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RÉSUMÉ

Le sujet principal de cette thèse porte sur les mesures de risque. L’objectif général

est d’investiguer certains aspects des mesures de risque dans les applications fi-

nancières. Le cadre théorique de ce travail est celui des mesures cohérentes de

risque telle que définie dans [5]. Mais ce n’est pas la seule classe de mesure du

risque que nous étudions. Par exemple, nous étudions aussi quelques aspects des

“statistiques naturelles de risque” (en anglais natural risk statistics) [53] et des

mesures convexes du risque [42]. Les contributions principales de cette thèse peu-

vent être regroupées selon trois axes: allocation de capital, évaluation des risques

et capital requis et solvabilité. Dans le chapitre 2 nous caractérisons les mesures

de risque avec la propriété de Lebesgue sur l’ensemble des processus bornés càdlàg

(continu à droite, limité à gauche). Cette caractérisation nous permet de présen-

ter deux applications dans l’évaluation des risques et l’allocation de capital. Dans

le chapitre 3, nous étendons la notion de statistiques naturelles de risque à l’espace

des suites infinies. Cette généralisation nous permet de construire de façon co-

hérente des mesures de risque pour des bases de données de n’importe quelle

taille. Dans le chapitre 4, nous discutons le concept de “bonnes affaires” (en

anglais Good Deals), pour notamment caractériser les situations du marché où

ces positions pathologiques sont présentes. Finalement, dans le chapitre 5, nous

essayons de relier les trois chapitres en étendant la définition de “bonnes affaires”

dans un cadre plus large qui comprendrait les mesures de risque analysées dans

les chapitres 2 et 3.

Mots-clés: mesures cohérentes et convexes de risque, propriété de Lebesgue, pro-

cessus càdlàg, allocation de capital, statistiques naturelles de risque, couverture

et tarification, bonnes affaires, capital requis et solvabilité.
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SUMMARY

The aim of this thesis is to study several aspects of risk measures particularly

in the context of financial applications. The primary framework that we use is

that of coherent risk measures as defined in [5]. But this is not the only class

of risk measures that we study here. We also investigate the concepts of natural

risk statistics [53] and convex risk measure [42]. The main contributions of this

Thesis can be classified in three main axes: Capital allocation, risk measurement

and capital requirement and solvency. In chapter 2, we characterize risk measures

with the Lebesgue property on bounded càdlàg processes. This allows to present

two applications in risk assessment and capital allocation. In chapter 3, we extend

the concept of natural risk statistics to the space of infinite sequences. This has

been done in order to introduce a consistent way of constructing risk measures for

data bases of any size. In chapter 4, we discuss the concept of Good Deals and

how to deal with a situation where these pathological positions are present in the

market. Finally, in chapter 5, we try to relate all three chapters by extending the

definition of Good Deals to a larger set of risk measures that somehow includes

the discussions in chapters 2 and 3.

Keywords: Coherent and Convex Risk Measure, Lebesgue Property, Càdlàg

Process, Capital Allocation, Natural Risk Statistics, Hedging and Pricing, Good

Deal, Capital Requirement, Solvency
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INTRODUCTION

Assessing financial risks is an ever present concern in economics and mathematical

finance. The mathematical framework that incorporates a quantifiable financial

risk was originally defined in terms of the language of von Neumann-Morgenstern

expected utility theory, i.e., at the individual level, risk has always been charac-

terized in terms of preference relations. Yet, from a risk management perspective,

profits or losses are what define and quantify risk. The groundbreaking work of

[5] is the cornerstone of a sound mathematical theory of risk measures that is

compatible with risk management applications. They introduce the notion of

risk measure as a real-valued function that assigns a meaningful numerical value

to any given financial model. Their construction is axiomatic and it allows for

a rich mathematical theory with room for practical applications. In fact, many

examples of axiomatic risk measures are readily applied in practice and appear

naturally in mathematical finance. Nowadays, risk measures have found their

place as a relevant field in financial mathematics. The theory of risk measures

is built with tools from well-developed fields of mathematics like probability and

convex analysis. One element behind this success is that, although the axiomatic

construction of these objects is dictated by the mathematical tools behind the

theory, these also respond to financial intuition and needs. These axiomatic risk

measures have mathematical representations that, far from being mere artifacts,

have economical meaning. This brings new insight into the discussion.

The quality and volume of literature published about risk measures bears

witness to the theoretical and practical interest that the seminal paper of [5]

produced. A large amount of research followed, studying different aspects, im-

plications and applications of the theory of coherent risk measures. As we will
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see, practical applications call for generalizations of the theory that will include

a wide range of models. We find for instance works on risk measures defined on

different spaces accordingly to particular needs. In [21, 22], the authors work out

risk measures on the space of random processes modeling the outcome of a cer-

tain financial position; in [23] they develop risk measures in a dynamic fashion; in

[49] they consider a set-valued risk measure instead of only real single valued (see

also [46]). In [16], the authors extend the range of a coherent risk to a Banach

space. We can also mention the work in [38] where they attempt to extend the

risk measure on the largest possible space of all financial positions.

Nonetheless, there are several open questions and interesting directions yet

to be explored. For instance, an argument can be made about the inadequacy

of a simplistic solution measuring risk by means of a single real number [46]. In

practice, risk managers desperately seek for simple positive or negative answers

that can be easily decoded from risk measures (see a nice discussion in [31]). At

a conceptual level, axiomatic risk measures do not have the risk-aversion feature

that one would expect to see in any model that describes individual choices. The

observable economical fact that individuals are generally averse to risk is not a

part of the mathematical theory of risk measures [37].

This thesis explores some of these issues and produces new generalizations

that seek to fill in gaps in the existing body of the theory and practice of risk

measures. All of these extensions are not trivial since they call for the mathemat-

ical construction of suitable topologies. The study and extension of risk measures

is a mathematical subject of interest in its own right. But the same can be said

about the application aspects of the theory. Indeed, there is a large amount of

literature dealing with a wide range of problems arising from applications of risk

measures. In terms of applications, we focus in this thesis on the problems of

capital allocation, data-based risk measuring and pricing and hedging of financial

positions.

