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FACULTÉ DES SCIENCES
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Résumé en français

Prennez note que le sommaire qui suit retrace en français les principaux

éléments de contexte de cette étude présentés en anglais au chapitre suivant.

On brosse ici également les grandes lignes de la structure du texte.

L’étude de la dynamique des fluides fascine l’oeil et l’esprit, qu’il s’agisse

de l’écoulement laminaire d’un long fleuve tranquille ou de celui, turbulent,

que soulève en cascade le fond irrégulier d’une rivière trop inclinée. Faire

un historique complet de la mécanique des fluides serait présomptueux ici

et d’autres que nous l’ont fait avec autorité (par exemple, McComb [65] et

Chorin et Marsden [20]). Nous en extrayons les quelques informations qui

suivent et nous y renvoyons le lecteur intéressé d’en savoir davantage.

Contentons nous ici de rappeler que c’est Newton qui, en 1657, a le pre-

mier décrit mathématiquement la viscosité, la définissant comme étant la

variation de la quantité de mouvement des particules d’un fluide en écoulement

laminaire par unité de surface. Cette variation est physiquement interprétée

comme résultant de la dissipation d’énergie qu’entrâıne l’interaction entre

éléments du fluide macroscopiquement distants.

1



Ce n’est que près de cent ans plus tard, en 1755, qu’Euler décrit avec

rigueur et exactitude l’écoulement d’un fluide parfait, c’est-à-dire, un fluide

dont la viscosité est nulle, dont les forces internes d’interaction sont isotropes

et pour lequel l’écoulement s’effectue sans dissipation d’énergie thermique.

Les hypothèses de travail d’Euler étaient que l’écoulement est laminaire et

en phase unique. Par exemple, si le milieu est un tuyau, il n’y a donc pas

d’air dans le tuyau et la description du flot vaut partout sauf trop près des

bords, là où pourrait sévir la turbulence.

L’équation de Navier-Stokes apparâıt pour la première fois dans le cours

d’hydrodynamique de Navier (1822), qui marque le début d’un siècle et

demi de foisonnement scientifique autour de l’utilisation de cette équation

en mécanique des fluides. L’objectif poursuivi en la dérivant est de décrire

complètement le mouvement des éléments de volume d’un fluide qui peut

être visqueux ou non, compressible ou non, turbulent ou non.

Rappellons ici que l’incompressibilité est définie comme la transmission

intégrale des pressions externes sur le fluide, par le biais de l’équilibre des

rapports de force par aire de section. Citons quelques exemples ici. Sont

incompressibles tous les liquides, localement; les gaz à vitesse hypersonique

(plus de MACH 8) et tous les fluides en phase fortement visqueuse. Sont

compressibles les gaz s’écoulant à des vitesses plus modérées et les liquides

s’écoulant dans des tuyaus longs à pression variable comme des pipelines.

On peut maintenant énoncer la fameuse équation de Navier-Stokes, comme

suit.
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Considérons ρ = ρ(x, t) la densité (masse volumique), p = p(x, t) la

pression (volumique), f = f(x, t) la densité (volumique) du champ de force

externe (supposé connu), T = T (x, t) la température (connue elle aussi) et

ν la viscosité (celle dite dynamique, qu’on supposera connue également mais

qu’il ne faut pas confondre avec la viscosité cinématique, qui est donnée

par le rapport ν/ρ). La formulation exacte nécessite également deux autres

fonctions Φ = Φ(ρ, p, T ) et λ = λ(ρ, p, T ), qui sont bien connues mais dont

on ne détaillera pas la forme ici.

On recherche des solutions u = u(x, t) aux trois équations suivantes,

munies de conditions aux frontières appropriées. Ici u représente la vitesse

du flot sous considération. Tout d’abord l’équation de Navier-Stokes (quand

ν = 0 on l’appelle équation d’Euler)

ρ
(∂u
∂t

+ (u · ∇)u
)
− ν 4 u− (3λ+ ν)∇div(u) +∇p = f (0.0.1)

résulte de la conservation des bilans d’énergie et de force par unité de surface,

comme on le verra au chapitre 3. C’est là que sera expliquée plus en détail

l’interprétation exacte des opérateurs de gradient ∇ et de Laplace 4.

La seconde équation, appelée équation de continuité,

∂ρ

∂t
+ div(ρu) = 0 (0.0.2)

est une conséquence directe de la conservation de la quantité de mouvement,

via le théorème de Gauss liant intégrales de surfaces et de volumes induits.

Finalement, un bilan thermodynamique fournit la troisième équation

Φ(ρ, p, T ) = 0 . (0.0.3)
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La plus remarquable qualité de (0.0.1) est sans doute la vaste étendue de

son domaine de validité aux yeux des ingénieurs. En effet, au moins jusqu’en

1990 lorsqu’écrit McComb [65], il n’existe aucun contrexemple expérimental

d’écoulement gazeux turbulent remettant en cause sa validité en bas de

MACH 15, soit quinze fois la vitesse du son! Cette versalité d’application

explique l’abondance tant des méthodes développées au fil des ans pour la

résoudre et l’analyser, que de la littérature s’y rapportant.

Pour un mathématicien, la validité de (0.0.1) passe d’abord par une

définition précise de ce qu’on entend par solution de cette équation, puis par

la démonstration rigoureuse de son existence et, idéalement, de son unicité.

Dans tous les manuels mathématiques de facture classique sur le sujet, même

les plus récents ([20], [26], [72]), on ne s’attarde toujours à la démonstration

de l’existence d’une telle solution, que dans le cas restreint des fluides ho-

mogènes et incompressibles, autrement dit, lorsque les paramètres ρ, p et T

sont des constantes connues. Les éléments de base des preuves proposées

dans ces ouvrages, remontent aux travaux de Jean Leray [60]. Il existe bien

sûr maintenant des méthodes déterministes beaucoup plus puissantes, dues

en particulier aux travaux de Pierre-Louis Lions [61] en analyse fonction-

nelle, mais elles seraient trop complexes à décrire ici et l’approche que nous

adoptons est résolument probabiliste dans sa facture.

Nous verrons au chapitre 3 comment les méthodes stochastiques utilisées

dans la présente thèse, permettent d’aborder et de résoudre le problème

de l’existence et de la caractérisation de la solution dans certains cas où

l’hypothèse d’incompressibilité est invalide. On aura cependant toujours

4



l’hypothèse d’homogénéité et on stipulera donc pour simplifier que ρ = 1 est

vérifiée partout. Soulignons qu’alors l’équation (0.0.2) devient tout simple-

ment div(u) = 0, qui doit être vérifiée en tout point à l’intérieur du domaine

de validité de l’équation (0.0.1).

La littérature sur les équations de Navier-Stokes abonde, comme en fait foi

une brève recherche sur le site http://www.ams.org/mathscinet/search , qui

décompte plus de 3,800 articles sur le sujet, dont plus de 100 actuellement en

revue critique. Afin de préserver une taille raisonable à une introduction déjà

longue, nous ne traiterons qu’au premier chapitre la revue de la littérature

récente (surtout au cours des deux dernières années) et on s’y astreindra aux

ouvrages entourant les constructions stochastiques de systèmes de particules

ayant pour limites des solutions à (0.0.1). On excluera même le cas des

équations classiques forcées aléatoirement, où seule f est aléatoire, puisque les

articles qui s’y rapportent utilisent généralement des méthodes déterministes

de construction et que, dans le cadre des constructions qui nous occuperont

ici, cette subtilité n’apporte pas vraiment d’éléments nouveaux au traitement

mathématique.

La présente thèse s’attardera donc sur une seule et unique approche, celle

de la recherche de solutions dites statistiques, telles qu’introduites par Wiener

dans [76], deux ans seulement avant que Kolmogorov publie sa célèbre théorie

de la turbulence. L’idée de Wiener, délaissée pendant plusieurs décennies, fut

reprise indépendamment semble-t-il par Bleher et Vishik [9] et par Foias [37]

qui produirent les premiers résultats rigoureux en ce sens. Aujourd’hui, leur

présentation demeure moderne puisqu’elle repose sur la théorie des équations

5



différentielles stochastiques, dont nous rappellerons l’essentiel pour nos fins

au chapitre 2.

L’objectif de notre étude est d’évaluer le comportement asymptotique de

systèmes de particules en interaction qui ont comme limite macroscopique

un flot d’écoulement fluide solution de l’équation de Navier-Stokes classique,

tant dans le cas réaliste à trois dimensions (3D) que dans le cas d’un flot

laminaire idéalisé sur deux dimensions (2D). Le mouvement du nuage de

particules est décrit par une famille d’équations stochastiques nonlinéaires de

type McKean-Vlasov, incorporant à la fois la représentation de la vorticité

du nuage et la présence de cohérence dans le mouvement du fluide par le biais

d’un champs de force attractif sous la forme d’un environnement aléatoire.

Le texte est organisé comme suit. Au premier chapitre, on rappelle le con-

texte historique décrit plus haut puis on fait une revue de la littérature tant

en physique qu’en mathématique, concernant le schème de Wiener. Le second

chapitre regroupe les outils de base qui nous serviront subséquemment afin

d’exprimer nos équations stochastiques avec rigueur. Au troisième chapitre,

on fait la revue des principales contributions des vingt dernières années sur

l’équation de Navier-Stokes stochastique, tout en attirant l’attention sur les

grandes difficultés techniques rencontrées par les auteurs impliqués. Les

chapitres 4 et 5 contiennent nos contributions originales dans les cas bi-

et tri-dimensionnels, respectivement.

La dérivation des principaux résultats se fait par le biais de la formu-

lation mathématique du mouvement du nuage limite contenant une infinité

de particules, sous la forme d’un processus à valeurs prises dans un espace
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de mesures de Borel et dont les trajectoires s’avèrent être continues. Nous

démontrons en particulier pour la première fois, pour le système fini et les

systèmes voisins existants déjà dans la littérature, l’existence de conditions

aisément vérifiables qui garantissent l’absence de collision en temps fini entre

particules.
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Chapter 1

Historical introduction

The study of fluid dynamics fascinates the eye and the mind, whether it be

the observation of the smooth, laminary flow of a long and quiet river, or

the turbulent cascades caused by the irregular bottom of a babbling brook.

The amount of scientific litterature on the subject is enormous and goes back

a long way. A complete historical review of fluid mechanics would take us

too far afield and our betters have written with authority on the subject (for

instance, McComb [65] as well as Chorin and Marsden [20]). Let us glean

the relevant information there for our purpose and send the interested reader

back to these sources in order to find out more.

Let us first recall that Newton is the one who, in 1657, first described

mathematically the concept of viscosity, defining it as the variation per unit

of cross-section surface, of the momentum of particles in a fluid with laminar

flow. This variation is physically interpreted as the result energy dissipation
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resulting from the interaction of macroscopically distant fluid elements.

Almost a hundred years later, in 1755, Euler described exactly and with

full rigour the flow a perfect fluid, that is, a fluid with no viscosity, isotropic

particle to particle interaction forces and isothermic flow (no thermal energy

generated by its movement). Euler’s working hypotheses were that the flow

is laminary and in a single physical phase. For example, if the flow is that

of water through a cylindrical pipe, this description prevails away from the

walls of the pipe provided there is no air in it. If either condition fails, some

turbulence will occur.

The Navier-Stokes equations appear for the first time in a course on

hydrodynamics written by Navier in 1822, a date which marks the beginning

of a tremendous amount of scientific activity which continues to this day,

in fluid mechanics. The equations describe completely the motion of the

elements of volume of a fluid which may well be viscous or not, compressible

or not, turbulent or not.

Recall here that incompressibility is defined as the integral transmission

of the external pressures on the fluid to its movement. A few examples are in

order here. Instances of incompressible fluids are : all liquids, locally; gases

travelling at hypersonic speed (more than MACH 8, eight times the speed of

sound) and all strongly viscous liquids. Instances of compressible fluids are

: all gases flowing at more moderate speeds and liquids travelling through

long pipes with irregular pressure areas, like pipelines.

The Navier-Stokes equations can be formulated as follows.
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Consider ρ = ρ(x, t) the density (mass per volume) of the fluid, p = p(x, t)

the pressure (per unit volume) it exerts, f = f(x, t) the density (per unit

volume) of the external force field (which we assume known), T = T (x, t) the

temperature (also known) and ν the viscosity. (We refer here to the intrinsic,

dynamic viscosity, which we assume known for the fluid under observation,

which must not be confused with the kinematic viscosity, given by the ratio

ν/ρ.) The exact formulation also requires two other functions Φ = Φ(ρ, p, T )

and λ = λ(ρ, p, T ), which are well-known to physicists and which we will not

detail further here, for reasons that will be clear in a moment.

We are looking for solutions u = u(x, t) to the following three equations,

equipped with appropriate boundary conditions. Here u represents the speed

of the flow under study. To begin with, the Navier-Stokes equation itself

(when ν = 0 we talk about Euler’s equation)

ρ
(∂u
∂t

+ (u · ∇)u
)
− ν 4 u− (3λ+ ν)∇div(u) +∇p = f (1.0.1)

follows from the conservation of energy and force per unit area of the cross-

section of the flow. The second one, called the continuity equation,

∂ρ

∂t
+ div(ρu) = 0 (1.0.2)

is a direct consequence of the conservation of momentum and Gauss’s theo-

rem linking surface integrals and induced volumes. Finally, a thermodynamic

conservation law yields the third equation

Φ(ρ, p, T ) = 0 . (1.0.3)
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The most remarquable property of (1.0.1) is undoubtedly the vast range

of its validity in the eyes of engineers. Indeed, at least as late as 1990 when

McComb [65] was writing, there is not a single experimental counterexample

of a turbulent gas flow putting (1.0.1) in question at speeds below MACH

15! This versatility explains the abundance of methods developped over the

years to solve it and analyze the behavior of its solutions, as well as that of

the litterature pertaining to it.

For a mathematician, the validity of (1.0.1) requires a precise definition of

what is meant by a solution and a rigourous demonstration of its existence

and, ideally, of its unicity. In all the classic books on the subject, even

the more recent ones like [20], [26] or even [72], the proof of existence is

invariably produced in the restricted case of homogeneous and incompressible

fluids, that is when parameters ρ, p and T are known constants. Basically,

all the proposed proofs in these books go back to the essential work of Jean

Leray [60]. Of course there are now far more powerful deterministic methods,

especially those of Fields medallist Pierre-Louis Lions [61] which rely on new

functional analytic structures, but they are too complex to describe succintly

here and the approach we have adopted is resolutely probabilistic in nature.

We shall see in chapter 3 how the stochastic methods used in this thesis,

allow us to define the solution and prove its existence and unicity in some

cases. We will require both incompressibility and homogeneity at

all times and therefore assume that ρ = 1 everywhere for the sake of

simplicity in writing. This condition entails that equation (1.0.2) becomes

simply div(u) = 0, which must be satisfied at all interior points of the domain
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where equation (1.0.1) is required to hold.

As we mentionned above, the litterature on Navier-Stokes equations is

abundant. Anyone who needs convincing of this may do a straightforward

search on website http://www.ams.org/mathscinet/search in order to find

over 3,800 scientific papers on the subject, more than a hundred of which

are so recent so as to be currently under review. Keeping this introduction

within reason demands that we treat here only the most recent litterature

surrounding the stochastic constructions of those particle systems having

solutions to (1.0.1) as their limits. We will even exclude the case of the

classical equations with random forcing, where only f is stochastic, since the

papers on this subject tend to use deterministic methods that will not be

considered here and since this additionnal subtlety would not add any new

element to our mathematical treatment.

From hereon, our interest lies in turbulent flows, which are unstable and

chaotic. It is now known to be unrealistic to try to model a single trajec-

tory in that case for more than a short span of time. Instead, one considers

collections of solutions known as ensembles, usually best described as mea-

sures over the phase space. We therefore concentrate henceforth on one and

only one approach, that of the search for these ensembles, first introduced by

Wiener in [76] under the name statistical solutions and two years only prior to

the publication by Kolmogorov of his celebrated theory of turbulence in [51].

Wiener’s ideas, abandonned for several decades, were taken up independently

around 1970 by Bleher and Vishik [9] and by Foias [37], who first obtained

rigourous results along this line of enquiry. Another major paper along these
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lines is Bensoussan and Temam [8] in 1973, which extends the previous two

while keeping the noise term purely additive (now called linearized stochas-

tic Navier-Stokes equations), a physically unrealistic assumption as it turns

out (see Kotelenez [53]). Nevertheless, all these presentations remain mathe-

matically modern and pertinent even today, as they all rely on the still very

active field of stochastic differential equations, on which more will be said in

the next chapter.

Also in the early seventies, physicists seized upon this scheme of Wiener’s

and devised discretized versions of it in order to analyze numerically the

properties of both inviscid (non viscous) and viscous flows. In 1973, after

Chorin observed in [18] that viscosity at a boundary slows down a fluid by

creating vortices in it, Chorin and Bernard in [24] devised a deterministic,

discrete vortex representation for two dimensional (hereafter 2D) inviscid

flows that should converge to the solution of the Euler equation when the

number of such vortices tends to infinity. Hald and del Prete first together

in [40] and then Hald alone in [41] and [42], proved that convergence under

increasingly weak assumptions.

In a series of papers ([4], [5], [6], [7]), Beale and Majda attacked the three

dimensional (hereafter 3D) case similarly and we’ll have more to say on these

attempts in a moment. In parallel to these attempts at proving rigorously

the convergence of these various numerical schemes to the solution of the

full fledged Navier-Stokes equation (1.0.1), Chorin gained some insight into

such phenomena as the rapid stretching of vortices (in [21]), intermittency

(the uneven distribution of vortices in space as the flow evolves, in [19]), the
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apparent fractal dimension of the support of the vorticity (in [22] and [23])

and so on. Chorin summarizes his contributions on the subject in his book

[25]. All in all, interesting numerical work but very few rigourous results.

This line of study goes on to this day in the physics litterature. See, for

instance, in chronological order from 1985 on, [59], [3], [69], [63], [38], [17],

[62], [44], [50], [28], [1] and [39], where random forcing via Wiener’s scheme

appears on occasion but non random forcing dominates. Forcing refers here

to the presence of a non zero external force field f in equation (1.0.1).

Rigourous results for the general case of (1.0.1) took longer to appear.

