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A Dynamic Programming Approach to Price
Installment Options

Abstract

Installment options are Bermudan-style options where the holder period-

ically decides whether to exercise or not and then to keep the option alive or

not (by paying the installment). We develop a dynamic programming pro-

cedure to price installment options. We study in particular the Geometric

Brownian Motion case and derive some theoretical properties of the IO con-

tract within this framework. We also characterize the range of installments

within which the installment option is not redundant with the European

contract. Numerical experiments show the method yields monotonically

converging prices, and satisfactory trade-offs between accuracy and com-

putational time. Our approach is finally applied to installment warrants,

which are actively traded on the Australian Stock Exchange. Numerical in-

vestigation shows the various capital dilution effects resulting from different

installment warrant designs.

Keywords: Finance, Dynamic Programming, Option pricing, Install-

ment Option, Installment Warrant.
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1 Introduction

Installment Options (IO) are akin to Bermudan options except that the

holder must regularly pay a premium (the “installment”) to keep the option

alive. The pre-specified dates (thereafter “decision dates”) at which the IO

may be striked correspond to the installment schedule. Therefore, at each

decision date, the holder of the IO must choose between the following

1. to exercise the option, which puts an end to the contract;

2. not to exercise the option and to pay the installment, which keeps the

option alive until the next decision date;

3. not to exercise the option and not to pay the installment, which puts

an end to the contract.

Among the most actively traded installment options throughout the

world presently are the installment warrants on Australian stocks listed

on the Australian Stock Exchange (ASX). Installment options are a recent

financial innovation that introduces some flexibility in the liquidity manage-

ment of portfolio strategies. Instead of paying a lump sum for a derivative

instrument, the holder of the IO will pay the installments as long as the

need for being long in the option is present. In particular, this consider-

ably reduces the cost of entering into a hedging strategy.1 In addition, the
1Risk managers may enter the IO contract at a low initial cost and adjust the install-

ment schedule with respect to their cash forecasts and liquidity constraints. This feature is

particularly attractive for corporations which massively hedge interest rate and currency

risks with forwards, futures or swaps because standard option contracts imply a cost at

entry that may be incompatible with a temporary cash shortage.
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non-payment of an installment suffices to close the position at no transac-

tion cost. This reduces the liquidity risk typically associated with other

over-the-counter derivatives.

The aim of this paper is twofold. First, we tackle the problem of pricing

IOs using Dynamic Programming (DP) in a general setting. Second, we

investigate the properties of IOs through theoretical and numerical analysis

in the Black and Scholes (1973) setting.

Literature on IOs is scarce. Davis, Schachermayer and Tompkins (2001,

2002) derive no-arbitrage bounds for the price of the IO and study static

versus dynamic hedging strategies within a Black-Scholes framework with

stochastic volatility. Their analysis however is restricted to European-style

IOs, which allows for an analogy with compound options. Davis, Schacher-

mayer and Tompkins (2003) value venture capital using an analogy with

IO.

Algorithms based on finite differences have been widely used for pricing

options with no known closed-form solution (see e.g. Wilmott, Dewynne

and Howison (1993) for a survey). Dynamic programming stands as an al-

ternative for low dimensional option pricing. By contrast to finite difference

methods, DP does not require time discretization. A DP formulation for

pricing American options can be traced back to Chen (1970). He was able

to generate theoretical prices directly for a limited number of decision dates.

Note however that his paper appeared before the seminal Black and Scholes

(1973) contribution and therefore does not apply risk neutral pricing.

Ben Ameur, Breton and L’Écuyer (2002) show that DP combined with

finite elements is particularly well suited for options involving decisions at

a limited number of distant dates during the life of the contract. Examples

include Bermudan-style options, callables, and convertibles. By construc-
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tion, IOs allow for both early exercise and installment payment decisions

periodically.

The rest of the paper is organized as follows. In Section 2, we develop

the model. In Section 3, we solve the Bellman equation and show how the

discretization and approximation are made. Section 4 presents the special

case of the Geometric Brownian Motion and derives properties of the value

function in this setting. We present numerical illustrations in Section 5.