This thesis is then a compilation of three independent research articles that

deal with different aspects, both theoretical and practical, of coherent and convex

risk measures. Each one of these articles is presented in a single chapter. The main
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contributions of this thesis are contained in chapters 2, 3 and 4. An introductory

chapter 1 is included to give a brief summary of the main definitions and results

of the theory of risk measures as well as to lay down the main mathematical

concepts and tools that are needed throughout the thesis. In the final chapter,

chapter 5, we attempt to conclude by discussing several directions in which the

work of this thesis can be extended.

We now give a brief account of the content of each of the main chapters.

Chapter 2 is based on the paper [7] entitled Lebesgue Property of Risk Mea-

sures for Bounded Càdlàg Processes and Applications and it deals mainly with

the so-called Lebesgue property. The Lebesgue property is a continuity property

which has been studied for coherent risk measures when the value of financial

position is modeled with a single random variable. Here, we characterize this

property for a risk measure on the space of bounded càdlàg processes, in several

equivalent ways. Among them it is worthwhile to mention the equivalence be-

tween the Lebesgue property of a risk measure and the Lebesgue property of the

associated static risk measure. An immediate application of our discussion is to

approximate the risk of a random process with the risk of its time discretization

approximation.

As a second application, we solve the problem of capital allocation via a

gradient allocation approach. The problem of capital allocation has been the

object of recent research (see for instance [35], [45], [18], [64] and [32]). In recent

years, this problem has been analyzed with the tools given by the theory of risk

measures. In fact, the problem of finding the risk contribution of each department

in the overall company risk always involves an optimization procedure. This

requires a certain notion of derivative for a risk measure. For instance, either

using the concept of risk contribution ([26], [40] and [63]) or using the Euler

Lemma on a positive homogeneous function ([55]) or using sub-gradient of a

coherent risk measure ([33]), we always need to have a notion of the derivative of

a risk measure in order to implement such optimizations.

In our more general setting, the value of a financial position is modeled by a

bounded càdlàg process. We find a fair allocation when we deal with a general
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coherent risk measure. In particular, we pay more attention to some examples

from finance. As a significant application, we find the exact formula for allocating

the risky capital, when the surplus of an insurance company is modeled with a

joint α-stable random process and the cumulative risk measure is used in order

to estimate the required capital.

In Chapter 3, which is based on the paper [10] entitled Risk Measures on the

Space of Infinite Sequences , we deal with definitions of suitable risk measures. In

that chapter, we discuss the axiomatically definition of a data-based risk measure,

the so-called natural risk statistics. This is a new type of risk measure defined

in order to overcome some of the drawbacks associated with the sub-additivity

feature of a coherent risk measure. In fact, sub-additivity excludes the most

popular risk measure in practice, Value at Risk, from the family of coherent risk

measures.

A problem with natural risk statistics is that they are defined for a fixed num-

ber of data. This is not very convenient while working with unknown number

of data entries. In [10] (joint with Manuel Morales), the concept of natural risk

statistics is extended to the space of infinite sequences in order to construct a

consistent family of risk measures for any dimension. In this paper, we define

natural risk statistics on the space of infinite sequences and then we show how

one can construct a family of risk measures for finite dimensional spaces of every

dimension. The statistical robustness of this family is also studied. In fact, we

propose a way to construct a consistent family of risk measures for all data sizes.

Chapter 4, which is based on the article [9] entitled Good Deals and Compatible

Extension of Risk and Pricing Rule: A Regulatory Treatment , deals with the

problem of calculating an appropriate level of capital reserve (capital requirement)

for a financial institution such as a bank or an insurance company is an ever-

present concern for regulators. In fact, there is a world-wide trend moving towards

establishing technical directives for financial institutions that set out rules for

calculation of their capital requirement. For instance, in the European Union, we
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find two agreements that set up standards on how to compute solvency levels that

would render financial markets more stable: Basel II (for financial institutions)

and Solvency II (for insurance institutions). Some of these rules make use of risk

measures such as Value at Risk (VaR) or Expected Shortfall in order to compute

capital requirement (one can consult the website of the Bank for International

Settlements at http://www.bis.org/ for further information).

In [9], we discuss the problem of capital requirement and solvency in the

light of pathological positions called Good Deals. We study how risk measure-

based capital requirements levels can create pathological situations. Indeed, one

problem in capital requirement assessment of a financial position is that it is done

without taking the interaction with market short prices into account. This can

produce positions called Good Deals. A good deal is a financial position that

simultaneously produces no risk and has no cost. We also discuss the problem

of pricing and hedging a financial position with what we call the No-Good-Deal

pricing method. A significant observation is how the choice of a risk measure can

produce some pathological and unacceptable positions in the market called Good

Deals. In fact, given a fixed pricing rule, the existence of such positions depends

on the choice of the risk measure. We pursue the question of how a given risk

measure can be modified in order to rule out Good Deals from the market. The

main focus of that article is to give a recovery procedure that would modify a

given coherent risk measure in a market in order to remove Good Deals. This is

done in the context of capital requirement assessment of a financial position in

reserve.





Chapter 1

PRELIMINARIES

1.1. Measuring Economic Risk

The problem of measuring the financial risk associated with any given financial

position is of uttermost importance in economics and finance. The ultimate goal

behind any attempt at designing risk measures is to coherently define a rational

preference order within a set of positions that will allow market agents to make

decisions. In the last decade, a comprehensive theory of risk measures has been

developed. In this first chapter, we introduce the mathematical notions that are

needed throughout the thesis. We also give a brief account of the content of each

chapter while placing them in the context of recent developments in the theory.

In particular, we discuss a few applications of our results to well-known financial

problems.

Let (Ω,F ,P) be a probability space and let L0(Ω,F ,P) denote the space of

all random variables (i.e. all measurable functions) on this probability space.

A financial position X is an element of L0(Ω,F ,P) modeling an uncertain

payoff.