The 2D dynamics were formulated in terms of vortex theory in an excellent

treatise by Marchioro and Pulvirenti [64] in 1982. As expected, the 3D dy-

namics offered a lot more resistance. The first spectacular success came in

1985 through a joint effort by three of the best mathematicians of the day.

Constantin, Lax and Majda built in [27] a one-dimensional (deterministic)

caricature of the 3D vorticity equation, that is, the equation which governs

the rotational of the velocity of a Navier-Stokes particle. This was accom-

plished six years after a physical description of such a caricature appeared in

[56]. It is indeed remarkable that the corresponding (stochastic) caricature

for the Boltzmann equation, governing the motion of an idealized gas, was

obtained by Mark Kac [47] back in 1956.

In 1989, Esposito and Pulvirenti [31] published a detailed analysis of 3D

vortex flows upon which more will be said in chapter 3. Many of the key

ideas used in this thesis go back to this important paper, which builds upon

the work of Beale and Majda quoted above. Rigourous treatment was now
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being attempted in the more realistic modelling afforded by making the noise

term multiplicative. Further progress was achieved by Brzezniak, Capinski

and Flandoli [11] in 1992, under some rather severe a priori estimates and

then by Capinski and Cutland [13] in 1994, by way of nonstandard analysis.

A year later in [14], these same two authors went back to the ideas of Foias

[37] and were able to avoid nonstandard analysis altogether, at the cost of

some technical conditions on the characteristic functional. Flandoli and his

collaborators got rid of some of these conditions by considering solutions

in a weaker sense than previously used, in both the 2D [36] and 3D [34]

contexts. Alternative treatments can be found somewhat later in [49], [70],

[15] and [33]. More recently, these techniques have been used to obtain

qualitative results on the regularity of most paths of these stochastic systems,

showing them to be (at least microscopically) quite a bit better behaved than

the deterministic ones (see for instance Flandoli and Romito [35]), as well

as amenable to stability (Caraballo et al. [16]) and even ergodic behavior

(Weinan et al. [75]). Even vortex interactions can now be analyzed precisely,

as done by He in [43].

Our line of study here follows both the work of Esposito and Pulvirenti

[31] quoted above and the construction of systems of interacting particles on

random sheets due to Kotelenez in [53], [54], [55] after the original ideas of

Walsh [74]. The premise Kotelenez postulates is the necessity for a good sys-

tem of strongly interacting particles that mirrors the microscopic behavior of

the fluid in a physically realistic way, while providing macroscopic limits (in

a mathematically rigourous sense) that verify the Navier-Stokes equations.

This he accomplishes for these equations in the case where they can be put
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in their vorticity form described below. Explicit constructions of the paths of

particles moving around in an ambiant random medium described by com-

mon Brownian sheets, a choice which ensures joint continuity of motion of

the medium in time and space, a highly desirable feature from the physi-

cal viewpoint. The characterization of both the finite and infinite systems

were carried out in detail in 1995 by Kotelenez in [55] for a large class of

multi-particle interactions using stochastic integration and independently by

Dawson and Vaillancourt in [29] where the martingale problem formulation

was used instead, for a closely related family of such systems.

In this stochastic systems approach, the motion of the cloud of particles

is described by a family of nonlinear stochastic partial differential equations

incorporating both the force fields generated by a large class of physical,

multi-particle interactions, and an external force field acting on each parti-

cle. The corresponding infinite cloud of particles is obtained as a strong limit

of the sequence of weighted empirical measure processes generated by these fi-

nite systems and solves a stochastic evolution equation of Navier-Stokes type

on the space of Borel signed measures. These strong limits are defined rigor-

ously in chapter 3 below and are refered to in the litterature as mezoscopic

limits, in reference to their incorporation of large enough ensembles of par-

ticle movements that have retained the particle-to-cloud interaction in their

stochastic description while forgetting the much weaker individual particle-

to-particle effects that are present at the microscopic level. The stochastic

Navier-Stokes equations that are thus obtained arise from a stochastic form

of the microscopic vortex model of fluid mechanics mentionned above.
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The macroscopic limits of these systems are deterministic (fluid) flows

that solve the classical Navier-Stokes equation (1.0.1), in both the realistic

three dimensional case (hereafter 3D) and the case of an idealized laminary

flow in two dimensions (hereafter 2D). The movement of the cloud of parti-

cles is described by a family of nonlinear stochastic McKean-Vlasov equations

made explicit in chapter 3. These equations incorporate simultaneaously the

representation of the vorticity of motion of the cloud and the presence of

coherence in the fluid motion by way of an attractive free force field mathe-

matically formulated as a random environment.

In the following chapter, we will assemble the tools of the trade from the

theory of stochastic processes. This will enable us in chapter 3 to review

the most recent papers related to this approach (specifically [2], [10], [12],

[46], [52], [66] and [67]) in greater detail and with the precision required of a

mathematical thesis.

The remainder of the text is organised as follows. Chapter 2 comprises all

the tools that we need later on to express our stochastic equations rigourously.

Chapter 3 is a critical review of the recent litterature (last twenty years) on

stochastic Navier-Stokes equations. Chapters 4 and 5 are new and center on

the two and three dimensional cases, respectively.

The reader will do well to remember that throughout this the-

sis, we only consider the evolution of particles and flows on the

whole space and not on some bounded subset of it. No boundary

conditions will be postulated nor checked.
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Chapter 2

Notation and basics

We use the following metric spaces: E is any Polish space, that is, any

topologically complete, separable, metric space; ΩE, the Polish space of

continuous paths [0,∞) → E with the topology of uniform convergence

on compact sets; C(E), the Banach space of real-valued bounded contin-

uous functions on E with the uniform topology; M(E), the Polish space of

all finite signed measures on the Borel subsets of E with the weak topol-

ogy, defined by µn ⇒ µ iff limn→∞
∫
φ dµn =

∫
φ dµ, for every φ ∈ C(E)

(see [30]); M+(E) ⊂ M(E), its closed subset of all finite positive mea-

sures; Cj(Rn) ⊂ C(Rn), the space of j times continuously differentiable

functions with bounded first, second, . . . , jth derivatives, for 1 ≤ j ≤ ∞;

Cj
k(Rn), its subspace of functions with compact support; along the same

lines, Ci,j ⊂ C([0,∞)× Rn) the space of j times continuously differentiable

functions with bounded first, second, . . . , jth derivatives in all coordinates

of the second component and i times continuously differentiable functions
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with bounded first, second, . . . , ith derivatives in the first (time) coordinate-

component; L2(E), the Hilbert space of real-valued, square integrable func-

tions, with the scalar product (·, ·)2 and corresponding norm | · |2; more

generally, Lp(E) will denote the Banach space of real-valued, p-integrable

functions, for p ≥ 1, with the usual Hölder p-norm noted | · |p. The scalar

product of vectors in Rn will be denoted by · or simply by juxtaposition,

the vector product by × resulting in a n-dimensional vector and the tensor

product by ⊗ resulting in a n by n matrix.

A first result that will be required repeatedly is Gronwall’s celebrated

inequality. The proof is in Appendix 5 of [32].

Theorem 2.0.1 Given a Borel measurable function f which is bounded on

bounded intervals in [0,∞) and a measure µ ∈ M+([0,∞)) such that for

some ε > 0 there holds 0 ≤ f(t) ≤ ε+
∫

[0,t)
f(s)µ(ds) for all t ≥ 0, then there

follows f(t) ≤ ε expµ[0, t) for all t ≥ 0 as well.

Various operators will be required throughout this thesis, including in

particular the following: ∂xj
(occasionnally written ∂j) is the derivative with

respect to coordinate j acting on C1(Rn), ∂2
xj

or ∂2
j the second order derivative

(and so on),∇ = (∂1, ∂2, . . . , ∂n)T is the gradient operator, div =
∑n

j=1 ∂j and

∆ =
∑n

j=1 ∂
2
j the Laplacian on C2(Rn). When a function is vector-valued,

the derivatives will be interpreted coordinatewise as is usual.

In the specific case of 3D motion (n = 3), we will use the curl of vector

field f = (f1, f2, f3) defined on some open set in 3D space, the curl itself
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being an operator defined by curl f := (∂2f3−∂3f2, ∂3f1−∂1f3, ∂1f2−∂2f1).

Of course there holds div curl f = 0 whenever f is smooth enough.

Because of the highly nonlinear nature of the Navier-Stokes dynamics, a

solution to our equations will at times mean a function but at other times

only a distribution, in the sense explained next.

We denote by S ′ the Schwartz space of tempered distributions, defined as

the topological dual to the space S of smooth functions on Rd with rapidly

decreasing derivatives of all order at infinity (for more on these spaces, includ-

ing the definitions of weak and strong derivatives, see chapter 25 of Trèves

[73]).

Let hn(t) := (π1/22nn!)−1/2(−1)net2/2Dn
t (e−t2) for n = 0, 1, . . . and t ∈ R,

where Dn
t denotes the nth derivative with respect to t. Define the Hermite

function of index n = (n1, n2, . . . , nd) by hn(z) := hn1(z1)·. . .·hnd
(zd) for each

z = (z1, z2, . . . , zd) ∈ Rd. The set {hn} forms a complete orthonormal system

in L2(Rd) and satisfies the upper bound supn,z |hn(z)| = h0(0) = π−d/4 < 1

due to Szász [71]. The separable Hilbert spaces

Hj :=
{
X ∈ S ′ : ||X||2j =

∑
n

(2|n|1 + d)jX[hn]2 <∞
}
,

with |n|1 :=
∑d

i=1 ni, provide the dense continuous inclusions

S ⊂ Hj ⊂ H0 = L2(Rd) ⊂ H−j ⊂ S ′

for any real-valued j ≥ 0. Remember that the elements of Hj have all their

first order partial derivatives valued inside Hj−1 for every j ∈ R and that

the inclusion Hj ⊂ H i is of Hilbert-Schmidt type as soon as j − i > d.
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Finally it will be useful at times to remember the continuity of the inclu-

sion M+(Rd) ⊂ H−d−1 with respect to the norm || · ||−d−1. A proof can be

found in [29].

We can now turn to probabilistic matters.

Given a filtration {Ft : t ∈ T} indexed by some time set T ⊂ [0,∞] on a

probability space (Ω,F , P ), we call the quadruplet (Ω,F , {Ft}, P ) a filtered

probability space. This last is said to be complete when (Ω,F , P ) itself is

complete (we follow [45] for basic definitions in probability theory but any

of [32], [48] or [68] will also do) and all P -null sets in F actually lie in F0.

Hereafter we always assume that our processes are built on such a complete

filtered probability space and will refer to it as the (stochastic) basis. We will

further assume that right continuity of the filtration holds, that is Ft+ = Ft

for all values of t, where we define

Ft+ :=
⋂
h>0

Ft+h .

We can always select this basis so that countably many standard Brownian

motions can be built on it. Again see [45] for details. This will allow us to

shorten many of the statements in the sequel.

An Rn-valued stochastic process {xt} defined on this basis is said to be

adapted to this filtration if xt is Ft-measurable for all t ∈ T . Such an

adapted process {mt} forms a martingale with respect to filtration {Ft} if

each mt is P -integrable and there holds E[mt|Fs] = ms for every choice of

0 ≤ s ≤ t <∞.

Martingales possess many fine properties. For instance, if an Rn-valued
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continuous martingale m is square integrable, that is, such that
∫ t

0
E|mt|2 dt

is finite for every t, then there exists a unique adapted process 〈m〉 with in-

creasing paths called the quadratic variation of m such that {|mt|2−〈m〉t} is

also a martingale. Further, given two such continuous square-integrable mar-

tingales m and M , there are unique adapted processes 〈m,M〉 and 〈〈m,M〉〉

with paths of bounded variation on compact time sets respectively called the

mutual variation and tensor mutual variation of m and M , which are respec-

tively such that {mt ·Mt − 〈m,M〉t} is once again a real-valued martingale

and {mt ⊗ Mt − 〈〈m,M〉〉t} is an n × n matrix-valued martingale (in the

obvious sense, i.e., coordinatewise).

Among other interesting properties of martingales is the following, known

as the Burkholder-Davis-Gundy inequality (see [45] again) and used later on.

Theorem 2.0.2 Given is a real-valued continuous martingale m started at

m0 = 0. If we write m∗
t = sups≤t |ms| then for all p > 0 there are universal

constants 0 < cp < Cp <∞ such that

cp · E〈m〉
p
2
t ≤ E(m∗

t )
p ≤ Cp · E〈m〉

p
2
t .

One way to construct martingales in particular and processes in general,

is through stochastic integration. We consider here processes x which are

square integrable and real-valued. Without going into the details of the con-

struction, let it be said here that it is possible to define rigorously on such a

basis as above, the application mapping any square integrable process x with

continuous paths {t→ xt(ω) : ω ∈ Ω} to a square integrable martingale with

continuous paths noted
∫ t

0
xs dβs called the stochastic integral with respect to
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standard Brownian motion β. Up to a null set, it is the only such martingale

with mean 0 and quadratic variation equal to 〈
∫ ·

0
xs dβs〉t =

∫ t

0
(xs)

2 ds.

The most important tool for computing with stochastic integrals is Itô’s

formula, which we state next.

Theorem 2.0.3 Given are mutually independent standard Brownian mo-

tions {βi}; real-valued continuous processes {aj} with bounded variations on

compact time sets, started at aj
0 = 0; real-valued continuous square inte-

grable processes {cij}; these conditions holding for all i = 1, 2, . . . , d and

j = 1, 2, . . . , n. Then for every choice of f ∈ C1,2, there holds almost surely,

with process x = (x1, x2, . . . , xn) defined by xj
t = xj

0 + aj
t +
∑d

i=1

∫ t

0
cijs dβ

i
s,

f(t, xt)− f(0, x0) =

∫ t

0

∂f(s, xs)

∂s
ds+

n∑
j=1

∫ t

0

∂f(s, xs)

∂xj
daj

s

+
d∑

i=1

n∑
j=1

∫ t

0

∂f(s, xs)

∂xj
cijs dβ

i
s +

1

2

d∑
i=1

n∑
j,k=1

∫ t

0

∂2f(s, xs)

∂xj∂xk
cijs c

ik
s ds .

For a proof, see [45], [32], [48] or [68], all of which cover more general

cases including that where the Brownian motions are dependent, a case we

shall require later.

The formulation of physical phenomena such as fluid flows at the micro-

scopic level, leads naturally to stochastic expressions known as stochastic

integral equations, which are defined as follows. Consider the expressions

(valid for all j = 1, 2, . . . , n)

xj
t = xj

0 +

∫ t

0

gj
sds+

d∑
i=1

∫ t

0

cijs dβ
i
s (2.0.1)
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where of course one must require at least that real-valued processes gj be

adapted and integrable, as well as real-valued processes cij be adapted and

square-integrable, for the expression on the right to make sense at all. Once

again here, the standard Brownian motions are assumed to be independent.

A (strong) solution to equation (2.0.1) will be any Rn-valued process

xt = (x1
t , x

2
t , . . . , x

n
t ) with continuous trajectories, built on (Ω,F , (Ft)t≥0, P ),

which is Ft-adapted, jointly measurable in (t, ω) and verifies (2.0.1) almost

everywhere, jointly in t ∈ [0,∞) and ω ∈ Ω.

Uniqueness of solution will always mean pathwise uniqueness: given any

filtered probability space (Ω,F , (Ft)t≥0, P ) with independent Brownian mo-

tions on it and any two solutions x and x′ to equation (2.0.1) such that

P (x(0) = x′(0)) = 1 holds, then P (x(t) = x′(t) for every t > 0) = 1 holds

as well.

Theorem 2.0.4 Assume that all the functions gj : [0,∞) × Rn → R and

cij : [0,∞) × Rn → R are locally bounded and Borel measurable. If on each

compact subset C ⊂ [0,∞)×Rn, there is a constant KC > 0 such that there

holds on C:∑
j

|gj(t, x)− gj(t, y)|+
∑
i,j

|cij(t, x)− cij(t, y)| ≤ KC |x− y|

and for all T > 0 there is a constant LT > 0 such that there holds for all

x ∈ Rd and t ∈ [0, T ]:∑
j

xj · gj(t, x) +
∑
i,j

|cij(t, x)|2 ≤ LT (1 + |x|2)

then there is a unique strong solution to equation (2.0.1).
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The proof may be found at the end of chapter 5 of [32].

Other processes of interest for us will require integration with respect

to a collection of Brownian motions with a high level of coherence in their

behavior, known as the Brownian sheet.

Once again recall that we are given a basis (Ω,F , (Ft)t≥0, P ) on which

are built independent sequences {βi
k : k ≥ 1} of independent real-valued

standard Brownian motions, for i = 1, 2, . . . , d.

Recall from the seminal work [74] of Walsh that a standard Brownian

sheet wi on Rd is simply a continuous version of the Gaussian random field

defined by the almost surely convergent series

wi(p, t) =
∞∑

k=1

(IR(p), hk)2 β
i
k(t), (2.0.2)

where {hk} is a complete orthonormal system for L2(Rd), we denote by

R(p) = R(p1, p2, . . . , pd) the rectangle in Rd with corners {(±p1, . . . ,±pd)}

and by IR(p) its indicator function.

The stochastic integral, with respect to such a Brownian sheet, of an

L2(Rd)-valued, Ft-adapted predictable process {ft : t ≥ 0} which satisfies

E
∫ t

0
|fs|22ds < ∞ for each t > 0, is the continuous, locally square integrable

Ft-martingale given by the almost surely convergent series∫ t

0

∫
fs(y)wi(dy, ds) =

∞∑
k=1

∫ t

0

(fs, hk)2 dβ
i
k(s) .

The quadratic variation process for this martingale is given by

〈
∫ ·

0

∫
fs(y)wi(dy, ds)〉t =

∫ t

0

|fs|22 ds .
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The corresponding stochastic integral martingale measure of f with respect

to Brownian sheet wi is then a well-defined, continuous, worthy martingale

measure ([74]). We will henceforth write w = (w1, w2, . . . , wd) and interpret

stochastic integrals with respect to w simply coordinate by coordinate.

The stochastic evolution equations that arise in the next chapter are of

the form

xj
t = xj

0 +

∫ t

0

gj
sds+

d∑
i=1

∫ t

0

∫
cijs dw

i
s (2.0.3)

where now the (always adapted and continuous in the sequel) processes cij

need to be L2(Rd)-valued for this equation to make sense.

