MA(2) assuming a serial
correlation of lag 2 for hedge fund returns. This method is very attractive but nevertheless raises
some problems. On the one hand, it is based on the assumption that demeaned returns (ηt)
follow a normal distribution and the authors mention that although the maximum likelihood
estimation has some attractive properties it is only consistent and asymptotically efficient under
certain regularity conditions. Therefore, it may not perform well in small samples or when the
underlying distribution of true returns is not normal. Moreover, GLM mention that even if the
normality condition is satisfied and a sufficient sample size is available, the smoothing model
simply may not apply to certain funds. If the numerical optimization does not converge it could
be due to the fact that the model is mis-specified, due to either non-normality or an inappropriate
specification of the model. Another check is to verify whether or not the estimated smoothing
coefficients are all positive in sign. Estimated coefficients that are negative and significant may
be a sign that the constraint of positivity (of weights) is violated, which suggests that a somewhat
different smoothing model may apply. In their study which imposes an MA(2) specification, they
obtain negative weights (negative values for θ1 and θ2) for some funds. It is important to note
that not all funds have the same level of serial correlation and therefore, imposing the same
level of serial correlation for all funds could lead to the estimation of mis-specified parameters θj
and this could have undesirable effects on the distribution of unsmoothed returns. For example,
when a parameter θj is negative, the fact that the weights must sum to 1 implies that at least
one of them should be greater than 1. In this case, we would have a smoothing level ξ > 1 and
the variance of unsmoothed returns would be lower than the variance of the observed returns,
which would underestimate the true risk of the fund. This suggests that it is very important to
specify the appropriate model for each fund. For example, funds investing in liquid securities
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will probably have serially uncorrelated returns and imposing the unsmoothing of their returns
could lead to mis-specified θs. This is why it is important to firstly check the level of the serial
correlation of returns.

In this study, we propose a model based on the method of moments to estimate the θs.
Our model has the advantage of identifying when it is possible to obtain a satisfactory solution
for θs. In addition, our model doesn’t assume normality; this is a relevant point given that many
studies documented the non-normality of hedge fund returns. Let us reconsider the model of
GLM (2004):

Xt = θ0ηt + θ1ηt−1...+ θkηt−k (20)

1 = θ0 + θ1...+ θk (21)

ηt ∼ D(0, σ2
η) (22)

In this case, the demeaned ηt follows a distribution D which is not necessarily normal.
We only suppose that the unobserved returns are independent and have a constant volatility to
estimate. Suppose the observed returns are serially correlated up to lag k. By using the method

of moments, it implies:

E
[
X2
t

]
= E [(θ0ηt + θ1ηt−1...+ θkηt−k).(θ0ηt + θ1ηt−1...+ θkηt−k)]

= θ2
0σ

2
η+θ

2
1σ

2
η+...+ θ2

kσ
2
η

= (θ2
0+θ

2
1+...+ θ2

k)σ
2
η

E [Xt.Xt−1] = E [(θ0ηt + θ1ηt−1...+ θkηt−k).(θ0ηt−1 + θ1ηt−2...+ θkηt−k−1)]

= θ0θ1σ
2
η+θ1θ2σ

2
η+...+ θk−1θkσ

2
η

= (θ0θ1+θ1θ2+...+ θk−1θk)σ
2
η

E [Xt.Xt−2] = E [(θ0ηt + θ1ηt−1...+ θkηt−k).(θ0ηt−2 + θ1ηt−3...+ θkηt−k−2)]

= θ0θ2σ
2
η+θ1θ3σ

2
η+...+ θk−2θkσ

2
η

= (θ0θ2+θ1θ3+...+ θk−2θk)σ
2
η

...

E [Xt.Xt−k] = E [(θ0ηt + θ1ηt−1...+ θkηt−k).(θ0ηt−k + θ1ηt−k−1...+ θkηt−2k)]

= θ0θkσ
2
η

Thus, we have k +1 moment conditions, and we want to estimate k +2 parameters. We
also have one more condition, which is

∑k
j θj = 1. This leads to a system of k +2 equations with

k +2 unknown parameters:

10





E [X2
t ] = (θ2

0+θ
2
1+...+ θ2

k)σ
2
η

E [Xt.Xt−1] = (θ0θ1+θ1θ2+...+ θk−1θk)σ
2
η

E [Xt.Xt−2] = (θ0θ2+θ1θ3+...+ θk−2θk)σ
2
η

...
E [Xt.Xt−k] = θ0θkσ

2
η

1 = θ0+θ1...+ θk

(23)

We are then able to estimate the parameters. One simple way to do this is to firstly
estimate the order k of serial correlation of the observed returns. In the GLM model, they
assume that all the funds have returns serially correlated up to lag 2, which is not necessarily
true. For example, Managed futures funds, for the most part, have serially uncorrelated returns
because they generally invest in liquid securities; imposing a level of serial correlation could lead
to mis-specified parameters. Our approach is to firstly measure the level of serial correlation and
then estimate the corresponding parameters θj and σ2

η. We will limit the development to lag 2.
Depending on the level of serial correlation found, we have three main cases:

a) First case: k = 0

If the first- and the second-order serial correlation are not statistically significant, it is
not necessary to unsmooth the returns and we keep them as they are.

b) Second case: k = 1

If the first-order serial correlation is statistically significant but not the second one, we
have 3 parameters to estimate θ0, θ1 and σ2

η from the following system of equations:


E [X2

t ] = (θ2
0+θ

2
1)σ

2
η

E [Xt.Xt−1] = θ0θ1σ
2
η

1 = θ0+θ1

(24)

The resolution of this system of equations gives the following results5:

σ2
η = E

[
X2
t

]
+2.E [Xt.Xt−1] (25)

θ0 =
1

2
+

√
1− 4γ1

2
(26)

θ1 =
1

2
−
√

1− 4γ1

2
(27)

with

γ1=
E [Xt.Xt−1]

σ2
η

(28)

5The developments are presented in appendix C.
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Then, the system’s solutions exist if and only if γ1 ≤ 1
4

and to obtain satisfactory solutions,
(θ1 ≥ 0), γ1 should lead in this interval:

0 ≤ γ1≤
1

4
(29)

The first-order serial correlation should not be too high, nor should it be negative because if
γ1 < 0 i.e. if Cov(Xt, Xt−1) < 0, we will have θ1 < 0. In other words, if the first-order serial
correlation is negative, not all weights will be positive and the unsmoothing will be incongruous
because ξ will be higher than 1 and σ2

c will be lower than σ2
o . Note that σ2

η and γ1 can empirically
be estimated from the sample equivalent of E [X2

t ] and E [XtXt−1] .

c) Third case: k = 2

If the first- and the second-order serial correlation are both statistically significant we
have 4 parameters to estimate θ0, θ1, θ2 and σ2

η from the following system of equations:


E [X2

t ] = (θ2
0+θ

2
1+θ

2
2)σ

2
η

E [Xt.Xt−1] = (θ0θ1+θ1θ2)σ
2
η

E [Xt.Xt−1] = θ0θ2σ
2
η

1 = θ0+θ1 +θ2

(30)

The resolution of this system of equations gives the following results:

σ2
η = E

[
X2
t

]
+2.E [Xt.Xt−1] +2.E [Xt.Xt−2] (31)

θ1 =
1

2
−
√

1− 4δ1
2

(32)

θ0 =
(1− θ1)

2
+

√
(1− θ1)2 − 4δ2

2
(33)

θ2 =
(1− θ1)

2
−
√

(1− θ1)2 − 4δ2
2

(34)

with

δ1 =
E [Xt.Xt−1]

σ2
η

(35)

δ2 =
E [Xt.Xt−2]

σ2
η

(36)

Then, the system’s solutions exist if and only if δ1 ≤ 1
4

and δ2 ≤ (1−θ1)2

4
. To have satisfac-

tory solutions, δ1 and δ2 should lead in these intervals:

0 ≤ δ1 ≤
1

4
(37)

0 ≤ δ2 ≤
(1− θ1)

2

4
(38)
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The first- and the second-order serial correlation should not be too high, nor should they
be negative because if δ1 < 0 (i.e. if Cov(Xt, Xt−1) < 0) and/or if δ2 < 0 (Cov(Xt, Xt−2) < 0),
we will have θ1 < 0 and /or θ2 < 0 and there is a possibility that θ0 may be greater than 1, and ξ
then also greater than 1. In other words, if one or both of the serial correlations is negative, not
all weights will be positive and the unsmoothing will be incongruous because ξ will be greater
than 1, and σ2

c will be less than σ2
o . Note that σ2

η, δ1 and δ2 can empirically be estimated from
the sample equivalent of E [X2

t ] , E [XtXt−1] and E [XtXt−2] .

d) Decision process

Before evaluating pure persistence for each fund, we calculate the first- and the second-
order serial correlation of returns and the decision process is as follows:

(*) If neither is statistically significant, we keep the observed returns.
(**) If only the first-order serial correlation is significant (k=1), we estimate σ2

η and γ1,
and:

- If 0 ≤ γ1 ≤ 1
4
, we estimate θ0 , θ1 and the unsmoothed returns as follows:

Rc
t =

Ro
t − θ̂1R

c
t−1

θ̂0

(39)

Note that if k = 1, the estimation of the unsmoothed returns is based on the assumption
that the first return is an unsmoothed return.

- γ1 < 0 implies that it is not possible to obtain satisfactory solutions and we exclude the
fund from our sample.

- γ1 >
1
4

implies that the first-order serial correlation is too high, and we therefore esti-
mate the model as if k = 2 to see whether we can obtain a solution. If not, we exclude the fund
from our sample.

(***) If both the first- and the second-order serial correlations are statistically significant,

we estimate σ2
η, δ1, δ2 and θ1, and verify that 0 ≤ δ1 ≤ 1

4
and 0 ≤ δ2 ≤ (1−θ1)2

4
. In this case, we

estimate θ0 , θ2 and the unsmoothed returns as follows:

Rc
t =

Ro
t − θ̂1R

c
t−1 − θ̂2R

c
t−2

θ̂0

(40)

If δ1 and δ2 are not comprised within these intervals, we exclude the fund from our sample
because we can not obtain satisfactory solutions, or we can not obtain a solution at all.
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3.1 Robustness check for discontinuity

A natural question that arises is to know whether our unsmoothing procedure clears the concern
of discontinuity in hedge fund returns reported by Bollen and Pool (2009). They examine the
histogram of the pooled distribution of reported hedge fund returns and find that it exhibits a
discontinuity at zero, i.e. returns just below zero are under-represented and returns just above
zero are over-represented, suggesting that some managers distort returns when possible in order
to avoid reporting losses. They also find that this phenomenon seems to be more pronounced in
hedge funds styles that focus in illiquid securities. Getzmansky et al. (2004) argue that illiquid-
ity and the managers’ personal motivation to optimize their performance are the main sources
of the smoothing of returns. So, funds with more smoothing can be considered as those with
more illiquid assets, but can also be considered as those where there is more distortion of returns.
However, even if the distortion of returns is more feasible when the manager is invested in illiquid
assets, it remains difficult to distinguish the discontinuity created by purposeful smoothing and
that created by innocuous smoothing.