A risk measure is a function ρ : L0 → R (or sometimes ρ : L0 → R ∪

{+∞}) which defines a preference order on L0 allowing a decision-maker to choose

between any two given positions.

The traditional approach to measuring financial risks in economics is given

in terms of the theory of rational decision-maker preferences and expected util-

ity. Classical references are [30] and [48] where the behavior of market agents
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is described in terms of preference relations and the theory of von Neumann-

Morgenstern expected utility. In this thesis, we follow a more modern school of

thought that uses the notion of coherent risk measures as developed in modern

financial mathematics; see, e.g., [5].

Following [48], we introduce the concept of expected utility in an axiomatic

way. We start by defining the concept of preference relation for a rational decision

maker. Let B be a subset of L0. A rational decision maker preference relation �

is a binary relation over a choice set B if � fulfills the following conditions:

(1) Completeness. For every X, Y ∈ B either X � Y , X � Y or X ∼ Y

holds (where X ∼ Y means X � Y and X � Y hold simultaneously).

(2) Transitivity. For every X, Y, Z ∈ B such that X � Y and Y � Z, we

have X � Z.

(3) Independence. Let X,Y ∈ B be two positions such that X � Y and let

λ ∈ (0, 1]. For any position Z ∈ B we have λX+(1−λ)Z � λY +(1−λ)Z.

(4) Continuity. Let X, Y, Z ∈ B be three positions such that X � Y � Z.

Then, there exists a λ ∈ [0, 1] such that Y ∼ λX + (1− λ)Z.

A fundamental result is the celebrated von Neumann-Morgenstern formulation

of expected utility (see [48]).

Theorem 1.1.1. A preference relation � in B satisfying axioms (1)-(4) can

always be represented as follows

X � Y ⇐⇒ E[u(X)] ≤ E[u(Y )],∀X,Y ∈ L1 (1.1.1)

for some increasing concave function u : B → R.

This result defines a risk measure (better said preference measure) as a func-

tion on B through an utility function as follows

ρu : X 7→ −E[u(X)] , ∀X ∈ B .

These utility-based risk measures are not compatible with tools and notions

recently developed in the field of theoretical financial mathematics. In this chapter

we give a brief account of this modern theory of risk measures and we discuss

some of the main differences with respect to the expected utility approach. Basic

concepts from functional analysis and stochastic processes are presented.
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1.2. Technical Preliminaries

In this section we introduce the definitions, theorems and propositions that

we frequently use.

1.2.1. Dual Spaces

The following discussion is mostly taken from [2] and [44]. We start with the

following definition.

Definition 1.2.1. Let B be a vector space endowed with a topology. The space

B is a Topological Vector Space (TVS) if the addition of vectors and the multi-

plication by a scalar are continuous.

Let B and E be two TVS and suppose that 〈·, ·〉 : B × E → R is bilinear.

Definition 1.2.2. The weak topology on B induced by E is the coarsest topology

on B for which x 7→ 〈x, e〉 is continuous, for any e ∈ E. We denote this topology

by σ(B,E).

Let (Xλ)λ∈Λ be a net in B, where Λ is a directed set. The net (Xλ)λ∈Λ

converges to X in σ(B,E) if 〈Xλ, e〉 −→
λ
〈X, e〉 for all e ∈ E. We denote this

convergence with Xλ
σ(B,E)−−−−→

λ
X. Similarly one can define σ(E,B).

1.2.2. Banach Spaces

Let B be a linear space. A norm ‖·‖ on B is a function from B to R+ = [0,∞)

such that

(1) ∀X ∈ B , ‖X‖ = 0 iff X = 0.

(2) ∀X ∈ B , t ≥ 0 , ‖tX‖ = t‖X‖

(3) ∀X, Y ∈ B , ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖.

The linear spaceB is a normed space if its topology is induced by metric d(X, Y ) =

‖X − Y ‖.

Definition 1.2.3. A normed space (B, ‖ · ‖) is called a Banach space if it is

complete.

For any Banach space B (or (B, ‖ · ‖)) the space of all linear and continuous

functions from B to R is called the dual space and is denoted by B∗. The linear
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space B∗ is a Banach space with the following norm

‖f‖ = sup
X∈B, ‖X‖≤1

|f(X)|.

Definition 1.2.4. Let B be a Banach space. For any f ∈ B∗ and X ∈ B, one

defines the bilinear relation 〈X, f〉 = f(X).

Let B be a Banach space and B∗ its dual. The weak topology on B is the

topology σ(B,B∗). Also, the topology σ(B∗, B) on B∗ is called the weak-star

topology.

Let C be a subset of a linear space B. The set C is convex if λX+(1−λ)Y ∈

C , ∀X,Y ∈ C and λ ∈ [0, 1].

Theorem 1.2.1. Let B be a Banach space and let C be a convex subset of B.

The set C is closed in the norm topology if and only if it is closed in the weak

topology.

Theorem 1.2.2. Every bounded set in B∗ is relatively compact (i.e., its closure

is compact) with respect to the weak star topology.

Given a Banach space B, the bi-dual space B∗∗ (dual of dual) contains B by

the following embedding

X 7→ (X(V ) = 〈X,V 〉 , ∀V ∈ B∗).

Definition 1.2.5. A Banach space B is called reflexive if the previous embedding

is an automorphism.

Theorem 1.2.3. Any bounded set in a reflexive Banach space B is relatively

weak compact, i.e., relatively compact w.r.t the weak topology.

Let (Ω,F , µ) be a measure space (not necessarily a probability triple). In-

teresting examples of reflexive Banach spaces are the function spaces Lp(Ω), for

1 < p < ∞, defined as the space of all measurable functions X on Ω such that

‖X‖Lp = (
∫

Ω
|X|pdµ)

1
p is finite. Indeed, the linear space Lp(Ω) is a Banach space

equipped with the Lp norm.

A subset C of a linear space B is a cone if

∀X, Y ∈ C , λ ≥ 0 , X + Y ∈ C and λX ∈ C.
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1.2.3. Stochastic Processes

The following discussion is mostly taken from [34] and [51].

