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Résumé 

Un CDO (Collateralized Debt Obligation) est la titrisation d’actifs financiers de 

nature diverse dans le but de créer un nouvel instrument structuré de dettes. Les 

CDOs ont été maintes fois blâmées pour les lourdes pertes dont ont souffert plusieurs 

institutions financières. Un grand nombre d’échange dans le marché de CDO a 

conduit à des pertes massives et ceci est dû principalement à la qualité inférieure des 

actifs sous-jacents. Cependant, même dans le cas de CDOs à collatéraux de qualité, 

plusieurs échanges ont mal tourné car la plupart des traders de CDO n’ont pas réussi à 

comprendre les risques associés à leurs positions d’échanges. C’est dans ce contexte 

que cette recherche tente d’éclaircir le comportement des tranches de CDO et les 

moyens optimaux de couvrir le risque des défauts.  

Tout d’abord, nous allons créer un cadre pour simuler les défauts. Ce cadre est basé 

sur les données disponibles du marché tel que le taux d’aléa, les corrélations des 

actifs ainsi que les volatilités. Les résultats seront utilisés dans de nombreux 

problèmes d’optimisation afin de trouver la stratégie optimale de couverture qui 

minimise une certaine mesure de risque. Les résultats de ces stratégies optimales 

seront analysés et comparés entre eux afin que le lecteur ait une meilleure 

compréhension de la dynamique des tranches de CDO ainsi que le coût et les 

bénéfices des stratégies de couverture.  

Nous allons ensuite exécuter la même procédure d’optimisation pour différents 

groupes de facteurs qui affectent les défauts de paiement ou la richesse d’un trader de 

CDO afin d’examiner la sensibilité des positions dans les CDO et les stratégies reliées 

à ces facteurs clés. Ces tests de sensibilité offriront un meilleur aperçu sur les risques 

présents dans un échange typique de CDO ainsi que les implications de changements 

de facteurs de marché sur ces échanges.  

Mots-

clefs: 

Collateralized Debt Obligation (CDO), CDO Synthétique, Couverture, 

Hedged Monte-Carlo, Corrélation des Défauts, Copule, Structural 

Variance Gamma, Couverture Optimale, Risque, Gestion de Risque 
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Abstract 

A Collateralized Debt Obligation (CDO) is the securitization of a pool of assets in 

order to create a new structured debt instrument. These complex products are at the 

heart of the ongoing financial crisis and have been widely blamed for the heavy losses 

that many of the biggest financial institutions have incurred. This has led to a 

dramatic decrease in the issuance of CDOs and many financial institutions are 

avoiding new positions in this market. A great number of CDO trades have resulted in 

heavy losses due to the inferior quality of their underlying assets, most notably 

subprime mortgages. Yet, even in the case of CDOs with quality collateral, many 

trades have gone wrong because most of the CDO traders have failed to fully 

appreciate the quite unique risks of their positions especially when confronted with 

correlated defaults. In this context, this work tries to shed some light on the behavior 

of CDO tranches and the optimal ways to hedge the defaults. 

First, we shall create a framework for simulating defaults based on the available 

market data such as hazard rates, asset correlations, and volatilities. These simulated 

results will be used in a number of optimization problems in order to find the optimal 

hedging strategy for minimizing a given measure of risk. The results of these optimal 

strategies will be analyzed and compared with each other to provide the reader with a 

better understanding of the dynamics of CDO tranches and the costs and benefits of 

related hedging strategies. 

Second, we will run the same optimization processes for different sets of factors that 

affect the defaults or the wealth of a CDO trader in order to examine the sensitivity of 

CDO positions and their related hedging strategies to these key factors. These 

sensitivity tests offer more insight about the risks present in a typical CDO trade and 

the implications of changes in market environment on these trades. 

Keywords: Collateralized Debt Obligation (CDO), Synthetic CDO, Hedging, 

Hedged Monte-Carlo, Default Correlation, Copula, Structural Variance 

Gamma, Optimal Hedging, Risk, Risk Management 
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1. Introduction 

In the past few years the credit market has witnessed the introduction of a vast array 

of new credit derivatives and an increase in the use of both new and more traditional 

derivatives by market participators. The size and sophistication of this market has 

grown enormously with notional growing from $1 to $20 trillion dollars from 2000 to 

2006 and derivatives varying from single name (CDS, CLN) to full blown portfolio 

based ones (CDO, CBO, FtD, Synthetic loss tranches). 

These derivatives were initially used for risk management purposes by bank loan 

managers but over the years they have also become extremely popular within the 

ranks of insurance companies, hedge funds, asset managers, etc. The main function of 

these derivatives is to isolate the credit risk from the financial instruments and thus 

allowing the managers to hedge the credit risk. However, the extensive use of these 

derivatives by speculators and arbitragers has outpaced industry’s understanding of 

these instruments and the associated risks. Unfortunately, the lack of a comprehensive 

and deep understanding of certain credit derivatives, notably the CDOs, is not a 

phenomenon limited to individual traders and small financial institutions. Recent 

events such as the Abacus CDO case and the ongoing financial crisis indicate that 

even among sizeable and sophisticated investment institutions and banks there are 

many who enter the credit derivatives’ market without a clear view of the associated 

risks. The scale and gravity of such risky practices further highlight the need to model 

the risks properly and understand the behavior of these instruments in the face of 

market volatility and correlated default arrivals. 

One of the most popular and widely used instruments in this market is the 

Collateralized Debt Obligation (CDO). We are particularly interested in CDOs and in 

ways hedging the default risk in these instruments because of their mportant role in 

the ongoing financial crisis and the controversy surrounding them. The CDO market 

witnessed an exponential growth in the past decade right until the arrival of the 

financial crisis where the market witnessed an abrupt collapse in issuance of CDOs 

(see figure 1.1). Many experts and agents in the market have blamed the extensive 
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and reckless use of these instruments as one of the most important contributing 

factors to the downturn of the credit markets and the ensuing financial crisis. In this 

context, it would be most appropriate to take a new look at the problem of correctly 

hedging the default risk in CDOs and to try to improve our understanding of these 

complicated instruments. 

 

  

Figure 1.1 CDO market 

 

A collateralized debt obligation (CDO) is a structured financial product which pools 

together assets from different sources as collateral or source of cash flows in order to 

issues new debt obligations with different risks and returns. This pooling of assets and 

creating liabilities based on them is done either for balance sheet purposes or 

arbitrage purposes. In balance sheet CDOs one is trying to remove certain assets from 

the balance sheet without losing the benefits of those assets. In arbitrage CDOs the 

creators believe that repackaging the assets into a CDO and tranching them will add 

value to the assets. Another major characteristic of CDOs is whether they are 

“Funded” or “Synthetic”. Synthetic CDOs, as opposed to funded CDOs, are not 

backed by any physical assets, but rather by synthetically created ones like CDSs or 

CDS indices. 
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Most of the CDOs follow a waterfall structure which means that the more senior 

tranches get paid first and then the subordinate tranches are paid. This means that the 

lower the tranche, the more the chance of default. This waterfall mechanism is 

illustrated in figure 1.2a where the more senior tranches are the safest and the lowest 

ones are the riskier ones. Figure 1.2b shows the structure of a synthetic CDO and how 

a Special Purpose Vehicle (SVP) is created to manage the CDO and its payments. 

 

  

(a)                                                                     (b) 

Figure 1.2. Waterfall and Synthetic CDOs (sources: www.vimeo.com and www.bionicturtle.com) 

 

Repackaging the assets and implementing the waterfall provisions results in a novel 

and complicated product which is difficult to price and the associated risks are hard to 

asses. This situation becomes even more complicated when the assets that form the 

collateral are from different sources and have different risks. The problem we attempt 

to tackle is to how to optimally hedge the default risk in the synthetic CDO contracts 

so that the agent (a CDO trader) who sells or purchases insurance for a CDO tranche 

could be able to make a fair bet on the price and minimize a given error measure in 

his hedging strategy which occurs due to jumps in credit spreads or defaults. In other 
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words, our problem is one of replicating/hedging in the face of defaults or jumps in 

the spread and assessing the costs and irreducible errors of such strategy. 

One challenge that makes hedging of the CDOs more difficult and interesting is the 

jump to default which follows a discrete distribution (i.e. Poisson distribution) as 

opposed to continuous distributions which are much easier to replicate. These sudden 

jumps may occur due to a change in the basic market variables which, especially in 

the case of more exotic pricing models, make the whole hedging process non-trivial 

and all these problems are compounded when the instrument references multiple 

issuers. 

While this hedging problem has been addressed to some extent in the past by some 

researchers, their approach has been one of quite simplistic constraints and has been 

generally silent on the challenges presented by defaults, jumps, or diffusion. Most of 

the researchers to this date have used a risk-neutral approach consisting of normal 

copulas. One attraction of the aforementioned method is the fact that results are not 

sensitive to the choice of risk measure. In contrast to that practice, we do not assume 

that perfect replication is feasible and instead set our goal on explicitly illustrating a 

specific static hedging scheme and the irreducible residuals risks associated with it. 

Our approach to this problem will be one of creating a zero P&L strategy while at the 

same time minimizing the hedging error measure. It should be noted that the choice 

of the hedging error measure has profound effects on our final results. While it would 

be interesting to try to find out the best and most appropriate choice of risk measure, 

this choice is still subject to the preference of the trader and what he deems to be the 

correct risk measure for his specific needs and therefore it is beyond the scope of this 

work. 

The two risk measures used in this wok are the standard deviation and the expected 

shortfall (ES) of final wealth. Standard deviation is chosen because it is the most 

widely used measure of risk by practitioners and ES is used because it is a coherent 

measure of risk and, as we will show, the behavior of a CDO tranche resembles a 
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digital (or a barrier) option and thus, using an incoherent measure of risk (like VaR) 

would give us misleading results. 

The two models used in this work to generate times to default are Reduced Form 

Poisson-Normal-Copula (PNC) and Structural Variance Gamma (SVG). In the PNC 

model we use a flat hazard rate based on Moody’s estimates of corporate bonds’ 

default rates. The parameters used in the SVG model are chosen in a way that the 

average number of defaults and the variance of pool loss are identical to those in the 

PNC model. We create a CDS index which resembles the North American investment 

grade CDS index by markit™ (CDX.NA.IG) referencing 125 corporate bonds. In our 

work these bonds are homogenous but using this methodology we can generate 

reliable results for any other pool of bonds as long as the right asset correlation and 

hazard rate are used. 

The hedging technique used in this work is based on the methods developed by many 

scholars who have studied the problem of hedging in discrete time and hedging 

discrete distributions, most notably Bouchaud and Potters and Bouchaud and Pochart. 

However, after implementation and extensive testing of the aforementioned method, 

we have concluded that this method suffers from systematic errors and a simpler one-

period method gives us better results. This method involves a simultaneous 

optimization process in which the average wealth is kept at zero while the expected 

shortfall or the variance of the portfolio is minimized. 

Using these tools, we create a portfolio consisting of a synthetic CDO tranche and the 

underlying bonds of the reference CDS index (i.e. CDX.NA.IG) and try to optimize 

our hedging strategy in a way that the average final wealth of the protection seller 

would be equal to zero while his measure of risk in minimized. The results that we 

have obtained in this work provide us with an insight to the costs and errors of static 

hedging of a synthetic CDO contract as well as the resulting carry of such hedging 

strategy. 
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Our results show that since the equity tranche is sensitive to the very first defaults and 

absorbs the full impact of such losses, hedging this tranche involves a large hedge 

notional. In contrast, the mezzanine and senior tranches require a much smaller hedge 

notional. Also, we show that since these CDO tranche trades follow a barrier type 

distribution, using variance as the measure of risk would generate results which 

diverge significantly from the results obtained using ES. This is especially visible in 

the case of equity tranche where there is a big no-default carry and variance penalizes 

these positive gains as well as the losses which occur due to defaults. We will see that 

the behavior of the more senior tranches resemble that of traditional bonds and thus, 

the two different hedge notional calculated under variance and ES start to converge in 

the more senior tranches. 
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2. Literature Review 

2.1 Hedging 

Hedging techniques have evolved greatly in the past few decades and now they 

include many different methods each developed for a specific purpose. These 

techniques serve as tools for market participants who want to protect themselves 

against a plethora of factors such as direction of the market, volatility, or default. In 

this section we review some of these methods and their usefulness. 