To investigate the presence of discontinuity around zero, Bollen and Pool (2009) use a
test similar to that of Burgstahler and Dichev (1997) who document a discontinuity in the dis-
tribution of corporate earnings of firms listed in the Compustat database. The t-test measures
whether the height of the bins adjacent to zero are consistent with the smoothed kernel estimate
of the underlying distribution. In order to evaluate whether our smoothing procedure eliminates
the problem of discontinuity, we implement the same test on the pooled distribution of funds
whose returns have been unsmoothed - that is funds whose reported returns exhibit a statistically
significant first or second order serial correlation6

4 Data

Our hedge funds data comprises the monthly net-of-fee returns of 7,255 live and dead funds
provided by Hedge Fund Research Inc. (HFR) and covers the period starting January 1994
and ending December 2007. However, we excluded funds with less than 36 consecutive monthly
returns in order to estimate pure persistence with sufficient data. This led us to a total of 4,783
funds. Our data consists of 20 hedge fund strategies and is representative of the hedge fund
universe. Table 1 exhibits the statistics of funds for different strategies and the values presented
are the average values across the strategies. We can see that there is an unequal distribution of
funds in various strategies. Funds of funds are the most numerous (1,748), whereas Short selling
has the lowest number of funds (13). On average, all the strategies exhibit a positive mean with
the highest values for Emerging market (1.81%), Sector (1.44%) and Equity non-hedge (1.37%).

Short selling, Equity non-hedge and Emerging market exhibit the highest volatility values.
With regard to the third and the fourth moment of the distribution, hedge funds exhibit skewed
returns and excess kurtosis. These descriptive statistics are in line with the results found in
various studies documenting the non-normality of hedge fund returns (Fung and Hsieh (1997),

6In order to compare our results with those of Bollen and Pool (2009), we exclude Funds of funds and Managed
future funds which correspond to CTAs.
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Table 1: Descriptive statistics for hedge fund returns

Mean (%) Vol.(%) Skewness Kurtosis Funds

Convertible Arb 0.67 1.57 -0.46 5.24 92
Distress Sec. 1.11 2.31 0.33 6.41 107
Emerging Mkt 1.81 5.06 0.06 5.96 196
Equity Hedge 1.09 3.55 0.19 5.18 992
Equity Mkt N. 0.63 2.13 -0.18 6.06 193
Equity Non Hedge 1.37 5.19 0.06 5.13 121
Event Driven 1.13 2.94 0.05 6.17 174
FI Arbitrage 0.54 1.68 -0.44 9.77 70
FI Convertible 0.66 3.35 0.26 4.62 21
FI Diversified 0.60 1.88 -0.55 8.93 65
FI High Yield 0.69 1.89 -1.42 13.30 50
FI Mortgage 0.79 1.94 -1.66 20.46 38
Fund of Funds 0.70 1.68 -0.37 5.13 1747
Macro 0.96 3.62 0.07 5.06 212
Market Timing 1.05 3.88 0.64 7.70 24
Managed Futures 0.97 5.03 0.29 4.55 223
Merger Arb. 0.77 1.54 0.05 7.63 43
Relative Value 0.91 1.98 -0.04 6.69 211
Sector 1.44 4.92 0.30 6.07 191
Short Selling 0.12 6.83 0.00 6.23 13
All 0.93 2.80 -0.11 5.72 4783

This table presents the monthly mean return, volatility, skewness, and kurtosis
as well as the number of funds for each hedge fund strategy

Liang (2000), etc.).
It is also well documented that hedge fund data is subject to various biases such as sur-

vivorship bias or backfill bias. We construct our data set so as to limit any exposure to these
biases. By using the returns of live and dead funds, we avoid the survivorship bias given that
persistence is evaluated for both successful and unsuccessful funds. In order to account for the
backfill bias, some studies exclude the first 12 monthly returns as some funds may report their
returns before their inclusion in the database if the returns are good. To verify whether it was
necessary to use the same process on our sample, we estimated, for each fund, the difference
in mean with and without the first 12 months. The values obtained are presented in table 2.
µ(all) − µ(minus 12) and σ(all) − σ(minus 12) are, respectively, the differences in mean and volatility
between the the entire set of the funds’ returns and that which excludes the first 12 months. The
average differences for each strategy and the corresponding t-statistic are presented in the table.

We can see that the differences in mean are small, and even negative for some strategies
(Emerging market, FOF, Market timing and Short selling), which indicates that the mean is not
necessarily increased when one includes the first 12 months of data. The spreads range from
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a minimum of -0.046% for Short selling to a maximum of 0.091% for Equity non-hedge. The
t-statistics show that the spreads are not statistically different from zero, except for Equity hedge
funds. Including the first 12 months of returns does not necessarily create a backfill bias in our
database and we will therefore use all available data in our study.

Table 2: Average differences in returns when first 12 months are excluded returns

µ(all) − µ(minus 12) σ(all) − σ(minus 12) t-stat

Convertible Arb 0.06 0.16 0.39
Distress Sec. 0.04 0.22 0.20
Emerging Mkt 0.00 0.46 -0.01
Equity Hedge 0.07 0.34 0.20
Equity Mkt Neutral 0.06 0.16 0.35
Equity Non Hedge 0.09 0.38 0.24
Event Driven 0.05 0.33 0.15
FI Arbitrage 0.06 0.16 0.34
FI Convertible 0.04 0.18 0.20
FI Diversified 0.05 0.12 0.45
FI High Yield 0.05 0.17 0.29
FI Mortgage 0.09 0.14 0.65
Fund of Funds -0.01 0.13 -0.11
Macro 0.02 0.24 0.08
Market Timing 0.00 0.36 -0.01
Managed Futures 0.02 0.35 0.06
Merger Arb. 0.04 0.13 0.30
Relative Value 0.08 0.25 0.30
Sector 0.07 0.37 0.18
Short Selling -0.05 0.12 0.38
All 0.03 0.26 0.11

This table presents the difference in mean and volatlity when the first 12 months are excluded. The table
reports the average differences in the means and volatilities, µ(all) − µ(minus 12) and σ(all) − σ(minus 12), and the

corresponding t-statistic

5 Estimation results

5.1 Serial correlation of hedge fund returns

Before proceeding with the unsmoothing of returns, we firstly analyze the serial correlation of
the hedge funds in our data. Table 3 presents the first- and the second-order serial correlation
of the reported returns across all strategies. Columns 5 and 9 present, for each strategy, the
percentage of funds exhibiting a statistically significant serial correlation of order 1 or 2.

On average, Convertible arbitrage, Distress securities, Fixed income convertible bonds,
Fixed income high yield and Fixed income mortgage exhibit a higher first-order serial correla-
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Table 3: First and second order serial correlation for reported returns

First order Second Order
Mean Min Max % Sig. Mean Min Max % Sig.

Convertible Arb 0.38 0.07 0.86 90.2 0.12 -0.22 0.81 23.9
Distress Sec. 0.25 -0.17 0.55 65.4 0.08 -0.24 0.52 15.0
Emerging Mkt 0.12 -0.22 0.49 24.5 0.01 -0.26 0.32 3.1
Equity Hedge 0.11 -0.35 0.71 19.7 0.01 -0.52 0.47 6.7
Equity Mkt Neutral 0.06 -0.32 0.88 17.1 0.00 -0.42 0.85 6.7
Equity Non Hedge 0.10 -0.34 0.37 18.2 0.00 -0.24 0.35 3.3
Event Driven 0.20 -0.33 0.51 47.7 0.05 -0.23 0.35 8.6
FI Arbitrage 0.15 -0.43 0.76 34.3 0.03 -0.53 0.61 11.4
FI Convertible 0.20 -0.07 0.33 57.1 0.07 -0.11 0.30 19.0
FI Diversified 0.13 -0.46 0.83 24.6 -0.05 -0.35 0.80 7.7
FI High Yield 0.28 -0.05 0.50 56.0 0.01 -0.27 0.22 0.0
FI Mortgage 0.22 -0.07 0.57 44.7 0.15 -0.12 0.50 28.9
Fund of Funds 0.17 -0.57 0.66 29.4 -0.03 -0.35 0.48 4.2
Macro 0.06 -0.29 0.40 11.3 -0.03 -0.36 0.30 2.8
Market Timing 0.08 -0.15 0.39 25.0 0.06 -0.20 0.37 25.0
Managed Futures 0.03 -0.30 0.52 6.7 -0.09 -0.44 0.42 2.2
Merger Arb. 0.17 -0.26 0.49 37.2 0.08 -0.12 0.38 16.3
Relative Value 0.18 -0.40 0.84 42.7 0.03 -0.35 0.65 11.4
Sector 0.09 -0.24 0.62 15.2 -0.02 -0.36 0.48 8.4
Short Selling 0.06 -0.13 0.34 15.4 -0.06 -0.15 0.18 0.0
S&P 500 -0.006 -0.04

This table presents the minimum, maximum, mean estimates for first and second order serial correlation for
each hedge fund style. The table also shows the percentage of funds for which the estimates that are significant

at the 5% level

tion. These strategies also exhibit the higher proportion of funds with a statistically significant
serial correlation. And even if the second-order serial correlation is, on average, lower across all
strategies, it is higher for the previously mentioned strategies, which are generally invested in
illiquid securities. One can therefore expect that the unsmoothing process may apply to most of
the funds in these strategies.

Also note that the serial correlation profile can vary a lot from fund to fund in each
strategy and the gap between the lowest and the highest serial correlation can be very wide. For
some strategies, there are certain funds whose first- or second-order serial correlation is greater
than 0.80 (Convertible arbitrage, Equity market neutral, Fixed income diversified and Relative
value arbitrage). This shows that if one wants accurate results when analyzing hedge funds, it is
important to work on a fund-by-fund basis rather than analyzing the aggregate data of indices.
Table 3 also shows that strategies involved in more liquid securities such as Macro or Managed
futures are those for which the first-order serial correlation is lower. Therefore, the unsmoothing
process should be less applicable to these strategies.
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The last row of the table 3 shows the first- and the second-order serial correlation of
S&P500 monthly returns from January 1994 to December 2007. We can see that they are very
small and not statistically significant.

5.2 Results for the un-smoothed of returns

For the sake of comparison, we proceed with to un-smooth the retruns using two approaches.
First, we impose a first- and second- order serial correlation on all funds (constrained model as
per that of GLM) and second, we unsmooth the returns according to the level of serial correlation
of each fund (unconstrained model). Table 4 presents the average values of θ0, θ1, θ2 and ξ for
each strategy in the constrained model. The last column presents the percentage of funds for
which we can obtain possible solutions (but not necessarily satisfactory solutions). Funds for
which we have no possible solution are those for which the level of first- or second-order of serial
correlation is very high or the order of serial correlation is greater than 2.