Let (Ω,F ,P) be a probability space which contains all null sets (i.e is com-

plete). The expectation E is a functional defined as E(X) =
∫

Ω
XdP on L1(Ω).

A random process X = X(t, ω) on [0, T ] is a function from Ω × [0, T ] to R

which is measurable with respect to the σ-field σ(F × B), where B is the Borel

sets on [0, T ]. We say that two random processes X and Y are indistinguishable

if the following set is a null set (of measure zero)

{ω|∃t ∈ [0, T ] , Xt(ω) 6= Yt(ω)} .

As X ≤ Y we mean that the following set is a null set

{ω|∃t ∈ [0, T ] , Xt(ω) > Yt(ω)}.

A càdlàg process X is a random process such that the set

{ω|t 7→ Xt(ω) is right continuous and left limited }

is of measure one.

Let {Ft}t∈[0,T ] be a family of increasing σ-fields contained in F . We say that

{Ft}t∈[0,T ] satisfies the usual conditions if F0 contains all null sets and {Ft}t∈[0,T ]

is right continuous, i.e.

∀s ∈ [0, T ) , ∩t>sFt = Fs.

A random process X is {Ft}t∈[0,T ]-adapted if for any t ∈ [0, T ], Xt is Ft mea-

surable.

A stopping time τ is a nonnegative random variable so that the set {τ ≤ t}

is Ft measurable for any t ∈ [0, T ]. For any stopping time τ and σ define the

following intervals

[τ, σ[= {(t, ω) ∈ [0, T ]× Ω|t < σ(ω), t ≥ τ(ω)},

]τ, σ] = {(t, ω) ∈ [0, T ]× Ω|t ≤ σ(ω), t > τ(ω)}.
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The other intervals are defined in a similar way. The σ-field generated by

{[τ, σ[ |τ, σ are a stopping time }

is denoted by O and is called the optional σ-field. The σ-field generated with

{]τ, σ] |τ, σ are a stopping time }

is denoted with P and is called the predictable σ-field.

Definition 1.2.6. A random process X is predictable if it is P-measurable and

X is optional if it is O-measurable.

The following result is a strong result which is called the Optional Projection

Theorem. For a proof, see [34].

Theorem 1.2.4. For any bounded and measurable random process X on [0, T ]×Ω

(not necessarily adapted) there exists a unique optional random process Y for

which for any stopping time τ we have

Yτ = E[Xτ |Fτ ].

We denote this unique random process Y by Πop(X).

Definition 1.2.7. A stopping time τ is called predictable if there exists a sequence

{τn}n=1,2,... of stopping times such that τn < τ and τn ↑ τ .

The following result is another strong result which is called the Predictable

Projection Theorem. For a proof, see [34].

Theorem 1.2.5. For any bounded and measurable random process X on [0, T ]×Ω

(not necessarily adapted) there exists a unique predictable random process Y for

which for any predictable stopping time τ we have

E[Yτ ] = E[Xτ ].

We denote this random process Y by Πpr(X).
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1.3. Coherent Risk Measure

The seminal paper [5] gave a mathematically rigorous construction of a risk

measure. Indeed, the authors introduced the concept of a coherent risk mea-

sure that implicitly defines a preference relation on a subset of L0 representing

uncertain payoff values of market financial positions.

Definition 1.3.1. Let K be a convex cone in L0 containing R (R as the space of

constant functions). A function ρ : K → R is a coherent risk measure if ρ is

(1) positive homogeneous, i.e. ρ(λX) = λρ(X) , ∀X ∈ K and λ ∈ (0,+∞).

(2) sub-additive, i.e. ρ(X + Y ) ≤ ρ(X) + ρ(Y ) , ∀X,Y ∈ K.

(3) translation invariant, i.e. ρ(X +m) = ρ(X)−m, ∀X ∈ K and m ∈ R.

(4) decreasing, i.e. ρ(X) ≤ ρ(Y ) , ∀X, Y ∈ K such that X ≥ Y almost surely.

If axioms (1) and (2) are replaced by

(2’) convexity, i.e. ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), ∀X,Y ∈ K and

λ ∈ [0, 1],

the risk measure ρ is called a convex risk measure. Note that (1) and (2) imply

(2′), so a coherent risk measure is a convex risk emasure.

This axiomatic definition is the cornerstone of a very rich theory that draws

its building blocks from functional analysis and has interesting economic inter-

pretation. The preference relation associated with each risk measure is defined

viz.

X �ρ Y ⇔ ρ(X) ≥ ρ(Y ) , ∀X, Y ∈ K. (1.3.1)

It is a straightforward exercise to see that �ρ is both transitive and complete.
1

This preference relation (although not rational!) gives economic interpreta-

tion:

• In economic terms, axiom (1) simply states that increasing exposure to a

risky position implies a proportional increase of the risk level. Interestingly

enough, this axiom in the definition of a coherent risk measure produces a

new preference relation that cannot be reproduced in the expected utility

1Moreover it is reflexive and therefore defines a total pre-order or weak ordering (see [4]).



16

approach (we will see this later). This preference relation is given by

X �ρ Y ⇔ λX �ρ λY , ∀λ > 0. (1.3.2)

• Axiom (2) reproduces the widely accepted notion that risk can be reduced

with diversification. In fact, this feature is also found in the expected

utility approach to risk due to the concavity of the utility function.

• Axiom (3) endows coherent risk measures with a cash-invariance feature.

This property produces a preference relation different from those in the

expected utility approach. In terms of preference relation the cash- in-

variance axiom is

X �ρ Y ⇔ X +m �ρ Y +m, ∀m ∈ R. (1.3.3)

As we will see, this axiom plays an important role in applications, partic-

ularly in the capital allocation problem.

• Finally, axiom (4) simply states that if the payoff of a financial position is

always larger than the payoff of second position then, the associated risk

measure preserves this order. In terms of preference relation this axiom

becomes

X ≤ Y ⇒ X �ρ Y. (1.3.4)

As for the alternative axiom (2’), this is less restrictive condition than (1) and

(2). Convex risk measures were first introduced and studied in [42]. Coherent

and convex risk measures form two distinct families that have been extensively

studied in the literature. These families constitute the modern approach to risk

measuring as introduced in financial mathematics.