In Section 6 we show how to adapt our approach to the pricing of install-

ment warrants, which are actively traded on the Australian Stock Exchange

(ASX). Section 7 concludes.

2 The model

Let the price of the underlying asset {S} be a Markov process that verifies
the fundamental no-arbitrage property. Let t0 = 0 be the installment option

(IO) inception date and t1, t2, ..., tn (tn = T ) a collection of decision dates

scheduled in the contract. An installment design is characterized by the

vector of premia π = (π1, ...,πn−1) that are to be paid by the holder at

dates t1, ..., tn−1 to keep the IO alive. The price of the IO is the upfront

payment v0 required at t0 to enter the contract.

The exercise value of the IO at any decision date tm, for m = 1, . . . , n,

is explicit in the contract and given by

ve (s) =

 (s−K)+ , for the installment call option

(K − s)+ , for the installment put option
, (1)

where s = Stm is the price of the underlying asset at tm and (x)+ denotes

the function max {0, x}. By the risk-neutral principle, the holding value of
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the option at tm is

vhm(s) = E[ρ(m)vm+1(Stm+1) | Stm = s], for m = 0, . . . , n− 1, (2)

where

vm (s) =


vh0 (s) for m = 0

max
¡
ve (s) , vhm (s)− πm

¢
for m = 1, . . . , n− 1

ve (s) for m = n

(3)

and

ρ(m) = e−
R tm+1
tm

r(u)du

is the discount factor.

The function vhm (s)−πm is called thereafter the net holding value at tm,
for m = 1, . . . , n− 1 and the function vm is the value function representing
the value of the IO at date tm as a function of the price of the underlying

asset. Equation (3) models the choices that are available to the option

holder: he will pay the installment and hold the option as long as the net

holding value is larger than the exercise value. Otherwise, according to the

exercise value, he will either exercise the option (when positive) or abandon

the contract (when null).

One way of pricing this IO is via backward induction using (1)-(3) from

the known function vn = ve. However, the value function vm, for m =

0, . . . , n− 1, is generally not known analytically and must be approximated
in some way. In the following section, we propose an approximation over a

finite grid.
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3 Solving the DP equation

In this section, we compute the expectation in (2). The idea is to partition

the positive real axis into a collection of intervals and then to approximate

the option value by a piecewise linear interpolation.

Let a0 = 0 < a1 < . . . < ap < ap+1 = +∞ be a set of points partitioning

the positive real line into (p+ 1) intervals

(ai, ai+1] for i = 0, . . . , p.

Given an approximation evm of the option value vm at the discrete points ai
and step m, this function is interpolated piecewise linearly, which yields

bvm (s) = pX
i=0

(αmi + βmi s) I (ai < s ≤ ai+1) , (4)

where I is the indicator function. The local coefficients of this interpolation

at step m, that is the αmi ’s and the β
m
i ’s, are obtained by solving the linear

equations evm (ai) = bvm (ai) , for i = 0, . . . , p− 1,

that is:

αmi =
evm(ai)ai+1 − evm(ai+1)ai

ai+1 − ai , (5)

βmi =
evm(ai+1) − evm(ai)

ai+1 − ai ; (6)

For i = p, we take

αmp = αmp−1 and βmp = βmp−1. (7)
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Assume now that bvm+1 is known. The expectation in (2) at step m becomes

evhm (ak) (8)

= E
£
ρ(m)bvm+1 ¡Stm+1¢ | Stm = ak¤

= ρ(m)

pX
i=0

αm+1i E
£
I
¡
ai < Stm+1 ≤ ai+1

¢ | Stm = ak¤
+βm+1i E

£
Stm+1I

¡
ai < Stm+1 ≤ ai+1

¢ | Stm = ak¤ ,
where evhm denotes the approximate holding value of the IO. For k = 1, . . . , p
and i = 0, . . . , p, denote

Amki = E
£
I
¡
ai < Stm+1 ≤ ai+1

¢ | Stm = ak¤ (9)

Bmki = E
£
Stm+1I

¡
ai < Stm+1 ≤ ai+1

¢ | Stm = ak¤ , (10)

so that

evhm (ak) = ρ(m)

pX
i=0

αm+1i Amki + βm+1i Bmki . (11)