We are now ready to move on to the description of the major results of

recent years on the solution of stochastic evolution equations of the form

(2.0.3), including existence and uniqueness issues, as they pertain to the

description of vorticity.
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Chapter 3

Recent litterature on stochastic

vorticity equations

3.1 Navier-Stokes equation in 3D

3.1.1 Derivation of the vortex form

The Navier-Stokes equations of chapter 1 can be written explicitely for ho-

mogeneous and incompressible fluid flows in 3D with no forcing, for all t > 0

and x in a given domain,
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∂u1

∂t
+ (u · ∇)u1 − ν 4 u1 = ∂p

∂x1

∂u2

∂t
+ (u · ∇)u2 − ν 4 u2 = ∂p

∂x2

∂u3

∂t
+ (u · ∇)u3 − ν 4 u3 = ∂p

∂x3

div(u(x, t)) = 0

u(x, 0) some known function or distribution

(3.1.1)

where u = (u1, u2, u3) is the fluid velocity, p is the pressure, x = (x1, x2, x3)

is the position of the particle and finally we set (u · ∇) =
3∑

i=1

ui
∂

∂xi
.

The matters of existence and uniqueness for this system in 3D are still

open to a large extent. Existence of strong solutions have been proven only

over short time intervals and the only global existence theorems known to

date are for weak solutions over regular or periodic domains. The unicity of

the weak solution remains open in 3D. We shall therefore assume for the rest

of this section that we are dealing with a case of the equation where a global

weak solution exists, that is, one where u takes its values in the Schwartz

space of distributions and the derivatives are defined accordingly (see [72]).

Sufficient conditions for this to occur may be found in [60], [58] and [72].

We will not require to know the exact formulation of any such sufficient

conditions, which are quite long to explain with any degree of precision,

since our goal here is only to show that the vorticity of any such solution will

satisfy the Navier-Stokes equations in their so-called vortex form (also refered

to hereafter as the vorticity equations) stated below. The reconstruction

of solutions to the Navier-Stokes equations from solutions to the vorticity

equations is also formally possible. In 3D Biot-Savart’s law, made explicit

in the next subsection, allows us to show that the solution to the vorticity
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equations can be convoluted with a singular kernel function to yield a solution

to the original Navier-Stokes equations. The 2D case will be touched upon in

the following section and can be handled easily using Poisson’s law instead.

It is important to stress that the standard initial conditions for the Navier-

Stokes equations (3.1.1) are on the value of the initial velocity and not on that

of the initial curl. Only in this last instance do we find a true correspondance

between the two set of equations and the reader will do well to bear this in

mind. Our purpose in this thesis will be to study the existence and uniqueness

of solution to these vorticity equations directly, without reference back to

system (3.1.1) inasmuch as the solutions in question are wholly dependent

on the type of initial conditions contemplated in each context.

Recall from chapter 2 the definition of operator curl:

ω = (ω1, ω2, ω3) = curl u = ∇× u =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x1

∂
∂x2

∂
∂x3

u1 u2 u3

∣∣∣∣∣∣∣∣∣ (3.1.2)

or ω1 = (∂u3

∂x2
− ∂u2

∂x3
); ω2 = (∂u1

∂x3
− ∂u3

∂x1
); ω3 = (∂u2

∂x1
− ∂u1

∂x2
). The vorticity of any

solution u to system (3.1.1) is precisely ω. Two basic facts are used below,

both of which are well-known : for any smooth real-valued function φ there

holds div (curl φ) = 0 and curl (∇ φ) = 0 in 3D space.

Let us derive the equation satisfied by the vorticity of any solution to the

system (3.1.1). We provide a detailed proof here for the 3D case. (Since the

2D case is easily obtained by similar methods, we only state the results in
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the next section of this chapter.)

Theorem 3.1.1 (Strong Navier-Stokes equations in vortex form in 3D). If

u denotes any smooth (function) solution to the Navier-Stokes equations on

an open set in 3D, then there comes

∂ω

∂t
+ (u · ∇)ω − ν 4 ω = (ω · ∇)u or ω · ∂u

∂x
(3.1.3)

for ω, the curl of u.

Proof. The proof will be found in the Appendix at the end of this thesis.�

Next we give the weaker form of (3.1.3) which is the form we will study

in detail.

Theorem 3.1.2 (Weak Navier-Stokes equations in vortex form in 3D). If

u denotes any solution (either a smooth function defined on an open set in

3D or a tempered distribution) to the Navier-Stokes equations on the whole

domain of definition of u, then for any φ ∈ S there comes

∂

∂t
〈ω, φ〉 − 〈ω, u · ∇φ〉 − ν 〈ω,4φ〉 = 〈u, ω · ∇φ〉 (3.1.4)

for ω, the curl of u. When u is a function (respectively, a distribution), then

so is ω and the derivatives are to be taken in the usual (resp., weak) sense.

Proof. The proof will be found in the Appendix at the end of this thesis.�

The two terms in each of (3.1.3) and (3.1.4) that involve the gradient

operator ∇ display a bilinear form, jointly in (u, ω), that is known to cause
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the partial differential equations containing them to possess only explosive

and non smooth solutions in general. In particular the explosion times are

usually related to singularities in the topological description of the dynamics

at hand. Because these singularities make a rigorous treatment very difficult,

we next give a smooth form of (3.1.3).

3.1.2 Smooth form of Navier-Stokes vortex equations

Since the very specific form of the Navier-Stokes dynamics allow for an ex-

plicit representation through the so-called Biot-Savard formula, let us first

make explicit the aforementionned singularity in (3.1.3). The smoothing

operation will thus become completely transparent.

Remember that the convolution of two integrable (or square-integrable)

functions K and Ω over R3 is another integrable function (see [73]) defined

by

U(x) = K ∗ Ω(x) =

∫
R3

K(x− y) · Ω(y)dy .

A simple computation allows us (at least formally) to recover a solution to

the original Navier-Stokes equations (3.1.1) from any solution to the vorticity

equations (3.1.3) under the following new formulation, valid at every t > 0 :

∂tω(x, t) + (u · ∇)ω(x, t) = (ω(x, t) · ∇)u(x, t) + ν∆ω(x, t),

ω(·, t) = curl (u(·, t)),

u(·, t) = [k ∗ ω](·, t)

ω(x, 0) some known function ω0(x),

(3.1.5)

provided we choose ω0 = curl (u(·, 0)) and k(x) the matrix-valued kernel
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defined by

k(x) = − 1

4π|x|3


0 x3 −x2

−x3 0 x1

x2 −x1 0

 . (3.1.6)

The first and third equations in (3.1.5) together actually imply the second

one in this case, as well as the necessary div(u) = 0. Because of its impor-

tance, this third equation in (3.1.5) is known as the Biot-Savart formula,

explicitely stating

u(x, t) = [k ∗ ω](x, t) =

∫
R3

k(x− y) · ω(y, t)dy. (3.1.7)

Of course, the Biot-Savard kernel k is singular at the origin and ω needs

to be a very nice function in order for formula (3.1.7) to make sense mathe-

matically. For instance if ω(·, t) has compact support for each fixed t, then

u(·, t) is a well-defined integrable function for almost every t (see [73]). Un-

fortunately, in general the solution to (3.1.5) does not have compact support

at any positive time t. There lies the major difficulty in creating a full cor-

respondence between (3.1.5) and (3.1.1).

Because of this difficulty, many authors (starting with Chorin over twenty

years ago, see the history in [25]) have suggested altering the Biot-Savard

kernel locally in order to get at least approximate results. This we do next.

Here we introduce the mollified kernel kε(x) defined by:

kε(x) =

∫
R3

k(x− y)ρε(|y|)dy

where the mollifier ρε has the following properties: ρε ∈ C∞(R+) is a positive

approximation to the usual Dirac point mass distribution at the origin, such
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that there holds kε(x) −→ k(x) as ε −→ 0 and
∫

R3 ρε(|y|)dy = 1. It is further

possible to choose it in such a way that there holds as well

max(sup
x
|kε(x)|, sup

x,α
|∂αk

ε(x)|, sup
x,α,β

|∂α∂βk
ε(x)|) ≤ cε−4, (3.1.8)

where c is some positive constant. For explicit examples, see Hald [41] or

Beale and Majda [4].

Remark 3.1.3 kε is a matrix-valued function just like k.

For any ε > 0, the following is our regularized or smooth 3D Navier-Stokes

equations in vortex form


∂tω

ε(x, t) + (uε · ∇)ωε(x, t) = (ωε(x, t) · ∇)uε(x, t) + ν∆ωε(x, t),

uε = kε ∗ ωε,

ωε(x, 0) = ω0(x).

(3.1.9)

Matters relating to existence and uniqueness for (3.1.9) will be taken up

through the work of Esposito and Pulvirenti on a stochastic version of this

equation later on in this chapter.

3.2 Navier-Stokes equations in 2D

The corresponding Navier-Stokes equations for homogeneous and incom-

pressible fluid flows in 2D in the absence of forcing are, for all t > 0 and

x in a given domain,
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∂u1

∂t
+ (u · ∇)u1 − ν 4 u1 = 0

∂u2

∂t
+ (u · ∇)u2 − ν 4 u2 = 0

div(u(x, t)) = 0

u(x, 0) some known function or distribution

(3.2.10)

In 2D, the vorticity or curl ω of the flow is a real-valued function on

R2, corresponding to any one of the three coordinates of the original 3D

vector-valued curl appearing in (3.1.2). It is defined as ω := (∂u2

∂x1
− ∂u1

∂x2
).

Following the derivation process used in the 3D case, we obtain the 2D

vorticity equation, first in strong form

∂ω

∂t
+ (u · ∇)ω − ν 4 ω = 0 (3.2.11)

and similarly for the weak form

∂

∂t
〈ω, φ〉 − 〈ω, u · ∇φ〉 − ν 〈ω,4φ〉 = 0 . (3.2.12)

Notice how the pressure term vanishes in 2D, a consequence of the physical

fact that the (scalar) vorticity is then conserved along particle paths in 2D.

To get an explicit representation of the vorticity in 2D just introduce the

operator ∇⊥ = (− ∂
∂x2
, ∂

∂x1
). By virtue of div u = 0, we have

u(x, t) =

∫
(∇⊥g)(x− y)ω(y, t)dy. (3.2.13)

where g(r) = − 1
2π

ln |r| is the fundamental solution of the Poisson equation.

Some authors refer to equation (3.2.13) as the 2D Biot-Savard formula.

Just like in 3D, the smooth version of the vorticity equations (3.2.11) and

(3.2.12) in 2D are obtained by perturbing the kernel g in order to remove
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the singularity at the origin. This is what we do next so let 0 < ε ≤ 1 and

gε(|r|) = g(r) for ε ≤ r ≤ 1
ε

and arbitrarily extended to an even C2(R1)

function such that
∣∣g′

ε(r)
∣∣ ≤ |g′

(r)|,
∣∣g′′

ε (r)
∣∣ ≤ |g′′

(r)|.

Such a filter of smooth approximations is easy to build (for instance, see

Leonard [59]).

Set Kε(r) = (∇⊥gε)(r), r ∈ R2.

Then the (regularized or) smooth Navier-Stokes equations are given by
∂ωε

∂t
(x, t) + (uε · ∇)ωε(x, t)− ν∆ωε(x, t) = 0,

uε(x, t) =
∫
Kε(x− y)ωε(y, t)dy,

ωε(x, 0) = ω0(x).

(3.2.14)

Note that not only could Marchioro and Pulvirenti give explicit conditions

for these equations to possess one and only one solution, they did so even

when it was perturbed by independent Brownian motions. Further, Kote-

lenez was also able to extend Marchioro and Pulvirenti’s treatment when

the stochastic driving terms involve a random environment, a more realistic

description.

These results and the work of Esposito and Pulvirenti on the 3D case are

described next.
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3.3 Random vortex method for Navier-Stokes

Equations

The random vortex method was conceived by Chorin [18] and used to study

a slightly viscous flow with boundary condition. This method consists of

solving Euler’s equations by a vortex method and then sampling Gaussian

random variables to model the diffusion equation. This method has been

studied by several people. A vortex method for solving Euler’s equations can

be briefly described as follows. In a vortex method, the initial vorticity field is

partionned into a sum of vortex blobs called vortices; and Euler’s equations

are replaced by a finite set of ordinary differential equations according to

which the vortices evolve.

Unlike Euler’s equations, in the Navier-Stokes equations one cannot keep

track of the paths of the physical vortices by solving a system of ordinary

differential equations due to the existence of a highly nonlinear viscosity term.

In a random vortex method, each vortex carries a certain weight determined

by the initial vorticity field and their collective motion generates at each time

step a probability distribution. The velocity field in turn is determined via

the distribution while the weights are governed by the Biot-Savart law.

In short, the random vortex method is a method that provides an approxi-

mation to the velocity field through the distribution of random vorticies, each

of them specified by both its position and it weight.

The random vortex method has been successfully used in the study of
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several physical phenomena. The early study, by Chorin and Bernard [24], of

a vortex method without using vortex blobs (called the point vortex method)

shows that method to be unstable in predicting the rollup of nonuniform

vortex sheets. In a vortex method, the velocity is determined by integrating

the vorticity against a kernel with a singularity at the origin. The above

instability is thus due to the coming close together of two vortex blobs.

The solution that allows them the luxury of using these vortex blobs is

simply to cut off this non physical singularity. For this purpose, a class of

so-called cutoff functions was introduced by Hald and they enabled him to

give the first convergence proof of vortex method in [41] for this specific class.

3.4 Results of Marchioro and Pulvirenti in

2D from 1982

Marchoro and Pulvirenti [64] studied a stochastic 2D modified Euler’s and

Navier-Stokes equations in vortex form with independent Brownian motions

driving each vortex.

More specifically they consider the Navier-Stokes equation for a viscous

and incompressible fluid in R2. They show such an equation may be inter-

preted as a mean field equation for a system of particles, called vortices,

interacting via a logarithmic potential upon which a stochastic perturbation

is also acting.
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For the deterministic Euler’s equation they gave a system of N deter-

ministic vortices of (fixed scalar) intensity aN
1 , a

N
2 , ..., a

N
N interacting via a

smoothed potential : rN
i (t) = ri(0) +

∫ t

0

∑N
j=0 a

N
j Kε(r

N
i (s)− rN

j (s))ds

rj(0) = rj, i = 1, 2, . . . , N,
(3.4.15)

Existence and uniqueness of solution to this system of equations pose no

difficulty here (for instance, use the Picard iteration method). Writing

ωN
t =

N∑
j=1

aN
j δrN

j (t) and ωN
t (f) =

N∑
j=1

aN
j f(rN

j (t)) for all integrable f

for the approximating, discrete measure-valued mapping representing the

discrete vortices, they restrict their attention to triangular arrays {aN
j } of

values for the intensities of the vorticies inside the restricted set of only one

positive and one negative value per line, namely aN
j ∈ {A+/N,−A−/N} for

every choice of j and N , given two values A+ ≥ 0 and A− ≥ 0. They go on

to prove the following limit theorem.

Theorem 3.4.1 (Mean field limit). Consider the Euler case ν = 0 (inviscid

flow). Given is some starting value ω ∈ L1

⋂
L∞ for which we make the

choice A+ =
∫

ω>0
ω and A− = −

∫
ω<0

ω. Assume that the triangular array of

values for the coefficients {aN
j } is restricted as above. Assume also that the

sequence of initial discretized measures {ωN
0 } satisfies limN→∞ω

N
0 (f) = ω(f)

for every f ∈ C(R2) whenever the sequence ε = ε(N) goes to 0 as N goes to

infinity. Then there holds also, at each fixed t > 0 and for every f ∈ C(R2),

limN→∞ω
N
t (f) = ωt(f), where the limit point ωt is the solution of the Euler

equation in vorticity form (3.2.12) with initial datum ω.
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Similarly for Navier-Stokes equation, they consider the following N stochas-

tic vortices of intensity aN
1 , a

N
2 , ...a

N
N , interacting via the same smoothed po-

tential : rN
i (t) = ri(0) +

∫ t

0

∑N
j=0 a

N
j Kε(r

N
i (s)− rN

j (s))ds+
√

2νbi(t)

rj(0) = rj, i = 1, 2, . . . , N,
(3.4.16)

where the bi’s are 2-dimensional independent Brownian motions. With ωN
t

defined exactly as above, with the same restrictions on the values of the array

{aN
j } they prove the following slightly more difficult result.

Theorem 3.4.2 (Mean field limit). Here ν is allowed to be non null. Given

is some starting value ω ∈ L1

⋂
L∞ for which we choose A+ =

∫
ω>0

ω and

A− = −
∫

ω<0
ω. Assume that the triangular array of values for the coefficients

{aN
j } is restricted as above. Assume also that the sequence of initial dis-

cretized measures {ωN
0 } satisfies limN→∞ω

N
0 (f) = ω(f) for every f ∈ C(R2)

whenever the sequence ε = ε(N) goes to 0 as N goes to infinity. Then there

holds also, at each fixed t > 0 and for every f ∈ C(R2),

limN→∞E[ωN
t (f)] = ωt(f) ,

where the limit point ωt is the solution of the Navier-Stokes equations in

vorticity form (3.2.12) with initial datum ω.

Note that the authors did not prove the two theorems in the sense of

weak convergence of processes, only in the sense of pointwise convergence in

law, since the tightness arguments in the paper are for intermediate scaled

processes only.
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3.5 Results of Esposito and Pulvirenti in 3D

from 1989

To find realistic particle models for flows in fluid mechanics is a much more

intricate problem in 3D than in 2D. Esposito and Pulvirenti [31] propose one

such particle system, based on their so-called stochastic Lagrangian picture

of the vortex form of the Navier-Stokes equations in 3D. This picture was

arrived at by generalising the approach already developped by Beale and

Majda in [6] several years before in the (inviscid) Euler case.

First the authors consider the smoothed 3D version (3.1.9) of the Navier-

Stokes equations and claim the following result.