In the field of financial mathematics, there are models that describe the be-

havior of financial positions not only as static random variables but as dynamic

stochastic processes. As a consequence, the notion of a risk measure has to be

adapted in order to continue to serve its purpose. This means that the space

of financial positions, K, in Definition 1.3.1 can be redefined according to our

modeling needs. For instance, it could be L2, L∞ or the space of bounded càdlàg

processes R∞. Other particular applications might call for more simple spaces,

for instance if we want to define risk measures for data sets then Rn would be a
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suitable space to work with. In each of the following chapters, it will be clearly

stated on what space we will be working as well as the difficulties and advantages

of doing so.

1.4. Robust Representation of a Coherent Risk Measure

In this section we state the main definitions and representation theorems for

coherent risk measures as well as the new concept of natural risk statistics.

Definition 1.4.1. A coherent risk measure ρ : L∞ → R is said to have the Fatou

property if for any bounded sequence Xn in L∞ (i.e., ∃c > 0, ‖Xn‖L∞ < c,∀n ∈ N)

converging in probability to X ∈ L∞, we have

ρ(X) ≤ lim inf ρ(Xn). (1.4.1)

If equality holds with lim (instead of lim inf) in (1.4.1) then ρ is said to have the

Lebesgue property.

1.4.1. Fenchel-Moreau Type Representation

The main results in the theory of coherent risk measures are representation

theorems characterizing the set of risk measures. In this first subsection, we give

a brief account of such results from a convex analysis perspective.

In convex analysis it is shown that convex functions, under some moderate

conditions ([36]), can be represented as a supremum of affine functions (Fenchel-

Moreau representation theorem). In the theory of risk measures, this yields the

following result from [33]. But first we need to make one point clear. In all

discussions in this thesis we identify a subset of absolutely continuous measures P

with the set of its Radon-Nikodym derivatives i.e. {f ∈ L1
+(Ω)|∃Q ∈ P , f = dQ

dP }.

Theorem 1.4.1. For a coherent risk measure ρ : L∞ → R the following are

equivalent

(1) ρ is a coherent risk measure with the Fatou property.

(2) There is a L1-closed set of probability measures P ⊆ L1 such that

ρ(X) = sup
Q∈P

EQ[−X]. (1.4.2)

(3) The set {X ∈ L∞|ρ(X) ≤ 0} is a weak star closed convex set.
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(4) ρ is a coherent risk measure which is continuous from above i.e. for any

bounded and decreasing sequence Xn converging to X, ρ(X) = lim ρ(Xn).

In the literature, we find another alternative way of characterizing coherent

risk measures and the information they provide in terms of acceptance sets. For

more details on these representations, we refer the reader to [33].

1.4.2. Natural Risk Statistics

Natural risk statistics, as defiend in [53], is an alternative to coherent risk

measures. This type of risk measure is defined on Rn, as the space of data with

length n. Before moving on further, note that in the definition of Natural risk

statistics, the argument of risk measure is “loss” instead of “profit” or “pay-off”.

Definition 1.4.2. A function ρ : Rn −→ R is a natural risk statistics if,

(1)

ρ(λX) = λρ(X), ∀X ∈ Rn ,∀λ ≥ 0.

(2)

ρ(X + c1) = ρ(X) + c, ∀X ∈ Rn, c ∈ R,

where 1 = (1, . . . , 1︸ ︷︷ ︸
n−times

).

(3)

ρ(X) ≤ ρ(Y ) ,∀X ≤ Y ,

where this inequality must be understood component wise.

(4) For any X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ Rn such that

(xi − xj)(yi − yj) ≥ 0

for all j 6= i, then

ρ(x1 + y1, . . . , xn + yn) ≤ ρ(x1, . . . , xn) + ρ(y1, . . . , yn).

(5)

ρ(X) = ρ(X ij) ,

for all X ∈ Rn and all i, j > 0. Here the sequence X ij is the element

in Rn which is equal component wise to X except for the i-th and j-th

component which are interchanged.
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We discuss these risk measures in more detail in Chapter 3. At this stage,

we simply point out that the main difference with coherent risk measures lies in

axiom (4). In the definition of natural risk statistics, the sub-additivity feature

has been replaced by a slightly more restrictive one. As we will see later, that is

all is needed to introduce the statistical concept of robustness into the discussion.

1.5. Comparison with the Expected Utility Approach

In this section we compare the classical approach using expected utility and

the modern concept of coherent risk measure.

Let ρ be a coherent risk measure defined on a cone K ⊆ L0. We say that Y

is preferred to X, denoted X �ρ Y , if ρ(X) ≥ ρ(Y ) for X, Y ∈ K. Alternatively,

given an expected utility U : K → R through U(X) = E[u(X)], this function

produces a preference relation as follows: X �U Y if U(X) ≤ U(Y ) for any

X, Y ∈ K.

It is a straightforward exercise to show that for any coherent risk measure

ρ, the preference relation �ρ is reflexive, complete, transitive and continuous.

However, �ρ is not an independent relation in general, i.e., if X �ρ Y for all

t ∈ (0, 1] and Z we have that tX + (1− t)Z �ρ tY + (1− t)Z. That is important

since independence is one of the most important properties of a preference relation

based on an Expected Utility. Indeed, it can be shown that it is independent only

if ρ is linear. In order to see that, note that because of the positive homogeneity of

ρ, the independence feature of this preference relation reduces to X+Z �ρ Y +Z

for all X �ρ Y and Z. That is to say, if ρ(X) ≤ ρ(Y ), then ρ(X+Z) ≤ ρ(Y +Z)

for all Z. Letting Z = −X, we get that ρ(X) ≤ ρ(Y ) if and only if ρ(Y −X) ≥ 0.