Key in the applicability of the DP procedure is how efficiently the in-

tegrals (9)-(10) can be computed. Three cases are of special interest. The

expectations (9) and (10) can be computed:

1. In closed-form (e.g. the Geometric Brownian Motion, the Ornstein-

Uhlenbeck process, the square-root process, Garch),

2. By numerical integration (e.g. CEV processes),

3. By Monte Carlo simulations (e.g. stochastic volatility models).

Note that expectations (9) and (10) can be related to the price of digital

options within [tm, tm+1]. Also note that in case 3, the efficiency of the

computation of expectations (9) and (10) decreases dramatically as [ai, ai+1]
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moves away from ak. This is the well known problem of estimating the

probability of rare events. Consequently, our approach is best suited for

cases 1 and 2.

The Dynamic Programming algorithm to price the IO may be summa-

rized as follows (recall that vn is known):

1. Initialization: Set evn (ak) = vn (ak) for all k; set m = n;

2. Compute αmi and βmi for i = 0, . . . , p using (5-7);

3. If m = 0, stop; the value of the IO is approximated by the piecewise

linear function bv0 (·) ; Otherwise, set m = m− 1;

4. Compute evhm (ak) for all k using (11);
5. Compute evm (ak) for all k using (3); record the optimal decision at
(m,k);

6. Go to step 2.

As an illustration, we show how our methodology applies to the Geo-

metric Brownian Motion case. We also derive some theoretical properties of

the IO contract within this framework.

4 The Geometric Brownian Motion framework

In that case, the price of the underlying asset satisfies

dSt
St

= (r − δ)dt+ σdWt, for 0 ≤ t ≤ T ,
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where r is the riskless rate, δ is a constant dividend rate, σ is the volatility

of the return on the underlying asset, and {W} is a standard Brownian
motion.

The solution to this SDE verifies

St00 = St0 exp
³
µ∆t+ σ

√
∆tZ

´
, for 0 ≤ t0 ≤ t00 ≤ T , (12)

where µ =
¡
r − δ − σ2/2

¢
, ∆t = t00− t0 and Z is a standard normal random

variable independent of the past of {S} up to time t0. Hence, denoting

∆tm ≡ tm+1 − tm, (9)-(10) can be written:

Amki = E

·
I

µ
ai
ak
< eµ∆tm+σ

√
∆tmZ ≤ ai+1

ak

¶¸

=


Φ (ck,1) for i = 0

Φ (ck,i+1)− Φ (ck,i) for 1 ≤ i ≤ p− 1
1− Φ (ck,p) for i = p

Bmki = E

·
ake

µ∆tm+σ
√
∆tmZI

µ
ai
ak
< eµ∆tm+σ

√
∆tmZ ≤ ai+1

ak

¶¸

=


akΦ

¡
ck,1 − σ

√
∆tm

¢
e(r−δ)∆tm for i = 0

ak
£
Φ
¡
ck,i+1 − σ

√
∆tm

¢− Φ ¡ck,i − σ
√
∆tm

¢¤
e(r−δ)∆tm for 1 ≤ i ≤ p− 1

ak
£
1− Φ ¡ck,p − σ

√
∆tm

¢¤
e(r−δ)∆tm for i = p

,

where ck,i = [ln (ai/ak)− µ∆tm] /
¡
σ
√
∆tm

¢
, and Φ stands for the cumula-

tive density function of Z.

We now derive some theoretical properties related to the design of in-

stallment call options in the GBM framework. Symmetric results hold for

installment put options. To simplify the exposition and without loss of

generality, from now on we will assume that all decision dates are equally

spaced, with ∆tm = (tm+1 − tm) = ∆t,m = 0, . . . n − 1. This also implies
that Amki = Aki, B

m
ki = Bki, and ρ(m) = e−r∆t.
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Proposition 1 The net holding value of the IO call at tm, vhm (s) − πm,

as a function of s > 0, is continuous, differentiable, convex, and monotone

with a positive rate less than 1. The value function is null on the exit region

(0, xm), equal to the net holding value on the holding region [xm, ym], and

equal to the exercise value on the exercise region (ym,∞) where xm and ym
are two thresholds that depend on the IO parameters.