Table 4: Serial Correlation: Constrained model

θ0 θ1 θ2 ξ % of funds

Convertible Arb 0.64 0.27 0.09 0.52 96.7
Distress Sec. 0.76 0.18 0.06 0.65 96.3
Emerging Mkt 0.91 0.09 -0.01 0.91 100.0
Equity Hedge 0.94 0.08 -0.02 1.01 99.1
Equity Mkt Neutral 1.18 -0.04 -0.14 10.65 99.5
Equity Non Hedge 0.94 0.07 -0.01 0.97 100.0
Event Driven 0.81 0.15 0.04 0.73 100.0
FI Arbitrage 0.91 0.07 0.01 1.03 92.9
FI Convertible 0.79 0.16 0.05 0.69 100.0
FI Diversified 1.02 0.05 -0.07 1.36 90.8
FI High Yield 0.77 0.24 -0.01 0.70 100.0
FI Mortgage 0.75 0.14 0.11 0.65 92.1
Fund of Funds 0.90 0.15 -0.05 0.91 98.9
Macro 1.04 0.02 -0.06 1.33 98.1
Market Timing 0.93 0.04 0.03 0.99 100.0
Managed Futures 1.13 0.01 -0.15 1.47 99.1
Merger Arb. 0.83 0.11 0.06 0.77 100.0
Relative Value 0.89 0.10 0.01 0.96 91.9
Sector 1.01 0.06 -0.07 1.26 99.0
Short Selling 1.00 0.07 -0.07 1.05 100.0
All 98.2

This table presents the estimates presents the average values of θ0, θ1, θ2 and ξ for each strategy in the
constrained MA(2) model. The last column presents the percentage of funds for which we can obtain possible

solutions

We can see that constraining the GLM model to be an MA(2) could lead to unsatisfactory

18



results. Indeed, for some strategies, we have negative values (weights) for θ1 and θ2 overall and
the consequences are less desirable for the most liquid strategies. This is especially true for
Equity market neutral, Macro, Managed futures, Short selling and Fixed income diversified,
which have, on average, a value of θ0 greater than or equal to one. GLM (2004) obtained similar
results for some strategies in their database7. This leads to a smoothing index of ξ > 1 and
in turn, a lower volatility of unsmoothed returns, which is contrary to the model’s hypothesis.
For those strategies, the unsmoothing process will then lead to an underestimation of the funds’
risk-adjusted performance. However, for more illiquid strategies, imposing an MA(2) model does
not necessarily raise this problem. The average value of θ0 for Convertible arbitrage, Distress
securities, Fixed income convertible bonds, Fixed income high yield, and Fixed income mortgage
is less than one and their smoothing index is also less than one.

In table 5, we present the results for the second approach in which we do not constrain the
model to be an MA(2). Column six shows for each strategy, the percentage of funds exhibiting
no statistically significant serial correlation. Column seven shows the percentage for which only
the first-order serial correlation is statistically significant and column eight shows the percentage
for which both the first- and the second-order serial correlation are statistically significant.

The unsmoothing process is then applied to each fund on a case-per-case basis. We recall
that one of the objectives of this study is to compare the pure persistence of hedge funds across
all strategies for smoothed and unsmoothed returns. Therefore, we should have the same number
of funds when comparing the smoothed and unsmoothed returns of a strategy, and when it is not
possible to unsmooth a fund’s returns, the fund is excluded. Fortunately, as can be seen, we did
not exclude many funds; of the 4,783 funds in the sample, we only excluded 1.8%. The percentage
of exclusion differs of course from strategy to strategy; it is more than 10% for Fixed income
diversified only (10.8%), but the strategy’s weight in the sample is not of great significance. Only
7 funds were excluded from this strategy.

As can be seen in column six, it is not necessary to unsmooth returns for the majority
of funds for liquid strategies. Indeed, for Equity hedge, Equity market neutral, Equity non
hedge, Macro, Managed futures, Sector and Short selling, at least 80% of funds do not need to
be unsmoothed as their serial correlation is not statistically significant. This is not the case for
illiquid strategies where Convertible arbitrage, Fixed income convertible bonds and Fixed income
mortgage exhibit a significant percentage of funds which must be unsmoothed up to lag 2. It
can also be seen that with the unconstrained model, we always obtain satisfactory solutions as
it takes into account the fund’s level of serial correlation. It is also interesting to notice that for
Macro, Managed futures and Short selling funds there is no need to unsmooth returns up to lag
2.

5.2.1 Robustness check for discontinuity

Figure A.1 and A.2 (in the appendix) show the histograms for reported and unsmoothed returns,
and the value of the test statistic of the bins bracketing zero. This t-test measures whether the

7They used returns of 909 hedge funds from TASS database. The period of estimation starts from November
1977 to January 2001. HFR and TASS database don’t have the same classification for hedge funds, but in their
study, Equity hedge, Macro, Managed futures and Short selling are among strategies that exhibit a value of θ0
higher to one and/or negative values for θ1 or θ2.
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Table 5: Serial Correlation: Unconstrained model

% of Funds selected
θ0 θ1 θ2 ξ All k = 0 k = 1 k = 2

Convertible Arb 0.62 0.31 0.20 0.51 96.7 9.8 55.4 31.5
Distress Sec. 0.71 0.26 0.19 0.59 98.1 34.6 54.2 9.3
Emerging Mkt 0.75 0.22 0.19 0.63 99.5 75.5 20.4 3.6
Equity Hedge 0.72 0.23 0.21 0.59 98.8 79.7 14.4 4.6
Equity Mkt Neutral 0.75 0.23 0.20 0.62 95.9 79.3 14.5 2.1
Equity Non Hedge 0.75 0.24 0.22 0.63 98.3 80.2 17.4 0.8
Event Driven 0.73 0.25 0.16 0.61 99.4 51.7 40.8 6.9
FI Arbitrage 0.65 0.25 0.24 0.54 94.3 64.3 18.6 11.4
FI Convertible 0.73 0.20 0.19 0.60 100.0 42.9 38.1 19.0
FI Diversified 0.68 0.28 0.15 0.56 89.2 69.2 15.4 4.6
FI High Yield 0.68 0.30 0.17 0.57 100.0 44.0 52.0 4.0
FI Mortgage 0.60 0.25 0.25 0.49 94.7 55.3 15.8 23.7
Fund of Funds 0.73 0.24 0.18 0.61 99.3 70.2 25.2 3.9
Macro 0.77 0.23 NaN 0.65 96.7 86. 3 10.4 0.0
Market Timing 0.64 0.19 0.20 0.49 100.0 75.0 4.2 20.8
Managed Futures 0.79 0.21 NaN 0.68 96.9 91.9 4.9 0.0
Merger Arb. 0.70 0.23 0.28 0.58 100.0 62.8 27.9 9.3
Relative Value 0.68 0.28 0.20 0.57 93.8 54.5 31.8 7.6
Sector 0.70 0.23 0.22 0.58 98.4 83.8 9.9 4.7
Short Selling 0.78 0.22 NaN 0.66 100.0 84. 6 15.4 0.0
All 98.2

This table presents the average estimates of θ0, θ1, θ2 and ξ for each strategy in the unconstrained approach.
Column five presents the percentage of funds for which we can obtain possible solutions. Column six shows for

each strategy, the percentage of funds exhibiting no statistically significant serial correlation. Column seven
shows the percentage for which only the first-order serial correlation is statistically significant and column eight
shows the percentage for which both the first- and the second-order serial correlation are statistically significant.

height of the vertical bar is different than that expected given the smoothed kernel estimate of
the underlying distribution. The figures show a sharp discontinuity in the distribution of re-
ported returns at zero, which can be interpreted as an underrepresentation of returns just below
zero and overrepresentation just above zero. The discontinuity disappears in the distribution
of unsmoothed returns which means that for these returns, the number of observations in each
bin around zero is not statistically different than that expected. These results show that our
unsmoothing procedure eliminates the concern regarding the presence of a discontinuity in the
distribution of hedge fund returns. These findings should not be surprising because there is a
positive relationship between discontinuity and illiquidity, the latter creating the serial correla-
tion in returns; and the very purpose of the unsmoothing is to remove this serial correlation.
Therefore, the unsmoothed returns should not exhibit any discontinuity at zero.
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Nonetheless, our sample of true returns is not necessarily free from discontinuity because
we didn’t unsmooth all the returns namely those of funds that exhibit an insignificant serial cor-
relation (k = 0). In this group, some funds exhibit a negative and insignificant serial correlation
and their returns cannot be unsmoothed otherwise we will get incongruous results (negative θs),
and others exhibit a positive and insignificant serial correlation. Figures B.1 and B.2 show the
test of discontinuity for these two sub-groups. The figures show that for funds that exhibit a
negative and insignificant serial correlation, the number of observations just below zero is not
different than that expected but the number of observations just above zero seems to be over-
represented. While for funds that exhibit a positive and insignificant serial correlation, there is a
discontinuity just below and just above zero. However, the discontinuity for those funds remains
less pronounced than that of reported returns of funds exhibiting a statistically significant serial
correlation. Even if the returns of this second sub-group do not exhibit a significant serial cor-
relation, they can also be unsmoothed in order to clear the discontinuity.

It is also important to mention that our persistence analysis before and after unsmoothing
accounts for the possibility of distorted returns in order to avoid reporting losses because null
returns are considered as negative returns in the estimation of transition probabilities8.

5.3 Persistence of hedge fund returns

Table 6 compares for each strategy, the average positive persistence for funds with no serial
correlation and those for which it is necessary to unsmooth returns. Columns 3 and 5 show the
proportion of funds that exhibit a statistically significant positive persistence at the 5% level9.
We can note that, on average, funds with smoothed returns have a higher level of positive per-
sistence (except for Emerging market), and the difference may be significant. We also note that
there are more funds exhibiting a statistically significant positive persistence in the universe of
smoothed returns funds than in the universe of non-smoothed returns funds. These results sug-
gest that the smoothing of returns may contribute to an increase in positive persistence. It is
nevertheless important to notice that the majority of funds of nearly all strategies (to the ex-
clusion of Managed futures and Short selling) exhibit statistically significant positive persistence
for both smoothed and unsmoothed returns.

To verify whether smoothing contributes to an increase in the positive persistence of
returns, we evaluated the persistence of smoothed and unsmoothed returns of funds exhibiting
a statistically significant serial correlation of returns.

The results are presented in table 7 where we observe that for these funds, the average
positive persistence drops considerably when one unsmooths the returns. The average drop of
positive persistence across all strategies ranges from -9.1% for Market timing to -25.4% for Short
selling, even if the persistence is not statistically significant for any fund of the latter. We also
observe, across all strategies, a decrease in the percentage of funds exhibiting a statistically sig-
nificant positive persistence at the 5% level. Distress securities, Fixed income high yield, Fixed

8The indicator variable It takes the value 0 if the return Rt ≤ 0 and the value 1 if Rt > 0.
9The persistence is statistically significant for a fund at the 5% level if the statistic t = p̂11− 0.5

1/
√

2n
> 1.645, where

n is the number of monthly returns for that fund.
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Table 6: Positive persistence for funds with no serial correlation and for funds with first- or
second-order serial correlation

Funds with k=0 Funds with k=1 or k=2
Strategy p11 % Sign. p11 % Sign.