In the same way, letting Z = −Y we get that ρ(X) ≤ ρ(Y ) if and only if

ρ(X − Y ) ≤ 0. These two relations imply that ρ(X) = ρ(Y ) if and only if

ρ(X − Y ) = ρ(Y − X) = 0. Since ρ(X − Y + ρ(X − Y )) = 0, we have that

ρ(X) = ρ(Y )+ρ(X−Y ). If we let now Y = −X, we have ρ(X) = ρ(−X)+ρ(2X),

which implies ρ(X) = −ρ(X). Finally, by the Fenchel-Moreau representation

(1.4.2) of ρ, that is possible only if ρ(X) = EQ[−X] for a given Q.
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This implies that the only function which is a coherent risk measure and

for which the associated preference relation is that of a rational decision maker

is ρ : X 7→ E[−X]. This is one of the major differences between these two

approaches to risk.

In the approach to risk using expected utility, one key idea is the modeling of

the risk averseness of individuals via a utility function u : R → R. The function

u is an increasing and concave function which shows the tendency to the larger

payoffs while the rate of risk taking is restricted by the concavity of u. It turns

out that if we want to have a risk measure-based rational preference, then the

only choice for the utility function is the identity which corresponds to that of a

risk neutral decision maker.

Under these considerations, it is clear that a coherent risk measure is not

representing the risk averseness of individuals since it is equivalent to a risk-

neutral utility function. However, by looking at the representation (1.4.2) of

a coherent risk measure, one can see that what seems to matter to a decision

maker is the uncertainty (ambiguity) surrounding the different scenarios in future

events. This ambiguity is represented by the set of equivalent measures in the

representation (1.4.2). This is what we call uncertainty or ambiguity aversion.

1.6. Some Aspects of Coherent Risk Measures

There are several financial problems that have been revisited with the concept

of a coherent risk measure in the past few years. For instance, portfolio choice

and asset allocation problems have been discussed in [60] and [54]. Applications

of risk measures to the problem of capital allocation can be found in [35], while

applications in optimal investment with convex risk measures are discussed in

[61]. The problem of pricing and hedging in incomplete markets has also been

the subject of interesting applications of risk measures like those in [41], [57], [62].

We find large amounts of theoretical and practical research that revolve around

the definition and representation of coherent risk measures. Some generalizations

have been necessary as different models for financial positions are required. Gen-

eralizing the theory of coherent risk measures to different spaces is an ongoing
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effort and at least two of the contributions of this thesis are in that direction. In

Chapter 2, we extend some existing results for coherent risk measures defined on

the space of càdlàg processes to convex risk measures. In this setting, financial

position are modeled dynamically by a stochastic process for which a risk mea-

sure is needed. In Chapter 3, we explore the case of risk measures defined on the

space of infinite data vectors l∞. In that setting, risk positions are modeled by

data sets available to a risk manager who must assess their associated risk. On

the other hand, Chapter 4 discusses risk measures in the more classical space of

Lp(Ω), 1 ≤ p ≤ ∞, representing the payoff of a given financial position. The

main contribution lies in the study and characterization of pathological positions

called Good Deals.

Overall, this thesis is about some aspects of the applications of risk measures,

namely,

(1) capital allocation,

(2) risk measurement,

(3) capital requirement and solvency.





Chapter 2

LEBESGUE PROPERTY OF RISK MEASURES

FOR BOUNDED CÀDLÀG PROCESSES AND

APPLICATIONS

Résumé

Dans cet article, nous étudions la propriété dite de Lebesgue pour des mesures

convexes de risque sur un sous-ensemble de processus càdlàg. Nous généralisons

les travaux de [32] et [50]. Pour cela, nous caractérisons les sous-ensembles com-

pacts d’une famille de processus à variation bornée qui est le dual topologique des

processus càdlàg, bien entendu, dans une topologie appropriée. Nous montrons

que la propriété de Lebesgue peut être caractérisée de plusieurs façons équiva-

lentes. Finalement, nous présentons des applications en évaluation de risque et

en répartition de capital.

Abstract

In this paper, we study the so-called Lebesgue property for convex risk measures

for a class of càdlàg processes. Our results extend previous work of [32] and [50].

We characterize the compact subsets of a family of the space of bounded variation

processes which is the topological dual of the càdlàg processes, of course, in an

appropriate topology. We show that the Lebesgue property can be characterized

in several equivalent ways. Applications to risk assessment and allocation of risk
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capital are presented.

2.1. Introduction

Coherent risk measures for finite probability spaces were introduced in [5]

and were extended to general probability spaces in [33], where applications to

risk measurement, premium calculation and capital allocation problems were dis-

cussed. In [42] the authors defined a more general notion of convex risk measures,

and the representation results of [33] are extended. In [21, 22], the authors studied

risk measures for stochastic processes, instead considering only random variables.

As can be seen in [32], the key concept for obtaining representations of a

convex risk measure is the so-called Fatou property. This property is an or-

der continuity for decreasing sequences in an appropriate space. The Lebesgue

property is a stronger concept. In an appropriate space, it is related to a conti-

nuity property for uniformly bounded sequences, allowing for approximations of

risk measures. It is also an order continuity for increasing sequences somehow

completing its counterpart, the Fatou porperty. In the context of coherent risk

measures for random variables, the Lebesgue property was studied in [33], while

it was studied for convex risk measures on the space of random variables in [50].

In this paper we extend the definition of the Lebesgue property to the space

of bounded càdlàg processes. We characterize the risk measures with Lebesgue

property in several equivalent ways. Our main goal is to find equivalent conditions

for the Lebesgue property in terms of conditions that can be readily verified.

Having conditions that can be verified easily allows us to identify this property

for complicated, but also interesting, convex risk measures. We consider two

applications of our results in this paper. The first application follows directly from

the definition of the Lebesgue property itself, which allows us to approximate a

convex risk measure of a bounded càdlàg process X with the risk associated to an

uniformly bounded sequence Xn converging to X. This is important when we deal

with a time discretization of a finite time horizon. This type of approximation can

be carried out using the Fatou property only if the approximating processes are a
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decreasing sequence which cannot always be carried out with time discretization.