Theorem 3.5.1 For each ω0 ∈ L1 such that its Fourier transform ω̂0 ∈ L1,

one can find some positive time T ∗ = T ∗(‖ω0‖1, ‖ω̂0‖1) > 0 such that there

exists a unique weak solution [0, T ∗] 3 t→ ωε
t to (3.1.9), that is

dωε
t (f)

dt
= νωε

t (∆f) + ωε
t (u

ε
t · ∇f) + ωε

t (∇uε
t · f) (3.5.17)

for any smooth vector-valued function f. Here ∇uε
t is a matrix-valued operator

and one must read (∇uε
t)α,β = ∂αu

ε
β, α, β = 1, 2, 3. Furthermore there exists

a constant a > 0 such that

sup
t∈[0,T ∗]

{‖uε
t‖1 + ‖ûε

t‖1} ≤ a (3.5.18)

The limε→0 ω
ε
t = ωt, exist uniformly in [0, T ∗] in L1 sense and ωt is the weak

solution to (3.1.4). Finally there also holds limε→0 u
ε
t(x) = ut(x) = k ∗ ωt(x)

uniformly in x ∈ R3 and t ∈ [0, T ∗].
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Warning! It is our belief that the proof in Esposito and Pulvirenti [31]

provides inequality (3.5.18) only for an unbounded sequence of real values aε

and not for a universal bound a as claimed. The universal bound is used by

them in a crucial way to prove the last two sentences of Theorem (3.5.1) as

well as Theorem (3.5.3) below. To our knowledge, the existence of a solution

to (3.1.4) on unbounded domains remains unproved. For this reason our

work in 3D will not rely on these questionable statements.

For our purpose in this thesis, the main contribution of Esposito and

Pulvirenti [31] is in providing us with the following particle systems, used to

approximate ωε
t (x) :

ri(t) = ri(0) +
∫ t

0

∑N
j=0K

ε(ri(s)− rj(s))ωj(s)ds+
√

2νbi(t),

dωi(t)
dt

= ωi(t) ·
∑N

j=0∇Kε(ri(t)− rj(t))ωj(t),

ωj(0) = ωj, i = 1, 2, . . . , N,

(3.5.19)

where the bi’s are independent 3D Brownian motions.

Remark 3.5.2 Note that this is clearly an adaptation to 3D of the system

(3.4.16). Here ri(t) and ωi(t) are vector-valued random functions. If k(x) is

a matrix-valued function, we define (∇k(x))α,β = (∇kα,β(x))α,β, x ∈ R3. So

∇k(x) is also a matrix-valued function, but now each of its components is a

vector.

For each time t, define the weighted empirical process associated with

this system by

ωN
t (dx) =

N∑
j=1

ωj(t) · δrj(t)(dx) , (3.5.20)
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so that ωN
t is a vector-valued signed measure on R3.

The main result claimed by Esposito and Pulvirenti [31, Theorem 1.1] is

Theorem 3.5.3 Assume the integrability of ω0 and its Fourier transform ω̂0

and select a sequence of starting measures ωN
0 (dx) =

∑N
j=1 ωj ·δrj(0) such that

it satisfies

lim
N→∞

∫
ωN

0 (x)f(x)dx =

∫
ω0(x)f(x)dx

for any bounded continuous vector-valued function f . Then there exists T ∗

sufficiently small and ε = ε(N) → 0 as N →∞, such that

lim
N→∞

sup
t∈[0,T ∗]

sup
x∈R3

|u(x, t)− kε ∗ ωN
t (x, t)| = 0,

where u(x, t) = k(x) ∗ ω(x, t) and ω(x, t) is the weak solution of (3.1.4).

We shall see in Chapter 5 of this thesis what we were able to achieve towards

a rigorous treatment of the problem addressed by the claims of the two

would-be theorems stated in the present section.

3.6 Results of Kotelenez in 2D from 1992 on

The smooth Navier-Stokes equations (3.2.14) for the vorticity of a viscous and

incompressible fluid in R2 can be analyzed with more physical realism than in

Marchioro and Pulvirenti [64], by viewing it as a macroscopic equation for an

underlying microscopic model of randomly moving vortices. This was done by

Kotelenez [54]. The N point vortices positions satisfy a stochastic ordinary

42



differential equation on R2N , where the fluctuation forces are state dependent

and driven by Brownian sheets. The state dependence is modeled to yield a

short correlation length ν between the fluctuation forces of different vortices.

The bonus here over [64] is that the energy conservation law of physics is

respected by the microscopic level, an important contribution from the point

of view of the physics community.

Kotelenez [54] defines the following particle systems which serves as an

approximation of (3.2.14). For each particle labelled i = 1, . . . , N define

dri(t) =
N∑

j=1

aN
j Kε(r

i − rj)dt+
√

2ν

∫
Γ̂υ(r

i, p)w(dp, dt) , (3.6.21)

where w(p, t) = (w1(p, t), w2(r, t))
T is a pair of independent Brownian sheets

on R2 × R+ with mean zero and variance tλ(A), where A is a Borel set

in R2 with finite Lebesque measure λ(A). The Gaussian interaction kernel

Γ̂υ(r, p) will be defined in the next chapter when we discuss the conditions of

existence and uniqueness of solution to equation (3.6.21). For the moment

let r (which of course depends on the number N of vortices, the level ε of the

mollifying kernel and what will turn out to be the range υ of the correlation

structure built into the random medium where the particles bathe) be this

solution and set ωN
t := ωε(N),υ(N)(t) =

∑N
i=1 a

N
i δri(t) where δx is the Dirac

point measure at x ∈ R2. In [54] the following weak convergence result is

proved, under slighlty less stringent conditions on the real coefficients {aN
i }.

Theorem 3.6.1 Assume that EωN
0 (φ) →

∫
ω0φ holds for every φ ∈ C(R2)

as N → ∞. For simplicity, we assume the conditions of section 3.4 on
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the coefficients {aN
i }. Then, whatever the choice of sequence ε(N) → 0 as

N → ∞, there is another sequence υ(N) → 0 as N → ∞ such that, for

any t > 0, there comes limN→∞Eω
N
t (φ) =

∫
ωtφ as N →∞ where ωt is the

solution to equation (3.2.14).

Here again, as in the case of the work of Esposito and Pulvirenti above, some

clarifications are required in order to make proper sense of this statement,

since the proof provided by Kotelenez relies on the assumption of complete-

ness of some metric space of signed measures which in fact is not complete, as

we shall see. In Section 4.2 of this thesis, we were able to provide a rigorous

treatment of this problem as well.
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Chapter 4

New results on Navier-Stokes

equations in 2D

We consider the Navier-Stokes equation of a viscous and incompressible fluid

in R2. We show that such an equation may be interpreted as a mean field

equation for a system of particles called vortices, interacting via a logarithmic

potential, upon which in addition, a stochastic perturbation is acting. More

precisely we prove that the solution of the Navier-Stokes equation may be

approximated, in a suitable way, by finite dimensional diffusion processes

with a diffusion constant related to the viscosity.
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4.1 Introduction

In this section we deal with an incompressible, viscible or inviscible fluid in

two dimension and study the connection between the equations governing

the motion of such a fluid and the vortex theory and particle systems.

It is well known that an incompressible and viscous two dimensional fluid,

under the action of an external conservative field, is described by the following

evolution equations


∂ω
∂t

(x, t) + (u · ∇)ω(x, t)− ν∆ω(x, t) = 0,

ω(x, t) = curl u(x, t) = ∂ω
∂x1

− ∂ω
∂x2
,

∇ · u = 0,

(4.1.1)

where x = (x1, x2) ∈ R2, u = (u1, u2) ∈ R2 is the velocities field, ν ≥ 0 is the

viscosity coefficient, ∇ = ( ∂
∂x1
, ∂

∂x2
), ∆ = ∇ · ∇ is the Laplace operator.

In the following we shall refer to (4.1.1) as the Navier-Stokes equation

(NS for short) when ν ≥ 0 and as the Euler equation when ν = 0.

Introduce the operator ∇⊥ = (− ∂
∂x2
, ∂

∂x1
). By virtue of ∇·u = 0, we have

u(x, t) =

∫
(∇⊥g)(x− y)ω(y, t)dy, (4.1.2)

where g(r) = G(‖r‖) = − 1
2π

ln ‖r‖ is the fundamental solution of the Poisson

equation, where ‖ · ‖ is the Euclidean norm on R2.

There is an extensive literature on the solution of (4.1.1) by the so-called

point vortex method. A theoretical model related to the point vortex model

has been analyzed by [64].
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First we treat a regularized version of the Navier-Stokes equations (3.2.14)

of the following form
dχ(t) = [ν∆χ− χ∇ · (Uε)] dt

−
√

2ν∇ · (χ
∫

Γ̂δ(·, p)w(dp, dt)),

Uε(r, t, χ) =
∫
Kε(r − q)χ(t, dq),

where χ(t) is a signed measure in an appropriate space, where w(p, t) is a

Brownian sheet process. We show that for any initial condition χ(0) with

finite support, the above equation admits a weak solution, by constructing

explicitly the solution using systems of ordinary stochastic differential equa-

tions with respect to Brownian sheets. Then it is proven that these solutions

can be extended to any “nice” initial condition.

To give a meaning to the above equation, we used basically the same

notations as in Kotelenez [54].

Let gε(r) = Gε(‖r‖), 0 < ε ≤ 1 where Gε(s) = g(s) for ε ≤ s ≤ 1
ε
Gε

is C2(R1) with bounded derivatives of order 1 and 2, G′ε(0) = 0, and for all

s > 0, |G′ε(s)| ≤ |G′(s)|, |G′′ε(s)| ≤ |G′′(s)|.

For r 6= 0, set Kε(r) = (∇⊥gε)(r), r ∈ R2. It follows from the assumption

G′ε(0) = 0 that Kε(0) = 0 makes Kε continuous on R2. Moreover, since

G′ε(0) = 0 and G′′ε is bounded by Cε (say), it follows that |Kε(r)−Kε(q)| ≤

2Cε|r − q|, that is Kε is Lipschitz.

Next define an interactive kernel Γ̂δ(r, p) as follows. Let δ > 0 and define

correlation functions Γ̃δ : R4 → R+ to be bounded Borel-measurable func-

tions which are symmetric in r, p ∈ R2 such that the following conditions are
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satisfied:

For any r, p ∈ R2:

(C1)

∫
Γ̃2

δ(r, p)dp = 1.

(C2) There are finite positive constants cδ such that, if we define

ρ(r, q) = (cδ‖r − q‖) ∧ 1, (4.1.3)

we have ∫ [
Γ̃δ(r, p)− Γ̃δ(q, p)

]2
dp ≤ cρ2(r, q), (4.1.4)

where ∧ denotes the minimum of two numbers.

Set

Γ̂δ(r, p) =

 Γ̃δ(r, p) 0

0 Γ̃δ(r, p)

 .

For this smooth model we define the following particle systems that will

serve as an approximation of (3.2.14).

dri(t) =
N∑

j=1

ajKε(r
i − rj)dt+

√
2ν

∫
Γ̂δ(r

i, p)w(dp, dt), (4.1.5)

i = 1, . . . , N , where w(p, t) = (w1(p, t), w2(r, t))
T and wl(r, t), l = 1, 2 are

independent Brownian sheets on R2 × R+, l = 1, 2, with mean zero and
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variance tλ(A), where A is a Borel set in R2 with finite Lebesgue measure

λ(A).

Let us now introduce some assumptions. In what follows, (Ω,F , {Ft}t≥0, P )

is a stochastic basis with right continuous filtration. All stochastic process

are assumed to live on Ω and to be Ft−adapted, including all initial condi-

tions in SDE
′
and SPDE

′
s. Moreover, the processes are assumed to be P ⊗λ

measurable, where λ is the Lebesgue measure on [0,∞). To be adapted for

wl(r, t) means that

∫
A

wl(dp, t) is adapted for any Borel set A ⊂ R2 with

λ(A) <∞.

Let us assume for the moment that for suitably adapted squared inte-

grable initial conditions, the Itô equations in (4.1.5) have a unique solution

rN = (r1(t), r2(t), . . . , rN(t))>.

For the kernel satisfying assumptions C1 and C2, we choose the Gaussian

kernel:

Γ̃δ(r, p) =
1√
2πδ

exp

(
−‖r − p‖2

4δ

)
. (4.1.6)

This kernel clearly satisfies (C1), that is∫
Γ̃2

δ(r, p)dp = 1.

We also have ∫
Γ̃δ(r, p)Γ̃δ(q, p)dp = exp

(
−‖r − q‖2

8δ

)
. (4.1.7)

To see that (4.1.7) holds true, just remark that Γ̃δ(q, p)/(2
√

2πδ) is the den-

sity of a bivariate Gaussian vector with mean q and covariance matrix 2δI,
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where I is the identity matrix. Then (4.1.7) follows from the well-known fact

it represents, up to a constant, the density evaluated at r of the sum of two

independent Gaussian vectors with respective means µ1 = 0, µ2 = q, covari-

ances Σi = 2δI. Since the sum is also Gaussian with mean µ = µ1 + µ2 = q

and covariance Σ = Σ1 + Σ2 = 4δI, the result follows.

Therefore∫ [
Γ̃δ(r, p)− Γ̃δ(q, p)

]2
dp = 2

(
1− exp

(
−‖r − q‖2

8δ

))
≤ 2

(
1 ∧ ‖r − q‖2

8δ

)
.

Hence if we set ρ(r, q) = 1∧ ‖r−q‖√
8δ

= (cδ‖r− q‖)∧ 1, we easily verify that

conditions (4.1.3) and (4.1.4) are satisfied.

Proposition 4.1.1 ρ(r, q) is a metric on R2 and (R2, ρ) is a Polish space.

Proof. First note that ρ(r, q) = ρ(q, r), and ρ(r, q) = 0 if and only if r = q.

Next to prove the triangular inequality, let r, q, p are three points in R2. We

need to prove that ρ(r, q) ≤ ρ(r, p) + ρ(p, q), that is

(cδ‖r − q‖) ∧ 1 ≤ (cδ‖r − p‖) ∧ 1 + (cδ‖p− q‖) ∧ 1.

If either cδ‖r − p‖ or cδ‖p − q‖ is greater than 1, it is trivial because the

left-hand side is less that or equal to 1.

If both cδ‖r − p‖ and cδ‖p− q‖ are smaller than 1, then

ρ(r, q) ≤ cδ‖r − q‖

≤ cδ‖r − p‖+ cδ‖p− q‖

= ρ(r, p) + ρ(r, q).
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Hence the result. Finally, separability and completeness follow from the fact

Bd(p, a) = Bρ(p, acδ) if a < 1/cδ, where d(p, q) = ‖p− q‖. �

Assume that q1(t) and q2(t) are R2-valued adapted processes. Then

Mij(t) =

∫ t

0

∫
Γ̃δ(q

i(s), p)wj(dp, ds) are R-valued square integrable contin-

uous martingales and their mutual quadratic variation are given by

〈〈Mik(t),Mjl(t)〉〉 =

∫ t

0

∫
Γ̃δ(q

i(s), p)Γ̃δ(q
j(s), p)dpds · δk,l, (4.1.8)

i, j = 1, 2, k, l = 1, 2, with δ1,1 = δ2,2 = 1 and δ1,2 = 0.

Moreover, from (4.1.7) it follows that the correlations between Mik(t) and

Mjk(t) are negligible if ‖q1(s) − q2(s)‖2 >> δ and that they are observable

if ‖q1(s)− q2(s)‖2 ∼ δ. In other words, δ is the correlation length.

For metric spaces S1, S2, let C(S1, S2) be the space of continuous function

from S1 into S2.

Endow R2 with the metric ρ defined in (4.1.3) and also endow R2N with

ρN(r, q) = max
1≤i≤N

ρ(ri, qi). Set ‖r − q‖N = max
1≤i≤N

‖ri − qi‖. To indicate what

metric is used on R2 and R2N , we will write (R2, ρ) and (R2N , ρN), while

(R2, ‖ · ‖) and (R2N , ‖ · ‖N), refer to the usual Euclidean metric.
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4.2 The analysis of particle systems and SPDEs

Now we look at the following SPDEs that describe the particle movement dri(t) =
∑N

j=1 ajKε(r
i − rj)dt+

√
2ν
∫

Γ̂δ(r
i, p)w(dp, dt),

ri(0) = ri
0, i = 1, 2, . . . , N.

(4.2.9)

Lemma 4.2.1 For every rN(0) ∈ (R2N , ρN) F0-adapted initial condition,

(4.2.9) has a unique Ft-adapted solution rN(·) ∈ C([0,∞) ; R2N) a.s., which

is an R2N -valued Markov process.

For sake of completeness, we fill in the missing details in Kotelenez’s proof

[54].

Proof. Let qN,l(·) = (q1
l (·), . . . , qN

l (·))> be R2N -valued adapted P ⊗ λ mea-

surable stochastic process, l = 1, 2. Set

QN,l(t); =
N∑

i=1

aiδqi
l (t)
,

and

q̂i
l(t) = qi

l(0)+

∫ t

0

∫
Kε(q

i
l(s)−p)QN,l(dp, s)ds+

∫ t

0

∫
Γ̂δ(q

i
l(s), p)wi(dp, ds).