Convertible Arb 0.73 88.9 0.84 98.8
Distress Sec. 0.79 89.2 0.84 100.0
Emerging Mkt 0.73 83.1 0.73 97.9
Equity Hedge 0.67 70.3 0.72 91.5
Equity Mkt Neutral 0.67 62.1 0.72 87.5
Equity Non Hedge 0.66 67.0 0.72 95.5
Event Driven 0.73 85.6 0.80 96.4
FI Arbitrage 0.77 77.8 0.80 85.7
FI Convertible 0.64 55.6 0.66 50.0
FI Diversified 0.73 80.0 0.85 100.0
FI High Yield 0.84 100.0 0.85 100.0
FI Mortgage 0.84 95.2 0.91 100.0
Fund of Funds 0.75 90.5 0.80 99.4
Macro 0.65 54.1 0.68 86.4
Market Timing 0.62 66.7 0.87 100.0
Managed Futures 0.59 26.8 0.60 36.4
Merger Arb. 0.77 92.6 0.82 100.0
Relative Value 0.76 82.6 0.84 98.8
Sector 0.68 61.9 0.72 89.3
Short Selling 0.55 0.0 0.62 0.0

This table presents the average positive persistence for funds with no serial correlation and those for which it is
necessary to unsmooth returns. Columns 3 and 5 show the proportion of funds that exhibit a statistically

significant positive persistence at the 5% level.

income mortgage and Funds of funds exhibit the highest proportion of funds with a statistically
significant positive persistence. Managed futures, Macro and Short selling have the lowest pro-
portion of funds with statistically significant positive persistence. Another important point to
mention here is that for almost all strategies, the average positive persistence of unsmoothed
returns for funds with k = 1 or 2, ends up being lower than the average positive persistence for
funds with no serial correlation (Table 6). The exception comes from Fixed income diversified
(0.75 vs. 0.73) and Market timing (0.79 vs. 0.62).

Overall, our findings suggest that the smoothing of returns (voluntary or involuntary) is
done at the advantage of the manager given that it contributes to an increase in the persistence
of his positive returns.

If we aggregate the positive persistence of returns for funds with no serial correlation
and the positive persistence of unsmoothed returns for funds with serial correlation, we obtain
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Table 7: Positive persistence of smoothed and unsmoothed returns for funds with k=1 or k=2

Smoothed returns Unsmoothed returns
p11 % Sign. p11 % Sign. % Var. of p11

Convertible Arb 0.84 98.8 0.66 67.50 -20.8
Distress Sec. 0.84 100.0 0.71 80.88 -15.0
Emerging Mkt 0.73 97.9 0.63 61.70 -12.8
Equity Hedge 0.72 91.5 0.60 42.86 -16.8
Equity Mkt Neutral 0.72 87.5 0.60 50.00 -17.1
Equity Non Hedge 0.72 95.5 0.62 45.45 -13.6
Event Driven 0.80 96.4 0.68 78.31 -14.5
FI Arbitrage 0.80 85.7 0.67 66.67 -16.9
FI Convertible 0.66 50.0 0.55 25.00 -15.9
FI Diversified 0.85 100.0 0.75 76.92 -12.4
FI High Yield 0.85 100.0 0.69 82.14 -18.7
FI Mortgage 0.91 100.0 0.78 93.33 -14.7
Fund of Funds 0.80 99.4 0.71 85.04 -11.5
Macro 0.68 86.4 0.55 36.36 -18.8
Market Timing 0.87 100.0 0.79 100.00 -9.1
Managed Futures 0.60 36.4 0.51 9.09 -14.6
Merger Arb. 0.82 100.0 0.69 81.25 -15.9
Relative Value 0.84 98.8 0.70 68.67 -16.3
Sector 0.72 89.3 0.62 53.57 -13.8
Short Selling 0.62 0.0 0.46 0.00 -25.4

This table presents the average positive persistence for smoothed and unsmoothed returns of funds exhibiting a
statistically significant serial correlation of returns. Columns 3 and 5 show the proportion of funds that exhibit

a statistically significant positive persistence at the 5% level. Column 6 measure the variation between the
persistence measure for smoothed and unsmoothed returns.

the results presented in table 8, which represent the average ”true” positive persistence for each
strategy. With aggregate data, the majority of funds for most strategies exhibit statistically
significant positive persistence at the 5% level (17 out of 20 strategies). At the 1% level, it is the
case for 9 strategies of which arbitrage strategies, fixed income strategies, FOF and other strate-
gies based on illiquid securities (Convertible arbitrage, Distress securities, Event driven, Fixed
income arbitrage, Fixed income high yield, Fixed income mortgage, FOF, Merger arbitrage and
Relative value arbitrage). The lowest values of persistence are for Short selling (0.54), Managed
futures (0.58) and Fixed income convertible bonds (0.59) and the highest are for Fixed income
mortgage (0.82), Fixed income high yield (0.76) and some arbitrage strategies.
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Table 8: Positive persistence of true returns for all funds

p11 % Sign. at 5% % Sign. at 1%

Convertible Arb 0.67 69.7 51.7
Distress Sec. 0.74 83.8 72.4
Emerging Mkt 0.70 77.9 44.1
Equity Hedge 0.66 65.0 35.7
Equity Mkt Neutral 0.66 60.0 34.1
Equity Non Hedge 0.65 63.0 41.2
Event Driven 0.71 82.1 63.0
FI Arbitrage 0.74 74.2 66.7
FI Convertible 0.59 38.1 23.8
FI Diversified 0.73 79.3 50.0
FI High Yield 0.76 90.0 72.0
FI Mortgage 0.82 94.4 91.7
Fund of Funds 0.74 88.9 71.0
Macro 0.64 52.2 28.8
Market Timing 0.67 75.0 45.8
Managed Futures 0.58 25.9 11.6
Merger Arb. 0.74 88.4 79.1
Relative Value 0.74 76.8 64.6
Sector 0.67 60.6 35.1
Short Selling 0.54 0.0 0.0

This table presents the positive persistence of returns for funds with no serial correlation and the positive
persistence of unsmoothed returns for funds with serial correlation. Columns 3 and 4 present the proportion of

funds that exhibit a statistically significant positive persistence at the 5% and 1% levels respectively.

5.4 Persistence vs. probability of positive returns

Positive persistence evaluates a manager’s ability to deliver consecutive positive returns. The
approach focuses on each past positive return and observes the sign of the following one. Although
this information is relevant, it does not necessarily provide insight as to the odds of delivering
positive or negative returns. For that purpose, we should estimate the unconditional probability
of positive returns, P1, which takes into account the number of positive returns during the
evaluation period. To support our assertion, let us consider the following example. Suppose a
manager whose performance over 10 periods is as follows, where 1 represents the occurrence of
a positive return and 0 that of a non-positive return:

0 0 0 0 0 1 1 1 0 0

The probability of positive returns and the positive persistence can be estimated by counting,
respectively, the number of 1s and the number of subsequent 1s. In this case, P1 = 3/10 = 0.3,
and p11 = 2/3 = 0.66. This can be interpreted as a positive persistence, but a poor performance
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on a regular basis10 (low value of P1). However, looking only at p11 is misleading when evaluating
the manager’s overall performance. Another look at this example shows that there is also the
presence of negative persistence. In fact, if there is positive persistence and negative persistence,
a high value of p11 will not be an indication of a high probability of positive returns. On the
other hand, if there is positive persistence and no negative persistence, the values of p11 and
P1 should not be very different and a high positive persistence will be an indication of a high
probability of positive returns. Table 9 presents the average values of p11, p00 and P1 for the
hedge fund strategies.

Table 9: Positive/negative persistence and the probability of positive/negative returns

p11 % Sign. p00 % Sign. P1 % Sign.

Convertible Arb 0.67 69.7 0.32 0.00 0.68 78.65
Distress Sec. 0.74 83.8 0.30 0.00 0.73 95.24
Emerging Mkt 0.70 77.9 0.33 0.00 0.69 82.56
Equity Hedge 0.66 65.0 0.37 0.20 0.65 70.00
Equity Mkt Neutral 0.66 60.0 0.36 0.00 0.65 67.03
Equity Non Hedge 0.65 63.0 0.41 1.68 0.63 62.18
Event Driven 0.71 82.1 0.33 0.58 0.70 84.97
FI Arbitrage 0.74 74.2 0.28 0.00 0.74 86.36
Convertible 0.59 38.1 0.41 0.00 0.59 47.62
FI Diversified 0.73 79.3 0.33 0.00 0.72 86.21
FI High Yield 0.76 90.0 0.30 0.00 0.75 96.00
FI Mortgage 0.82 94.4 0.26 2.78 0.81 97.22
Fund of Funds 0.74 88.9 0.36 0.23 0.71 88.81
Macro 0.64 52.2 0.37 0.00 0.64 65.37
Market Timing 0.67 75.0 0.37 0.00 0.65 70.83
Managed Futures 0.58 25.9 0.43 1.39 0.58 27.31
Merger Arb. 0.74 88.4 0.25 0.00 0.75 100.00
Relative Value 0.74 76.8 0.29 0.51 0.73 83.84
Sector 0.67 60.6 0.37 0.00 0.66 70.21
Short Selling 0.54 0.0 0.56 15.38 0.49 0.00

This table contrasts positive persistence and the probability of positive returns. p11 is the measure of positive
persistence, p00 is the measure of negative persistence and P1 is the unconditional probability of positive

returns. Columns 3, 5 and 7 present the proportion of funds for which the parameter estimates are statistically
significant at the 5%.

We can see that for almost all strategies there is no negative persistence except for Short
selling funds of which about 15% of funds (2 out of 13) have a statistically significant value of
p00 > 0.5 at the 5% level. This means that a monthly loss is generally followed by a gain in the
hedge fund’s universe. Column 6 shows the probability of positive returns. We can see that in
general, the values of p11 are not very different from those of P1; this is due to the absence of

10Here, we don’t take into account the level of returns.
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negative persistence of returns in the hedge fund’s universe. The last column shows the percent-
age of funds for which the probability of positive returns is statistically superior to 0.5 at the 5%
level11. We can note that except for Short selling, Managed futures and Fixed income convertible
bonds, the majority of funds have a probability of positive returns superior to 0.5. The highest
proportion is recorded for Merger arbitrage where all the funds present a statistically significant
probability of delivering positive returns. It is followed by Fixed income mortgage (97.22%) and
Fixed income high yield (96%).

On the basis of these results, we can conclude that despite a context where markets have
been faced with difficult periods since the year 2000, hedge funds have been able to deliver posi-
tive returns and have done so in a sustainable manner until 2007. Arbitrage strategies, and some
fixed income strategies, seem to be more prone to deliver absolute returns.