Now, having a Lebesgue property, we only need a uniformly bounded sequence

of approximating processes. This is going to be discussed in Section 2.4 where

we present a first round of examples. The second application is the use of the

Lebesgue property in the capital allocation problem. In Theorems 2.5.2 and 2.5.3

we will show why the Lebesgue property is needed to have a fair allocation of

risk capital. Then, we illustrate with a second round of examples how we can use

our results to give an allocation.

It is also important to mention that one interesting contribution of this paper

is the introduction of a Cumulative-Stopping risk measure. The use of such a

measure is illustrated in an insurance application using an α-stable model.

The paper is organized as follows. In Section 2, we recall basic definitions

and results for convex risk measures of random variables and for a class of càdlàg

processes. In particular, we state two results, one related to the Fatou property for

risk measures on the spaces of bounded càdlàg processes, and another one related

to the Lebesgue property for risk measures on the space of bounded random

variables. The theoretical results of the paper are presented in Section 3. In

particular, we characterize relatively compact subsets of a given dual space and

we characterize the Lebesgue property. Furthermore, we present an extended

version of James’ Theorem. In Section 4, we give some examples of risk measures

with Lebesgue property. In Section 5 applications in capital allocation problem

will be discussed. The proof of the theoretical results are given in the Appendix.

2.2. Preliminaries and Remarks

Let (Ω,F ,P) be a standard and atom-less probability space and let (Ft)0≤t≤T

be a filtration with the usual conditions. Furthermore, assume that L1(Ω,F) has

a countable dense subset.

In [21, 22] the authors developed the theory of convex risk measures on the

space of Rp consisting of stochastic processes on [0, T ] that are càdlàg, adapted

and such thatX∗ = sup
[0,T ]

|Xt| ∈ Lp, with 1 ≤ p ≤ ∞. Note that for any 1 ≤ p ≤ ∞,

Rp, endowed with the norm ‖X‖Rp = ‖X∗‖Lp , is a Banach space.
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For q ∈ [1,∞], let Aq be the set of all a = (apr, aop) : [0, T ]×Ω → R2 such that

apr and aop are right continuous, have finite variation in Lq, apr is predictable,

and apr
0 = 0, aop is optional and purely discontinuous.

Denoting the variation of a function f : [0, T ] → R by Var(f), it follows that

Aq is also a Banach space, when equipped with the norm ‖a‖Aq = ‖Var(a)‖Lq .

Furthermore, if p and q satisfy 1
p

+ 1
q

= 1, there is a duality relation between Aq

and Rp,

〈X, a〉 = E

[∫
]0,T ]

Xt−da
pr
t +

∫
[0,T ]

Xtda
op
t

]
, (X, a) ∈ Rp ×Aq. (2.2.1)

Note that

|〈X, a〉| ≤ ‖X‖Rp‖a‖Aq .

The subset Aq
+ of Aq consisting of a = (apr, aop) with both components non-

negative and non-decreasing, will be important in the sequel.

Further, let Dσ be the unit ball of A1
+, i.e., the subset of a ∈ A1

+ such that

‖a‖A1 = E (apr
T + aop

T − aop
0 ) = 1.

We are now in a position to recall some important definitions.

Definition 2.2.1. A convex risk measure ρ on Rp is a function from Rp → R

such that for any X,W ∈ Rp:

(1) ρ(λX + (1− λ)W ) ≤ λρ(X) + (1− λ)ρ(W ), for all 0 ≤ λ ≤ 1.

(2) ρ(X +m) = ρ(X)−m, for any m ∈ R.

(3) ρ(X) ≥ ρ(W ), whenever X ≤ W .

ρ is called a coherent risk measure if in addition

(4) ρ(λX) = λρ(X) for any λ > 0.

In [21], the authors propose the following definition for the Fatou property for

a convex risk measure on R∞.

Definition 2.2.2. A convex risk measure ρ on R∞ has Fatou property if for

any bounded sequence {Xn}n∈N ⊆ R∞, for which there exists X ∈ R∞ so that

(Xn −X)∗
P−→ 0, we have ρ(X) ≤ lim inf ρ(Xn).
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The following characterization of the Fatou property for convex risk measures

is taken from [21]. Recall that γ is a penalty function if γ : Dσ → (−∞,+∞] is

such that −∞ < inf
a∈Dσ

γ(a) <∞.

Theorem 2.2.1. Let ρ be a mapping from R∞ to R. Then the following state-

ments are equivalent.

1-

ρ(X) = sup
a∈Dσ

{
〈−X, a〉 − γ(a)

}
, X ∈ R∞, (2.2.2)

for some penalty function γ.

2- ρ is a convex risk measure on R∞ such that
{
X ∈ R∞|ρ(X) ≤ 0

}
is

σ(R∞,A1)-closed.

3- ρ is a convex risk measure on R∞ with the Fatou property.

4- ρ is a convex risk measure on R∞ which is continuous for bounded de-

creasing sequences.

Moreover, in each case, the conjugate function ρ∗, restricted to Dσ, and defined

by

ρ∗(a) = sup
X∈R∞

{〈−X, a〉 − ρ(X)} ,

is a penalty function which is smaller than γ and γ can be replaced by ρ∗ in

(2.2.2).

Remark 2.2.1. As mentioned in [21], ρ∗ restricted to Dσ equals ρ# defined as

follows:

ρ#(X) := sup
a∈Aρ

〈−X, a〉,

where Aρ := {X ∈ R∞ | ρ(X) ≤ 0} is the acceptance set of ρ. This implies that

ρ(X) = sup
a∈Dσ

{
〈−X, a〉 − ρ#(a)

}
, X ∈ R∞. (2.2.3)

The following corollary is also taken from [21].