First, we need some estimations on ‖q̂i
1(t)− q̂i

2(t)‖
2
. We have

∥∥∥∫ t

0

∫
Kε(q

i
1(s)− p)QN,1(dp, s)ds−

∫ t

0

∫
Kε(q

i
2(s)− p)QN,2(dp, s)ds

∥∥∥2

=
∥∥∥∫ t

0

∑N
j=1 ajKε(q

i
1(s)− qj

1(s))ds−
∫ t

0

∑N
j=1 ajKε(q

i
2(s)− qj

2(s))ds
∥∥∥2

=
∥∥∥∫ t

0

∑N
j=1 aj(Kε(q

i
1(s)− qj

1(s))−Kε(q
i
2(s)− qj

2(s))ds
∥∥∥2
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≤ T
∥∥∥∫ t

0
(
∑N

j=1 aj(Kε(q
i
1(s)− qj

1(s))−Kε(q
i
2(s)− qj

2(s)))
2ds
∥∥∥

≤ 2T
∫ t

0

∑N
j=1 a

2
j(Kε(q

i
1(s)− qj

1(s))−Kε(q
i
2(s)− qj

2(s)))
2ds

≤ 2T
∫ t

0

∑N
j=1 a

2
jc

2
δ((q

i
1(s)− qj

1(s)− qi
2(s) + qj

2(s))
2ds

≤ 2T
∫ t

0
c2δ(
∑N

j=1(a
2
j‖qi

1(s)− qi
2(s)‖2 + ‖qj

1(s)− qj
2(s)‖2)ds

≤ 2T (cδa)
2
∫ t

0
(
∑N

j=1(‖qi
1(s)− qi

2(s)‖2 + ‖qj
1(s)− qj

2(s)‖2)ds

≤ 2T (cδa)
2N
∫ t

0
‖qN,1(s)− qn,2(s)‖2

N ds,

and

E sup
0≤t≤T

∥∥∥∥∫ t

0

∫
Γ̂δ(q

i
1(s), p)w(dp, ds)−

∫ t

0

∫
Γ̂δ(q

i
2(s), p)w(dp, ds)

∥∥∥∥2

= E sup
0≤t≤T

2∑
j=1

〈〈∫ t

0

∫
(Γ̃δ(q

i
1(s), p)− Γ̃δ(q

i
2(s), p))wj(dp, ds)

〉〉
= 2E sup

0≤t≤T

∫ t

0

∫
(Γ̃δ(q

i
1(s), p)− Γ̃δ(q

i
2(s), p))

2dpds

≤ 2cE sup
0≤t≤T

∫ t

0

ρ2(qi
1(s)− qi

2(s))ds ≤ 2c

∫ T

0

Eρ2(qi
1(s)− qi

2(s))ds,

where we used inequality (4.1.4).

To complete the proof of existence and uniqueness of solution, it suffices

to use a version of the standard contraction method adapted to this kind of

stochastic partial differential equations. An example of this can be found in

Ethier and Kurtz [32, p. 300]. �

Remark 4.2.2 Several important papers in the litterature on this subject

(e.g. Kotelenez [54], Amirdjanova [2]) contain proofs that rely on an as-

sumption of completeness of some spaces of signed measures which are in

fact not complete. In what follows we define the right setting for the true

space of solutions.
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For any λ ≥ 0, let M(λ) be the set of (non negative) Borel measures µ

with µ(R2) = λ. This space is equipped with the Wasserstein metric defined

in the following way:

γm(µ, ν) =

[
inf

Q∈C(µ,ν)

∫
R4

ρm(x, y)Q(dx, dy)

]1/m

where C(µ, ν) is the set of all joint representation of (µ, ν), that is, for any

Borel subset A of R2, Q(A× R2) = µ(A) and Q(R2 × A) = ν(A).

Further let Mf (λ) be the subset of measure in M(λ) concentrated on

finite sets. It follows from [30, Lemma 11.8.4] that Mf (λ) is dense in M(λ).

Let a+ and a− be nonnegative numbers such that a = a+ + a− > 0.

Let M(a+, a−) = M(a+)×M(a−). For any µ, η ∈M(a+, a−), define

γm(µ, η) = γm

{
(µ+, µ−), (η+, η−)

}
=
[
γm

m

(
µ+, η+

)
+ γm

m

(
µ−, η−

)]1/m
.

The proof of the following lemma is a consequence of Minkowski’s inequality

together with a lemma in Dudley [30, p.330 ].

Lemma 4.2.3 γ1(·, ·) and γ2(·, ·) are metrics on M(a+, a−).

Therefore (M(a+, a−), γm) is a metric space, with topology equivalent to

the product topology of the product spaces M(a+)×M(a−).

Remark that since ρ ≤ 1,

γ2
2(µ, η) ≤ γ1(µ, η) ≤ 21/2aγ2(µ, η).

It follows that γ1 and γ2 generate equivalent topologies.
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Lemma 4.2.4 Under metric γm, (M(a+, a−), γm) is a Polish space and this

metric generates on M(a+, a−) the topology of weak convergence of pairs of

positive measures. Moreover Mf (a
+, a−) is dense in M(a+, a−).

Recall the Lipschitz seminorm for functions f : R2 7→ R defined by

‖f‖L = sup
r 6=q∈R2

|f(r)− f(q)|
ρ(r, q)

.

Note that by hypothesis on Gε, we have ‖Kε‖L ≤ Cε.

If µ, η ∈ M(a+, a−) then, by denoting µs = µ+ − µ− and νs = ν+ − ν−,

we notice that there holds

sup
‖f‖L≤1

|< µs − ηs, f >| ≤ γ1(µ, η) (4.2.10)

and

sup
‖f‖L≤1

< µs − ηs, f >2 ≤ 2a2γ2
2(µ, η). (4.2.11)

Throughout the rest of the section, let a, a+, a− be fixed.

The following stochastic Navier-Stokes equation on M = M(a+, a−) will

by analyzed next.

A path t 7→ χ(t) ∈M , is called a (weak) solution of the stochastic Navier-

Stokes equation if χs(t) = χ+(t)− χ−(t) satisfies
dχs(t) = [ν∆χs − χs∇ · (Uε)] dt

−
√

2ν∇ · (χs
∫

Γ̂δ(·, p)w(dp, dt)),

Uε(r, t, χ
s) =

∫
Kε(r − q)χs(t, dq).

(4.2.12)
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Since χ(t) is measure valued here, what we mean by (4.2.12) is that χs(t)

satisfies
d < χs(t), f > = [ν < χs(t),∆f > + < χs(t), (Uε · ∇f) >] dt

+
√

2ν < χs(t),
∫

Γ̂δ(·, p)w(dp, dt) · ∇f >,

Uε(r, t, χ
s) =

∫
Kε(r − q)χs(t, dq),

(4.2.13)

for all f ∈ C2
b (R2,R).

For any real number λ, set λ+ = max(0, λ) and λ− = −min(0, λ).

Lemma 4.2.5 Suppose that
∑

ai≥0 ai = a+ and
∑

ai<0 ai = −a−. Let χ(t) ∈

M(a+, a−) be associated with (4.1.5), that is

χ±(t) =
N∑

i=1

(ai)
±δri(t)

Then χ(t) ∈ M for all t ≥ 0 and the empirical signed measure χs(t)

defined by

χs(t) = χ+(t)− χ−(t) =
N∑

i=1

aiδri(t),

satisfies (4.2.13). That is χ is a weak solution of (4.2.12).

Proof. Let f ∈ C2
b (R2,R). We use assumption C1 and the standard multi-

dimensional version of Itô’s formula, e.g. Karatzas [48, p. 153], in order to

calculate < χs(t), f >=
∑N

j=1 ajf(rj(t)).

Set UN
ε (r, t) = Uε(r, t, χ

s). Then equation (4.1.5) can be written as ri(t) =

ri(0) +
∫ t

0
Uε(r

i(s), s, χs)ds +
√

2νM i(t), 1 ≤ i ≤ N , where the R2-valued
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martingale M i has components Mij =
∫ t

0

∫
Γ̃δ(r

i(s), p)wj(dp, ds), j = 1, 2.

Using representation (4.1.8) for the quadratic variation of M i, one obtains,

d < χs(t), f > =
N∑

i=1

2∑
j=1

ai
∂

∂xj

f(ri(t))Uε,j(r
i(t), t)dt

+
1

2

N∑
i=1

2∑
j=1

ai
∂2

∂2xj

f(ri(t))(
√

2)2νdt

+
√

2ν
N∑

i=1

2∑
j=1

ai
∂

∂xj

f(ri(t))

∫
Γ̃δ(r

i(t), p)wj(dp, dt)

= [ν < χs(t),∆f > + < χs(t), (Uε · ∇f) >] dt

+
√

2ν < χs(t),

∫
Γ̂δ(·, p)w(dp, dt) · ∇f >,

which is exactly the weak form (4.2.13). �

Let χ(0) = (χ+(0), χ−(0)) , η(0) = (η+(0), η−(0)) ∈ Mf = Mf (a
+, a−). It

follows that there exist solutions x(t) and y(t) of the SODE’s (4.1.5) with

initial conditions x(0) and y(0) so that the respective empirical measures are

χs(0) = χ+(0)− χ−(0) and ηs(0) = η+(0)− η−(0).

Denote by χ(t) and η(t) the bivariate measures associated with x(t) and

y(t) respectively. As usual denote by χs(t) = χ+(t) − χ−(t) and ηs(t) =

η+(t)− η−(t) the associated empirical signed measures.

The following lemma will allow us to extend the solution of discrete initial

conditions to arbitrary initial conditions in M = M(a+, a−).

Lemma 4.2.6 For an any T > 0, there exist c′ = c′(T ), c′′ = c′′(T ) > 0,
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independent of χ(0), η(0) ∈Mf , such that

E sup
0≤t≤T

γ2
2(χ(t), η(t)) ≤ c′γ2

2(χ(0), η(0)). (4.2.14)

Moreover

E sup
0≤t≤T

sup
‖f‖L≤1

< χs(t)− ηs(t), f >2 ≤ c′′γ2
2(χ(0), η(0)). (4.2.15)

Proof. We consider the following two R2-valued Itô equations with deter-

ministic initial conditions y, z ∈ R2.

dr(t) =
∫
Kε(r(t)− p)χs(t, dp)dt+

√
2ν
∫

Γ̂δ(r(t), p)w(dp, dt),

r(0) = y.

dq(t) =
∫
Kε(q(t)− p)ηs(t, dp)dt+

√
2ν
∫

Γ̂δ(q(t), p)w(dp, dt),

q(0) = z.

When y = xi(0) (the ith two-dimensional component of x(0), then r(t, y)

is the position of the ith vortex starting at xi, that is r(t, y) = xi(t), using

uniqueness property in Lemma 4.2.1. Similarly, q(t) = yi(t), if z = yi(0).

Let Q±(0) be joint representations of (χ±(0), η±(0)). The following ex-

pressions define joint representations Q±(t) of (χ±(t), η±(t)) for every t ≥ 0:∫ ∫
f(y, z)Q±(t, dy, dz) =

∫ ∫
f(r(t, y), q(t, z))Q±(0, dy, dz),

f ∈ Cb (R4,R).

To see that Q+(t) is indeed a representation for (χ+(t), η+(t)), remark

that ∫ ∫
f(y)Q+(t, dy, dz) =

∫ ∫
f(r(t, y))Q+(0, dy, dz)
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=

∫
f(r(t, y))χ+(0, dy)

=
∑

i;ai≥0

aif(r(t, xi(0)))

=
∑

i;ai≥0

aif(xi(t))

=

∫
f(y)χ+(t, dy).

Similarly, ∫
f(y)Q−(t, dy, dz) =

∫
f(y)χ−(t, dy)

and ∫
f(z)Q±(t, dy, dz) =

∫
f(z)η±(t, dz).

It follows that

γ2
2(χ(t), η(t)) ≤

∫
ρ2(r(t, y), q(t, z))Q+(0, dy, dz)

+

∫
ρ2(r(t, y), q(t, z))Q−(0, dy, dz).

Also,

‖r(t)− r(0)− q(t) + q(0)‖ ≥ ρ(r(t)− q(t), r(0)− q(0))

≥ ρ(r(t), q(t))− ρ(r(0), q(0)).

Next we calculate ‖r(t)− r(0)− q(t) + q(0)‖2.

Proceeding as in Lemma 4.2.1, we have

E sup
0≤t≤T

∥∥∥∥∫ t

0

∫
Γ̂δ(r(s), p)w(dp, ds)−

∫ t

0

∫
Γ̂δ(q(s), p)w(dp, ds)

∥∥∥∥2
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≤ 2c

∫ T

0

Eρ2(r(s), q(s))ds,

and∥∥∥∥∫ t

0

∫
Kε(r(s)− p)χs(s, dp)ds−

∫ t

0

∫
Kε(q(s)− p)ηs(s, dp)ds

∥∥∥∥2

≤ 2

∥∥∥∥∫ t

0

∫
(Kε(r(s)− p)−Kε(q(s)− p))χs(s, dp)ds

∥∥∥∥2

+2

∥∥∥∥∫ t

0

∫
Kε(q(s)− p)(χs(s, dp)− ηs(s, dp))ds

∥∥∥∥2

.

Since ‖Kε‖L ≤ Cε, one has that∥∥∥∥∫ t

0

∫
(Kε(r(s)− p)−Kε(q(s)− p))χs(s, dp)ds

∥∥∥∥2

≤ 4T (aCε)
2

∫ t

0

ρ2(r(s), q(s))ds.

In addition, it follows from (4.2.11) that∥∥∥∥∫ t

0

∫
Kε(q(s)− p)(χs(s, dp)− ηs(s, dp))ds

∥∥∥∥2

≤ 2T (aCε)
2

∫ t

0

γ2
2(χ(s), η(s))ds.

Hence

E sup
0≤t≤T

ρ2(r(t), q(t)) ≤ E sup
0≤t≤T

‖r(t)− r(0)− q(t) + q(0)‖2 + 2ρ2(y, z)

≤ 2ρ2(y, z)

+d

∫ T

0

E sup
0≤s≤T

ρ2(r(s), q(s))ds

+d

∫ T

0

γ2
2(χ(s), η(s))ds,
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where d = 8T (c+ (2aCε)
2).

By Gronwall inequality, we have

E sup
0≤t≤T

ρ2(r(t), q(t)) ≤ 2edTρ2(y, z)

+edT

∫ T

0

γ2
2(χ(s), η(s))ds.

Integrating the last inequality with respect to Q+ +Q−, one obtains

E sup
0≤s≤t

γ2
2(χ(t), η(t)) ≤ E sup

0≤t≤T
ρ2(r(t), q(t)){Q+ +Q−}(dy, dz)

≤ 2edT

∫
ρ2(y, z){Q+ +Q−}(dy, dz)

+aedT

∫ T

0

γ2
2(χ(s), η(s))ds.

Taking the infimum over all Q± ∈ C(χ±(0), η±(0)), one gets

E sup
0≤s≤t

γ2
2(χ(t), η(t)) ≤ 2edTγ2

2(χ(0), η(0))

+aedT

∫ T

0

γ2
2(χ(s), η(s))ds.

Using Gronwall inequality again yields (4.2.14). Finally, (4.2.15) is ob-

tained by combining (4.2.11) and (4.2.14) �

Notice that this lemma yields the unicity of solution to equation (4.2.13)

when the initial position is given.

The proof of the lemma also holds in the initial conditions are random.

Therefore we have the following.
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Corollary 4.2.7 For an any T > 0, and any random initial conditions

χ(0), η(0) ∈Mf a.s.,

E sup
0≤t≤T

γ2
2(χ(t), η(t)) ≤ c′Eγ2

2(χ(0), η(0)). (4.2.16)

Moreover

E sup
0≤t≤T

sup
‖f‖L≤1

< χs(t)− ηs(t), f >2 ≤ c′′Eγ2
2(χ(0), η(0)). (4.2.17)

The next result, which is new in the literature, shows that if the positive

and negative initial parts χ±(0) have discrete disjoint supports, then they

remain apart forever and χ±(t) forms the Jordan decomposition of χs(t).

Note that the case where the initial parts do not have discrete support,

remains an important open problem, especially in view of the fact that many

in the physics litterature assume it to be true.

Theorem 4.2.8 Suppose that the initial conditions satisfy

E
N∑

i,j=1 i6=j

|ln ‖ri(0)− rj(0)‖| <∞.

Then

E
N∑

i,j=1, i 6=j

sup
t≤T

|ln ‖ri(t)− rj(t)‖| <∞,

for every T > 0.

In particular, the positive and negative parts in the Jordan decomposi-

tion of the empirical measure process χN(t) have none-explosive continuous

trajectories.
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Proof.

Rewrite model (4.2.9) as xi(t) =
∫ t

0
F (xi(s), χ(s))ds+

√
2ν
∫

Γ̂δ(x
i, p)w(dp, dt),

xi(0) = xi
0, i = 1, 2, . . . , N,

where F (xi(s), χ(s)) =
∫
Kε(x

i−y)χ(s, dy), and χ(s, dy) =
∑N

i=1 aiδxi(t)(dy).

We have

‖F (xi(s), χ(s))− F (xj(s), χ(s))‖ =

∫
(Kε(x

i − y)−Kε(x
j − y))χ(s, dy)

≤ cε‖xi − xj‖
∫
‖χ(s, dy)‖

= acε‖xi − xj‖.

It suffices to look at distance between x1 and x2. To this end, let rt =

‖x1(t)− x2(t)‖ and assume r0 is some fixed positive number. For any choice

of 0 < b < r0 < B < ∞, define the stopping times ρb = inf{t ≥ 0; rt ≤ b}

and σB = inf{t ≥ 0; rt ≥ B}. Itô’s formula yields

ln r(t ∧ ρb ∧ σB) = ln r0 +Nt∧ρb∧σB

+

∫ t∧ρb∧σB

0

1

r2
s

(x1(s)− x2(s)) ·

[F (x1(s), χ(s))− F (x2(s), χ(s))]ds,

where the martingale N defined by

Nt =

∫ t

0

1

r2
s

(x1(s)− x2(s)) ·
∫

[Γ̂δ(x
1(s)− y)− Γ̂δ(x

2(s)− y)]w(dy, ds)

is actually a square-integrable martingale, with quadratic variation

< Nt >= 2

∫ t

0

1

r2
s

(1− e−r2
s/8δ)ds ≤ t

4δ
,
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because of 1− e−x ≤ x. Therefore

sup
t≤T

‖
∫ t

0

1

r2
s

(x1(s)− x2(s)) · [F (x1(s))− F (x2(s))]ds‖ ≤ c∗T,

and we can conclude that

sup
t≤T

‖ ln r(t ∧ ρb ∧ σB)‖ ≤ ‖ ln r0‖+ sup
t≤T

‖Nt∧ρb∧σB
‖+ c∗T.

Next, the Burkholder-Davis-Gundy inequality (see Metivier and Pellau-

mail [68]) yields

E sup
t≤T

‖ ln r(t ∧ ρb ∧ σB)‖ ≤ ‖ ln r0‖+ 8

√
T

δ
+ c∗T.