5.5 Persistence with respect to a high watermark

Although the results obtained above are interesting, the measures used unfortunately don’t ac-
count for the level of returns. It is important to note that the absence of negative persistence in
hedge fund returns (p00 not statistically superior to 0.5), doesn’t mean that in the case of a loss,
the capital will be recovered during the next period (month), but simply that after a loss there
is a strong probability that the return will be positive during the next month. It is important to
seize the fact that the fund’s capacity to recover losses in the subsequent period depends on both
the size of the loss and the manager’s ability to generate positive returns of the same amplitude.
Therefore, when a fund experiences a large drawdown, it will require a significant profit in the
subsequent period, or a series of small profits, to recover the capital lost. This aspect is relevant
for hedge funds because it is well known that several strategies, in particular arbitrage strategies,
tend to generate positive returns of small amplitude, but when they face losses, the latter are
often larger in amplitude. It can often take several periods for a fund to recover lost capital.
Taking into account the level of returns also gives an indication as to the evolution of a manager’s
high water mark. Most hedge funds are subject to a high water mark criterion, which means
that the manager will only receive performance fees on that particular pool of invested money
when its value exceeds its previous maximum value. By accounting for the level of returns, we
can estimate the “performance with respect to the high water mark”, which can be defined as
the probability of increasing the high water mark, and the “persistence with respect to the high

11To get those values we calculate the confidence interval of P̂1,i for each fund i, with

P̂1,i = n+,i/ni

where n+,i = number of positive returns and ni is the size of sample for fund i. By the central limit theorem,
we have:

Pr

(n+,i/ni)− 1.96

√
(n+,i/ni)(1− (n+,i/ni))

ni
< P1,i < (n+,i/ni) + 1.96

√
(n+,i/ni)(1− (n+,i/ni))

ni

 = 0.95

If the lower bound of this confidence interval is superior to 0.5, the probability is statistically superior to 0.5 at
5% level. We can notice that the smaller ni is, the larger the confidence interval is.
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water mark”, which in turn can be defined as the probability of increasing the high water mark
during the next period given that it has been increased during the current period. These esti-
mations are performance measures in the sense that they give the frequency at which a manager
is able to receive performance fees12.

Let us define C t and H t respectively as the cumulative wealth and the high water mark
at time t. Then:

Ct = Ct−1(1 + rt)

Ht = max(Ct, Ht−1) (41)

with C 0 and H 0 normalized at $1.

Let us also define the dichotomous variable I ′t which takes the following values:

I ′t = 1 if Ht > Ht−1 (42)

I ′t = 0 if Ht = Ht−1

By this process, and as in the preceding model, we can obtain the following probabili-
ties:

P ′1 = Pr[I ′t = 1]

p′11 = Pr[I ′t+1 = 1|I ′t = 1]

p′00 = Pr[I ′t+1 = 0|I ′t = 0]

P ′1 is the probability of increasing the high water mark and it could also be defined as
the probability of receiving performance fees. p′11 is the persistence in increasing the high water
mark or the probability of increasing the high water mark during the next period given that it
has been increased during the current period; it could also be defined as the persistence of the
receipt of performance fees. p′00 is the persistence of the stagnation of the high water mark, or
the probability of having the same high water mark for the next period since it did not change
for the current period; it could also be defined as the persistence of the absence of performance
fees.

It is important to note that these measures are settled for an investment made at the
fund’s inception date and enable us to compare all of the funds on the basis of their performance
since inception. Indeed, a manager will have a different high water mark for each investment
made at a different time. Therefore, when I ′t = 1, it means that the manager receives perfor-
mance fees from an investor who invested money at time t = 0 and when I ′t = 0, it means that
he does not receive any performance from an investor who invested at that time. However, I ′t =
1 means that the manager receives performance fees from all investors who have invested from
time 0 to time t-1, and I ′t = 0 means that he does not does not receive performance fees from
all investors who have invested during this period, but he could receive performance fees from

12Here, we assume a hurdle rate of 0% given that it is the value generally applied by hedge fund managers.
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certain investors who have invested between time 1 and time t-1.

Table 10 shows the values of the three probabilities for each strategy. First of all, we can
see that the values of p′11 are not so different from those of p11 (table 9) (this could be interpreted
as a similarity in the persistence of positive returns and the persistence of the receipt of perfor-
mance fees). But this doesn’t mean that measuring persistence based on returns is equivalent to
measuring persistence with respect to a high water mark.

Table 10: Persistence with respect to the high water mark

p′11 % Sign. p′00 % Sign. P ′1 % Sign.

Convertible Arb 0.68 74.2 0.69 75.3 0.48 18.0
Distress Sec. 0.74 82.9 0.65 59.0 0.57 35.2
Emerging Mkt 0.69 70.8 0.72 67.2 0.46 16.4
Equity Hedge 0.66 63.8 0.75 79.4 0.41 9.2
Equity Mkt Neutral 0.67 62.7 0.73 73.0 0.43 11.4
Equity Non Hedge 0.64 60.5 0.79 87.4 0.36 1.7
Event Driven 0.71 82.1 0.69 72.8 0.50 23.1
FI Arbitrage 0.74 78.8 0.62 45.5 0.60 42.4
Convertible 0.56 42.9 0.83 95.2 0.28 4.8
FI Diversified 0.75 81.0 0.69 74.1 0.54 29.3
FI High Yield 0.76 90.0 0.64 58.0 0.61 48.0
FI Mortgage 0.83 94.4 0.62 47.2 0.66 75.0
Fund of Funds 0.73 84.4 0.71 73.8 0.51 23.8
Macro 0.64 53.2 0.78 88.8 0.38 3.9
Market Timing 0.62 58.3 0.75 87.5 0.40 16.7
Managed Futures 0.54 29.6 0.84 94.4 0.26 2.3
Merger Arb. 0.76 93.0 0.66 69.8 0.58 44.2
Relative Value 0.75 80.3 0.65 60.6 0.57 43.9
Sector 0.66 58.5 0.74 78.7 0.42 11.7
Short Selling 0.53 23.1 0.97 100.0 0.06 0.0

This table presents the positive and negative persistence with respect to the high water mark and probability of
increasing the high water mark true returns

In fact, when we look at the values of p′00 and P ′1, we see that they are different from
those of p00 and P1. Whereas the probability that a loss will be followed by another loss is
low for all strategies, the probability that a non-payment of performance fees from all investors
will be followed by another non-payment of performance fees is generally high. The fact that
the values of p′11 and p′00 are statistically superior to 0.5 for the majority of funds in almost all
strategies means that when a manager receives performance fees for a given period, there is a
high probability that he will receive performance fees for the next period; but it also means that
when he doesn’t receive performance fees for a given period, there also a high probability that
he will not receive performance fees for the next period because he will not be able to recover
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the capital lost during that period. These results are in line with what we stated previously, i.e.
hedge fund managers generally generate positive returns of small amplitude, but when they face
losses, the latter are often of larger amplitude and the managers are unable to rapidly recover
the capital lost. In terms of persistence, this translates into small high water mark increases
during good periods and a stagnation of the high water mark after a bad period.

Another important point is that strategies for which there is a higher persistence in the
increase of the high water mark are those where there is a lower persistence in the stagnation
of the high water mark, notably for Fixed income mortgage (0.83 vs. 0.62), Fixed income high
yield (0.76 vs. 0.64) and Merger arbitrage (0.76 vs. 0.66). And vice versa, notably for Short
selling (0.53 vs. 0.97), Managed futures (0.54 vs. 0.84) and Fixed income convertible bonds
(0.56 vs. 0.83). These results seem to show that for strategies such as Merger arbitrage and
others that exhibit a higher positive persistence with respect to a high water mark, managers
show more ability to bring the capital back to a value superior or equal to that preceding the
loss. Is it because they have superior skills? It is difficult to answer this question. However, we
can address the question as to whether these strategies exhibit a shorter time for the recovery of
lost capital. For this purpose, we must perform a thorough examination given that the previous
estimations concern the high water marks from all investments. Therefore, certain investments
made at different moments could be recovered at a certain time but not others, and the ” overall”
high water mark will not increase, thus resulting in the stagnation of the ”overall” high water
mark. For instance, for an investment made at the inception date, the manager may have a
certain high water mark at time t and receive a new investment at the end of time t + 1. At
that moment, he could face a loss followed by another loss at time t +2 and a gain at time t +
3. The capital of the investment made at time t +1 could be recovered at time t + 3 and the
manager could receive performance fees from this investment, but this doesn’t necessarily mean
that he will also recover the capital lost at time t +1 (from the investment made at the inception
date). Therefore, a better way of gauging the ability to recover capital after a loss is to estimate
the recovery time for each loss and observe the average for each fund and each strategy. This
issue will be addressed in the next section.

Column 6 of table 10 presents the unconditional probability of increasing the high water
mark. We can see that contrary to the results of table 9, p′11 and P ′1 are not similar as p11 and P1

were; this is due to the high values of p′00 that indicate an inverse persistence. The relatively low
values of P ′1 for the majority of strategies (they are inferior to 0.60 for 17 out of 20 strategies)
mean that the managers are unable to increase their high water mark on a regular basis even
though they have, in general, a high probability of delivering positive returns (see values of P1).
Nevertheless, Fixed income mortgage and Fixed income high yield managers are more prone
to increase their high water mark, whereas Short selling, Managed futures and Fixed income
convertible bonds managers are less prone to increase their high water mark.

Based on these results, we can state that even if hedge funds are able to deliver positive
(absolute) returns, they have greater difficulty in increasing their high water mark on a regular
basis. Indeed, periods of small, consecutive increases in the high water mark are often interrupted
by periods of stagnation of the high water mark, which is due to their risk exposure that can lead
to important drawdowns during bad periods. It is important to note that when we use the words

29



“important drawdowns” it is does not mean that hedge funds hold high-risk positions leading
to large losses, but simply that losses can be significant in comparison to gains. The specific
risk-return profile of many hedge fund strategies characterized by payoffs similar to those of short
puts on market indices has been mentioned by several studies (Fung and Hsieh (1997), Mitchell
and Pulvino (2001), Agarwal and Naik (2004)). This option-like payoff can be modeled via a
covered call13. A covered call is a strategy in which an investor writes a call option contract
while at the same time owning an equivalent number of shares of the underlying stock. While
this strategy can offer limited protection against a decline in the price of the underlying stock
and limited profit participation with an increase in the stock price, it generates income because
the investor keeps the premium received from writing the call. Thus, the investor will have a
profit lower than that of the underlying stock if the latter increases substantially (the option will
be exercised) and will have lower losses than the underlying stock. We are not implying that
numerous hedge funds use covered call strategies, but using this kind of strategy can result in
a payoff similar to that of hedge funds. Indeed, looking at the historical performance of certain
hedge fund strategies, we observe that they have payoffs similar to that of a covered call on
the S&P500 index, i.e. positive returns are generally small and losses are lower than those of
the S&P500. A covered call can help a manager who aims to provide absolute returns because
although it limits gains, it can contribute to increasing the regularity of these gains. Absolute
returns dot not necessarily mean high returns, but ”good” returns, regardless of the market’s
direction. On the other hand, even if the strategy helps to reduce losses the latter could be
substantial in comparison with gains as the effect on gains and losses is not symmetrical and this
results in a payoff with important drawdowns in comparison to gains.