 

2.1.1 Black and Scholes 

Fischer Black and Myron Scholes published their now famous model in a 1973 paper 

called “The Pricing of Options and Corporate Liabilities” in which they develop the 

first closed-form solution for pricing European style options. In complete, frictionless 

capital markets with no transaction costs and where the underlying securities follow 

geometric Brownian motions, the Black-Scholes formula provides an elegant and 

tractable solution for pricing derivative securities. Apart from a pricing formula, the 

Black-Scholes model also provides for the straightforward calculation of the 

derivatives of the option price with regard to different factors like the underlying 

price and time to maturity. These derivatives (or Greeks) are the first and most 

important information that a market agent needs in order to hedge his position. In 

other words, one needs to know how the price of an option fluctuates with the 

underlying factors so that he can hedge the risk of a change in those factors.  

Unfortunately, actual financial markets are far more complex and empirical testing of 

the Black-Scholes model has highlighted its' many shortcomings. It is well 

documented (Fama, 1965, Mandelbrot, 1963, Schwert, 1989) that the observed 

properties of financial time series are not consistent with the underlying assumptions 

of the Black-Scholes framework. Time-varying volatility, the presence of higher-

order moments and serial correlation are now well established characteristics of asset 

returns. Moreover, liquidity constraints, market frictions, transaction costs and 
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discrete-time hedging lead to sub-optimal replication of the option's payoff function 

(Dufie and Huang, 1985, Huang, 1985). Furthermore, Boyle and Emanuel (1980), 

Gilster (1990), Mello and Neuhaus (1998) and Buraschi and Jackwerth (2001) 

demonstrate that unrealistic assumptions about continuous-time hedging can lead to 

large hedging errors and residual hedging risk.  

 

2.1.2 Monte-Carlo methods 

To this date Monte-Carlo simulations have been extensively used for pricing options 

and derivatives where the underlying asset follows non-Gaussian distributions or in 

more complex situations including where multiple factors dictate the price of the 

option, where the price is path-dependant, or where there are jumps and diffusions in 

the underlying factors. While even the simple Monte-Carlo simulations are 

theoretically capable of providing a reasonable approximation of the option price, the 

required computation (i.e. number of simulated trajectories) and the resulting variance 

are critical factors when one needs to price complex instruments. 

The work of Longstaff and Schwartz (2001) has tackled the problem of pricing an 

exotic option through Monte Carlo simulation. The key to their approach is the use of 

least squares to estimate the conditional expected payoff to the option holder from 

continuation. Using simulation for pricing exotic options has several advantages. For 

example, simulation can be easily applied to options whose value depend on multiple 

factors or to value derivatives with both path-dependant and American-exercise 

features. Simulation also allows state variables to follow general stochastic processes 

such as jump-diffusion, as in Merton (1976), non Markovian processes, as in Heath, 

Jarrow and Morton (1992), and even general semi-martingales, as in Harrison and 

Pliska (1981). 

However, this ‘risk-neutral Monte-Carlo’ (RNMC) method assumes that risk can be 

completely eliminated while in reality, except for very special cases, the risk in option 

trading cannot be eliminated. This has incited other researchers to search for similar 
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methods that also take account of the residual risk and its implications for a risk-

averse trader.  

 

2.1.2.1 Minimum variance hedging 

When using MC methods we can, and should, choose a risk measure in order to deal 

with the residual risk. The notion of risk reduction becomes even more critical when 

we acknowledge that perfect replication is not possible and thus “Risk-neutral Monte-

Carlo (RNMC)” is not relevant. The most widely used risk measure by the 

researchers, as well as traders, is the variance of wealth balance. Schweizer (1993) is 

a major contributor to the fundamentals of variance-optimal hedging in discrete time. 

In his work he uses an underlying asset with stochastic price behavior and a 

contingent claim on this asset and he hedges this contingent claim by holding a 

position in the underlying asset. He tries to minimize a quadratic error measure for 

this trading strategy and shows that in the framework of a bounded mean-variance 

tradeoff such optimal trading strategy does exist and can be implemented. This work 

plays an immensely important role in what other researchers have done for replicating 

CDOs and other exotic instruments. 

However, it should be noted that Schweizer (1993) uses a linear gain function for the 

hedging strategy and assumes frictionless trading in his work. These assumptions are 

far from realistic. Yet, showing the existence and structure of an optimal hedging 

strategy is the contribution of his work and this has had a crucial role in later works 

about replication of hedge funds and CDOs, especially in the work of V. Kapoor 

(2006) which will be our main focus in this work. 

 

2.1.2.2 Hedged Monte-Carlo  

Potters and Bouchaud (2001) have built on the work of Longstaf and Schwartz by 

introducing a hedged Monte-Carlo (HMC) approach which intends to minimize a 

given measure of risk (i.e. the variance of the wealth balance). It is interesting to see 
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that when the objective probabilities are log-normal and continuous time is taken, this 

method gives us exactly the same results as Black-Scholes model. 

This method has several advantages over RNMC including: 

• First and most important is considerable variance reduction. The standard 

deviation of HMC is typically five to ten times smaller than with RNMC, 

meaning that we can reduce the number of Monte-Carlo trajectories by up to a 

hundred times and still get the same precision. 

• “HMC provides numerical estimates of the price of the derivative and ALSO of 

the optimal hedge and the residual risk.” 

• This method does not rely on the notion of risk-neutral measures and thus can be 

used for any model of true dynamics of the underlying. 

• “HMC allows us to use purely historical data to price the derivatives and does not 

require modeling of the underlying asset fluctuations. 

 

The general nature of this approach allows it to be easily modified and extended to 

other risk measure such as expected shortfall, as in Pochart and Bouchaud (2003), and 

thus satisfying the needs of different trading strategies. 

Despite all the aforementioned advantages of HMC, we have concluded that this 

method suffers from systematic errors which are compounded as the frequency of 

rehedging is increased. In this method the option price and the hedge are 

approximated with a number of basis functions which inherently contain some errors. 

These errors are compounded as in the next instance of rehedging one uses the same 

approximated numbers to again approximate the new price and hedge. While these 

errors could be justifiable for pricing an overcomplicated path-dependant option, in 

the case of our CDO we do not need to estimate the price and the hedge before the 

maturity of our model and thus, we use a simpler and yet more efficient method. For 

details of HMC method and its implementation see appendix B. 
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2.3 Risk 

In this section we will discuss our choice of measure of risk and the implications of 

this choice on our results. After deciding what measure of risk is appropriate for the 

purpose of this work, we will also discuss the risk of hedging a digital option. This 

particular risk is relevant to our work because, as we will show, CDO tranches behave 

as barrier options and thus, the quite unique risk of hedging such options should be 

considered. 

 

2.3.1 Measures of Risk 

The structure of CDO is a barrier type derivative which results in jumps in the P&L 

distribution. In addition, if we assume a fixed or a number of discrete rates of 

recovery for the underlying bonds, the losses due to defaults will also have a discrete 

nature. As a result, perfect replication is not feasible in this kind of CDO trade and the 

commonly used mechanics of replication/hedging, which are based on continuous-

diffusion-process, will be misleading. The notion that we cannot introduce a perfect 

replication of a CDO tranche using the underlying bonds means that there is some 

risk which can only be reduced and not completely eliminated. This is in contrast to 

the models that assume a continuous distribution for the underlying asset, like the 

Black-Scholes model, where a perfect replication strategy does exist and can be 

implemented. 

In this context, our objective becomes one of minimizing the risk as much as we can. 

To this end we need to choose an appropriate measure of risk. The most commonly 

used measure of risk among the practitioners (and even academics) is variance and 

we shall use it as one of our measures of risk in this work. 

However, the fact that variance penalizes both profits and losses does not sound very 

appealing. In addition, variance fails to strongly penalize extreme losses. To address 

these concerns, one should turn to other measures of risk. VaR is another popular 

measure of risk which is also a requirement of Basel II accord. 
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Artzner et al. (1998) argues that a measure of risk can only be coherent if it satisfies 

the following criteria: Consider a set V of real-valued random variables. A function ρ: 

V → R is called a coherent risk measure if it is 

(i) Monotonous: X  V,  X ≥ Y    ρ(X) ≤ρ(Y), 

(ii) Sub-Additive: X, Y, X + Y  V    ρ(X + Y ) ≤ ρ(X) + ρ(Y ), 

(iii) Positively homogeneous: X  V, h > 0, hX  V    ρ(hX) = h ρ(X), and 

(iv) Translation invariant: X  V, a  R    ρ(X + a) = ρ(X) − a. 

 

In their work, they show that VaR is not coherent because it is not sub-additive. 

Acerbi et al (2001) introduced Expected Shortfall as a coherent measure of risk which 

does not suffer from the shortcomings of VaR. Furthermore, Crouchy et al. (2000) 

conduct a comparative analysis of measures of risk for credit risk models and show 

that for defaults, which follow a Poisson process, ES is the more appropriate measure 

of risk. 

It should be noted that when the profit-loss distribution is normal, VaR does not 

suffer from the problems pointed out by Artzner et al. (1997). First, under the 

normality assumption, VaR does not have the problem of tail risk. When the profit-

loss distribution is normal, expected shortfall and VaR are scalar multiples of each 

other, because they are scalar multiples of the standard deviation. Therefore, VaR 

provides the same information about the tail loss as does expected shortfall. 

 

2.4 Default Correlation 

Default correlation is one of the key characteristics in modeling the risk for a basket 

of corporate bonds. The complicated nature of these correlations is indeed what 

makes the modeling of CDOs a nontrivial problem. The main approach to tackling 

this problem in the past few years has been through use of copulas. In this section we 
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shall review the developments in this field and also the use of structural Variance 

Gamma as an alternative way of modeling correlated defaults. 

 

2.4.1 Copulas 

Application of copulas in modeling default correlation first appeared in the work of 

Li (1999). Before his work, default correlation was defined based on discrete events 

which dichotomize according to survival or non-survival at critical time such as one 

year.  

This discrete event approach, as used by Lucas (1995), is what we call the discrete 

default correlation. However, this approach has several disadvantages. First, default is 

a time dependant event and thus, default correlation is also time dependant. This 

means that as we increase the time horizon in which we observe defaults, the 

correlation increase too. Second, by studying only one single period of 1 year we 

waste important information. An example of this missed information would be the 

empirical results which suggest that default tendency of corporate bonds is linked to 

their age since issue. Third, in most cases we need the joint distribution of survival 

times for the next couple of years in order to estimate the value of a credit derivative. 

Fourth, default rates can be calculated as simple proportions only when there is no 

censoring of data in the one year period. 

Li (1999) introduces a random variable called “time-until-default” to denote the 

survival time of each defaultable entity of financial instrument. Then, he defines the 

default correlation of two entities as the correlation between their survival times. The 

marginal distribution of conditional survival times can be calculated using a credit 

curve. This credit curve is usually derived from the risky bond spread curve or asset 

swap spreads observed currently from the market. 

In this method, Li defines the time-until-default, T, for security A and F(t) as the 

distribution function of T. Then a survival function is defined as S(t) = 1-F(t). This 

survival function gives the probability that a security will attain age t. He also 
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introduces notations of conditional probability of default. That is, the probability that 

the security A will default within the next t years conditional on its survival for x 

years. 

Another equivalent function, which is most frequently used by the statisticians, is the 

hazard rate function which gives the instantaneous default probability for a security 

that has attained age x. This hazard function can be derived as the first derivative of 

the survival function which has a conditional probability density interpretation: “it 

gives the value of conditional probability density function of T at exact age x, given 

survival to that time.” 

Typically it is assumed that the hazard rate is a constant, h, which results in a density 

function that shows that survival time follows an exponential distribution with 

parameter h. 

Using hazard rate function has a number of advantages. First, it provides information 

about immediate default risk of each entity. Second, it makes it easier to compare a 

group of individuals. Third, models based on hazard rate function can be useful in 

complicated situation such as the cases where there is censoring. Fourth, the 

similarities between the hazard rate and the short rate mean that we can borrow the 

techniques which are already developed for modeling the short rate. 

Following this approach, one can define the default correlation of two different 

entities based on their survival times. Li (1999) calls this definition of default 

correlation as the survival time correlation. This correlation is much more general 

concept compared to the discrete default correlation based on one year period. If one 

has the joint distribution of the survival times of two different assets, he can also 

calculate the discrete default correlation. 