Since the trajectory of r is everywhere continuous, by monotone conver-

gence the left-hand side in the last inequality converges to

E sup
t≤T

‖ ln r(t ∧ ρ0 ∧ σ∞)‖,

as b decreases to 0 and B increases to ∞. It remains true if we put b = 0 and

B = ∞ or both; hence P (ρ0 ∧ σ∞ = ∞) = 1. The case where r0 is random

follows by conditioning on the value of r0. This completes the proof. �

Recall that M = M(a+, a−) and Mf = Mf (a
+, a−). Further let

M be the space of M -valued random variables with metric γ defined by

γ(χ, η) =
[
Eγ2

2(χ, η)
]1/2

,

Mf be the subset of Mf -valued random variables,
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M[0, T ] be the space of continuous C([0, T ];M)-valued random variables

with metric γ[0,T ] defined by

γ[0,T ](χ, η) =

[
E sup

0≤t≤T
γ2

2(χ(t), η(t))

]1/2

.

Theorem 4.2.9 γ(χ, η) is a distance on M and (M, γ) is a metric space.

Proof.

We prove the triangle inequality here. Let χ, η, ψ ∈M we have:

(γ(χ, ψ) + γ(η, ψ))2

= ([Eγ2
2(χ, ψ)]

1/2
+ [Eγ2

2(η, ψ)]
1/2

)2

= Eγ2
2(χ, ψ) + Eγ2

2(η, ψ) + 2 [Eγ2
2(χ, ψ)]

1/2
[Eγ2

2(η, ψ)]
1/2

≥ Eγ2
2(χ, ψ) + Eγ2

2(η, ψ) + 2E(γ2(χ, ψ)γ2(η, ψ))

= E(γ2(χ, ψ) + γ2(η, ψ))2

≥ E(γ2
2(χ, η))

= γ2(χ, η)

So we have γ(χ, ψ) + γ(η, ψ) ≥ γ(χ, η)

Note since (M,γ2) is complete, so (M, γ) is complete too. �

Similarly we can prove the following.

Theorem 4.2.10 γ[0,T ](χ, η) is a distance on M[0, T ] and (M[0, T ], γ[0,T ])

is a complete metric space.

Note that Mf is dense in M.
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Theorem 4.2.11 The map χ(0) 7→ χ(·) from Mf into M[0, T ] extends

uniquely to a map χ(0) 7→ χ(t) from M into M[0, T ]. Moreover, for any

χ(0), Y0 ∈M,

γ[0,T ](χ, η) ≤ c′γ(χ(0), η(0))

and χs = χ+ − χ− satisfies (4.2.13), that is χ is a weak solution of the

stochastic Navier-Stokes equations with initial condition χ(0) ∈M.

Proof.

To this end, let χ(0) ∈ M be given. Since Mf is dense in M, there

exists a sequence χn(0) ∈Mf so that γ(χ(0), χn(0)) → 0, as n→∞. Using

Corollary 4.2.7, it follows that χn is a Cauchy sequence in M[0, T ]. Thus

there exists χ ∈ M[0, T ] so that γ[0,T ](χ, χn) → 0. Since the limit does not

depend on the sequence, the mapping is well-defined.

It also follows that for any χ(0), η(0) ∈ M, the corresponding paths

χ, η ∈M[0,T ](χ, η) satisfy

γ[0,T ](χ, η) ≤ c′γ(χ(0), η(0)).

Next we will show this extension gives a weak solution of the stochastic

Navier-Stokes equation (4.2.12). Using 4.2.17 and the last inequality, one

can conclude that

E sup
0≤t≤T

sup
‖f‖L≤1

< χs(t)− ηs(t), f >2 ≤ c′′γ(χ(0), η(0)).

In particular,

lim
n→∞

E sup
0≤t≤T

sup
‖f‖L≤1

< χs(t)− χs
n(t), f >2= 0.
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The next step is to show that for any f ∈ C2
b (R2, R) and χ(0) ∈ M0,

< χs(t), f > satisfies (4.2.13).

Note that by the choice of f , f and∇f are bounded, so the right-hand side

of the stochastic Navier-Stokes equation is defined for < χ(t), f >. Moreover,

since ‖f‖L <∞ and ‖∇f‖L <∞, it follows that

lim
n→∞

E sup
0≤t≤T

< χs(t)− χs
n(t), f >2= 0.

Similarly, E sup
0≤t≤T

sup
p
|Uε(p, t, χ

s(t)) − Uε(p, t, χ
s
n(t))|2 → 0 and one can

prove that all righthand side terms of (4.2.13) tends to zero, as n tends to

infinity. This completes the proof. �

4.3 Macroscopic limit

In this section we prove convergence results for our particle systems as N →

∞. First we restate our problem as follows:

Assume the number of particles is N , their initial positions xi,N and their

vorticities ai,N , i = 1, 2, . . . N .

Suppose that ω0(x) has compact support inside the interval [−M,M ]2

and ω0(x) ∈ L2(R2). For fixed N , we use the regularly spaced points

{xi,N , i = 1, 2, ..., N} on [−M,M ]2 to build a partition or this square into

(2M)2 small square grids of individual surface area 4N = (2M)2/N .
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Lemma 4.3.1 If ω0(x) ∈ L2(R2) is continuous and has support in [−M,M ]2,

we have:

lim
N→∞

N∑
i=1

(ω0(xi,N))αf(xi,N)4N =

∫
(ω0(x))

αf(x)dx

for any f ∈ C2
b (R2, R), and α = 1, 2.

Moreover

lim
N→∞

N∑
i=1

(ω0(xi,N)±)αf(xi,N)4N =

∫
(ω0(x)

±)αf(x)dx

for any f ∈ C2
b (R2, R), and α = 1, 2.

From now on, let ai,N = ω0(xi,N)4N . Under the same assumption as

above, we have

Lemma 4.3.2
∞∑

N=1

(
N∑

i=1

a2
i,N

)2

<∞

Proof.

First,
N∑

i=1

a2
i,N = 4N

N∑
i=1

(ω0(xi,N))2 4N .

Since c =
∫

(ω0(x))
2dx <∞, Lemma (4.3.1) implies that when N is large

enough,
N∑

i=1

a2
i,N = 4N

N∑
i=1

(ω0(xi,N))24N ≤ 2(c+ 1)4N .
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Therefore
(∑N

i=1 a
2
i,N

)2

= O(N−2), proving the result. �

The following lemma, which is a direct consequence of the famous Borel-

Cantelli lemma, is used in our strong convergence proof.

Lemma 4.3.3 Let {Un}∞n=1 be a sequence of random variables, and let U be

a random variable. If for any ε > 0 we have

∞∑
n=1

P{|Un − U | > ε} <∞,

then P (limn→∞ Un = U) = 1.

Next, consider the following particle model: dxi,N(t) =
∑N

j=1 aj,NKε(xi,N − xj,N)dt+
√

2νdbi(t),

xi,N(0) = xi,N , i = 1, 2, . . . N,
(4.3.18)

where the bi(t), i = 1, 2, . . . N , are independent two-dimensional Brownian

motions.

Set a± =

∫
ω0(x)

±dx and set

λ±N =
n∑

i=1

a±i,N .

Since λ±N → a±, by normalizing the ai,N ’s if necessary, there is no loss of

generality if we assume that λ±N = a±.

As before we may define the empirical measure-valued processes as

ω±N(t) =
N∑

i=1

a±i,Nδxi,N (t).
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It follows that ωN(t) = (ω+
N(t), ω−N(t)) ∈ M(a+, a−). Moreover, from

Lemma 4.3.1, ωN(0) converge to a bivariate measure with density (ω+
0 , ω

−
0 ).

As usual, set ω∗N(t) = ω+
N(t) − ω−N(t). Then using Itô’s formula, one can

conclude that for any f ∈ C2
b (R2, R),

< ω∗N(t), f > = < ω∗N(0), f > +ν
∫ t

0
< ω∗N(s),∆f > ds

+
∫ t

0
< ω∗N(s), uN(s) · ∇f > ds

+
√

2ν
∑N

i=1

∫ t

0
ai,N∇f(xi,N(s)) · dbi(s)

uN(x, t) =
∫
Kε(x− q)ω∗N(dq, s)

ω∗N(0) =
∑N

i=1 ai,Nδxi,N

(4.3.19)

Theorem 4.3.4 Under the assumption above, when N → ∞, the sequence

of laws on M[0, T ] of the random elements ω∗N converges to the deterministic

measure in M[0, T ] that is the solution of (3.2.14).

Proof. Let ΦN(t) =
∑N

i=1

∫ t

0
ai,N∇f(xi,N(s))dbi(s). Obviously ΦN is square-

integrable martingale and its quadratic variation is given by

< ΦN >t=
N∑

i=1

a2
i,N

∫ t

0

‖∇f(xi,N(s))‖2ds ≤ t sup
x∈R2

‖∇f(x)‖2

N∑
i=1

a2
i,N .

Therefore, using by Lemma 4.3.2 and setting Cf = supx∈R2 ‖∇f(x)‖2, one

obtains
∞∑

N=1

< ΦN >2
t≤ tCf

∞∑
N=1

(
N∑

i=1

a2
i,N

)2

<∞.

Now

∞∑
N=1

P

{
sup
t≤T

|ΦN(t)| > ε

}
≤

∞∑
N=1

E(Φ4
N(T ))

ε4
≤ C4

ε4

∞∑
N=1

E(< ΦN >2
T ) <∞,
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by using the Burkholder-Davis-Gundy inequality (see theorem 2.0.2). It fol-

lows from Lemma 4.3.3 that limn→∞ sup0≤t≤T |ΦN(t)| = 0 with probability

one.

Using the same techniques as in Lemma 4.2.6 and Theorem 4.2.11, it

follows that the laws of ω∗N converge to ω in M[0, T ], with ω solution to



< ω(t), f > = < ω(0), f > +ν
∫ t

0
< ω(s),∆f > ds

+
∫ t

0
< ω(s), u(s) · ∇f > ds

u(x, t) =
∫
Kε(x− q)ω(dq, s)

ω±(0)(dx) = ω±0 (x)

(4.3.20)

Since ω ∈ M[0, T ] we have ω±(t)(R2) = a±, 0 ≤ t ≤ T . The mass is

conserved.

By the uniqueness of solution of the 2D Navier-Stokes equation in vortex

form, the proof is now complete.

�

We conjecture that a similar statement for the Brownian sheet case holds

but the proof eludes us for the moment.

71



Chapter 5

New results on Navier-Stokes

equations in 3D

We discuss the stochastic structure of the Navier-Stokes equation (3.1.5) in

vorticity form in R3. While we cannot yet prove that it can be approximated

by means of a finite-dimensional stochastic process, we do prove it for the

regularized version.

5.1 The 3-D case with independent Brownian

motion as noise

Let ωε(t) be a solution of the 3D regularized Navier-Stokes equation in vor-

tex form (3.1.9). Consider the stochastic process satisfying the stochastic
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differential equation dφε
α(t) = uε

α(φε(t), t)dt+
√

2νdbα(t), almost surely,

φε
α(0) = xα, α = 1, 2, 3,

(5.1.1)

where φε(t) = (φε
1(t), φ

ε
2(t), φ

ε
3(t)) ∈ R3, and where b1, b2 and b3 are indepen-

dent standard Brownian motions. Recall in passing that uε
α = kε

α ∗ ωε
α.

For any t ∈ [0, T ] the matrix-valued process (∇φε)αβ(x, t) = ∂φε
α(x,t)
∂xβ

is

defined to be the derivative of φε
α(x, t) with respect to the space variable x.

It satisfies almost surely the differential equation in flow form (see [57]) d
dt

(∇φε)αβ =
∑

γ(∇uε
t(φ

ε(t), t)αγ(∇φε)γβ,

∇φε
αβ(t = 0) = δαβ.

(5.1.2)

Using (3.5.18) and (5.1.2), it is easy to get the following estimates:

‖∇uε
t‖∞ ≤ c ‖ωε

t‖1 < caε,

and

‖∇φε
t‖∞ ≤ ecaεT . (5.1.3)

The following useful representation result was first stated in Esposito and

Pulvirenti [31, equation (2.12)].

Lemma 5.1.1 If ωε(t) is the solution of the regular Navier-Stokes equation

in vortex form (3.1.9) and φε(t, x) satisfies (5.1.1), then for any ε > 0 and

any vector-valued bounded C3
2 (twice continuously and boundedly differen-

tiable in every image component) function f from R3 into itself, we have∫
ωε(t, x) · f(x)dx =

∫
E(f(φε

t(x)) · ∇φε
t(x)) · ω0(x)dx . (5.1.4)
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Proof. Define a measure ωε(t) on R3 as the unique one for which the fol-

lowing holds : for any f ∈ C3
2 on R3, we have

ωε(t)(f) =

∫
E(f(φε

t(x)) · ∇φε
t(x)) · ω0(x)dx. (5.1.5)

Using Itô’s formula, we obtain

d

dt
ωε(t)(f) =

∫
E[uε

t(φ
ε
t(x), t) · (∇f)(φε

t(x)) · ∇φε
t(x)]ω0(x)dx

+

∫
E[f(φε

t(x)) · ∇uε
t(φ

ε
t(x)) · ∇φε

t(x)]ω0(x)dx

+ν

∫
E[(∆f)(φε

t(x)) · ∇φε
t(x)] · ω0(x)dx

or symbolically

d

dt
ωε(t)(f) = ωε(t)[(uε

t · ∇)f + ν∆f +∇uε
t · f ].

But since equation (3.5.17) has a unique weak solution ωε(t) in the distribu-

tional sense, we have equality (as tempered distributions) of ωε(t) = ωε(t).

The proof is completed. �

In the special case where we put ν = 0 equation (5.1.4) reduces to the

well-known Lagrangian representation for the Euler flow.

The stochastic particle system to approximate ωε
t (x) is given by equation

(3.5.19). Recall the weighted empirical process defined in (3.5.2) by

ωN
t (dx) =

N∑
j=1

ωj(t) · δrj(t)(dx). (5.1.6)
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Since (3.5.19) has quadratic tems in ω, we cannot say at present whether the

solution of (3.5.19) is unique or even if it exists at all. So we consider the

following modification of the vortex model (3.5.19), a truncated form :
R̃i(t) = Ri(0) +

∫ t

0

∑N
j=0K

ε(R̃i(s)− R̃j(s))Yj(s)ωj(0)ds+
√

2νbi,

dYi(t)
dt

= [
∑N

j=0∇Kε(R̃i(t)− R̃j(t))Yj(t)ωj(0)] · χM(Yi(t)),

Yi(0) = I, i = 1, 2, . . . , N,

(5.1.7)

where the only modification is the introduction of a censoring operator, i.e.,

χM is a bounded smooth (infinitely differentiable) matrix-valued mapping on

the space of 3× 3 matrices, such that:

(χM(A))α,β :=

 Aα,β ‖A‖ ≤ M
2

MAα,β

‖A‖ ‖A‖ > M
(5.1.8)

The stochastic particle system (5.1.7) has a unique solution for any pos-

itive t, since the resulting system has Lipschitz coefficients. Moreover, if we

set M = ∞, ωj(t) = Yj(t)ωj(0), then {R̃j(t), ωj(t)} is the solution of (3.5.19),

in a formal sense only of course.

Our goal in this section will be to show that the censored system (5.1.7)

converges (in a sense made precise below) when both M and N are large but

ε remains fixed, to the unique solution of the smooth Navier-Stokes equation

(3.1.9).

The ultimate goal pursued was to show that the uncensored system

(3.5.19) approximated the classical Navier-Stokes equation (3.1.5) as well

when ε = ε(M,N) is allowed to go to 0 at some speed but this has not been
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achieved yet.

Let Ω be the set of the continuous trajectories [0, T ] 7→ R3. If we think of

ω0(x) as a vector-valued sign measure on R3, let ω+
0 (x) and ω−0 (x) be Jordan

decomposition of ω0(x). Suppose a+
α = ‖ω+

0α(x)‖, a−α = ‖ω−0α(x)‖. Note that

in our case a+
α , a

−
α ∈ R3, α = 1, 2, 3.

Let M(Ω) the set of finite vector-valued signed measures on Ω such that

µ±α (R3) = a±α , α = 1, 2, 3, where µ±α are respectively the positive and negative

part of the Jordan decomposition of µ ∈M(Ω).

Given µ ∈M(Ω) and p ∈ Ω, let xµ
t (p) = p(t) +

∫ t

0
ds
∫
Kε(xµ

s (p)− xµ
s (q)) ·Xµ

s (q) · µ(dq),

Xµ
t (p) = I +

∫ t

0
ds
∫
∇Kε(xµ

s (p)− xµ
s (q)) ·Xµ

s (q) · µ(dq) · χM(Xµ
s (p)).

(5.1.9)

The system of equations (5.1.9) is well-defined (as can be seen through an

iteration scheme or a contraction principle) and therefore implicitly defines

a map p 7→ (xµ
t (p), Xµ

t (p)). It provides a description of the evolution of the

vorticity when the initial measure µ does not have discrete support, as it

did in the finite system (5.1.7). Further, the structure of (5.1.9) remains

unchanged whether the particle system it describes comprises a finite or an

infinite number of particles, a useful observation first made by Kotelenez [53].

Denoting by M(R3) the set of the R3-valued signed measures on R3,

Esposito and Pulvirenti define the Tanaka-like stochastic linear operator T

as a mapping from M(Ω) into the set of M(R3)-valued trajectories as follows:

for any continuous and bounded f : R3 7→ R3,
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(Tµ)t(f) =

∫
f(xµ

t (p)) ·Xµ
t (p) · µ(dp). (5.1.10)

Given the standard Wiener measure Px(db) on Ω starting at x, denote by

P̃x(db(t)), x ∈ R3 the (apropriately rescaled) Wiener measure starting at x,

that is :

P̃x(db) = Px((
√

2ν)−1db) (5.1.11)

and set

λ(db) =

∫
dxω0(x)P̃x(db) . (5.1.12)

The purpose of the introduction of operator T lies in the fact that it yields

an explicit form for the solution to the censored system (5.1.7) as a function

of the starting law, according to the following proposition.