Proof. The proof proceeds by induction on m = n− 1, . . . , 0. At tn−1,
the holding value at s > 0 is

vhn−1 (s) = e−r∆tE
£
vn (Stn) | Stn−1 = s

¤
= e−r∆t

Z +∞

−∞

³
seµ∆t+σ

√
∆tz −K

´+
φ (z) dz,

where φ is the density function of the standard normal distribution. Obvi-

ously, this function is always strictly positive. By the Lebesgue’s dominated

convergence theorem (Billingsley, 1995), the holding value is continuous,

differentiable for all s > 0, and

lim
s−→0v

h
n−1 (s) = 0.

Since (ks −K)+ is convex, vhn−1 is a convex function of s > 0 as a convex
combination of convex functions of s > 0. It is monotone as an integral of a

non decreasing function indexed by s > 0. For s2 > s1 > 0, one has

vhn−1 (s2)− vhn−1 (s1)
= e−r∆t

Z +∞

−∞

µ³
s2e

µ∆t+σ
√
∆tz −K

´+ − ³s1eµ∆t+σ√∆tz −K´+¶φ (z) dz

≤ (s2 − s1) e−(δ+σ2/2)∆t
Z +∞

−∞
eσ
√
∆tzφ (z) dz

≤ s2 − s1.
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The increasing rate of the holding value at tn−1 is thus less than 1. Conse-

quently, the net holding value reaches 0 at a unique threshold xn−1, and the

exercise value at a unique threshold yn−1, where xn−1 and yn−1 depend on

the IO parameters. Properties of the value function vn−1 follow (see Figure

1 with m = n− 1). Now, if one assumes that these properties hold at step
m+ 1, the same arguments may be used to prove that they hold at step m

(we omit the details).

Figure 1 plots the curve representing the net holding value of the install-

ment call option vhm (s)− πm for any decision date m. This curve intersects

the x-axis at xm which separates the exit region from the holding region.

Since its slope is less than 1, it necessarily intersects the call intrinsic value

at ym, which separates the holding region from the exercise region.

Net holding value
vmh(s) - πm

Sm
K

0
- πm xm ym

Exit
region

Holding
region

Exercise
region

Figure 1

Theoretical properties of the value function can be used in the DP algo-

rithm to speed up the computations. Indeed, as soon as the holding region
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[xm, ym] is obtained, the evaluation of the value function in step 5 and of its

piecewise linear approximation in step 4 are straightforward for values of s

outside [xm, ym].

Let C (s,σ,K, T, r, δ) denote the price of the European call option with

current price s, volatility σ, strike K, maturity T , interest rate r and divi-

dend rate δ. The following Proposition establishes conditions on the premia

so that the holding region vanishes.

Proposition 2 For k = 1, . . . , n−1, assume that πm ≥ C (K,σ,K,∆t, r, δ),
for all m ≥ k. Then one has

vk (s) = v
e (s) , for all s > 0.

Proof. The proof is established by induction on m = n − 1, . . . , 1. At
time tn−1, one has

vhn−1 (K) = E
£
e−r∆tvn (Stn) | Stn−1 = K

¤
= E

£
e−r∆tve (Stn) | Stn−1 = K

¤
= C (K,σ,K,∆t, r, δ) .

Recall that the holding value of a call IO is a monotone function of s > 0

with a positive rate less than 1 (see Proposition 1). As a consequence, for

πn−1 ≥ C (K,σ,K,∆t, r, δ), the net holding value at tn−1, vhn−1 (s)− πn−1,

is always lower than the exercise value, ve (s) (see Figure 2).

At step k + 1, assume that πm ≥ C (K,σ,K,∆t, r, δ) and vm (s) = ve (s),

for all s > 0 and m ≥ k + 1. One has

vhk (K) = E
£
e−r∆tvk+1

¡
Stk+1

¢ | Stk = s¤
= E

£
e−r∆tve

¡
Stk+1

¢ | Stk = s¤
= C (K,σ,K,∆t, r, δ) .
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Again, since vhk is monotone with a positive rate less than 1, this implies

vk (s) = v
e (s) for all s > 0.