Li (1999) uses a copula approach to link the univariate marginals to their full 

multivariate distribution. One of the most widely used copulas in finance is the 

Gaussian copula which is used by Li (1999) because it is basically the same approach 
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that RiskMetrics uses. Li uses multivariate normal copulas with correlation factors 

that can be interpreted as the asset correlation between two the used in CreditMetrics.  

Using these tools one can simulate the default times following these steps: 

1. Calculate asset correlation based on historical data. 

2.  Simulate Y1,Y2,…,Yn from a multivariate normal distribution using the asset 

correlation matrix. 

3. Transform the equity returns to survival times.  

While this approach, consisting of Gaussian copulas, is the industry standard, many 

researchers have tried to introduce more sophisticated models that produce more 

realistic models of default correlation. Ddempster et al. (2007) use a minimum 

entropy copula approach in order to find the best copula fit for the market data. Their 

approach has the advantage of providing justification for the choice of copula, 

providing good fits to data, and performing well out-of-sample. However their 

method still assumes that the dependence structure remains static over time. Also, this 

method is a computationally intensive procedure. 

There are many other extensions to Gaussian copula model such as local correlations, 

stochastic correlation, and Levy processes. In addition, some dynamic models have 

been developed to address the realities of the market, such as stochastic intensity 

models and dynamic loss models. For the purpose of this work, we shall follow the 

more standard approach of Li (1999) to link marginal distribution of survival times to 

their multivariate distribution. 

 

2.4.2 Variance Gamma Process 

The risk neutral approach to valuing derivatives was first introduced by Black-

Scholes (1973) and it remains the standard paradigm in finance. However, this model 

in known have some biases such as volatility smile and skewness premia. The 

presence of a volatility smile suggests that the risk neutral density has a kurtosis 
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above that of a normal distribution. In addition, the existence of skewness premia 

further suggests that the left tail of the return distribution is fatter than the right tail. 

Madan et al. (1998) propose the use of a variance gamma (VG) process to model the 

returns of equities to address the abovementioned concerns. This model is a three 

parameter generalization of Brownian motion as a model for the dynamics of the 

logarithm of the stock price. The VG process is obtained by evaluating Brownian 

motion at a random time change given by a gamma process. The VG process has no 

continuous martingale component and, in contrast, it is a pure jump process. 

“The VG process X(t;σ,υ,θ) is defined in terms of the Brownian motion with drift 

b(t;θ, σ) and the gamma process with unit mean rate, γ (t;1, σ) as:” 

 

X(t;σ,υ,θ) = b(γ (t;1, σ);θ,υ) 

 

“The VG process has three parameters: (i) σ the volatility of the Brownian motion, 

(ii) υ the variance rate of the gamma time change and (iii) θ the drift in Brownian 

motion with drift.” The VG process has the advantage of providing us with two more 

dimensions of control on the distribution. The control over the skew is obtained via θ 

and υ controls the kurtosis. Madan et al. show in their work that this additional 

control on the distribution allows us to correct the biases of Black-Scholes model. 

We shall use this process as an alternative way of modeling the underlying asset 

fluctuations in our CDO trade. By combining the VG process with the structural 

default model of Merton, we will have a robust model for simulating time-to-default 

for every issuer in our reference pool without suffering from the biases of Black-

Scholes model. 
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2.5 Optimal Static Hedging of Defaults in CDOs 

V. Kapoor (2006) tackles the problem of static hedging of a CDO tranche position 

with a portfolio of bonds that constitute the CDO reference pool. The goal is to find 

the hedge ratio and tranche price that result in a fair bet on the average and minimize 

the hedging error measure. 

According to Kapoor, CDO trading offers some attractive features: 

• Chase opportunity sloshing across the capital structure 

• Evading credit spread delta radar and making carry 

• Tradeoff-hedge systematic and idiosyncratic spread convexity 

 

But this trade also has its own problems, namely: 1) The standard CDO model does 

not directly address the cost of hedging & 2) When attempting to replicate a CDO 

tranche by CDS we encounter some difficulties: 

• Jumps in spread and jump to default 

• Uncertain recovery 

• Random realized spread-spread correlation 

Kapoor uses the two different models to simulate time-until-default for the pool 

bonds: (i) Reduced form Poisson-Normal-Copula (PNC), and (ii) Structural Varian 

Gamma (SVG). In his work, the parameters of SVG are chosen in a way that the 

resulting average times to default and the variance of pool loss are identical to those 

of PNC. 

For calculating the fair price and the appropriate hedge, he uses the work of Bouchad 

and Potters (2001) and Bouchaud and Pochart (2003). This provides us with the 

needed tools to calculate the price and the hedge at the same time. However, his 

results, for the mezzanine and senior tranches, show jumps in the value of ES for 
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different hedge notional (figure 2.1). There is no justification for these jumps since in 

his model the hedging error has a continuous nature for all tranches.  

Nevertheless, his framework provides us with a satisfactory ensemble of tools for 

pricing CDO tranches and calculating the hedge notional. That is why we will follow 

his approach to hedging CDOs while trying to correct the presumed errors. 

 

 

     

Figure 2.1. Results obtained by V. Kappor 
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3. Model and Methodology 

Our model is based on the work of Kapoor (2006) where a CDO trader sells 

protection on a given tranche of a synthetic CDO and holds a basket of underlying 

bonds of the reference CDS index to hedge his position. The price (upfront/spread) 

and the hedge are chosen in a way that average final wealth of this trade is zero and a 

given risk measure (variance/ES) is minimized. 

To this end, we will have to design two main components in our model: (1) Default 

model and (2) Hedging Technique. The default model is of immense importance if we 

are to obtain realistic results. One of the huge challenges that one faces in modeling 

the defaults is the lack of adequate historical data. Defaults, by their nature, are 

relatively rare and finding a sizeable sample of defaults for similar enterprises is 

almost impossible and comparing defaulting firms in different sectors brings up the 

idiosyncratic characteristics of the sectors into calculation which further complicate 

the matters. The two default models that have been employed by Kapoor (2006) are 

the Reduced Form Poisson-Normal-Copula (PNC) and the Structural Variance 

Gamma (SVG). 

After having modeled the defaults using both aforementioned methods, we shall 

proceed to a simulation where we create different trajectories based on these default 

models and then we try to find an optimal strategy of hedging which minimizes the 

risk measure for the trader. Later it will be explained how this simulation can provide 

us not only with the fair price, but also with the optimal hedge en route to maturity. 

This method is in sharp contrast with the risk-neutral approach where it is assumed 

that perfect replication is possible and risk aversion does not change our hedging 

strategy. 

To simplify the notations in our CDO hedging/pricing problem, we use a framework 

of continuous premium payments and constant interest rates. This method will lead us 

through a static hedging process as opposed to dynamic hedging. This is a reasonable 

simplification because: “1) there has not been much work done on direct hedge 
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performance of CDO tranches and to tackle the dynamic hedging problem we should 

first understand the static hedging; 2) In the face of jumps of uncertain timing and 

magnitude, dynamic hedging is not even theoretically possible (perfect replication) so 

understanding residual hedging errors is essential as they will be used in dynamic 

hedging; 3) a dynamic analysis requires a coupled model of spreads and defaults 

which is beyond the scope of this work.” 

In this work we will study three tranches of a CDO: equity, mezzanine, and senior. 

The trading book that the CDO trader holds and the related cash flows are shown in 

figure 3.1 where solid lines represent the premium cash flow stream and dotted lines 

represent contingent cash flows. The trade shown in figure 3.1 depicts a spread delta-

neutral sell equity protection trade where the CDO trader sells protection on an equity 

tranche referencing a credit index, and purchases protection on the credit index to 

hedge away the spot spread delta. In this method the pool expected loss refers to the 

sum of the contingent legs of the CDS in the reference index. 

The CDO trader receives the premium cash flows from the equity tranche (consisting 

of a possible upfront and a stream of premiums) and pays any contingent claims due 

to default. He also shorts a portfolio of bonds, which the CDS index is referencing, 

and thus, he pays coupons of those bonds and receives money when any of those 

bonds defaults. 

We use a similar trading book for other tranches (mezzanine and senior), with the 

difference that for equity tranche the premiums consist of an initially unknown 

upfront (to be calculated) and a known fixed spread while mezzanine and senior 

tranches only pay the spread which we should calculate. 
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Figure 3.1. CDO trading book 

 

 

3.1 Change in Wealth of a CDO Trader 

In this section we will detail the structure of our CDO, the tranche specifications, and 

the portfolio of reference pool bonds.  ∑  

 

3.1.1 Reference Pool 

We will consider a pool of n bonds of notional ni (1 ≤ i ≤ n). “The total reference pool 

notional  ∑ . These reference bonds can default, and in the event of default 

recover a fraction Ri of notional. The pool loss process, pL(t), is a superposition of 

delta-functions centered at τi, the time to default of reference bond i, and with each 

default contributing a loss of (1-Ri)ni.” 
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The commutative pool loss (cpL) and recovered amount (cpR) are superposition of 

Heaviside functions corresponding to a time integral of the loss and recovery process: 

∑∑
== ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

≤

>
==−=

n

i
i

i

iiii

n

i
iii

tif

tif
ItIRntcpRtIRntcpL

11 1

0
);()();()1()(

τ

τ

 

 

3.1.2 Tranche 

The tranche specifications for our synthetic CDO are the lower strike (k1), upper 

strike (k2), upfront payment fraction (u) and running spread (s). The tranche notional 

as a function of time, tn = k1
*(t)- k2

*(t), where: 

 

];)],(,max[min[)(];)],(,min[max[)( 12
*
221

*
1 ktcpRNktkktcpLktk −==  

 

By defining our tranche in this way, we are creating the most common model of CDO 

structure where the tranche amortizes from the bottom to the top. “The standardized 

synthetic CDOs based on credit indexes follow the aforementioned amortization 

rule.” 

“The present value of the cash-flows for the tranche investor (i.e. the tranche default 

protection seller) consists of received upfront payments and tranche spread on 

outstanding tranche notional and outgoing default contingent payments.” The present 

value of these received premiums is 

∫ −+−
T

r detnskku
0

12 )()( ττ τ  

and the present value of contingent payments by the CDO trader is 
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This is the first part of our trading book and we will try to hedge it with a portfolio of 

reference pool bonds which make up the second part of our trading book. 

 

3.1.3 Portfolio of Reference Pool Bonds 

“We will attempt to hedge the default risk of a CDO tranche with a position in the 

reference bonds of notional hi, market price equal to fi×hi, and coupon ci. The change 

in wealth of this bond portfolio is given by”: 
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The position in the underlying bonds has a total net present value of 

[ ])( PortfolioBondPVfH i +−  

where H is the hedge notional. “The hedging could be done by a portfolio of CDS on 

the CDO reference issuers, as is customary with much synthetic CDO trading activity. 
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Hedging the default risks with a CDS is theoretically identical to hedging with a par 

bond under certain conditions.” 

By putting the components of our CDO trade together, the total change in wealth of 

the CDO trader will be 
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Equation (3.1) 

where u(k1-k2) is the upfront, s is the tranche spread, and H is the hedge notional. 

 

3.2 Optimal Static Hedging 

Now that the CDO structure and the resulting portfolio have been defined, we set our 

goal to find bond hedge notional (H) and tranche pricing (u and s) such that the 

change in wealth of the hedged portfolio is zero on the average and a certain hedging 

error measure Θ is as small as possible: 

tranchebond WWW Δ+Δ=Δ  

0=ΔW  

Minimize [Θ] 

 

3.2.1 Monte-Carlo simulation 

Our Monte Carlo method is based on the work of Pochart et Bouchaud (2003) but 

with some major modifications. As mentioned earlier, the HMC method used by 

Bouchaud et Potters (2001) and in the consequent work of Pochart et Bouchaud 

(2003) suffers from systematic errors. So, we use a simpler, one-period method which 

satisfies our needs and is more accurate. In this method we find the price (u or s) and 



30 

 

 

the hedge (H) in a way that the average wealth of the CDO trader on all trajectories is 

equal to zero while a given measure of risk is minimized. 

In doing so, we work backwards in time using the known factors at maturity time T 

(which are tranche payoffs, present value of bond portfolio, and contingent payments) 

to calculate the fair price and hedge at time 0. 