Proposition 5.1.2 For any smoothing value ε > 0 and any time T > 0

before which a solution to equation (5.1.7) is known to exist, there exists a

constant M = M(ε, T, ωε) <∞ which depends on the actual solution chosen,

such that for all t ≤ T ,

(Tλ)t = ωε(t) (5.1.13)

Proof. From the definition of φε(t, x), ∇φε(t, x), equation (5.1.2) and their

relationship with ωε(t) through (5.1.4), when M is chosen to be larger

than 2 sup0≤t≤T ‖∇φε(t, x)‖, these two functions solve the following system

77



of equations:
φε(t, x) = x+

∫ t

0

∫
Kε(φε(s, x)− y)ωε(s, dy) +

√
2νdb(t),

∇φε(t, x) = I +
∫ t

0
ds
∫
∇Kε(φε(s, x)− y) · ωε(s, dy) · χM(∇φε(s, x)),∫

ωε(t) · f(x)dx =
∫
dxE(f(φε

t(x)) · ∇φε
t(x)) · ω0(x).

(5.1.14)

Furthermore∫
(Tλ)t(dx) · f(x) =

∫
f(xλ

t (p)) ·Xλ
t (p) ·λ(dp) =

∫
dxE(f(xλ

t ) ·Xλ
t ) ·ω0(x).

and, denote p(t) = x+
√

2νb(t), by definition of xµ
t (p) and Xµ

t (p), one obtains

xλ
t (p, x) = p(t) +

∫ t

0
ds
∫
Kε(xλ

s (p)− y) · (Tλ)s(dy)

Xλ
t (p, x) = I +

∫ t

0
ds
∫
∇Kε(xλ

s (p)− y) · (Tλ)s(dy) · χM(Xλ
s (p)).

Therefore xλ
t (p), X

λ
t (p) and (Tλ)t coincide with φε(t) , ∇φε(t) and ωε(t),

by the uniqueness of the equations (5.1.14), the proof of the proposition is

complete. �

Proposition 5.1.3 Let bj ∈ Ω, bj(0) = 0, j = 1, ..., N and ωj ∈ R3, j =

1, ..., N , and set

λN(db) =
N∑

j=1

ωjδxj+
√

2νbj
(db). (5.1.15)

Then

(TλN)t(dx) =
N∑

j=1

ω̃j(t)δx̃j(t)(dx). (5.1.16)

where x̃j(t) is a solution of (5.1.7) with x̃j(0) = xj, ω̃j(0) = ωj and ω̃j(t) =

Yj · ωj.
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Proof. ∫
(TλN)t(dx) · f(x) =

N∑
j=1

f(xλN

t (pj)) ·XλN

t (pj) · ωj.

where pj = xj +
√

2νbj, and bj is starting at the origin. Then

xλN

t (pi) = pj(t) +

∫ t

0

ds

N∑
j=1

Kε(xλN

s (pi)− xλN

s (pj)) ·XλN

s (pj) · ωj,

XλN

t (pi) = I +

∫ t

0

ds
N∑

j=1

∇Kε(XλN

s (pi)−XλN

s (pj)) ·XλN

s (pj)

·ωj · χM(XλN

s (pj)).

and therefore are solution of (5.1.7). Uniqueness of the solution (5.1.7) then

proves the proposition. �

We are now in a position to prove the continuity properties of the map

T and the macroscopic limit theorem.

Let µ, ν ∈ M(Ω) and µ±α , ν
±
α denote the decomposition of µα, να respec-

tively into Jordan positive and negative parts.

For each α = 1, 2, 3, let P±α (db, dp) be joint representation of µ±α and ν±α .

By the definition of joint representation we have∫ ∫
P±α (db, dp)φ(b) =

∫
µ±α (db)φ(b),∫ ∫

P±α (db, dp)φ(p) =

∫
ν±α (dp)φ(p).

Let P denote the measure defined by

P (db, dp) =
3∑

α=1

(P+
α (db, dp) + P−α (db, dp)).
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Further let H(µ ν) be the set of positive measure P on Ω×Ω, constructed

as above.

We introduce the space Ω∞ =
∞∏
i=1

Ωi where Ωi = Ω. On each Ωi let Pi

denote the Wiener measure starting at the origin. We denote by P∞ =
∞∏
i=1

Pi

the product measure on Ω∞. We will now prove the following lemma.

Lemma 5.1.4 Assume that {xN
j }N

j=1 and
{
ωN

j

}N

j=1
are such that for each

continuous and bounded function f : R3 → R3, the following condition holds

true:

lim
N→∞

N∑
j=1

ωN
j · f(xN

j ) =

∫
ω0(x) · f(x)dx.

Let λ and λN be defined by equation (5.1.12)(5.1.15) and set

d(b, p) = sup
0≤t≤T

|b(t)− p(t)|.

Then

lim inf
N→∞

inf
P∈H(λ,λN )

∫
d(b, p)P (db, dp) = 0

with P∞ probability 1. Equivalently, λN converges weakly to λ.

Proof. Let {ω±α }3
α=1 be the Jordan decomposition of {ω0α}3

α=1 respectively.

Further let {ωN,±
j,α }

N,3
j=1,α=1 satisfy

N∑
j=1

ωN,±
j,α =‖ ω±α ‖1, ω

N,+
j,α − ωN,−

j,α = ωN
j,α.

Finally define the following measures on M(Ω):

λ±α (db) =

∫
ω±α (x)P̃x,α(db)
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λN,±
α (db) =

N∑
j=1

ωN,±
j,α δxN

j +
√

2bj
(db)

where P̃x,α, (α = 1, 2, 3) are components of P̃x(see 5.1.11).

From the law of large number we may see that λN,±
α (db) converges weakly

to λ±α (db) for P∞-almost all {bj}N
j=1. So for each ε, there are joint measures

PN,±
α ∈ H(λN,±

α , λ±α ) such that:

∫
PN,±

α (db, dp)d(b, p) < ε

So we get the result.

We now prove a continuity property for map T . Given µ, ν ∈ M(Ω),

define

ζt(b, p) = ‖xµ
t (b)− xν

t (p)‖+ ‖Xµ
t (b)−Xν

t (p)‖,

and, for P ∈ H(µ ν), define

y(t) =

∫
sup

0≤s≤t
ζs(b, p)P (db, dp).

Lemma 5.1.5 There is φ(M, ε) diverging as ε→ 0 such that for 0 ≤ t ≤ T ,

y(t) ≤ φ(M, ε)

∫
d(p, b)P (db, dp).

Proof. We first note ∇Kε(x) is bounded from (3.1.8). By Gronwall lemma

we have

‖Xµ
t ‖ ≤ exp

{
CMt

ε4
|µ|(1)

}
, t ≥ 0,

81



where for any continuous bounded real-valued function φ ,

|µ|(φ) =
∑

α

(µ+
α (φ) + µ−α (φ)).

We have

xµ
t (b)− xν

t (p) = b(t)− p(t) +

∫ t

0

ds{
∫
Kε(xµ

s (b)− xµ
s (e)) ·Xµ

s (e) · µ(de)

−
∫
Kε(xµ

s (b)− xν
s(e)) ·Xν

s (e) · ν(de)

+

∫
[Kε(xµ

s (b)− xν
s(e))−Kε(xν

s(p)− xν
s(e))]

·Xν
s (e) · ν(de)}.

(5.1.17)

Xµ
t (b)−Xν

t (p) =

∫ t

0

ds

∫
∇Kε(xµ

s (b)− xµ
s (e))

·Xµ
s (e) · µ(de) · {χM(Xµ

s (b))− χM(Xν
s (p))}

+

∫ t

0

ds{
∫
∇Kε(xµ

s (b)− xµ
s (e)) ·Xµ

s (e) · µ(de)

−
∫
∇Kε(xµ

s (b)− xν
s(e)) ·Xν

s (e) · ν(de)

+

∫
[∇Kε(xµ

s (b)− xν
s(e))−∇Kε(xν

s(p)− xν
s(e))]

·Xν
s (e) · ν(de)} · χM(Xν

s (p).

(5.1.18)

The difference of the first two integrals in the r.h.s (5.1.17) can be thought

as a sum of integrals w.r.t.{P±α }
3
α=1, joint representations of µ±α and ν±α .
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Therefore

‖xµ
t (b)− xν

t (p)‖ ≤ ‖b(t)− p(t)‖

+

∫ t

0

ds‖
∑

α

∫
(Kε(xµ

s (b)− xµ
s (e)) ·Xµ

s (e)

−Kε(xµ
s (b)− xν

s(e
′
)) ·Xν

s (e
′
))α(P+

α (de, de
′
)

−P−α (de, de
′
))‖

+

∫ t

0

ds

∫
‖Kε(xµ

s (b)− xν
s(e))

−Kε(xν
s(p)− xν

s(e))‖‖|Xν
s (e)‖‖ν‖(de)

≤ ‖|b(t)− p(t)‖+

∫ t

0

ds

∫
‖Kε(xµ

s (b)− xµ
s (e)) ·Xµ

s (e)

−Kε(xµ
s (b)− xν

s(e
′
)) ·Xν

s (e
′
)‖P (de, de

′
)

+ exp

{
CMt

ε4
|ν|(1)

}
cε‖|ν‖

∫ t

0

‖|xµ
s (b)− xν

s(p)‖|ds,

where Aα is αth row of matrix A. Analogously

‖Xµ
t (b)−Xν

t (p)‖ ≤
∫ t

0

ds sup
α

∫
‖∂αK

ε(xµ
s (b)− xµ

s (e))‖

‖Xµ
s (e)‖‖χM(Xµ

s (b))− χM(Xν
s (p))‖‖µ‖(de)

+M

∫ t

0

ds‖
∑

α

∫
(∇Kε(xµ

s (b)− xµ
s (e))

·Xµ
s (e)−∇Kε(xµ

s (b)− xν
s(e

′
)) ·Xν

s (e
′
))α

×(P+
α (de, de

′
)− P−α (de, de

′
))‖

+M

∫ t

0

ds sup
α

∫
‖∂αK

ε(xµ
s (b)− xν

s(e))

−∂αK
ε(xν

s(p)− xν
s(e))‖‖Xν

s (e)‖‖ν‖(de)

≤ exp

{
CMt

ε4
|ν|(1)

}
cε‖µ‖M

∫ t

0

(‖Xµ
s (b))− (Xν

s (p))‖

+‖xµ
s (b)− xν

s(p)‖)ds

+M

∫ t

0

ds sup
α

∫
‖∂αK

ε(xµ
s (b)− xµ

s (e)) ·Xµ
s (e)
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−∂αK
ε(xµ

s (b)− xν
s(e

′
)) ·Xν

s (e
′
)‖P (de, de

′
),

and

‖Kε(xµ
s (b)− xµ

s (e)) ·Xµ
s (e)−Kε(xµ

s (b)− xν
s(e

′
)) ·Xν

s (e
′
)‖

≤ ‖Kε(xµ
s (b)− xµ

s (e))‖‖Xµ
s (e)−Xν

s (e
′
)‖+ ‖Kε(xµ

s (b)− xµ
s (e))

−Kε(xµ
s (b)− xν

s(e
′
))‖‖Xν

s (e
′
)‖

≤ cε(‖Xµ
s (e)−Xν

s (e
′
)‖+ exp

{
CMt

ε4
|ν|(1)

}
‖xµ

s (e)− xν
s(e

′
)‖).

A similar bound holds for the integrand of the second term of (5.1.18). So

we have

ζt(b, p) ≤ ‖b(t)− p(t)‖+B

{∫ t

0

ζs(b, p)ds+

∫ t

0

ds

∫
ζs(e, e

′)P (de, de′)

}
,

for some constant B depending on ε,M, T, cε, ‖ν‖, ‖µ‖.

Hence for τ > t, we have

ζt(b, p) ≤ ‖b(t)− p(t)‖+B

{∫ t

0

ζs(b, p)ds+

∫ τ

0

y(s)ds

}
.

By Gronwall lemma:

ζt(b, p) ≤ eBT{d(b, p) +B

∫ τ

0

y(s)ds}. (5.1.19)

Taking the sup for t ≤ τ and integrating with respect to P (db, dp), one

obtains

y(τ) ≤ eBT{
∫
d(b, p)P (db, dp) +Bã

∫ τ

0

y(s)ds},

where ã depend on a±α .

Therefore another application of Gronwall lemma proves the result with

φ(M, ε) = exp{BTeBT}. �
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Proposition 5.1.6 With P∞ probability 1, when N is large enough, the sys-

tem of stochastic ordinary equations (3.5.19) describing the particles move-

ment have a unique solution.

Proof. Because of (5.1.3) we can choose M = Mε such that

‖∇φε
t‖∞ ≤ Mε

4
, t ≤ T.

By (5.1.19) at Lemma 5.1.5 we have

‖∇φε
t(b)−XλN

t (b)‖ ≤ ζt(b, b) ≤ C

∫ τ

0

y(s)ds

≤ φ(M, ε) inf
P∈H(λ,λN )

∫
P (db, dp)d(p, b)

→ 0 as N →∞.

Hence ‖XλN

t (b)‖ ≤ M
2

for N large enough and therefore χM(XλN

t )(b) =

XλN

t (b). So (xλN

t (bj), X
λN

t (bj)ωj) coincides with (xj(t), ωj(t)) for a.s. {bj}N
j=1.

This concludes the proof. �

Theorem 5.1.7 For every ε > 0 fixed, there holds ωN
t (dx) → ωε

t (dx) almost

surely as N →∞ .

Proof. For any f ∈ C2
b (R3, R3), from (5.1.12) and (5.1.15) we have:∫

f(x)ωN
t (dx) =

∫
f(x)(TλN)(t)dx =

∫
f(xλN

t (p)) ·XλN

t (p)λN(dp)

and:∫
f(x)ωε

t (dx) =

∫
f(x)(Tλ)(t)dx =

∫
f(xλ

t (p)) ·Xλ
t (p)λ(dp)
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Let P (de, dq) be a joint representation of λN(dp) and λ(dq). Then∣∣∫ f(x)ωN
t (dx)−

∫
f(x)ωε

t (dx)
∣∣

=
∣∣∣∫ f(xλN

t (p)) ·XλN

t (p)λN(dp)−
∫
f(xλ

t (p)) ·Xλ
t (p)λ(dp)

∣∣∣
≤
∫ ∥∥∥f(xλN

t (p)) ·XλN

t (p)− f(xλ
t (q)) ·Xλ

t (q)
∥∥∥P (de, dq)

≤
∫ ∥∥∥f(xλN

t (p))
∥∥∥∥∥∥XλN

t (p)−Xλ
t (q)

∥∥∥P (dp, dq)

+
∫ ∥∥∥f(xλN

t (p))− f(xλ
t (q))

∥∥∥∥∥Xλ
t (q)

∥∥P (de, dq)

≤ ‖f‖
∫ ∥∥∥XλN

t (p)−Xλ
t (q)

∥∥∥P (dp, dq)

+ ‖∇ · f‖
∫ ∥∥∥xλN

t (p)− xλ
t (q)

∥∥∥∥∥Xλ
t (q)

∥∥P (de, dq).

Actually, Xλ
t (q) is just ∇φε

t from (5.1.3) and it is bounded. Because of

lemmas (5.1.4) and (5.1.5) we may say that as N →∞, the right hand side

of the formula above will go to zero and this finishes our proof.

Next we use the result above to prove that, if instead of independent

Brownian motion, we use common Brownian sheet as noise, the solution of

the corresponding SPDEs still exists and is unique.

5.2 Particle System with Brownian Sheet as

noise term

For simplicity we just treat the diagonal matrix form for the correlation

function and the form is specified.
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Define the correlation function Γ̃δ : R6 7→ R+ in the following way:

Γ̃δ(r, p) =

[
1

(2π)
3
2 δ

3
2

exp (−|r − p|2

2δ
)

] 1
2

, r, p ∈ R3, (5.2.20)

If we fix r, Γ̃2
δ(r, p) is just joint density function of three R-valued inde-

pendent normal random variables. We have:∫
Γ̃2

δ(r, p)dp = 1. (5.2.21)

Set Γ̂δ(r, p) = Γ̃δ(r, p) · I, where I is unit matrix. Let wl, l = 1, 2, 3 be

independent Brownian sheets, and set w(r, t) = (w1(r, t), w2(r, t), w3(r, t))
>.

We define the following stochastic particles system for the 3-D vortex

form of NSE

Ri(t) = Ri(0) +
∫ t

0

∑N
j=0K

ε(Ri(s)−Rj(s))ωj(s)ds

+
√

2ν
∫ t

0

∫
Γ̂δ(Ri(s)− p)w(dp, ds),

dωi(t)
dt

= ωi(t) ·
∑N

j=0∇Kε(Ri(t)−Rj(t))ωj(t),

ωi(0) = ωi i = 1, 2, . . . , N.

(5.2.22)

We also define the following empirical signed vector measure-valued process

ωN
δ,ε(t)(dx) =

N∑
j=1

ωj(t) · δRj(t)(dx). (5.2.23)

For the 3D vortex form of NSE, we have to calculate ωi(t) but we cannot

guarantee there is non-explosion. As in the independent Brownian case at
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last section, we define the following modified particle system:

R̃i(t) = Ri(0) +
∫ t

0

∑N
j=0K

ε(R̃i(s)− R̃j(s))Yj(s)ωjds

+
√

2ν
∫ t

0

∫
Γ̂δ(Ri(s)− p)w(dp, ds),

dYi(t)
dt

=
[∑N

j=0∇Kε(R̃i(t)− R̃j(t))Yj(t)ωj

]
· χM(Yi(t)),

Yi(0) = I i = 1, 2, . . . , N,

(5.2.24)

where χM is the censoring map (5.1.8). Just like in the previous section, the

stochastic particle system (5.2.24) has a unique non explosive solution for all

positive times t.

Moreover, if we set M = ∞ and ωj(t) = Yj(t)ωj, then {R̃j(t), ωj(t)} is

the solution of (5.2.22).

It is easy to check the boundedness of Yi(t) over compact time sets.

Proposition 5.2.1 Given fixed T > 0 and M , Yi(t) are bounded for t ≤

T ,i = 1, 2, . . . N .

Proof. Since

Yi(t) = I +

∫ t

0

[
N∑

j=0

∇Kε(R̃i(s)− R̃j(s))Yj(s)ωj] · χM(Yi(s))ds.

As a result of boundness of ∇Kε:

‖Yi(t)‖ ≤Mcε4

∫ >

0

N∑
j=1

‖Yj(s)‖ds+ 1,

so by the Gronwall’s inequality, one finally obtains

‖Yi(t)‖ ≤ C ′ exp(M ′t) t ≥ 0.

C ′ and M ′ depend on T,M, ε.