Holding value
and net holding value
below intrinsic value

vn-1h(s) – πn-1

Sn-1
K

0

c(K,σ,K,∆t,r)

vn-1h(s)

Figure 2

Figure 2 plots the case where the installment is equal to C (K,σ,K,∆t, r, δ),

which places the net holding value below the intrinsic value. Thus, for all

installments greater than C (K,σ,K,∆t, r, δ), the holding region vanishes,

and the remaining possibilities are exit or exercise.

Corollary 3 Consider an installment vector π = (π1, . . . ,πn−1) to be paid

at t1, . . . , tn−1. If πm ≥ C (K,σ,K,∆t, r, δ), for all m ∈ [1, n− 1] , then

v0 (s) = C (s,σ,K,∆t, r, δ) , for all s > 0.
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Proof. By Proposition 2, we get

v0 (s) = vh0 (s)

= E
£
e−r∆tv1 (St1) | S0 = s

¤
= E

£
e−r∆tve (St1) | S0 = s

¤
= C (s,σ,K,∆t, r, δ) .

This ends the proof.

5 Numerical experiments

5.1 Convergence speed and accuracy

In the numerical experiments below, we generate the ak’s as the quantiles

of ST , the distribution of the underlying asset price at maturity, with the

addition of the value K. The model for the diffusion is the Geometric

Brownian Motion with no dividend (Black-Scholes model). Matrices [Aki]

and [Bki] are precomputed before doing the first iteration.

Table 1 displays the main pricing properties of our approach. First,

convergence to the “true” price is fast. A fairly good approximation of

the IO price can be obtained almost instantaneously with a 125-point grid.

A two-digit accuracy is achieved with a 250-point grid, which involves a

computational time of a tenth of a second2. A four-digit accuracy can be

obtained with a 1000-point grid, which implies a computational time that

does not exceed two seconds. Second, note that the number of installments

in the contract increase computational time only slightly. For a given grid
2CPU times are reported with a 933 MHz Windows PC
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size, computational time is divided in two components, a fixed cost to pre-

compute the matrices Aki and Bki, k = 1, . . . p, i = 0, . . . p, and a variable

cost roughly linear in the number of installments. In particular, computa-

tional time increases by around 20% as the number of installments goes from

0 to 4. Thus, complex IOs can still be priced with a satisfactory trade-off

between accuracy and computational time. Third and most importantly,

convergence to the “true” price is monotonic. This allows for extrapola-

tion methods that can significantly reduce computational time for a desired

accuracy.

Number of Number of grid points

installments 125 250 500 1000 2000

0 13.34809 13.34664 13.34658 13.34650 13.34648

(0.02) (0.09) (0.39) (1.53) (6.14)

1 11.49561 11.49268 11.49236 11.49221 11.49218

(0.02) (0.11) (0.41) (1.61) (6.45)

2 9.86059 9.85653 9.85595 9.85575 9.85571

(0.03) (0.11) (0.42) (1.69) (6.78)

3 8.65862 8.65312 8.65243 8.65217 8.65211

(0.03) (0.11) (0.44) (1.77) (7.08)

4 7.80531 7.79948 7.79856 7.79828 7.79822

(0.03) (0.11) (0.47) (1.84) (7.39)

Table 1: IO prices and computational time

Table 1 reports IO upfront payments for various grid sizes with the correspond-
ing CPU time in seconds (in parentheses). The code line is written in C and com-
piled with GCC. CPU times are obtained with a 933 MHz Windows PC. The IO is
a call with equal installments (π = 2) and the following characteristics: S = 100,
K = 95, σ = 0.2, r = 0.05, δ = 0, and T = 1. The number of installments varies
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from 0 to 4. In the case of zero installment, the call is European and its theoretical
price is 13.34647.

5.2 Non-redundant IO contracts

Table 2 reports prices of installment calls for various levels of constant in-

stallments. Clearly, these prices are decreasing with the level of installment.