We have two main categories of tranches in our CDO: (i) Equity tranche which has a 

fixed spread and an unknown upfront, and (ii) Mezzanine and senior tranches which 

do not have any upfront but only an unknown spread. Thus, for each category we 

have a different minimization problem. In each of these two cases we have two 

unknown factors to calculate (u and H for equity tranche, and s and H for other 

tranches) and also two equation (average ΔW=0, and Θ minimized). 

In order to minimize the standard deviation, we use a simple OLS regression while 

for ES we use a numeric method. One such numeric method is the fmincon command 

in MATLAB which is useful for solving constrained nonlinear minimization 

problems. 

 

3.2.2 Minimizing Standard Deviation 

The first of the two measures of risk (Θ) which we want to minimize in this trade is 

standard deviation: 

( ) 2/12 ])[( WWEW Δ−Δ≡=Θ Δσ  

We will run a regression to minimize variance of wealth.  

(i) For the equity tranche we need to estimate the upfront u and the hedge notional H. 

So, since the average wealth is equal to zero, we rearrange the wealth equation (3.1) 

in the following way: 
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and estimate the following regression: 
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where β0 estimates u and β1 estimates H. 

 

(ii) For the mezzanine and senior tranches we need to estimate spread s and the hedge 

notional H. Again we rearrange the wealth equation (3.1) in the following way 
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and estimate the following regression: 
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where β0 estimates s and β1 estimates H. 

This simple and efficient regression will provide us with the best price and hedge that 

minimize the variance of our CDO trade. 

 

3.2.3 Minimizing Expected Shortfall 

The second measures of risk (Θ) which we want to minimize in this trade is expexted 

shortfall (ES): 
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We use the fmincon command in MATLAB to minimize this measure of risk while 

keeping the average wealth equal to zero. To this end, we need to express equation 

(3.1) in form of a number of matrices where the price and hedge are separated from 

the rest of equation in a single matrix. 

(i) For the equity tranche we define the following matrices for N trajectories: 
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Using these matrices we can calculate the vector of N final wealth as: 

BYAW +×=Δ  
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and 

)()( BYAESWES +×=Δ αα  

while the zero average wealth condition is satisfied by 

DYC =×  

Now, with the help of these matrices, we can use the fmincon command in MATLAB 

to solve our minimization problem on matrix Y. 

 

(ii) For the mezzanine and senior tranches we define the following matrices for N 

trajectories: 
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Using these matrices we can calculate the vector of N final wealth as: 

BYAW +×=Δ  

and 

)()( BYAESWES +×=Δ αα  

while the zero average wealth condition is satisfied by 

DYC =×  

Again, the fmincon command in MATLAB is used to solve our minimization problem 

on Y. 

 

3.3 Default Models 

The two default models used in this work are “Poisson-Normal-Copula” and 

“Structural Variance Gamma Process”. The final results will include calculated prices 

and hedges using both these methods. 

 

3.3.1 Poisson-Normal Copula 

One approach to modeling the defaults is a reduced form model of Poisson arrival of 

defaults with Normal Copula based dependence. This reduced form Poisson-Normal-

Copula (PNC) method sets up a mark-to-model dynamic and takes hold in the 

accounting of synthetic CDO trading P&L. This approach uses the historic defaults 

and correlations between different tranches and assets. In this work we will use a flat 

default hazard rate and a uniform asset correlation. Time to default is simulated using 
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a latent variable single factor approach with both market and idiosyncratic drivers of 

randomness taking place via standard Normal independent random variates. 

The PNC parameters (hazard rate and asset correlation) used in this work are those 

used by Vivek Kapoor (2006) and Li (1999) which are calculated using Moody’s 

estimates for corporate bond defaults. 

In this method, Li defines the time-until-default, T, and F(t) the distribution function 

of T, as 

0),Pr()( ≥≤= ttTtF  

and the survival time function is defined as 

0),Pr()(1)( ≥>=−= ttTtFtS  

This survival function gives the probability that a security will attain age t. 

The probability density function is defined as follows 
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Li (1999) also introduces two more notations 
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where tqx can be interpreted as the conditional probability that the security will default 

within the next t years conditional on its survival for x years. In the special case of 

x=0, we have 

0)(0 ≥= xtSpt  

We can use the distribution function F(t) or the survival function S(t) to specify the 

distribution of random variable time-until-default. Another equivalent function, which 

is most frequently used by the statisticians, is the hazard rate function which gives the 

instantaneous default probability for a security that has attained age x. 
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This leads us to the following hazard rate function 
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Which has a conditional probability density interpretation: “it gives the value of 

conditional probability density function of T at exact age x, given survival to that 

time.” 

Using the aforementioned derivation of hazard rate, the survival function can be 

expressed in terms of the hazard rate function, 
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Consequently, tqx and tpx can be expressed in terms of the hazard rate function as 

follows 
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In addition, 
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which is the density function for T. 

Typically it is assumed that the hazard rate is a constant, h, which gives the density 

function 
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This shows that survival time follows an exponential distribution with parameter h. 

Thus, the survival probability over any time interval with the length t is 

ht
t ep −=  

Now, we can define the default correlation of two entities A and B based on their 

survival times TA and TB as follows 

)()(
)()()(

)()(
),(

BA

BABA

BA

BA
AB TVarTVar

TETETTE
TVarTVar

TTCov −
==ρ  

This is the survival time correlation as defined by Li (1999) and he uses a Gaussian 

copula to link the univariate marginals to their full multivariate distribution. A 

bivariate normal copula is defined as 

11),),(),((),( 11
2 ≤≤−ΦΦΦ= −− ρρvuvuC  

where Φ2 is the bivariate normal distribution function with correlation coefficient ρ 

and Φ-1 is the inverse of a univariate normal distribution function. In this method, Li 

uses a ρ which can be interpreted as the asset correlation between two credits used in 

CreditMetrics.  

 

Using these tools and in order to generate default times using PNC, we simulate a 

pool of 125 bonds which follow a multivariate normal distribution with asset 

correlation equal to 25%. Then we use the probability integral transform to create 

variables with uniform distributions. In the end, we calculate time-to-default for each 

issue using 

))((1
iii YFT Φ= −

 

where  
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3.3.2 Structural Variance Gamma 

Merton (1976) has introduced the structural default model which is the second 

method that we use. This model states that whenever the value of a given firm goes 

below a certain level the firm, and the bonds it has issued, default. This approach has 

the potential to integrate spread evolutions and default modeling. Furthermore, we 

can integrate credit and equity modeling in this approach and gain a quite 

comprehensive accounting of explicative factors. 

The proposed structural model here is one with Variance Gamma (VG) firm value 

drivers. Several researchers have worked on the structural Variance Gamma 

applications in CDOs and have developed a risk-neutral description of marginal 

defaults and fitting VG dependence parameters to observed tranche prices. Cariboni 

& Schoutens (2004), Luciano & Schoutens (2005), and Moosbrucker (2006) are some 

examples of using VG processes to this end. This approach is an attractive alternative 

to the base correlation approach of fitting prices and marking to market non-

standardized tranches. 

In order to make comparison easier, we have fitted the parameters of our SVG 

approach in a way that they replicate two key characteristics of defaults under the 

PNC model: (i) the average number of defaults during the tenor of our CDO, and (ii) 

the variance of cumulative pool loss. 

The details of SVG process and its implementation can be found in appendix C.  
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4. Results 

The CDO that we use in this study is loosely based on the CDX.NA.IG index 

tranches by markit™. This CDS index references 125 North American investment 

grade bonds and the first 3 breakpoints for its CDO tranches are 3%, 7%, and 10%. 

Our main default model is Poisson-Normal Copula and the parameters for the 

Variance Gamma Process are chosen to fit the first two moments of PNC model. 

First, we find the optimal hedge for the same set of PNC parameters used by Li 

(1999) and analyze the results and risks. Then, we proceed to perform a number of 

sensitivity tests by changing some of these parameters. 

Model Parameters 

Tenor T = 5 yrs 

Interest rate r = 5%/yr 

 

Pool Information  
Number of issuers n = 125 
Reference notional ni = $0.8m ∀i 
Total pool notional N = $100m 
Bond coupon ci = 5.78%/yr ∀i 
Bond unit price fi = 1 ∀i 
Recovery rate Ri = 0.3 

 

Reduced form Poisson-Normal Copula (PNC) 
Hazard rate λi = 0.65%/yr ∀i
Asset correlation 25% 

 

Structural Variance Gamma (SVG) 
GBM drift μi = 0 (1/yr) ∀i 
GBM volatility σi = 0.20 (1/yr½)  ∀i 
Gamma volatility υ = 2 yr 
Default threshold ϖ = 0.3618 
GBM dependence parameter β = 0.454 
Gamma dependence parameter κ = 1 
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Tranche Information 
Name k1 k2 upfront Fixed running (bps/yr) 
Equity 0% 3% yes 500 
Mezzanine 3% 7% no   - 
Senior 7% 10% no   - 
 

The aforementioned PNC and SVG set of parameters results in similar default 

distributions which are shown in figure 4.1. In both models around 30% of the 

trajectories are no-default cases with the SVG model having a slightly higher no-

default percentage. Despite the differences in skewness and kurtosis, both models 

have the same average number of defaults and variance. 

 

 

Figure 4.1. Number of defaults (portfolio of 125 bonds, 100,000 trajectories) 

 

4.1 Selling Equity Tranche Protection 

All of the distributions presented in this analysis have a zero average change in 

wealth. Figure 4.2 shows two risk measures (ES80 and STD) for different 

combinations of hedge notional and prices as well as a cross section (the red flat 

surface) which represents the combinations that result in a zero average wealth. 
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Figure 4.2. Selling equity (0%‐3%) tranche protection: Risk measures for diffrernet price and hedge 
combinations (PNC model) 

 

Figure 4.3 shows the sell equity tranche protection P&L distributions for four 

different hedge notional ranging from zero to extremely high hedge notional (50x). 

The ES80 optimal and STD optimal hedges are within this range. The spikes seen in 

the P&L probability distributions are associated with the no-default carry. As we can 

see in Figure 3, the zero hedging strategy has a very high positive no-default carry 

(+45%) but after only 3 defaults in the portfolio, the P&L becomes negative and the 

extreme losses reach the very negative ends of the distribution (-80%). In this zero 

hedging strategy, the break-even upfront only compensates for the difference between 

received spreads and contingent payments due to default so that the average change in 

wealth is kept at zero. 

Increasing the hedge notional will introduce the cost of hedging to our portfolio. This 

cost is the average total net present value of the underlying unit bonds times the 

hedge notional (H×ΔWBonds). Figure 4.4b shows that as the hedge notional increases, 

one would need a higher upfront to break-even this cost. Also, it can be seen in Figure 

4.3 that as the hedge notional increases from zero to optimal hedge levels and beyond, 

this cost pushes the no-default spikes to the left. This inverse relationship between 

hedge notional and no-default carry is depicted in Figure 4.4c, where the no default 
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carry starts from more than 15%/yr for zero hedge, reaching 0% at about 25x hedge 

notional, and keeps on decreasing for higher hedge notional. 

 

  

Figure 4.3. Selling equity (0%‐3%) tranche protection: P&L distribution (PNC model, bin size = 1% 
tranche notional) 

 

In fact, by including a hedging position on the underlying bonds in our portfolio, the 

effects of defaults on the P&L distribution are partially reversed and defaults become 

profitable. The magnitude of this reversal is directly controlled by the hedge notional. 

If we chose a hedge notional equal to the total pool notional ($100M, or 33.3x tranche 

notional), these effects are completely reversed. However, as mentioned before, any 

increase in the hedge notional will also increase the cost of hedging and will push the 

no-default carry to the left. This can be seen in Figure 4.3 where for the zero hedge 

strategy all of the P&L distribution is at the left side of no-default carry while for the 

50x hedge the situation is completely reversed. 
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(a)                                                                          (b) 

 

                  

(c) 

Figure 4.4. Selling equity (0%‐3%) tranche protection (solid lines: PNC, dashed lines: SVG) 

 

Figure 4.4a depicts hedging errors as a function of hedge notional and as we can see, 

STD minimization results in a lower hedge notional (22x) as compared to ES 

minimization (35x) because variance penalizes both gains and losses while expected 

shortfall only penalizes the worst α percent losses. Between 22x and 35x hedges, the 

variance is increasing while expected shortfall (for both 80% and 95% confidence 
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levels) is still decreasing. This is the grey zone where our choice of risk measure 

makes a difference. 