5.6 Average time to recover capital after a loss

The previous results showed that when a hedge fund manager faces a loss, it could take a certain
time before he recovers the capital. The measures of performance and persistence with respect
to a high water mark provide not only an indication as to a manager’s performance, but also an
indication as to the risk an investor could face when he invests in a hedge fund. Indeed, if an
investor plans to withdraw his money after a loss, he should know that for the following period,
there is a slight probability that the manager will bring the fund back to a level superior or
equal to that preceding the loss. The investor should therefore wait a certain time if he wishes to
withdraw an amount of capital superior or equal to the manager’s last high water mark. Then, in
order to evaluate the right time to withdraw his money, he should take this aspect into account
and also be aware of how much notice is required as this varies from one fund to another. We
estimated the average time to recover capital after a loss on the basis of the previous results. For
this purpose, for each loss recovered, we calculated the number of months necessary to return
to a level of capital superior or equal to that preceding the loss. Table 11 shows the results for
all strategies. The values are averaged for each fund and thereafter averaged for each strategy.
Columns 2 to 5 show, respectively, the mean, the 25th percentile, the 75th percentile and the
volatility of the average recovery time per strategy. Column 6 shows the average proportion of

13We take the example of a covered call in order to have a strategy that combines the trading of assets and
derivatives given that hedge funds are general invested in traditional assets (stocks, bonds, etc.) as well as
derivatives.
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losses for each strategy. This statistic demonstrates the frequency of losses per strategy on the
same basis given that the funds of each of the strategies do not have the same lifespan.

Table 11: Average time taken to recover capital after a drawdown (in months)

Mean 25 prcnt 75 prcnt Volatility Mean loss # of funds

Convertible Arb 3.99 2.87 4.75 1.61 32.24 89
Distress Sec. 3.00 2.17 3.37 1.44 27.00 105
Emerging Mkt 4.73 2.36 5.21 3.65 30.20 195
Equity Hedge 4.17 2.54 4.76 2.57 34.68 980
Equity Mkt Neutral 3.66 2.32 4.22 2.03 34.14 185
Equity Non Hedge 5.00 2.81 5.77 3.17 36.92 119
Event Driven 3.40 2.18 3.92 2.12 30.25 173
FI Arbitrage 2.60 1.73 3.31 1.27 25.26 66
Convertible 7.15 3.46 10.41 4.31 40.95 21
FI Diversified 3.03 1.97 3.97 1.45 27.65 58
FI High Yield 2.49 1.75 2.88 1.03 24.70 50
FI Mortgage 4.14 1.75 6.73 3.19 18.90 36
Fund of Funds 3.43 2.43 3.74 1.85 28.65 1734
Macro 4.25 2.91 4.87 2.23 36.04 205
Market Timing 5.21 2.81 7.09 3.37 34.72 24
Managed Futures 4.63 3.46 5.46 1.85 41.84 216
Merger Arb. 3.18 2.33 4.04 1.24 25.05 43
Relative Value 2.94 1.98 3.38 1.63 26.74 198
Sector 4.14 2.41 5.00 2.32 34.09 188
Short Selling 7.12 5.73 8.10 2.33 50.57 13

We note that for hedge fund strategies, the average time to recover a capital loss is more
than 3 months even though a manager may be able to recover the amount earlier for some strate-
gies (Fixed income high yield (2.49), Fixed income arbitrage (2.60) and Relative value arbitrage
(2.94)). This could be explained by the fact that either the managers of those strategies do
not face great losses in general, or that they assume a high level of risk after a loss in order to
recover the capital quickly. For other strategies it takes more time to recover the capital after a
loss, notably for Fixed income convertible bonds (7.15), Short selling (7.12) and Market timing
(5.21). One would expect that funds exhibiting higher positive persistence should take less time
to recover the capital, but this is not necessarily the case. The negative relation between the time
to recover the capital after a loss and the positive persistence seems to be more obvious for funds
exhibiting lower positive persistence of returns and with respect to the high water mark. Short
selling, Fixed income convertible bonds and Managed futures funds are among those generally
taking more time to recover capital after a loss. However, for funds exhibiting higher positive per-
sistence the relation is only confirmed for Fixed income high yield. Merger arbitrage funds hold
the sixth position in terms of time to recover capital and Fixed income mortgage funds, which
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exhibit the highest positive persistence of returns and with respect of a high water mark, hold the
tenth position. One reason could be that Fixed income mortgage funds exhibit negative outliers,
more so than other fund categories (they exhibit the lowest (-1.66) asymmetry and the highest
kurtosis (20.46)). Concerning the proportion of losses, hedge funds generally exhibit fewer losses
than gains, except for Short selling for which the number of losses and gains is almost the same.
The lowest proportions are generally attributed to Fixed income strategies and Managed futures.

These results show how the advance notice imposed by most hedge funds constitutes not
only effective protection against withdrawals from investors in need of liquidity, but also from
unhappy investors following a loss. Indeed, given the asymmetry in the amplitude of gains and
losses, it is important for a manager to set up some delay for withdrawals of money, especially
investors attempting to withdraw after a loss. Advance notice that exceeds the average time to
recover capital may enable the manager to bring the capital back to its pre-loss value, thus giving
the investor time to change his mind. The fact that the average time to recover a loss is more than
3 months for most strategies suggests that a median advance notice of 30 days is not necessarily
optimal for hedge fund managers. Managers with an advance notice in excess of 3 months will
probably have a greater chance of retaining unhappy investors ready to withdraw their money
after a loss. However, due to competition between managers, it may be difficult to establish long
periods of advance notice, even if in the case of our data the maximum advance notice is one year.

Table 11 shows the average recovery time for losses that have been recovered. It is impor-
tant to mention that in our sample some losses have not yet been recovered and have therefore
been discarded from table 11. The unrecovered losses are not exclusively large losses, but also
losses that occurred toward the end of our sample period. Table 12 exhibits the statistics for the
unrecovered losses of each strategy. Column 2 presents the average proportion of unrecovered
losses and Column 3 shows the average proportion of large losses among the unrecovered losses.
Large losses are those for which the absolute value is higher than 2 standard deviations of the dis-
tribution of returns. We can see that Short selling and almost all fixed income strategies (Fixed
income high yield, Fixed income diversified and Fixed income mortgage) are among those that
exhibit the highest proportions of unrecovered losses. However, contrary to these fixed income
strategies, the existence of unrecovered Short selling losses is not due, for a considerable pro-
portion, to severe drawdowns. Indeed, the average proportion of large losses among unrecovered
losses is only 1.92%, whereas this figures ranges from 15% to 24% for the relevant fixed income
strategies. We can also see that losses are mostly recovered for Emerging market, Market timing
and Merger arbitrage strategies.

Table 11 provides a good insight into the average time needed to recover a loss, but these
results must be interpreted with caution given that for some strategies, such as fixed income
strategies, many losses have not yet been recovered. Another interesting point is that the recov-
ery period for losses can be quite significant. For example, the maximum recovery time exceeds
100 months for some managers (Equity hedge (115), Macro (114), Emerging market (113), FOF
(111) and Equity non hedge (110)). We note that many of these drawdowns occurred between
August ’97 and July ’98. In some cases, the individual losses were not very large. However,
the managers were unable to generate sufficient subsequent positive returns prior to enduring
another drawdown. The second half of 1998 was not a good period for the hedge fund industry,
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Table 12: Statistics for unrecovered losses (in months)

Proportion of Proportion of unrecovered losses
of unrecovered losses that were > 2σ

Convertible Arb 9.63 13.33
Distress Sec. 11.88 7.33
Emerging Mkt 5.60 5.78
Equity Hedge 9.79 10.35
Equity Mkt Neutral 10.96 12.36
Equity Non Hedge 9.92 5.37
Event Driven 10.76 13.42
FI Arbitrage 11.43 21.00
FI Convertible 9.95 4.37
FI Diversified 13.50 18.62
FI High Yield 16.76 23.67
FI Mortgage 11.93 15.37
Fund of Funds 8.51 11.83
Macro 8.77 7.63
Market Timing 6.05 8.65
Managed Futures 8.80 5.34
Merger Arb. 6.15 21.51
Relative Value 11.52 17.89
Sector 8.12 7.54
Short Selling 23.95 1.92

This table presents the statistics for unrecovered losses. Column 2 presents the average proportion of
unrecovered losses and Column 3 shows the average proportion of large losses among the unrecovered losses.
Large losses are those for which the absolute value is higher than 2 standard deviations of the distribution of

returns.

or for the market in general, and it was thereby a difficult period for the recovery of prior losses.
For instance, an investor who invested $1 in the particular Equity hedge fund that exhibited the
longest recovery time would have waited for 115 months before breaking even. This also means
that the manager would not have received any performance fees from this investor during those
115 months. However, this doesn’t mean that the manager did not receive performance fees from
other investors who entered the fund at a later date.

These findings do not augur well for investors in the forthcoming months. Indeed, given
that the current financial crisis may have more negative impacts on the hedge fund industry than
the 1998 crisis, one should expect that it may take a considerable time before investors recoup
their losses.

33



6 Conclusion

In this study, we have addressed the issue of hedge fund performance persistence using a Markov
chain model. Persistence is evaluated via transition probabilities, which make no a-priori as to
the distribution of returns. Persistence is also evaluated after accounting for serial correlation in
hedge fund returns, which is often due to the holding of illiquid assets or the manager’s motiva-
tion to enhance his performance. For this purpose, we use a new approach based on the method
of moments and on the model of Getmansky and al. (2004) to unsmooth returns. To assess the
significance of persistence estimates, we also developed a t-test which accounts for the size of
the sample of fund returns. Our approach also overcomes the issue of a ”strategic” discontinuity
in the return distribution around zero that Bollen and Pool (2009) identify and attribute to the
fact that managers will adjust reported returns to minimize the chance of small negative returns
in order to promote the appearance of ’pure persistence’.

Our study firstly shows that the unsmoothing of returns is not necessary for all funds,
especially for those comprised of liquid strategies, namely Macro, Managed futures, Sector and
Short selling funds. Therefore, imposing an MA(2) model for all funds as is the case for Get-
mansky and al. (2004) could lead to incongruous results. We also note that smoothing may
contribute to an increase in the pure persistence of returns. Getmansky and al. (2004) have
pointed out that the evidence of relative persistence found in some studies may be indirectly
linked to serial correlation in returns. Our results show that for almost all strategies, the average
positive persistence of returns of funds with no statistically significant serial correlation is lower
than that of funds with smoothed returns; and the average persistence of the latter drops con-
siderably (between -9.1% and -25.4%) when one unsmooths returns. Our findings nevertheless
suggest that, to the exclusion of Short selling, Managed futures and Fixed income convertible
bonds, the majority of funds of other strategies exhibit persistence of positive returns and al-
most all of the funds fail to exhibit persistence of negative returns. Our results show that until
2007, hedge funds were able to deliver sustained absolute returns despite periods of turbulence
faced by the markets. We have yet to observe how the events of 2008 will affect these conclusions.