88



Theorem 5.2.2 With probability 1, when N is large enough and δ is fixed,

the system of stochastic ordinary equations (5.2.22) describing the particles

movement have a unique solution.

Proof. From the proof of Proposition 5.1.6 we may choseM0, such that when

N is big enough, Yi(t), i = 1, 2, ...N, the solution of (5.1.7) is smaller than

M0. So the solution of (3.5.19) in which the stochastic terms are independent

Brownian motions is exist and unique.

Now we fix M0, we use the classic iteration method to get solution of

(5.2.24). Let Rn
i (t), i = 1, 2, ...N be the nth iteration value in the iteration

process, and set

βn
i (t) :=

∫ ∫ t

0

Γ̂δ(R
n
i (s)− p)w(dp, ds) i = 1, 2, ...N.

From the property of stochastic integral with respect to Brownian sheet,

βn
i (t) i = 1, 2, ...N are Brownian motions but not necessary independent.

For clarification we recall that Ω∞ =
∞∏
i=1

Ωi where Ωi = Ω. On each

Ωi we define Pi, the Wiener measure starting at the origin. We denote

P∞ =
∞∏
i=1

pi the product measure on Ω∞, and {bi(t)}∞i=1 are independent

Brownian motions on Ω∞ under P∞.

We have a fact that the support of {βn
i (t)}N

i=1 is same as support of

{bi(t)}N
i=1 . Because of that and from the proof of Proposition 5.1.6 we have:

when N is big enough, Rn+1
i (t) and Y n+1

i (t), i = 1, 2, ...N that satisfy the

following SDEs:
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Rn+1

i (t) = Ri(0) +
∫ t

0

∑N
j=0K

ε(Rn+1
i (s)−Rn+1

j (s))Y n+1
j (s)ωjds+

√
2νβn

i (t)

dY n+1
i (t)

dt
= [
∑N

j=0∇Kε(Rn+1
i (t)−Rn+1

j (t))Y n+1
j (t)ωj] • χM0(Y

n+1
i (t))

Yi(0) = I i = 1, 2, . . . , N.

are with P∞ probability 1 smaller than M0. So we may say that Rn+1
i (t)

and Y n+1
i (t) are the solution of the following SPDEs :

Rn+1
i (t) = Ri(0) +

∫ t

0

∑N
j=0K

ε(Rn+1
i (s)−Rn+1

j (s))Y n+1
j (s)ωjds

+
√

2ν
∫ ∫ t

0
Γ̂δ(R

n
i (s)− p)w(dp, ds)

dY n+1
i (t)

dt
= [
∑N

j=0∇Kε(Rn+1
i (t)−Rn+1

j (t))Y n+1
j (t)ωj] • Y n+1

i (t)

Yi(0) = I i = 1, 2, . . . , N.

And remember the fact that M0 does not depend on N and Y n+1
i (t) is

bounded uniformly when n > N.

Because of the boundedness of ∇Kε(x), Kε(x) and Γ̂δ(r) next we may

use the classic iteration method to prove Rn+1
i (t), Y n+1

i (t) are convergence

respectively as n→∞. The limits are the solution of (5.2.22).

5.2.1 Macroscopic limit

We fix ε and N . Let {Rε,δ,N(t)} be the R3N -valued solution of (5.2.22), which

start in the same initial position {Rε,δ,N(0)}, for any δ > 0.

Lemma 5.2.3 For every fixed choice of ε and N , {Rε,δ,N(t)}δ>0 is relatively

compact on C([0, T ∗],R3N).

90



Proof. Since Kε and Yi(t) are bounded and

E‖
∫ t

0

∫
Γ̂δ(R

i
ε,δ,N(s)− p)w(dp, ds)‖2 = 3t, (5.2.25)

we have

P{‖Ri
ε,δ,N(t)‖ > M ′} ≤

E‖Ri
ε,δ,N(t)‖2

M ′2 ≤ c(ε,N, t)

M ′2 .

For the modulus of continuity

E[‖Ri
ε,δ,N(t)‖2|Fs] ≤ 3N2(cε−4)2(t− s)2 + 3(t− s)

so it follows from Ethier and Kurtz [32, Theorem 3.8.6], that {Rε,δ,N}δ>0 is

relatively compact on C([0, T ∗],R3N). �

Lemma 5.2.4 Define the continuous square integrable martingales

M i
ε,δ,N =

∫ t

0

∫
Γ̂δ(R

i
ε,δ,N(s)− p)w(dp, ds).

Then Mε,δ,N = (M1
ε,δ,N ,M

2
ε,δ,N , . . . ,M

i
ε,δ,N) converges in law to βN on C([0, T ∗],R3N),

as δ → 0, where βN is a standard independent R3N -valued Brownian motion.

Proof. By Ethier and Kurtz [32, Theorem 7.14], we only need to show that

the mutual quadratic variation of Mε,δ,N : < M i,l
ε,δ,N ,M

j,k
ε,δ,N > tends to tδi,jδl,k

in probability, for any t ≥ 0, i, j = 1, 2, . . . , N and l, k = 1, 2, 3.

When i = j, k = l, the result follows from (5.2.25).

From Lemma 5.2.3, for any η > 0, there is compact setKη ∈ C([0, T ∗],R3N),

such that P{Rε,δ,N ∈ Kη} ≥ 1− η. For i, j ∈ {1, 2, . . . , N} and l, k = 1, 2, 3,

write the mapping

Gijlk =< M i,l
ε,δ,N ,M

j,k
ε,δ,N >: [0, 1]× C([0, T ∗],R3N) 7→ C([0, T ∗], R)
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in the following way:

Gijlk(δ, qN)(t) =


∫ t

0
gδ(q

i(s)− qj(s))ds δ > 0

tδijδlk δ = 0

where qN(t) ∈ R3N , t ≤ T ∗.

The Gijlk’s are continuous from [0, 1]×C([0, T ∗],R3N) into C([0, T ∗], R).

Since Kη ∈ C([0, T ∗],R3N) is compact, the restriction of Gijlk on [0, 1]×Kη

is uniformly continuous. In particular, for any ρ > 0, and i 6= j, l 6= k there

is an εijlk > 0, such that for all δ ≤ εijlk,

sup
qN (·)∈Kη

sup
0≤t≤T ∗

Cijlk(δ, qN(·))(t) ≤ ρ .

Hence for δ ≤ εijlk and i 6= j, l 6= k, P{ω :< M i,l
ε,δ,N ,M

j,k
ε,δ,N > (t) > ρ} ≤ η.

This completes the proof. �

Next we consider the particle system described in the last section. As we

proved in Proposition 5.1.5, when the number N of particles is large enough,

the solution of following SDEs is exist and unique almost surely:

ri(t) = ri(0) +
∫ t

0

∑N
j=0K

ε(ri(s)− rj(s))Xj(s)ωjds

+
√

2νβi(t)

dXi(t)
dt

=
[∑N

j=0∇Kε(ri(t)− rj(t))Xj(t)ωj

]
·Xi(t)

Xi(0) = I. i = 1, 2, . . . , N,

(5.2.26)

For qN(t) ∈ C([0, T ∗],R3N), define

F (qN)(t) = (F 1(qN)(t), F 2(qN)(t), . . . , FN(qN)(t))
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where 
F i(qN)(t) =

∑N
j=0K

ε(qi(t)− qj(t))Xj(t)ωj

dXi(t)
dt

=
[∑N

j=0∇Kε(qi(t)− qj(t))Xj(t)ωj

]
· (Xi(t)),

Xi(0) = I, i = 1, 2, . . . , N.

Define a continuous map Ψ : C([0, T ∗],R3N) 7→ C([0, T ∗],R3N) by

Ψ(qN)(t) =

∫ t

o

F (Ψ(qN)(s)ds+ qN(t).

For qN(t, ω) = Mδ,N(t, ω)+RN(0), Ψ is solution of (5.2.22). For qN(t, ω) =

βN(t, ω) + rN(0), Ψ is solution of (5.2.26).

So by continuous mapping theory we just proved the following result.

Theorem 5.2.5 Let ε be fixed and N big enough, If RN(0) = rN(0), then

R̃δ,N converges in law to r̃N = {r̃i(t)}N
i=0 on C([0, T ∗],R3N), as δ → 0.
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Conclusion

In this thesis we have studied collections of solutions to stochastic Navier-

Stokes equations under the following dichotomic lenses : the simple 2D vortic-

ity picture against the complex 3D one, classical solutions and their smoothed

counterparts, approximating particle systems and their macroscopic scaling

limits.

We reviewed the most important steps taken in the last thirty years in the

development of rigourous results, notably the introduction by Marchioro and

Pulvirenti [64] in 1982 of a particle system driven by independent Brownian

motions which yields the full 2D Navier-Stokes dynamics. We saw how Beale

and Majda ([4], [5], [6], [7]) generalized (in a highly non trivial way) the parti-

cle system in question and were able to analyzed the smoothed Navier-Stokes

vorticity equations in three dimensions. We also had to come to terms with

the fact that the major papers in the eighties on the 3D dynamics, notably

those of Esposito and Pulvirenti [31] and the series of papers by Kotelenez

([53], [54], [55]), while replete with interesting new ideas, unfortunately con-

tain major flaws and several incorrect statements.
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Our main contributions are : the clarification of what is true and what

is dubious in these important papers; the proof of the absence of collisions

amongst the particles of the finite systems that yield smoothed 3D deter-

ministic fluid flows in the macroscopic limit; the proof of said macroscopic

limit.

What is left to be done is of course to give a rigourous treatment of the so-

called theorems of Esposito and Pulvirenti [31] stated in section 3.5, as well

as their counterparts when the driving noises are changed from independent

Brownian motions to ones moving in a random medium. For the present, we

had to be content with a full analysis of the smoothed versions only.
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Appendix

This appendix contains the proofs of the more technical results of this thesis.

By organizing the material of this thesis in such a fashion, our hope is that

the reader will get a better overview of the subject at hand without getting

bogged down in small details that could hamper his understanding of the

connexions between the various results and contributions.

PROOF OF THEOREM (3.1.3).

Proof. First we calculate ω1.

Since ω1 = ∂u3

∂x2
− ∂u2

∂x3
, we apply operator ∂

∂x2
to both sides of the third

equation in (3.1.1) and ∂
∂x3

to both sides of the second equation. Then we

substract one from the other. For example, we give the calculation for each

term next:

− ∂
∂x3

(∂u2

∂t
) + ∂

∂x2
(∂u3

∂t
) = ∂

∂t
(∂u3

∂x2
− ∂u2

∂x3
) = ∂

∂t
ω1

∂
∂x3

[(u · ∇)u2] = (u · ∇)∂u2

∂x3
+ ∂

∂x3
[(u · ∇)]u2 = (u · ∇)∂u2

∂x3
+ ∂u

∂x3
· ∇u2

∂
∂x2

[(u · ∇)u3] = (u · ∇)∂u3

∂x2
+ ∂

∂x2
[(u · ∇)]u3 = (u · ∇)∂u3

∂x2
+ ∂u

∂x2
· ∇u3
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And:

∂u
∂x3

· ∇u2 = ∂u1

∂x3

∂u2

∂x1
+ ∂u2

∂x3

∂u2

∂x2
+ ∂u3

∂x3

∂u2

∂x3

∂u
∂x2

· ∇u3 = ∂u1

∂x2

∂u3

∂x1
+ ∂u2

∂x2

∂u3

∂x2
+ ∂u3

∂x2

∂u3

∂x3

So:

∂u
∂x2

· ∇u3 − ∂u
∂x3

· ∇u2

= ∂u1

∂x2

∂u3

∂x1
− ∂u1

∂x3

∂u2

∂x1
+ ∂u2

∂x2

∂u3

∂x2
− ∂u2

∂x3

∂u2

∂x2
+ ∂u3

∂x2

∂u3

∂x3
− ∂u3

∂x3

∂u2

∂x3

= ∂u1

∂x2

∂u3

∂x1
− ∂u1

∂x3

∂u2

∂x1
+ ∂u2

∂x2
(∂u3

∂x2
− ∂u2

∂x3
) + ∂u3

∂x3
(∂u3

∂x2
− ∂u2

∂x3
)

= ∂u1

∂x2

∂u3

∂x1
− ∂u1

∂x3

∂u2

∂x1
+ ω1(

∂u2

∂x2
+ ∂u3

∂x3
)

Since div u = 0, we have:

∂u
∂x2

· ∇u3 − ∂u
∂x3

· ∇u2

= ∂u1

∂x2

∂u3

∂x1
− ∂u1

∂x3

∂u2

∂x1
− ω1

∂u1

∂x1

= ∂u1

∂x2

∂u3

∂x1
− ∂u1

∂x2

∂u1

∂x3
+ ∂u1

∂x2

∂u1

∂x3
− ∂u1

∂x3

∂u2

∂x1
− ω1

∂u1

∂x1

= ∂u1

∂x2
(∂u3

∂x1
− ∂u1

∂x3
) + ∂u1

∂x3
(∂u1

∂x2
− ∂u2

∂x1
)− ω1

∂u1

∂x1

= −ω2
∂u1

∂x2
− ω3

∂u1

∂x3
− ω1

∂u1

∂x1

= −(ω · ∇)u1

or:

∂u
∂x2

· ∇u3 − ∂u
∂x3

· ∇u2
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= ∂u1

∂x2

∂u3

∂x1
− ∂u1

∂x3

∂u2

∂x1
− ω1

∂u1

∂x1

= ∂u1

∂x2

∂u3

∂x1
− ∂u3

∂x1

∂u2

∂x1
+ ∂u3

∂x1

∂u2

∂x1
− ∂u1

∂x3

∂u2

∂x1
− ω1

∂u1

∂x1

= ∂u3

∂x1
(∂u1

∂x2
− ∂u2

∂x1
) + ∂u2

∂x1
(∂u3

∂x1
− ∂u1

∂x3
)− ω1

∂u1

∂x1

= −ω3
∂u3

∂x1
− ω2

∂u2

∂x1
− ω1

∂u1

∂x1

= −(ω ∂u
∂x1

)

And:

(u · ∇)∂u3

∂x2
− (u · ∇)∂u2

∂x3
= (u · ∇)(∂u3

∂x2
− ∂u2

∂x3
) = (u · ∇)ω1

∂
∂x2

(4u3)− ∂
∂x3

(4u2) = 4(∂u3

∂x2
− ∂u2

∂x3
) = 4ω1

where we use curl (∇p) = 0. Finally we get the equation for ω1

∂ω1

∂t
+ (u · ∇)ω1 − ν 4 ω1 = (ω · ∇)u1 or ω · ∂u

∂x1

(5.2.27)

Following the process above while making the appropriate substitutions

yields the equations that ω2 and ω3 satisfy

∂ω2

∂t
+ (u · ∇)ω2 − ν 4 ω2 = (ω · ∇)u2 or ω · ∂u

∂x2

∂ω3

∂t
+ (u · ∇)ω3 − ν 4 ω3 = (ω · ∇)u3 or ω · ∂u

∂x3

and together all three equations can be written in the vector form given in

the statement of the theorem. �

PROOF OF THEOREM (3.1.4).
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Proof. We give the proof in the case of a smooth function but the definition

of the weak derivative allows the argument to go through without change.

The only additional verification in that case is the validity of the manipula-

tions in the proof of the previous theorem when all derivatives are interpreted

in the weak sense. Let φ := (φ1, φ2, φ3) ∈ C2
b (R3, R3) have finite support.

Multiply by φ1 and integrate over R3 on both side of (5.2.27) to get

∂
∂t
〈ω1, φ1〉+ 〈(u · ∇)ω1, φ1〉 − ν < 4ω1, φ1 >= 〈(ω · ∇)u1, φ1〉

and

〈(u · ∇)ω1, φ1〉 =
〈
u1

∂
∂x1
ω1, φ1

〉
+
〈
u2

∂
∂x2
ω1, φ1

〉
+
〈
u3

∂
∂x1
ω1, φ1

〉
= −(

〈
ω1,

∂(u1φ1)
∂x1

〉
+
〈
ω1,

∂(u2φ1)
∂x2

〉
+
〈
ω1,

∂(u3φ1)
∂x3

〉
)

= −(
〈
ω1, u1

∂φ1

∂x1
+ φ1

∂u1

∂x1

〉
+
〈
ω1, u2

∂φ1

∂x2
+ φ1

∂u2

∂x2

〉
+
〈
ω1, u3

∂φ1

∂x3
+ φ1

∂u3

∂x3

〉
)

= −〈ω1, u · ∇φ1 + φ1(divu)〉

= −〈ω1, u · ∇φ1〉

〈4ω1, φ1〉 = 〈ω1,4φ1〉

〈(ω · ∇)u1, φ1〉 =
〈
ω1

∂u1

∂x1
, φ1

〉
+
〈
ω2

∂u1

∂x2
, φ1

〉
+
〈
ω3

∂u1

∂x3
, φ1

〉
=
〈
u1,

∂(ω1φ1)
∂x1

〉
+
〈
u1,

∂(ω2φ1)
∂x2

〉
+
〈
u1,

∂(ω3φ1)
∂x3

〉
=
〈
u1,

∂ω1

∂x1
φ1 + ω1

∂φ1

∂x1

〉
+
〈
u1,

∂ω2

∂x2
φ1 + ω2

∂φ1

∂xx

〉
+
〈
u1,

∂ω3

∂x3
φ1 + ω3

∂φ1

∂x3

〉
= 〈u1, φ1(divω) + ω · ∇φ1〉

= 〈u1, ω · ∇φ1〉
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because of div ω = 0.

So we have:

∂

∂t
〈ω1, φ1〉 − 〈ω1, u · ∇φ1〉 − ν 〈ω1,4φ1〉 = 〈u1, ω · ∇φ1〉 (5.2.28)

and we also have similar equation for ω2 and ω3

∂

∂t
〈ω2, φ2〉 − 〈ω2, u · ∇φ2〉 − ν 〈ω2,4φ2〉 = 〈u2, ω · ∇φ2〉 (5.2.29)

∂

∂t
〈ω3, φ3〉 − 〈ω3, u · ∇φ3〉 − ν 〈ω3,4φ3〉 = 〈u3, ω · ∇φ3〉 (5.2.30)

Add (5.2.28), (5.2.29) and (5.2.30) to get the result. �
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