The tail losses in both ES optimal and STD optimal hedges are significantly less than 

the zero hedge and 50x hedge strategies. The STD optimal hedge has a positive no-

default carry while ES80 optimal hedge results in a negative no-default carry. Table 

4.1 shows the calculated upfront, hedge notional and hedging errors (STD, ES80, and 

ES95) for each hedging strategy. 

 

Model  Strategy  std  ES80  ES95  upfront  Hedge (×tranche)

PNC 

Min std  12.9%  19.3%  26.4%  62.0%  21.8 
Min ES80  27.0%  14.8%  16.7%  83.7%  34.6 
Min ES95  29.6%  15.1%  16.1%  86.5%  36.2 
50x  53.9%  37.7%  37.7%  110.0%  50.0 

0x  42.4%  63.4%  70.9%  24.9%  0.0 

VG 

Min std  22.7%  30.5%  38.1%  36.4%  11.7 
Min ES80  43.2%  23.7%  29.3%  59.3%  26.3 
Min ES95  62.1%  24.9%  26.2%  72.3%  34.7 
50x  98.9%  51.5%  54.9%  96.3%  50.0 

0x  37.0%  52.8%  60.0%  18.2%  0.0 
 

Table 4.1. Selling equity (0%‐3%) tranche protection: Upfront, hedge, and error measures for 
different strategies (all numbers in %tranche unless specified) 

 

The ES80 optimal strategy concentrates all the trajectories with 0 to 6 defaults in the -

20% to 0% P&L range and the trajectories with more than 6 defaults will result in a 

positive carry. For the STD optimal hedge the situation is similar except that the no-

default carry is positive and with 1 or 2 defaults the P&L becomes negative. This kind 

of “nth to default” analysis may appear attractive for those interested in the CDO trade 

and the relevant risks. However, this kind of analysis only works when defaults arrive 

one by one rather than in batches of simultaneous defaults. 



45 

 

 

More precisely, when defaults arrive one by one, after a certain number of defaults 

the tranche has defaulted completely, all of the contingent payments are paid, and our 

hedging position is liquidated and thus, susequent defaults do not affect our P&L. In 

contrast, if the number of defaults that arrive simultaneously is bigger than what is 

needed to default the whole tranche, they may result in a positive carry since we make 

money out of those extra defaults. For example, in the equity tranche, the ES80 

optimal hedge strategy needs more than 6 defaults to show a positive carry but if 

these defaults arrive one by one, we will liquidate the position after the tranche has 

defaulted (6th default) and no more money can be made out of the defaults that arrive 

after this point. In the same tranche if we have 10 simultaneous defaults, 6 of them 

will cause the whole tranche to default and the other 4 will only increase portfolio’s 

profit since there are no more contingent payments to be made. If we refuse to 

liquidate our hedging position after all the contingent payments are made, the optimal 

price will be usually lower than the liquidation strategy but at higher hedging errors. 

All the results presented here follow the liquidation strategy but a comparison of 

results with the no-liquidation strategy can be found in appendix D. 

In short, with this set of parameters, in the extreme case of zero hedging strategy, the 

break-even upfront is low, the no-default carry is high and both risk measures are 

high. On the other extreme, when we use an extremely high hedge notional (50x), the 

break-even upfront is high, no-default carry is low, and both risk measures are again 

high. The optimal hedge notional, measured either by ES or STD, falls somewhere 

between these two extremes and is determined by the choice of risk measure. 

 

4.2 Selling Mezzanine Tranche Protection 

In studying the mezzanine tranche we can see that the risk measures, plotted as 

functions of price and hedge notional, show less convexity as compared to the equity 

tranche (Figure 4.5). In this tranche, unlike the equity tranche, both ES and STD 

optimal hedges result in negative no-default carries (Figure 4.6). In the mezzanine 
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tranche the first few defaults, which make up the majority of cases, are absorbed by 

the subordinate tranche (equity) and thus, the no-default spike in the zero hedging 

strategy is much bigger. This relative resilience against defaults means that 

minimizing ES at low confidence levels may involve little or no hedging at all. This 

behavior becomes even more apparent as we move on to more senior tranches. In this 

tranche the price and hedge for ES optimal and STD optimal strategies are very close 

(table 4.2) while, similar to the equity tranche, the STD optimal strategy still results 

in a slightly lower price and hedge than the ES optimal strategy (Figure 4.7a). 

 

  

Figure 4.5. Selling mezzanine (3%‐7%) tranche protection: Risk measures for diffrernet price and 
hedge combinations (PNC model) 

 

Figure 4.7a also shows that if a zero hedging strategy is adopted, the difference 

between ES80 and ES95 risk measures is huge, while in the equity tranche this 

difference was relatively small. Again, this is due to the fact that some of the defaults 

are absorbed by the subordinate tranche and thus, the percentage of no-default cases 

in the mezzanine tranche is much higher than in the equity tranche; the no-default 

trajectories make up about 27% of all trajectories in the equity tranche while this 

number for the mezzanine tranche is about 80%. 
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Figure 4.6. Selling mezzanine (3%‐7%) tranche protection: P&L distribution (PNC model, bin size = 
1% tranche notional) 

 

Model  Strategy  STD  ES80  ES95  spread  Hedge (×tranche)

PNC 

Min STD  11.4%  13.6%  20.3%  7.25%  12.4 
Min ES80  11.6%  12.2%  15.3%  7.78%  13.4 
Min ES95  12.0%  12.8%  13.4%  8.09%  14.2 
20x  19.6%  23.0%  23.0%  10.19%  20.0 

0x  28.7%  50.1%  87.2%  2.91%  0.0 

VG 

Min STD  12.2%  15.3%  30.3%  6.01%  9.2 
Min ES80  14.3%  11.9%  18.0%  7.15%  12.2 
Min ES95  16.8%  13.0%  13.9%  7.72%  13.8 
20x  29.9%  24.1%  24.1%  9.94%  20.0 

0x  26.5%  47.7%  75.5%  2.81%  0.0 
 
Table 4.2. Selling mezzanine (3%‐7%) tranche protection: Spread, hedge, and error measures for 

different strategies (all numbers in %tranche unless specified) 

 

Similar to the equity tranche, the higher the hedge notional, the higher the break-even 

price of the tranche (in this case the spread) (Figure 4.7b) and the lower the no-default 

carry (Figure 4.7c). Also like the equity tranche, increasing the price (spread) has a 

linear shifting effect on the position of the P&L distribution while changing the hedge 

deforms the distribution; as the hedge increases, the left tail of the zero hedge 
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distribution first approaches to the no-default carry and then it expands to the right 

side of the no-default carry. 

  

(a)                                                                        (b) 

 

 

                                                   (c) 

Figure 4.7. Selling mezzanine (3%‐7%) tranche protection (solid lines: PNC, dashed lines: SVG) 

 

In the zero hedging strategy, a minimum of 6 defaults are required to obtain a 

negative carry. Again, the optimal strategies reverse the zero hedge tail losses and 

concentrate them in the center of the distribution and in the positive region. Both ES80 
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optimal and STD optimal strategies have a negative carry for 0 and 1 default while 2 

defaults or more result in a positive carry.  

 

4.3 Selling Senior Tranche Protection 

The behavior of the senior tranche is very similar to the mezzanine tranche in the 

sense that it is quite resilient to defaults and the risk measures show less convexity 

with regard to price and hedge (Figure 4.8). Again, both ES optimal and STD optimal 

hedging strategies result in negative no-default carries (Figure 4.9). 

 

  

Figure 4.8. Selling senior (7%‐10%) tranche protection: Risk measures for diffrernet price and hedge 
combinations (PNC model) 

 

The senior tranche’s resilience against defaults is even greater than the mezzanine 

tranche; about 93% of the trajectories result in a default-free senior tranche. It takes at 

least 13 defaults in the reference pool for the senior tranche to show a negative carry. 
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Figure 4.9. Selling senior (7%‐10%) tranche protection: P&L distribution (PNC model, bin size = 1% 
tranche notional) 

 

Model  Strategy  std  ES80  ES95  spread  Hedge (×tranche)

PNC 

Min std  11.7%  13.7%  34.1%  2.74%  5.6 
Min ES80  13.3%  12.5%  16.9%  3.71%  8.1 
Min ES95  14.5%  12.9%  13.0%  4.02%  9.0 
20x  37.6%  34.1%  34.1%  7.68%  20.0 

0x  18.2%  18.2%  76.3%  1.03%  0.0 

VG 

Min std  10.7%  11.9%  31.0%  2.80%  5.3 
Min ES80  11.6%  11.2%  19.6%  3.44%  6.9 
Min ES95  14.8%  12.6%  13.1%  4.18%  9.1 
20x  40.4%  32.9%  32.9%  7.95%  20.0 

0x  17.6%  18.4%  73.4%  1.04%  0.0 
 

Table 4.3. Selling senior (7%‐10%) tranche protection: Spread, hedge, and error measures for 
different strategies (all numbers in %tranche unless specified) 

 

In Figure 4.10a we can see a continuation of the trend that we witnessed in the 

mezzanine tranche with regard to big differences between ES80 and ES95 for the zero 

hedging strategy. Obviously, since the senior tranche experiences even fewer defaults 

than the mezzanine tranche, this difference in expected shortfalls is also greater. We 

can see that in the senior tranche, hedging the tail losses at high levels of confidence 
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is much more efficient than in the equity tranche. That is, in the equity tranche by 

increasing the hedge notional from zero to $100M (33x tranche) the ES80 decrease 

from 70% to 16%, whereas in the senior tranche we need only a $24M hedge notional 

(8x tranche) to decrease ES80 from 76% to 17%. This increase in hedging efficiency 

is a continuous trend as we move from subordinate tranches to the more senior ones. 

 

  

(a)                                                                       (b) 

 

                                                  (c) 

Figure 4.10. Selling senior (7%‐10%) tranche protection (solid lines: PNC, dashed lines: SVG) 
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Increasing the hedge notional in the senior tranche has the same effects as for the 

equity and mezzanine tranches; as we increase the hedge notional the break-even 

spread increases and the no-default carry decreases (Figure 4.10b ad 4.10c).  

 

4.4 Sensitivity Tests 

Until now we have calculated the optimal price and hedge for each tranche given the 

parameters presented at the beginning of this section. We have also studied how 

increasing the hedge notional would affect different aspects of our trade including the 

no-default carry, tail losses, and STD. Now we are interested in examining how 

sensitive these results are with regard to changes in these key parameters. 

 

4.4.1. Sensitivity to Hazard Rate and Asset Correlation 

As we discussed earlier, asset correlations and the hazard rates control the distribution 

of defaults in the PNC model. Hazard rate dictates the average number of defaults 

while asset correlation only affects their standard deviation. Figure 4.11 shows how 

different asset correlations change the shape of defaults distribution. 

When the asset correlation is zero we expect the default arrivals to be independent 

from one another and indeed this is the case as we can see in figure 4.11a where the 

defaults have an almost normal distribution and in more than 99% of the trajectories 

there are less than 10 defaults. As we increase the asset correlation to 50% (figure 

4.11b), we see a very different picture: variance, skewness, and kurtosis increase 

dramatically and we start to see some cases with big numbers of defaults. At an asset 

correlation equal to 100% (figure 4.11c), the default distribution becomes a binary 

case where either there is no default or all of the bonds default. In short, increasing 

the asset correlation reduces the number of defaults around the center of distribution 

and pushes the defaults towards the tails of distribution (zero defaults or 125 

defaults). 
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(a)                                                                 (b) 

 

(c) 

Figure 4.11. Distribution of number of defaults for different asset correlations (hazard rate = 
0.65%/yr) 

 

At low hazard rates most of the trajectories are default free or have few defaults 

(figure 4.12a). This concentration of defaults at the very left side of the distribution 

translates into low standard deviations. As we increase the hazard rate to 2%/yr, the 

no-default cases diminish and we witness more cases with big numbers of defaults 

(figure 4.12b). At this rate the distribution is becoming more and more flat since there 

is a decrease in concentration of defaults at the left side. This means that in addition 

to an increase in number of defaults, increasing the hazard rate would also result in 
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higher standard deviations. However, this is not a monotonic trend as at very high 

hazard rates we expect to see a reduction in standard deviation since the situation has 

reversed with regard to concentration of defaults; this time the defaults are 

concentrated at the very right end of the distribution (figure 4.12c). 