Hedge funds however exhibit difficulties in increasing their high water marks on a regular
basis. Periods of consecutive positive returns are sometimes interrupted by large drawdowns
which take several periods to recover because the positive returns are generally smaller in size.
This translates into positive and negative persistence with respect to a high water mark. In
other words, this leads to small and consecutive increases of the high water mark but also in
stagnations of the high water mark over certain periods. The estimated average time to recover
capital after a loss ranges from 2.49 months (Fixed income high yield) to 7.15 months (Fixed
income convertible bonds). Given that the current financial crisis will no doubt intensify the
negative asymmetry of the distribution of hedge fund returns, the average time to recover losses
will increase, and with a median advance notice of 30 days, most of the funds will not have
enough flexibility to reverse the situation in order to retain investors who are ready to withdraw
their money. This will accentuate the liquidation of funds as it has been the case recently. Many
analysts foresee that about one-third of hedge funds could be liquidated due to massive with-
drawals on behalf of investors.

34



These results raise the question as to how an investor should evaluate a manager’s perfor-
mance, especially in terms of pure persistence. It is well known that the mean-variance analysis
and the Sharpe ratio are not appropriate to evaluate the risk-adjusted performance of hedge
funds because of the non-normal distribution of their returns. For the same reasons and in terms
of pure persistence analysis, the persistence analysis with respect to the high watermark turns
out to be a good alternative to the absolute persistence analysis (positive/negative returns).
The persistence with respect to the high water mark provides a better way to account for the
asymmetry between gains and losses and indicates the manager’s ability to sustainably increase
the investor’s wealth because as long as the manager’s high water mark fails to increase, the
investor is no wealthier, even if the manager does deliver some positive returns.
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A Estimation of
√
n (p̂11 − p11) by Delta method

We know that p̂11 can also be expressed in the following way:

p̂11=
P̂11

P̂11 + P̂10

where P̂11 = Pr(It = 1; It+1 = 1) and P̂10 = Pr(It = 1; It+1 = 0) are jointed probabilities. Thus,
p̂11 is a function of P̂11 and P̂10 and we can write:

p̂11= f(P̂ 11, P̂ 10)

It is known that, for a given function g, the first-order Taylor series expansion of g(x0)
around x is:

g(x0) = g(x) + g′(x)(x0−x)

=⇒ g(x0)− g(x) = g′(x)(x0−x)

Then, we can write:

p̂11−p11 =
∂f

∂P̂11

∣∣∣∣
(P11,P10)

.
(
P̂11 − P11

)
+

∂f

∂P̂10

∣∣∣∣
(P11,P10)

.
(
P̂10 − P10

)
=

(P11 + P10)− P11

(P11 + P10)2

(
P̂11 − P11

)
+

(−P11)

(P11 + P10)2

(
P̂10 − P10

)
=

P10

(P11 + P10)2

(
P̂11 − P11

)
− P11

(P11 + P10)2

(
P̂10 − P10

)

where P11 and P10 are the asymptotic joined probabilities.

=⇒
√
n (p̂11 − p11) =

√
n

P10

(P11 + P10)2

(
P̂11 − P11

)
−
√
n

P11

(P11 + P10)2

(
P̂10 − P10

)
Asymptotically we have14:

P11 = P10 =
1

4

=⇒
√
n (p̂11 − p11) =

√
n
(
P̂11 − P11

)
−
√
n
(
P̂10 − P10

)
Then:

14For n −→∞, we can assume independence and the probabilities become

P11 = P10 = 1/4
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V ar
[√
n (p̂11 − p11)

]
= V ar

[√
n
(
P̂11

)]
+V ar

[√
n
(
P̂10

)]
−2Cov

[√
n
(
P̂11

)
,
√
n
(
P̂10

)]

I Estimation of V ar
[√

n
(
P̂11

)]
when n −→∞

V ar
(
P̂11

)
= E

(
P̂ 2

11

)
−E

(
P̂11

)2

E
(
P̂ 2

11

)
= E

[
1

n2

n∑
i=1

n∑
j=1

(Ii = 1, Ii+1 = 1) . (Ij = 1, Ij+1 = 1)

]
The different cases are:

j = i; = E

[
1

n2

n∑
i=1

(Ii = 1, Ii+1 = 1). (Ii = 1, Ii+1 = 1)

]
=

n

n2

1

4

j = i− 1; +E

[
1

n2

n∑
i=2

(Ii = 1, Ii+1 = 1) . (Ii−1 = 1, Ii = 1)

]
=

(n− 1)

n2

1

8

j = i+ 1 ; +E

[
1

n2

n∑
i=1

(Ii = 1, Ii+1 = 1) . (Ii+1 = 1, Ii+2 = 1)

]
=

(n− 1)

n2

1

8

|j − 1| > 1; +E

 1

n2

n∑
i=1

n∑
|j−i|>1

(Ii = 1, Ii+1 = 1) . (Ij = 1, Ij+1 = 1)

=

2
n∑
j=2

(n− j)

n2

1

16

=⇒ E
(
P̂ 2

11

)
=

n

4n2
+

2(n− 1)

8n2
+

2
n∑
j=2

(n− j)

16n2

=
n

4n2
+

2(n− 1)

8n2
+

2(n− 1)n− 2[n(n+1)
2
− 1]

16n2

=
n2 + 5n− 2

16n2

Then:

V ar
(
P̂11

)
= E

(
P̂ 2

11

)
−E

(
P̂11

)2

=
n2 + 5n− 2

16n2
− 1

16

=
5n− 2

16n2

40



⇒ nV ar
(
P̂11

)
= V ar

(√
nP̂11

)
= n

5n− 2

16n2

=
5

16
− 2

16n

⇒ when n −→∞, V ar
(√

nP̂11

)
−→ 5

16

I Estimation of Var
[√

n
(
P̂10

)]
when n −→∞

V ar
(
P̂10

)
= E

(
P̂ 2

10

)
−E

(
P̂10

)2

E
(
P̂ 2

10

)
= E

[
1

n2

n∑
i=1

n∑
j=1

(Ii = 1, Ii+1 = 0) . (Ij = 1, Ij+1 = 0)

]
The different cases are:

j= i ; = E

[
1

n2

n∑
i=1

(Ii = 1, Ii+1 = 0) . (Ii = 1, Ii+1 = 0)

]
=

n

n2

1

4

j= i− 1 ; +E

[
1

n2

n∑
i=2

(Ii = 1, Ii+1 = 0) . (Ii−1 = 1, Ii = 0)

]
= 0

j= i+ 1 ; +E

[
1

n2

n∑
i=1

(Ii = 1, Ii+1 = 0) . (Ii+1 = 1, Ii+2 = 0)

]
= 0

|j − 1| > 1; +E

 1

n2

n∑
i=1

n∑
|j−i|>1

(Ii = 1, Ii+1 = 0) . (Ij = 1, Ij+1 = 0)

=

2
n∑
j=2

(n− j)

n2

1

16

=⇒ E
(
P̂ 2

10

)
=

n

4n2
+

2
n∑
j=2

(n− j)

16n2

=
n2 + n+ 2

16n2

Then:

V ar
(
P̂10

)
= E

(
P̂ 2

10

)
−E

(
P̂10

)2

=
n2 + n+ 2

16n2
− 1

16

=
n+ 2

16n2
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⇒ nV ar
(
P̂10

)
= V ar

(√
nP̂10

)

= n
(n+ 2)

16n2

=
1

16
+

2

16n

⇒ When n −→∞, V ar
(√

nP̂10

)
−→ 1

16

I Estimation of Cov
(√

nP̂11,

√
nP̂10

)
when n −→∞

Cov
(
P̂11,P̂10

)
= E

(
P̂11.P̂10

)
−E

(
P̂11

)
E
(
P̂10

)

E
(
P̂11.P̂10

)
= E

[
1

n2

n∑
i=1

n∑
j=1

(Ii = 1, Ii+1 = 1) .I (Ij = 1, Ij+1 = 0)

]

j= i ; = E

[
1

n2

n∑
i=1

(Ii = 1, Ii+1 = 1) . (Ii = 1, Ii+1 = 0)

]
= 0

j= i− 1 ; = E

[
1

n2

n∑
i=2

(Ii = 1, Ii+1 = 1) . (Ii−1 = 1, Ii = 0)

]
= 0

j= i+ 1 ; = E

[
1

n2

n∑
i=1

(Ii = 1, Ii+1 = 1) . (Ii+1 = 1, Ii+2 = 0)

]
=

(n− 1)

n2

1

8

|j − 1| > 1; = E

 1

n2

n∑
i=1

n∑
|j−i|>1

(Ii = 1, Ii+1 = 1) . (Ij = 1, Ij+1 = 0)

=

2
n∑
j=2

(n− j)

n2

1

16

=⇒ E
(
P̂11.P̂10

)
=

(n− 1)

8n2
+

2
n∑
j=2

(n− j)

16n2

=
n− 1

16n

we have:

Cov
(
P̂11,P̂10

)
= E

(
P̂11.P̂10

)
−E

(
P̂11

)
E
(
P̂10

)
=

n− 1

16n
− 1

16

= − 1

16n
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⇒ nCov
(
P̂11,P̂10

)
= Cov

(√
nP̂11,

√
nP̂10

)
= n.(− 1

16n
)

= − 1

16

⇒ When n −→∞, Cov
(√

nP̂11,

√
nP̂10

)
−→ − 1

16

Then:

V ar
[√
n (p̂11 − p11)

]
= V ar

[√
n
(
P̂11

)]
+ V ar

[√
n
(
P̂10

)]
− 2Cov

[√
n
(
P̂11

)
,
√
n
(
P̂10

)]
=

5

16
+

1

16
− 2(− 1

16
)

=
1

2

B Estimation of
√
np̂00 − p00 when n −→∞

The same developments as before give:

V ar
[√
n (p̂00 − p00)

]
= V ar

[√
n
(
P̂00

)]
+ V ar

[√
n
(
P̂01

)]
− 2Cov

[√
n
(
P̂00

)
,
√
n
(
P̂01

)]
I Estimation of V ar

[√
n
(
P̂00

)]
when n −→∞

V ar
(
P̂00

)
= E

(
P̂ 2

00

)
−E

(
P̂00

)2

E
(
P̂ 2

00

)
= E

[
1

n2

n∑
i=1

n∑
j=1

(Ii = 0, Ii+1 = 0) . (Ij = 0, Ij+1 = 0)

]

j = i; = E

[
1

n2

n∑
i=1

(Ii = 0, Ii+1 = 0) . (Ii = 0, Ii+1 = 0)

]
=

n

n2

1

4

j = i− 1; +E

[
1

n2

n∑
i=2

(Ii = 0, Ii+1 = 0) . (Ii−1 = 0, Ii = 0)

]
=

(n− 1)

n2

1

8

j = i+ 1 ; +E

[
1

n2

n∑
i=1

(Ii = 0, Ii+1 = 0) . (Ii+1 = 0, Ii+2 = 0)