They reach the minimum C (s,σ,K,∆t, r, 0) for installments greater than

π = C (K,σ,K,∆t, r, 0), as shown in Proposition 3. For example, when

K = 110, we have

C (100, 0.2, 110, 0.25, 0.05, 0) = 1.191

and

C (110, 0.2, 110, 0.25, 0.05, 0) = 5.076.

Thus, for any installment greater than 5.076, the holding region vanishes,

and the installment call is worth the European call expiring at the next

decision date.

17



Installment K = 90 K = 100 K = 110

0 16.699 10.451 6.040

0.5 15.262 9.072 4.785

1 13.857 7.787 3.738

1.5 12.779 6.660 2.886

2 12.206 5.840 2.266

2.5 11.910 5.286 1.833

3 11.763 4.943 1.547

3.5 11.695 4.748 1.368

4 11.671 4.650 1.264

4.5 11.670 4.616 1.210

5 11.670 4.615 1.191

5.5 11.670 4.615 1.191

Table 2: IO prices and installment level

Table 2 reports installment call upfront payments for various levels of install-
ment and strikes. Parameters are the following: S = 100, σ = 0.2, r = 0.05,
δ = 0, and T = 1. Exercise rights are quarterly and the IO has three installments.

A direct implication for IO design is that contracts with installments that

eliminate the holding region are simply redundant with European options.

Within the range of possible installment levels, various hedging properties

may be designed. It is worth mentioning that the IO “greeks” may be readily

obtained from the approximate value function, a piecewise linear function

which is known at all dates for all possible values of the underlying asset.
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6 Application to ASX installment warrants

One of the most actively traded installment options throughout the world

are currently the installment warrants on Australian stocks. These warrants

were launched on the Australian Stock Exchange (ASX) in January 1997.

Since then, both the number of listed installment warrants and the trading

volume have grown exponentially, as documented by Figure 3 (obtained from

the ASX website).

Figure 3: Installment warrants listings and volume

Some of the ASX installment warrants (called rolling installment war-

rants) have several installments and their expiry date may be up to 10

years. However, most ASX warrants have only one installment with matu-

rities ranging from 1 to 3 years. The single installment is usually set equal

to the upfront payment. This clearly puts a restriction on the strike price

of the warrant.

In this section, we apply our model to the pricing of installment war-

rants. By contrast to call options, warrants have a dilution effect on the
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issuer’s stocks. Black and Scholes (1973) suggest to price warrants as an

option on the issuer’s equity (i.e. stocks plus warrants). For so doing, the

valuation formula must be adjusted for dilution. Specifically, letM , N , and

γ respectively denote the number of outstanding warrants, the number of

outstanding shares, and the conversion ratio. Extending the approach by

Lauterbach and Schultz (1990), the installment warrant in this context is

interpreted as — a fraction of — an IO issued by the firm. Its payoff process

is

Yt =
Nγ

N +Mγ

µ
Vt
N
−K

¶+
, for t ∈ {t0 = 0, . . . , tm = T} ,

where {V } = {NS +MW} is the value of the firm’s equity, {V/N} =
{S +MW/N} is the asset underlying the warrant, {S} is the stock price
of the firm within the warrant life, and {W} is the value of the installment
warrant.

The DP algorithm described in Section 3 may be easily modified to the

pricing of warrants in the context of IOs. The exercise value in (1) is now

the payoff of the warrant if exercised optimally

vet (x) =
Nγ

N +Mγ
(x−K)+ .

To compute W0, one should solve

v0 (S0 +MW0/N) =W0.

This is easy to implement as the procedure gives

v0 (x) , for all x > 0.

As a special case, we get the procedure by Lauterbach and Schultz (1990)

for pricing European warrants, namely the price w of the European warrant

is obtained using the Black-Scholes formula where: (1) The underlying S
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is replaced with S + M
N w, (2) Volatility σ is that of equity returns, and

(3) The whole formula is multiplied by the dilution factor Nγ
N+Mγ . These

adjustments result in an equation of the type w = f (w) which must be

solved numerically.

Table 3 reports installment warrant prices for degrees of dilution and

numbers of installments.