 

  

(a)                                                                 (b) 

 

(c) 

Figure 4.12. Distribution of number of defaults for different hazard rates (asset correlation = 25%) 
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With this insight about the effects of asset correlation and hazard rate on the defaults 

distribution, we can now analyze how each tranche would react to changes in these 

parameters. 

 

Selling Equity Protection 

Figure 4.13a shows that, if expected shortfall is taken as our measure of risk, at every 

asset correlation the price is almost surely a decreasing function of the hazard rate. To 

understand the reason behind this we should remember the “nth to default” analysis 

that was presented earlier and stated that if a big number of defaults arrive 

simultaneously, our hedging position becomes very profitable as it pays much more 

than the outgoing contingent payments. 

At higher hazard rates the average number of defaults increases and consequently our 

hedging position catches more defaults and becomes more profitable, hence a lower 

upfront would be needed. This increase in efficiency of our hedging position can be 

seen in figure 4.13b where the optimal hedge notional is a decreasing function of 

hazard rate at every asset correlation. The decrease in price and hedge notional is 

much more abrupt at low asset correlations. Remember that low correlations result in 

a bell curve shaped default distribution and as we increase the hazard rate the center 

of this bell curve moves to the right. This means that at high hazard rates and low 

correlation the average number of defaults is high and their standard deviation is low, 

resulting in a very profitable hedging position that in most cases catches high 

numbers of simultaneous defaults. In contrast, at high hazard rates and high 

correlations the two tails of the distribution are fatter and consequently we have more 

trajectories with extremely low or extremely high numbers of defaults while there are 

fewer trajectories with moderately high number of defaults. This means that at higher 

correlations one would need a greater hedge notional in order to make enough profit 

out of the many trajectories with lower number of defaults.  
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(a)                                                                 (b) 

 

(c) 

Figure 4.13. Selling equity (0%‐3%) tranche protection: ES80 optimal strategy for different asset 
correlations and hazard rates (recovery rate = 30%) 

 

The same analysis is useful in interpreting the minimum expected shortfall achieved 

at each of these points (figure 4.13c). At low correlations the minimum ES increases 

with the hazard rate until the hedging position starts to catch more defaults than what 

is needed to compensate for the contingent payments. This is where the optimal ES 

reaches its maximum and then it becomes a decreasing function of hazard rate. As the 

asset correlation increases, this maximum is achieved at higher and higher hazard 

rates since trajectories with extremely low numbers of defaults become more 

frequent. As the asset correlation approaches 100%, our defaults distribution shows a 

large number of no-default trajectories and a very small number of trajectories with 
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extremely high default rates. This is where our hedging position makes huge profits in 

case of defaults and thus the ES diminishes. 

 

 

(a)                                                                         (b) 

 

(c) 

Figure 4.14. Selling equity (0%‐3%) tranche protection: STD optimal strategy for different asset 
correlations and hazard rates (recovery rate = 30%) 

 

If we choose standard deviation as our risk measure, the upfront decreases faster as 

the default correlation increase as compared to the ES optimal strategy (figure 4.14a). 

At every hazard rate higher correlations result in higher standard deviations which 

cannot be hedged away (figure 4.14c). Again, the optimal hedge decrease faster at 

lower correlations because of the increase in hedging efficiency. Figure 4.14c also 
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shows that at low correlations the standard deviation initially increases with the 

hazard rate and after reaching its maximum it diminishes again while at very high 

asset correlations the STD is only increasing. This happens due to the increase in 

defaults’ variance at higher correlations which we discussed at the beginning of this 

section.  

 

Selling Mezzanine Protection 

The mezzanine tranche is quite different from the equity tranche since it is immune to 

the first few defaults in the reference pool. This means that at low correlations and 

low hazard rates this tranche does not experience any defaults and consequently, very 

low spreads and hedge notional are needed (figures 4.15a, 4.15b). Also, the expected 

shortfall is very low in this region (figure 4.15c). In the mezzanine tranche the price 

(spread) is a strictly increasing function of correlation because as the correlation 

increases, there is higher probability that the defaults arrive in big batches and surpass 

the defense barrier of equity tranche. 

Figure 4.15b shows how at low correlations the optimal hedge notional increases with 

hazard rate while at higher correlations this hedge notional is constant after an initial 

jump. This is because at low correlations the defaults have a bell curve shaped 

distribution which moves to the right as the hazard rate increases. As the main bulk of 

the distribution reaches the point where the average number of defaults is enough to 

hit the mezzanine tranche, we would need a higher hedge notional to compensate for 

the outgoing contingent payments. But at higher asset correlations the trajectories 

which contain enough defaults to hit the mezzanine tranche are already spread to the 

right and left sides of the distribution and hence, even at lower hazard rates we have 

many trajectories where the defaults do reach the mezzanine tranche. So, as the 

correlation increases, our hedging position becomes very efficient in countering the 

effect of defaults and the optimal expected shortfall decreases (figure 4.15c). In short, 

low variance in number of defaults (low correlation) results in high outgoing 
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contingent payments and moderate hedging profits which in return result in high 

expected shortfalls. In contrast, high variance in number of defaults (high correlation) 

results in the same average amount of outgoing contingent payments while the 

hedging profit is also very high because of the simultaneous arrival of many defaults 

an thus, the expected shortfall is low. 

 

 

(a)                                                                        (b) 

 

(c) 

Figure 4.15. Selling mezzanine (3%‐7%) tranche protection: ES80 optimal strategy for different asset 
correlations and hazard rates (recovery rate = 30%) 
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(a)                                                                       (b) 

 

(c) 

Figure 4.16. Selling mezzanine (3%‐7%) tranche protection: STD optimal strategy for different asset 
correlations and hazard rates (recovery rate = 30%) 

 

In the STD optimal strategy, the same logic applies to price and hedge notional 

(figures 4.16a, 4.16b) while the hedging errors show a different picture. Increasing 

the correlation initially increases the standard deviation since the now fatter right tail 

starts to hit the mezzanine tranche and cause outgoing contingent payments. But as 

the correlation increases further, the right tail becomes even fatter and most of the 

trajectories fall in the range where they cause both outgoing contingent payments and 

incoming hedging profits. At extremely high correlations there are many no-default 

trajectories and a few trajectories with extremely high numbers of defaults and, as a 

result, we will have a binary distribution where for the no-default trajectories we pay 
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a high hedging cost and no contingent payments while in the mass default cases we 

receive a huge profit out of our hedging position. 

 

Selling Senior Protection 

 

 

(a)                                                                       (b) 

 

(c) 

Figure 4.17. Selling senior (7%‐10%) tranche protection: ES80 optimal strategy for different asset 
correlations and hazard rates (recovery rate = 30%) 

 

Senior tranche basically follows the same rules that govern the mezzanine tranche 

with the difference that we start to see a rise in the price and hedge notional at higher 
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hazard rates and asset correlations (figures 4.17a, 4.17b and 4.18a, 4.18b), which is 

again due to relative resilience of the senior tranche against the first default arrivals. 

Also, the optimal expected shortfall behaves very similar to the mezzanine tranche 

(figure 4.17c) as the same dynamics apply. We can also see that standard deviation 

shows the same characteristics of the mezzanine tranche except that at low hazard 

rates increasing the correlation would not result in a rise in variance (figure 4.18c). 

This is of course because the defaults start to hit the senior tranche at higher hazard 

rates. 

 

(a)                                                                       (b) 

 

(c) 

Figure 18. Selling senior (7%‐10%) tranche protection: STD optimal strategy for different asset 
correlations and hazard rates (recovery rate = 30%) 
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Figures 4.17a and 4.18 a show that at low correlations and high hazard rates the price 

may become negative, that is, we should pay a spread (rather than receiving it) to 

make it a fair bet. The explanation for this is that at high hazard rates and low 

correlations the average number of defaults is high but they are concentrated around 

their mean which is still behind the number of defaults needed to hit the senior 

tranche. As a result, the hedging position is making a profit out of defaults without us 

paying contingent payments. However, as correlation increases, the right tail becomes 

fatter and some of the defaults hit the senior tranche, resulting in an increase in price 

and decrease in hedge notional. 
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4.4.2. Sensitivity to Recovery Rate 

Another key parameter that impacts our results is the recovery rate. Figure 4.19 

shows the effects of different recovery rates on the results obtained for the equity 

tranche. As the recovery rate increases, the cost of hedging increases since we are 

paying the same coupons on the underlying bonds while the hedging profit is 

decreasing. This initially results in higher prices but as the recovery rate approaches 

100%, the losses due to defaults approach zero and the tranche spread exceeds our 

losses to the point that at a 100% recovery rate one would find it profitable to pay an 

upfront (rather than receiving it) in return for receiving the tranche spreads. 

Similarly, at very high recovery rates the optimal hedge notional decreases as our 

contingent payments are decreasing. Note that both ES and STD are decreasing 

functions of recovery rate. 

In the mezzanine and senior tranches (figures 4.20 and 4.21), we are not receiving a 

fixed spread. So, increasing the recovery rate only decreases the spread, hedge 

notional, and hedging errors. However, these reductions start to appear at lower 

recovery rates compared to the equity tranche. This is due to absorption of the first 

few defaults by the equity tranche and the profit that our hedging position makes 

before the defaults hit these senior tranches. Alternatively stated, at higher recovery 

rates it takes higher numbers of defaults in the reference pool to affect the more 

senior tranches and consequently the probability of defaults in the more senior 

tranches becomes even greater. As a result, one would need a lower price and hedge 

notional to compensate for the contingent payments. The more senior the tranche, the 

lower the recovery rate needed to be in the safe zone.  

The hedging errors for mezzanine and senior tranches are quite different from the 

equity tranche in the sense that their rate of decline in the face of increasing recovery 

rates is less than in the equity tranche, which is again due to the absorption of first 

defaults by the equity tranche. 
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Figure 4.19. . Selling equity (0%‐3%) tranche protection at different recovery rates (left column: 
ES80 optimal strategy, right column: STD optimal strategy, PNC model, asset correlation = 25%, 

hazard rate = 0.65%) 
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Figure 4.20. Selling mezzanine (3%‐7%) tranche protection at different recovery rates (left column: 
ES80 optimal strategy, right column: STD optimal strategy, PNC model, asset correlation = 25%, 

hazard rate = 0.65%) 
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Figure 4.21. Selling senior (7%‐10%) tranche protection at different recovery rates (left column: 
ES80 optimal strategy, right column: STD optimal strategy, PNC model, asset correlation = 25%, 

hazard rate = 0.65%) 
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5. Conclusion 

We created a practical framework for analyzing some of the most important aspects 

of a typical CDO trade such as P&L distribution, optimal hedging strategies given a 

measure of risk, and sensitivity of these CDO trades and their pertaining hedging 

strategies to changes in market factors. This simulation based approach helps CDO 

traders to analyze their target CDOs and their potential positions in different tranches 

of those  CDOs. 

The default models presented in this work can be adjusted to any CDO given the right 

asset pool information such as hazard rates, asset correlations, or volatilities. This 

choice of default model has a profound effect on the pricing and related hedging 

strategies for a CDO trader. We showed that the return distributions of CDO trades 

are far from normal and resemble barrier type options. Therefore, our choice of 

measure of risk becomes another decisive factor in determining the optimal hedging 

strategy since only coherent measures of risk are capable of correctly capturing the 

risks of a CDO trade. We demonstrate that using the variance as measure of risk will 

result in neglecting the huge tail losses that are very common in CDO trades while 

using expected shortfall as our measure of risk results in high cost of hedging. 

The sensitivity tests conducted in this work provide us with further insight regarding 

the resilience of our trade positions in the face of changes in market factors as well as 

the profitability of such trades. These scenario tests offer valuable information to the 

CDO traders regarding the severity of their losses in case there is a change in the base 

factors and can help them better manage their risk taking practices. 

The fact that all these results are obtained through simulation means that this 

framework can be easily modified and augmented to meet the assumptions and needs 

of almost any CDO trader and to assess alternative scenarios that one deems to be 

relevant. 
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Appendix A - Measures of Risk 

 

Value at Risk (VaR) 

VaR is generally defined as “possible maximum loss over a given holding period 

within a fixed confidence level.” That is, mathematically, VaR at the 100(1 – α) 

percent confidence level is defined as the lower 100α percentile of the profit-loss 

distribution. Artzner et al. (1999) define VaR at the 100(1 – α) percent confidence 

level (VaRα(X )) as 

VaRα(X ) = –inf{x|P [X ≤ x] > α } 

When the returns follow a normal distribution: 

σα ×= qXVar )(  

Where q is the upper 100α percentile of the normal distribution. 