]
=

(n− 1)

n2

1

8

|j − 1| > 1; +E

 1

n2

n∑
i=1

n∑
|j−i|>1

(Ii = 1, Ii+1 = 0) . (Ij = 1, Ij+1 = 0)

=

2
n∑
j=2

(n− j)

n2

1

16
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⇒ E
(
P̂ 2

00

)
=

n

4n2
+

2(n− 1)

8n2
+

2
n∑
j=2

(n− j)

16n2

=
n2 + 5n− 2

16n2

We have

V ar
(
P̂00

)
= E

(
P̂ 2

00

)
−E

(
P̂00

)2

=
n2 + 5n− 2

16n2
− 1

16

=
5n− 2

16n2

⇒ nV ar
(
P̂00

)
= V ar

(√
nP̂00

)

= n
5n− 2

16n2

=
5

16
− 2

16n

⇒ When n −→∞, V ar
(√

nP̂00

)
−→ 5

16

I Estimation of V ar
[√

n
(
P̂01

)]
when n −→∞

V ar
(
P̂01

)
= E

(
P̂ 2

01

)
− E

(
P̂01

)2

E
(
P̂ 2

01

)
= E

[
1

n2

n∑
i=1

n∑
j=1

(Ii = 0, Xi+1 = 1) . (Ij = 0, Ij+1 = 1)

]

j = i ; + E

[
1

n2

n∑
i=1

(Ii = 0, Ii+1 = 1) . (Ii = 0, Ii+1 = 1)

]
=

n

n2

1

4

j = i− 1 ; + E

[
1

n2

n∑
i=2

(Ii = 0, Xi+1 = 1) . (Ii−1 = 0, Ii = 1)

]
= 0

j = i+ 1 ; + E

[
1

n2

n∑
i=1

(Ii = 0, Ii+1 = 1) . (Ii+1 = 0, Ii+2 = 1)

]
= 0
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|j − 1| > 1; = E

 1

n2

n∑
i=1

n∑
|j−i|>1

(Ii = 0, Ii+1 = 1) . (Ij = 0, Ij+1 = 1)

 =

2
n∑
j=2

(n− j)

n2

1

16

⇒ E
(
P̂ 2

01

)
=

n

4n2
+

2
n∑
j=2

(n− j)

16n2

=
n2 + n+ 2

16n2

We have:

V ar
(
P̂01

)
= E

(
P̂ 2

01

)
−E

(
P̂01

)2

=
n2 + n+ 2

16n2
− 1

16

=
n+ 2

16n2

⇒ nV ar
(
P̂01

)
= V ar

(√
nP̂01

)
= n

(n+ 2)

16n2

=
1

16
+

2

16n

⇒ When n −→∞, V ar
(√

nP̂01

)
−→ 1

16

I Estimation of Cov
(√

nP̂00,

√
nP̂01

)
when n −→∞

Cov
(
P̂00,P̂01

)
= E

(
P̂00.P̂01

)
−E

(
P̂00

)
E
(
P̂01

)
E
(
P̂00.P̂01

)
= E

[
1

n2

n∑
i=1

n∑
j=1

(Ii = 0, Ii+1 = 0). (Ij = 0, Ij+1 = 1)

]

j= i ; = E

[
1

n2

n∑
i=1

(Ii = 0, Ii+1 = 0) . (Ii = 0, Ii+1 = 1)

]
= 0

j= i− 1 ; = E

[
1

n2

n∑
i=2

(Ii = 0, Ii+1 = 0) . (Ii−1 = 0, Ii = 1)

]
= 0

j= i+ 1 ; = E

[
1

n2

n∑
i=1

(Ii = 0, Ii+1 = 0) . (Ii+1 = 0, Ii+2 = 1)

]
=

(n− 1)

n2

1

8

45



|j − 1| > 1; = E

 1

n2

n∑
i=1

n∑
|j−i|>1

(Ii = 0, Ii+1 = 0) . (Ij = 0, Ij+1 = 1)

=

2
n∑
j=2

(n− j)

n2

1

16

⇒ E
(
P̂00.P̂01

)
=

(n− 1)

8n2
+

2
n∑
j=2

(n− j)

16n2

=
n2 − n
16n2

=
n− 1

16n
We have

Cov
(
P̂00,P̂01

)
= E

(
P̂00,.P̂01

)
− E

(
P̂00

)
E
(
P̂01

)
=

n− 1

16n
− 1

16

= − 1

16n

⇒ nCov
(
P̂00, P̂01

)
= Cov

(√
nP̂00,

√
nP̂01

)
= n.(− 1

16n
)

= − 1

16

⇒ When n −→∞, Cov
(√

nP̂00,
√
nP̂01

)
−→ − 1

16
We saw that:

V ar
[√
n (p̂00 − p00)

]
= V ar

[√
n
(
P̂00

)]
+ V ar

[√
n
(
P̂01

)]
− 2Cov

[√
n
(
P̂00

)
,
√
n
(
P̂01

)]
=

5

16
+

1

16
− 2(− 1

16
)

=
1

2

C Estimation of θs

I The first-order serial correlation is significative: k = 1
If the first-order of serial correlation is statistically significant but not the second-order

one, we have 3 parameters to estimate θ0, θ1 and σ2
η from the following system of equations:


E [X2

t ] = (θ2
0+θ

2
1)σ

2
η

E [Xt.Xt−1] = θ0θ1σ
2
η

1 = θ0+θ1
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By replacing θ1 in the first two equations by its value 1 − θ0, we get:{
E [X2

t ] = (θ2
0+(1− θ0)

2)σ2
η

E [Xt.Xt−1] = (θ0−θ
2
0)σ

2
η

This leads us to:

σ2
η= E

[
X2
t

]
+2.E [Xt.Xt−1]

Thus, we can empirically estimate σ2
η from the sample equivalent of E [X2

t ] and E [XtXt−1].
The second equation implies that:

E [Xt.Xt−1]

E [X2
t ] + 2E [Xt.Xt−1]

= θ0−θ2
0

Let

γ1=
E [Xt.Xt−1]

E [X2
t ] + 2E [Xt.Xt−1]

We get:

θ2
0−θ0+γ1= 0

This equation has two solutions:{
θ0,1 = 1

2
+
√

1−4γ1
2

θ0,2 = 1
2
−
√

1−4γ1
2

This implies that a solution exists if and only if γ1 ≤ 1
4
.

Given that θ0 ≥ θ1 , and both sum to 1, θ0 is higher than 1
2
, then

θ0 =
1

2
+

√
1− 4γ1

2

and

θ1 = 1− θ0=
1

2
−
√

1− 4γ1

2

We see here that θ0 is positive, but θ1 could be negative in certain conditions. Indeed,
θ1 < 0 if

1

2
−
√

1− 4γ1

2
< 0

⇒ γ1< 0

Then γ1 should be ≥ 0 to ensure that we have positive weights. We saw that:

γ1=
E [Xt.Xt−1]

σ2
η
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The sign of γ1 depends on the numerator. This means that if E [Xt.Xt−1] < 0, it implies
θ1 < 0.We have

E [Xt.Xt−1] = E [Xt].E[Xt−1] +Cov(X t, X t−1)

= Cov(X t, X t−1)

given that Xt are centered returns. Thereby, if Cov(Xt, Xt−1) < 0 we will have θ1 < 0. In other
words it means that if the serial correlation of order 1 is negative, not all weights will be positive
and the unsmoothing will be incongruous because ξ will be greater than 1, and σ2

c will be less
than σ2

o .

Overall, to obtain satisfactory solutions, γ1 should lead in this interval:

0 < γ1≤
1

4

The first order of autocorrelation should not be negative, nor should it be too high.

I The first and the second order of serial correlation are significative: k = 2

If the first and the second order of serial correlation are both statistically significant, we
have 4 parameters to estimate θ0, θ1, θ2 and σ2

η from the following system of equations:
E [X2

t ] = (θ2
0+θ

2
1+θ

2
2)σ

2
η

E [Xt.Xt−1] = (θ0θ1+θ1θ2)σ
2
η

E [Xt.Xt−1] = θ0θ2σ
2
η

1 = θ0+θ1 +θ2

The development of the equations gives:

σ2
η= E

[
X2
t

]
+2.E [Xt.Xt−1] +2.E [Xt.Xt−2]

We can estimate σ2
η empirically from the sample equivalent of E [X2

t ], E [Xt.Xt−1] and
E [Xt.Xt−2] .

From the second equation we have:

E [Xt.Xt−1]

σ2
η

= θ1−θ2
1

⇒ E [Xt.Xt−1]

E [X2
t ] + 2E [Xt.Xt−1] + 2E [Xt.Xt−2]

= θ1−θ2
1

Let

δ1=
E [Xt.Xt−1]

E [X2
t ] + 2E [Xt.Xt−1] + 2E [Xt.Xt−2]

48



We get :

θ2
1−θ1+δ1= 0

This equation has two solutions:{
θ1,1 = 1

2
+
√

1−4δ1
2

θ1,2 = 1
2
−
√

1−4δ1
2

As pointed by GLM in the Proposition 3 of their model:
(i) θ1 < 1/2;
(ii) θ1 < 1− 2θ2

From (i), it follows that:

θ1=
1

2
−
√

1− 4δ1
2

We also see here that to obtain a satisfactory solution:

0 ≤ δ1≤
1

4

From the value of θ1 we can get θ0. From the third equation, we have:

E [Xt.Xt−2]

E [X2
t ] + 2E [Xt.Xt−1] + 2E [Xt.Xt−2]

= θ0−θ2
0 −θ0θ1

Let

δ2=
E [Xt.Xt−2]

E [X2
t ] + 2E [Xt.Xt−1] + 2E [Xt.Xt−2]

We get:

θ2
0−(1− θ1)θ0+δ2= 0

This equation has two solutions: θ0,1 = (1−θ1)
2

+

√
(1−θ1)2−4δ2

2

θ0,2 = (1−θ1)
2
−
√

(1−θ1)2−4δ2

2

From (ii), we have:
θ1< 1− 2(1− θ0−θ1)

⇒θ0>
1− θ1

2
Thus the solution for θ0 is:

θ0 =
(1− θ1)

2
+

√
(1− θ1)2 − 4δ2

2
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We also see here that we have a solution if and only if δ2 ≤ (1−θ1)2

4
.

Next, we obtain θ2 = 1− θ0 − θ1.This give us

θ2 =
(1− θ1)

2
−
√

(1− θ1)2 − 4δ2
2

We can see that θ2 could be negative in certain conditions. Indeed θ2 < 0 if

(1− θ1)

2
−
√

(1− θ1)2 − 4δ2
2

< 0

⇒δ2< 0

Thus δ2 should be ≥ 0 to ensure that we have positive value of θ2. We saw that:

δ2=
E [Xt.Xt−2]

σ2
η

This means that if Cov(Xt, Xt−2) < 0, in other words if the second order of serial corre-
lation is negative, we will have a negative value for θ2.

Overall, to obtain satisfactory solutions, δ1 and δ2 should lead in these intervals:

0 ≤ δ1 ≤
1

4

0 ≤ δ2 ≤
(1− θ1)

2

4
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