Number of Number of outstanding warrants

installments M = 0 M = 10 M = 50 M = 100 M = 200

0 13.346 13.006 11.988 11.184 10.322

(13.346) (13.006) (11.989) (11.185) (10.324)

1 11.492 11.011 9.567 8.557 7.726

2 9.855 9.364 8.054 7.289 6.790

3 8.652 8.215 7.177 6.658 6.315

4 7.798 7.445 6.666 6.296 6.030

Table 3: Installment warrant prices and the dilution effect

Table 3 reports installment warrant upfront payments for various degrees of
dilution. The installment warrant has equal installments (π = 2) and the following
characteristics: S = 100, K = 95, σ = 0.2, r = 0.05, δ = 0, N = 100,
γ = 1, and T = 1. Grid size is 500 points. The number of outstanding warrants
varies from 0 to 200, and the number of installments varies from 0 to 4. In the
case of zero installment, the warrant is European and its theoretical price (below
in parentheses) is given by Lauterbach and Schultz (1990). In the case of M = 0,
the installment warrant is fully diluted and its price equals that of the installment
call option (see Table 1).

As can be seen from Table 3, installment warrants prices decrease with

the installment and are therefore lower than prices of otherwise identical

European warrants. Thus, installment warrants have a weaker dilution ef-

fect than European warrants, i.e. the wealth transfer from stockholders to

warrantholders is less pronounced. The reason for this is that the presence
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of installments implies that warrants may be abandoned and simply not ex-

ercised. As a consequence, the design of installment warrants gives the firm

some flexibility in controlling capital dilution when raising funds.

7 Conclusion

In this paper, we have developed a pricing methodology for installment op-

tions using dynamic programming. This numerical procedure is particularly

well suited for IOs because these options are Bermudan-style and involve a

limited number of distant exercise dates. Numerical experiments indicate

that prices converge monotonically and quickly reach good levels of accuracy.

Our approach is flexible enough to be extended to other pricing issues

involving installment options. As an illustration, we show how to adapt our

methodology to the pricing of ASX installment warrants. Other extensions

might be considered for future research. For instance, levered equity may

be seen as a compound call on asset value when debt bears discrete coupons

(see Geske (1977)). Consider next that the coupon-bearing debt is callable.

At each coupon date, shareholders decide whether or not to call the debt.

If they do not call, they decide whether or not to pay the coupon to keep

their residual claim on the firm’s assets. Consequently, when the firm is

financed with defaultable callable debt, levered equity may be priced as an

installment call on firm asset value.

22



References

[1] Ben-Ameur, H., M. Breton, and P. L’Écuyer, 2002, “A Dynamic Pro-

gramming Procedure for Pricing American-style Asian Options”, Man-

agement Science 48, 625-643.

[2] Billingsley, P., 1995, Probability and Measure, Third Edition, John Wi-

ley and Sons, New York.

[3] Black, F., and M. Scholes, 1973, “The Pricing of Options and Corporate

Liabilities”, Journal of Political Economy 81, 637-659.

[4] Chen, A. H. Y., 1970, “A Model of Warrant Pricing in a Dynamic

Market”, Journal of Finance 25, 1041-1059.

[5] Davis, M., W. Schachermayer, and R. Tompkins, 2001, “Pricing, No-

arbitrage Bounds and Robust Hedging of Instalment Options”, Quan-

titative Finance 1, 597-610.

[6] Davis, M., W. Schachermayer, and R. Tompkins, 2002, “Instalment

Option and Static Hedging”, Journal of Risk Finance 3, 46-52.

[7] Davis, M., W. Schachermayer, and R. Tompkins, 2003, “The Evaluation

of Venture Capital as an Instalment Option”, working paper, University

of Frankfurt.

[8] Geske, R., 1977, “The Valuation of Corporate Liabilities as Compound

Options“, Journal of Financial and Quantitative Analysis 12, 541-552.

[9] Lauterbach, B., and P. Schultz, 1990, “Pricing Warrants: An Empirical

Study of the Black-Scholes Model and Its Alternatives”, Journal of

Finance 45, 1181-1209.

23



[10] Wilmott, P., J. Dewynne, and S. Howison, 1993, Option Pricing: Math-

ematical Models and Computation, Oxford Financial Press.

24