Where X is the profit-loss of a given portfolio, inf{x |A} is the lower limit of x given 

event A, and inf{x |P[X ≤ x] >α} indicates the lower 100α percentile of profit-loss 

distribution. This definition can be applied to discrete profit-loss distributions as well 

as to continuous ones. Since the loss is defined to be negative (profit positive), –1 is 

multiplied to obtain a positive VaR number when one incurs a loss within a given 

confidence interval. 

Using this definition, VaR can be negative when no loss is incurred within the 

confidence interval because the 100α percentile is positive in this case. 

 

Expected Shortfall (ES) 

Artzner et al. (1997) have proposed the use of expected shortfall (also called 

“conditional VaR,” “mean excess loss,” “beyond VaR,” or “tail VaR”) to alleviate the 

problems inherent in VaR. Expected shortfall is the conditional expectation of loss 
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given that the loss is beyond the VaR level (Figure A.1). The expected shortfall is 

defined as follows: 

Suppose X is a random variable denoting the profit-loss of a given portfolio and 

VaRα(X ) is the VaR at the 100(1 – α) percent confidence level. ESα(X ) is defined by 

the following equation: 

ESα(X ) = E[–X | –X ≥ VaRα(X )] 

And when the returns follow a normal distribution: 

x

q

eXES σ
παα 2

)(
2

2−
−

=  

When the profit-loss distribution is normal, expected shortfall and VaR are scalar 

multiples of each other, because they are scalar multiples of the standard deviation. 

Therefore, VaR provides the same information about the tail loss as does expected 

shortfall. 

 

Figure A.1 
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Coherent Measures of Risk 

Artzner et al. (1998) argues that a measure of risk can only be coherent if it satisfies 

the following criteria: Consider a set V of real-valued random variables. A function ρ 

: V → R is called a coherent  risk measure if it is 

 

(i) Monotonous: X  V,  X ≥ Y    ρ(X) ≤ρ(Y), 

(ii) Sub-Additive: X, Y, X + Y  V    ρ(X + Y ) ≤ ρ(X) + ρ(Y ), 

(iii) Positively homogeneous: X  V, h > 0, hX  V    ρ(hX) = h ρ(X), and 

(iv) Translation invariant: X  V, a  R    ρ(X + a) = ρ(X) − a. 

 

They show in their work that VaR is not coherent because it is not sub-additive while 

Expected Shortfall is a coherent measure of risk.  

 

Non-Normality and Problems of VaR 

When the profit-loss distribution is normal, VaR does not have the problems pointed 

out by Artzner et al. (1997). First, with the normality assumption, VaR does not have 

the problem of tail risk. When the profit-loss distribution is normal, expected shortfall 

and VaR are scalar multiples of each other, because they are scalar multiples of the 

standard deviation. Therefore, VaR provides the same information about the tail loss 

as does expected shortfall. 

Second, sub-additivity of VaR can be shown as follows. Suppose that there are two 

portfolios whose profit-loss obeys multivariate normal distribution. With the 

normality assumption, as we mentioned earlier, VaR is a scalar multiple of the 

standard deviation, which satisfies sub-additivity. Thus, VaR also satisfies sub-

additivity. 

Therefore, with the normality assumption, expected shortfall has no advantage over 

VaR, since VaR satisfies sub-additivity and provides the same information about the 
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tail loss as does expected shortfall. In fact, in this case the ES becomes only a more 

conservative choice compared to VaR. 

However, when the profit-loss distribution is not normal we can easily show that VaR 

is not coherent because it does not satisfy the sub-additivity criteria. We use the same 

examples of Artzner et al. to show this shortcoming of VaR. 

 

Example 1: Short position on digital options 

Consider the following two digital options on a stock, with the same exercise date T. 

The first option denoted by A (initial premium u) pays 1,000 if the value of the stock 

at time T is more than a given U, and nothing otherwise. The second option denoted 

by B (initial premium l) pays 1,000 if the value of the stock at time T is less than L 

(with L < U ), and nothing otherwise. Since the payoffs of those options are not 

linear, it is clear that the profit-loss distributions are not normal even though the price 

of the underlying assets obeys normal distribution. 

 

Stock price Probability (percent) Option A Option B Option A+B 

S 0.8 u -1000 + l -1000 + l 

L ≤ S ≤ U 98.4 u l u + l 

U < S 0.8 -1000 - u l -1000 + u + l 

VaR -u -l -1000 - u - l 
 

Table A.1 Payoff and VaR of Digital Options 

 

Suppose L and U are chosen such that Pr(S < L ) = Pr(S > U ) = 0.008, where ST is the 

stock price at time T. Consider two traders, trader A and trader B, writing one unit of 

option A and option B, respectively. VaR at the 99% confidence level of trader A is –

u, because the probability that ST is more than U is 0.8%, which is beyond the 
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confidence level. Similarly, VaR at the 99% confidence level of trader B is –l . This is 

a clear example of the tail risk. VaR disregards the loss of options A and B, because 

the probability of the loss is less than one minus the confidence level. 

 

Now consider the combined position on options A and B to show that VaR is not sub-

additive. VaR at the 99% confidence level of this combined position (option A plus 

option B) is 1,000 – u – l, because the probability that ST is more than U or less than 

L is 0.016, which is more than one minus the confidence level (0.01). Therefore, since 

the sum of VaR of individual positions (option A and B) is –u – l, it is clear that VaR 

is not sub-additive (Table A.1). 

 

Example 2: Concentrated credit portfolio 

Suppose that there are 100 corporate bonds, all with the same maturity of one year. 

Also suppose that all bonds have a coupon rate of 2%, a yield-to-maturity of 2%, a 

default probability of 1%, and a recovery rate of zero. Furthermore, it is assumed that 

the occurrences of defaults are mutually independent. 

First, we consider investing US$1 million into 100 corporate bonds, each with an 

equal amount of US$10,000. The default of only one bond does not lead to a loss 

since the net profit is: 99*200 – 10,000 = 9,800. However, if two bond default, the net 

profit is: 98*200 – 20,000 = -400. The probability of 2 bonds or more defaulting is 

26.4% (1 – the probability that all bonds do not default – the probability that only one 

bond defaults = 1-0.99100-100×0.9999×0.01). Thus, for this diversified investment, 

VaR at the 95% confidence level is positive since the probability of loss is more than 

5%. 

Second, we consider investing US$1 million into only one of those corporate bonds. 

For this concentrated investment, we are 95% sure that this investment will earn 

US$20,000, because the default probability is 1%. Therefore, VaR at the 95% 

confidence level is –US$20,000. This exemplifies the tail risk of VaR, since VaR 
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disregards the potential loss of default. Furthermore, VaR is not sub-additive, because 

the VaR of the diversified portfolio is larger than the VaR of the concentrated 

portfolio. 

Our CDO trade has a non-normal distribution which closely resembles a digital 

option and these two examples show why we need to be very careful in choosing our 

measure of risk and make sure that a coherent one is being applied. For all these 

reasons, we decide to use expected shortfall as our second measure of risk in this 

work. 
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Appendix B - Hedged Monte Carlo 

 

Notations 

“We suppose that the price of the option only depends on the current price (xk) of the 

asset and call it Ck(xk) at time tk The interest rate is assumed to be constant and equal 

to r. Averaging (denoted by angled brackets 〈…〉) will in the following always refer 

to the objective (real world) probability measure under which we observe the 

distribution of the asset returns and not any abstract risk neutral measure.” 

Principles 

The implementation of this HMC method requires working backward in time. It 

means that we start by the final pay-off function, which is known at time T, and 

calculate the option price and the appropriate hedge for the previous period of time 

(T-1) using the price at time T. 

“We denote by φk(xk) the fraction of the underlying asset in the portfolio at time k, 

when the asset price is xk. Between time tk and tk+1 the self-financing condition leads 

to a local wealth balance given by”: 

))(()()( 111 x
rh

xxkxkxk
rh xexxxCxCeW −+−=Δ +++ φ  

We should use a local risk function in order to measure the quality of our replication. 

In our work we will implement this method with two hedging error measures: 

1) Standard Deviation 

( ) 2/12 ])[( WWEW Δ−Δ≡=Θ Δσ  

The method involving minimization of standard deviation can be implemented by a 

simple regression. We rearrange our equation as: 

)( 11 k
rh

kk
rh

k xexCeC −+= ++ ϕ
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Where Ck+1 is known and we search for Ck and φ which minimize the standard 

deviation. This leads us to the following regression: 

εββ +−+= +
−

+
− )( 1101 kk

rh
k

rh xxeCe  

Where β0 estimates C0 and β1 estimates the hedge. This method is very efficient and 

returns high quality results when tested with European vanilla options. 

The matrices used in this minimization are: 
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2) Expected Shortfall (as used by Pochart and Bouchaud [2003]) 

Expected shortfall is a coherent measure of risk which does not suffer from the 

inherent problems of VaR especially when it comes to derivative that have non-

Gaussian underliers. The expected shortfall is defined as: 

αα
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which penalizes losses exceeding the Δ0 threshold. 
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If we decide to use the method of Pochart and Bouchaud (2003), Following Longstaff 

and Schwartz (2001) and Potters et al. (2001), the functions Ck(xk) and φk(xk) are 

decomposed with the help of p basis functions: 
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Each of the F basis function is defined as linear function between two separation 

points B1 and B2 such that at B1 its value is zero and at B2 it reaches 1. The authors 

propose that the separation points be chosen in a way that the same number of 

trajectories fall in each interval. That is, if we have N simulation trajectories and p 

basis functions, there shall be (p+2) intervals and N/(p+2) trajectories fall in each of 

these intervals. 

The C functions share the same separation points with the F functions and are the 

integrals of function F. More precisely, for i and j going from 1 to p, the ith and jth 

columns of the matrices F and C are calculated using the following algorithm: 
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Where Bi is the separation point corresponding to the basis function and xk is the price 

vector. Thus we have two matrices of dimension N×p which we can multiply by the 

column vectors ϕ and γ when doing the optimization. 

The optimization at each of the rebalancing points is done in two steps. The first step 

is finding the ϕa which minimizes the risk function. We can approximate the function 

Ck(xk)by Ck+1(xk) which is known from the previous iteration. For example, first we 

approximate Ck(xk) by the cash flow function of the option at its maturity and then go 
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one step backward in time and use the calculated coefficients from the previous 

period. 

After having calculated the ϕas, the only remaining task would be minimizing the 

local wealth to find the γas. The problem: 

2N
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After this step, we will have to do the optimizations of the last point of rebalancing, 

which will give us the price and the strategy at time 0. This is done just like before 

except that this time the functions φk(x) and Ck(x) are replaced by constants (there is 

only one price at time 0). 

We should clarify some points about this methodology. While the vectors ϕa and γa 

are initialized at zero for the first point of readjustment, for the next rebalancing 

points we take the optimized values of the previous iteration as the starting point. In 

Pochart and Bouchaud (2001) the authors have not mentioned whether they have 

imposed any constraints. Nevertheless, we have chosen to constrain the ϕas and γas as 

non-negative to prevent negative gamma for the option. Also, it seems reasonable to 

impose another constraint requiring that the sum of ϕas be equal to 1 so that the 

optimal hedge function is a weighted average of the basis functions. However to this 

moment this formulation has not worked in our framework because this constraint 

creates errors in the first step which propagate to the rest of the readjustment process 

and produce absurd results for the hedge function. 

Another important consideration would be the use of gradients. The authors suggest 

using the following gradient for the first optimization: 
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Even with optimized programming (i.e. doing most of the calculation out of the 

loops), using the gradient increases the optimization time significantly. Yet, we have 
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observed that using gradients makes the optimization more robust. Nevertheless, after 

having constrained the ϕas to be non-negative we observe that the optimization 

without gradients results in an acceptable level of robustness. However, it should be 

mentioned that in many cases using the gradients results in numeric problems in 

Matlab and we do not get any results (we just get error messages). In the cases where 

there are no numerical problems, the optimization using gradients takes 6 to 7 times 

more time than in the other case. For now we are just using the explained method 

(without gradients) and constrain ϕas to non-negative values. 

Despite all the aforementioned efforts, we have observed that this method suffers frm 

the problem of compounding errors. That is, at the first instance of hedging (T-1) we 

are approximating Ck(xk) by Ck+1(xk) which obviously has some errors and then these 

errors are carried to the next instance of rehedging and again a similar approximation 

is made and so on. This leads to the compounding of errors and we have observed 

that as we increase the number of rehedging instances the accuracy of our estimates 

drop dramatically. The only reason why one would opt for more than one hedging 

instance is to create a mesh of time and prices which is useful for path dependant 

derivatives. Our CDO trade problem is studied in a static frame work and has a quite 

simple path dependency structure which can be addressed through bond defaults in 

the simulation process. For this reason we have tried to simplify this method for use 

in our final work. The two resulting versions are explained as follows: 

 

Version 1: In this method we simulate one set of underlier prices and we solve the 

following minimization problem: 

( )[ ]0,))((maxmin 01100 xexHCCe ρρ −+−−Δ∑  

Subject to: 

0=ΔW  
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This can be done using the fmincon function in MatLab: 

[Y,fval,exitflag] = fmincon(@(Y) sum(max(delta0‐(A*Y‐Payoff),0)), Y, [], [], Aeq, beq, 
zeros(2,1), [], [], []) 

 

The matrices used in this minimization are: 
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where C0 and x0 are respectively the option price and the underlier price at t=0 and C1 

and x1 are respectively the option price and the underlier price at t=T (maturity). xt
n 

represents the underlier price at time t and the nth simulation trajectory. The same 

notation is used for C1.  

With these matrices the fmincon function minimizes the expected shortfall while the 

Aeq and beq matrices enforce the condition requiring the zero average change of 

wealth. This method results in accurate estimates of both the option price and the 

hedge. Furthermore, the efficiency of this method is higher than a naïve Monte-Carlo, 

that is, the standard deviation of this method is half the standard deviation of a naïve 

Monte-Carlo. 

 

Version 2: In this method we simulate two sets of underlier prices and we calculate 

the optimal hedge and the option price in two consecutive steps as opposed the 

previous method where we enforced both conditions (ES and average wealth) in a 

simultaneous manner. In fact, this method is quite identical to that of Pochart and 
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Bouchaud (2003) in the sense that it is done in two steps (first calculating the optimal 

hedge and then the option price). 

In the first step we use the (known) payoffs for both sets of data at t=T to calculate 

the hedge: 

( )[ ]0,))((maxmin 12210 xxHCC
H

−+−−Δ∑  

where x1 and C1 denote the trajectories for the first set of data and x2 and C2 the 

second set. This minimization gives us the hedge (H). 

In the second step we use the calculated hedge and one of the two sets of data to 

calculate the option price and enforce the zero average wealth condition. We use a 

regression to achieve this. The zero average wealth condition is rearranged as: 

0011 )( CxxeHCe =−− −− ρρ  

and the following regression is done: 

εβρρ +=−− −−
0011 )( xxeHCe  

where β0 is the estimate of C0. This method is almost two times faster than version 1 

and shows almost exactly the same standard deviation and accuracy. 

Our results show that Version 1 performs much better for our CDO simulation. 

However, one can also use Version 2 for assets with Gaussian distributions since it 

gives good results for such assets. 

All of the results presented in this dissertation are produced using Version 1.  
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Appendix C - Structural Variance Gamma 

 

The Variance-Gamma structural (SVG) approach that we use in this work is 

developed by Madan et al (1998). The Variance-Gamma (VG) process is a three 

parameter generalization of Brownian motion as a model for the dynamics of the 

logarithm of the stock price. To obtain this process, a Brownian motion (with 

constant drift and volatility) is evaluated at a random time change given by a gamma 

process. Each unit of time is given by an independent random variable that has a 

gamma density with unit mean and positive variance. The resulting stochastic process 

provide us with a robust three parameter model that in addition to the volatility of the 

Brownian motion control for (i) kurtosis and (ii) skewness. It can be shown that 

lognormal density and the Black-Scholes formula are parametric special cases of this 

process. 

The VG process has three parameters: (i) σ the volatility of the Brownian motion, (ii) 

υ the variance rate of the gamma time change and (iii) θ the drift in the Brownian 

motion with drift. “The process therefore provides two dimensions of control over 

and above that of the volatility.” Control over skew is attained via θ while υ controls 

kurtosis.  

In the SVG approach defaults are based on evolution of firm’s value return which 

follows a geometric Brownian motion (with drift and volatility parameters μi and σi) 

evaluated at stochastic time clocks governed by increments of gamma process: 

)),1;((),1;( υσυμ tgWtg
f
f

iiiii
i

i Δ+Δ=
Δ

 

Our approach for correlating gamma stochastic clock processes and the Brownian 

motion underlying the firm-value evolution is a single factor one:  

imi ZWW 21 ββ −+=  
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where Wm and Zi are independent standard Weiner processes. Wm represents the 

Weiner process of market at any given instance if time and Zi is the idiosyncratic 

Weiner process for each issuer. The increments of the gamma processes for different 

issuers follow 

))1(,1;(),;(),1;( κυκυκκυ −−Δ+Δ=Δ tutgtg imarketi  

The process gmarket and ui are increments of independent gamma processes. gmarket and 

gives the tome clocks at which the market evolution is evaluated while ui is the time 

clock for each different issuer. 

In this work a default-barrier model is used where the first time that the firm’s value 

goes bellow a given barrier (ω as a fraction of initial firm-value) the firm (and the 

issued bonds) default. In order to facilitate the comparison of features of the VG 

structural model and the Poisson-Normal Copula reduced form model, we calibrate 

the VG model to produce the same first two moments of the PNC model. That is, (1) 

T period default probability for issuers; (2) T period portfolio loss standard deviation. 

The PNC model used in the main body of this work has a hazard rate of 0.65%/yr 

which results in a 5 year default probability of 0.0319. This marginal 5 year default 

probability can be attained using the following set of VG parameters: 

μi = 0 (1/yr); σi = 0.20 (1/yr½); υ = 2 yr; ω = 0.3618 

With recovery set to 30% and asset correlation set to 25% for the PNC model, a pool 

of 125 initially homogenous bonds has a 5 year pool loss standard deviation of 3.32% 

of the initial pool notional. To achieve this portfolio-loss standard deviation, we 

should calibrate β and κ. We obtain this standard deviation using: 

κ =1; β = 0.454 

Note that with κ=1, the idiosyncratic component of the gamma process for different 

issuers (ui) becomes zero. That is, all issuers are evaluated at the same time 

increments which are the market clocks (gmarket). 
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Appendix D – Liquidated vs. Non-Liquidated Hedging Positions 

 

Liquidated Position 

Model  Strategy  std  ES80  ES95  upfront  Hedge (×tranche)

PNC 

Min std  12.9%  19.3%  26.4%  62.0%  21.8 
Min ES80  27.0%  14.8%  16.7%  83.7%  34.6 
Min ES95  29.6%  15.1%  16.1%  86.5%  36.2 
50x  53.9%  37.7%  37.7%  110.0%  50.0 

0x  42.4%  63.4%  70.9%  24.9%  0.0 

VG 

Min std  22.7%  30.5%  38.1%  36.4%  11.7 
Min ES80  43.2%  23.7%  29.3%  59.3%  26.3 
Min ES95  62.1%  24.9%  26.2%  72.3%  34.7 
50x  98.9%  51.5%  54.9%  96.3%  50.0 

0x  37.0%  52.8%  60.0%  18.2%  0.0 

Non‐Liquidated Position 

Model  Strategy  Std  ES80  ES95  upfront  Hedge (×tranche)

PNC 

Min std  26.0%  36.4%  44.2%  40.4%  11.4 
Min ES80  62.8%  26.2%  30.1%  66.4%  30.6 
Min ES95  76.2%  27.3%  28.7%  73.0%  35.5 
50x  117.4%  55.2%  55.2%  92.6%  50.0 

0x  42.5%  63.2%  70.6%  24.9%  0.0 

VG 

Min std  24.1%  34.5%  43.1%  33.0%  10.1 
Min ES80  57.7%  25.9%  30.0%  61.3%  28.9 
Min ES95  71.7%  27.0%  28.5%  69.5%  34.3 
50x  113.7%  54.7%  54.7%  93.1%  50.0 

0x  37.0%  53.1%  60.5%  17.8%  0.0 
 

Table A.2. Sell equity (0%‐3%) tranche protection upfront, hedge, and error measures for different 
strategies (all numbers in %tranche unless specified). Liquidated vs. Non Liquidated position. 
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Liquidated Position 

Model  Strategy  STD  ES80  ES95  spread  Hedge (×tranche)

PNC 

Min STD  11.4%  13.6%  20.3%  7.25%  12.4 
Min ES80  11.6%  12.2%  15.3%  7.78%  13.4 
Min ES95  12.0%  12.8%  13.4%  8.09%  14.2 
20x  19.6%  23.0%  23.0%  10.19%  20.0 

0x  28.7%  50.1%  87.2%  2.91%  0.0 

VG 

Min STD  12.2%  15.3%  30.3%  6.01%  9.2 
Min ES80  14.3%  11.9%  18.0%  7.15%  12.2 
Min ES95  16.8%  13.0%  13.9%  7.72%  13.8 
20x  29.9%  24.1%  24.1%  9.94%  20.0 

0x  26.5%  47.7%  75.5%  2.81%  0.0 

Non‐Liquidated Position 

Model  Strategy  STD  ES80  ES95  spread  Hedge (×tranche)

PNC 

Min STD  12.8%  16.5%  33.7%  5.79%  9.3 
Min ES80  14.9%  13.6%  21.5%  6.81%  12.0 
Min ES95  18.5%  15.1%  15.7%  7.49%  14.1 
20x  32.3%  26.4%  26.4%  9.40%  20.0 

0x  28.6%  50.1%  86.8%  2.91%  0.0 

VG 

Min STD  12.5%  16.0%  33.4%  5.75%  8.7 
Min ES80  15.3%  12.6%  20.5%  7.00%  11.9 
Min ES95  19.4%  14.1%  14.9%  7.78%  14.2 
20x  32.9%  24.6%  24.6%  9.83%  20.0 

0x  26.5%  47.6%  75.7%  2.80%  0.0 
 

Table A.2. Sell mezzanine (3%‐7%) tranche protection upfront, hedge, and error measures for 
different strategies (all numbers in %tranche unless specified). Liquidated vs. Non Liquidated 

position. 
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Liquidated Position 

Model  Strategy  std  ES80  ES95  spread  Hedge (×tranche)

PNC 

Min std  11.7%  13.7%  34.1%  2.74%  5.6 
Min ES80  13.3%  12.5%  16.9%  3.71%  8.1 
Min ES95  14.5%  12.9%  13.0%  4.02%  9.0 
20x  37.6%  34.1%  34.1%  7.68%  20.0 

0x  18.2%  18.2%  76.3%  1.03%  0.0 

VG 

Min std  10.7%  11.9%  31.0%  2.80%  5.3 
Min ES80  11.6%  11.2%  19.6%  3.44%  6.9 
Min ES95  14.8%  12.6%  13.1%  4.18%  9.1 
20x  40.4%  32.9%  32.9%  7.95%  20.0 

0x  17.6%  18.4%  73.4%  1.04%  0.0 

Non‐Liquidated Position 

Model  Strategy  std  ES80  ES95  spread  Hedge (×tranche)

PNC 

Min std  10.6%  12.0%  28.2%  2.46%  5.0 
Min ES80  11.3%  11.3%  20.2%  2.97%  6.3 
Min ES95  14.6%  13.0%  13.7%  3.64%  8.5 
20x  44.2%  36.0%  36.0%  7.23%  20.0 

0x  17.9%  17.7%  75.2%  1.00%  0.0 

VG 

Min std  10.5%  11.5%  29.9%  2.72%  5.1 
Min ES80  11.2%  10.9%  20.6%  3.26%  6.5 
Min ES95  14.9%  12.7%  13.5%  4.12%  9.0 
20x  42.0%  33.0%  33.0%  7.91%  20.0 

0x  17.5%  18.0%  73.4%  1.02%  0.0 
 
Table A.3. Sell senior (7%‐10%) tranche protection upfront, hedge, and error measures for different 

strategies (all numbers in %tranche unless specified). Liquidated vs. Non Liquidated position. 
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