Corollary 2.2.1. A coherent risk measure ρ on R∞ has Fatou property if and

only if there exists a subset Q of Dσ such that

ρ(X) = sup
a∈Q

〈−X, a〉. (2.2.4)
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In general Q is not unique. An appropriate choice for Q is dom(ρ∗) ∩ A1
+ =

{a ∈ A1
+ | ρ∗(a) = 0}. In fact, due to positive homogeneity, one ends up with

ρ∗(a) = λρ∗(a) for any λ > 0, showing that ρ∗(a) ∈ {0,+∞}.

Next, the Lebesgue property for risk measures on L∞ was studied in [50],

where the authors propose the following definition for Lebesgue property:

Definition 2.2.3. A convex risk measure ρ on L∞ has Lebesgue property if for

any bounded sequence {Yn}n∈N ⊆ L∞ converging to Y ∈ L∞ in probability, we

have ρ(Y ) = lim ρ(Yn).

Remark 2.2.2. Notice that our definition is weaker because we use convergence

in probability, whereas in [50] they use a.s. convergence in their definition of

the Lebesgue property. We choose to use convergence in probability because this

is important for our purpose. In fact, in [50] almost sure convergence could

be replaced with convergence in probability. Indeed, all they need to derive their

results is the fact that for any uniformly bounded sequence of random variables Yn

converging a.s. to Y and any uniformly integrable set C we have lim
n→∞

inf
f∈C

E[Ynf ] =

inf
f∈C

E[Y f ]. The latter is also true if the convergence of Yn is in probability instead

of a.s. We refer to the proof of Theorem 3.6 in [32] for a thorough discussion.

We extend the definition of the Lebesgue property to convex risk measures on

R∞ as follows.

Definition 2.2.4. A convex risk measure ρ on R∞ has Lebesgue property if for

any bounded sequence {Xn}n∈N ⊆ R∞, for which there exists X ∈ R∞ so that

(Xn −X)∗
P−→ 0, we have ρ(X) = lim ρ(Xn).

Before giving the characterization theorem of convex risk measures with Lebesgue

property we would like to recall that every convex risk measure ρ on L∞ which

has Fatou property can be represented as

ρ(Y ) = sup
f∈L1

{E[−fY ]− ρ∗(f)}. (2.2.5)

By translation-invariance it turns out that

ρ(Y ) = sup
f∈Dσ

{E[−fY ]− ρ∗(f)}, (2.2.6)
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where Dσ := {f ∈ L1
+ |E[f ] = 1} and ρ∗ is the conjugate function on L1. Also

it is pointed out in [42] that

ρ#(f) := sup
Y ∈Aρ

E[−fY ] = ρ∗(f) , ∀f ∈ Dσ, (2.2.7)

where Aρ = {Y ∈ L∞ | ρ(Y ) ≤ 0}.

The following result, proved in [50], is a characterization of convex risk mea-

sures on L∞ with Lebesgue property.

Theorem 2.2.2. Let ρ be a convex risk measure on L∞ with Fatou property. The

following conditions are equivalent.

1- ρ has Lebesgue property.

2-
{
f ∈ L1

+|ρ∗(f) ≤ c
}

is a σ(L1, L∞)-compact subset of L1 for every c ∈ R.

3- dom(ρ∗) = {ρ∗ <∞} ⊆ L1.

4- In the representation (2.2.5) the maximum is attained.

Remark 2.2.3. Following the same proof of Theorem 2.4 in [50] one can deduce

that all expressions in the last theorem are equivalent to the following conditions.

5-
{
f ∈ Dσ|ρ#(f) ≤ c

}
is a σ(L1, L∞)-compact subset of L1 for every c ∈ R.

6- In the representation (2.2.6) the maximum is attained.

We are now justified in extending the definition of the Lebesgue property to

Rp for 1 ≤ p <∞ as follows.

Definition 2.2.5. A convex risk measure ρ on Rp, 1 ≤ p < ∞, has Lebesgue

property if the set {a ∈ Aq : ρ∗(a) ≤ c} is σ(Aq,Rp)-compact, where

ρ∗(a) = sup
X∈Rp

{〈X, a〉 − ρ(X)} , a ∈ Aq.

Remark 2.2.4. We will see in the next section, Proposition 2.3.1, that as long

as ρ has a representation like 2.2.2 (with Aq ∩ Dσ instead of Dσ) then for the

case 1 ≤ p < ∞, ρ always has Lebesgue property. Theorem 2.3.2 shows that for

the case p = ∞, ρ has Lebesgue property iff {a ∈ A1 : ρ∗(a) ≤ c} is σ(A1,R∞)-

compact, which shows that definition 2.2.5 could also be extended for p = ∞.

Before giving the theoretical results of the paper we should give some expla-

nations and remarks which will be used in next discussions.
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Define

R̂p =

X : [0, T ]× Ω → R

∣∣∣∣∣∣ X is càdlàg

X∗ ∈ Lp

 , (2.2.8)

and

Âq =


a : [0, T ]× Ω → R2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a = (al, ar), al
0 = 0

al, ar measurable

finite variation

and right continuous

Var(al) + Var(ar) ∈ Lq


. (2.2.9)

Furthermore, extend the duality relation (2.2.1) by setting

〈X, a〉 = E

[∫
]0,T ]

Xt−da
l
t +

∫
[0,T ]

Xtda
r
t

]
, (X, a) ∈ R̂p × Âq. (2.2.10)

Remark 2.2.5. By Theorems 65, 67 of section VII, [34], when p 6= ∞, the set

Âq is the dual of R̂p. More precisely, when 1 < p <∞, Aq is the topological dual

of Rp, for any filtration (Ft)t∈[0,T ]. For the case p = 1 and q = ∞, this happens

only if Ft is constant and equals F for all t ∈ [0, T ]. In general, for p = ∞ the

equality (R∞)∗ = A1 does not hold, even if Ft = F for all t ∈ [0, T ]. This makes

the case p = ∞ more difficult since it requires the use of more techniques and

methods from functional analysis and the general theory of stochastic processes.

Remark 2.2.6. Denote with Πop,Πpr the optional and predictable projections as

well as with Π̃op and Π̃pr the dual optional and predictable projections. See, e.g.,

[34], [51] or [21]. For a = (al, ar) ∈ Âq, let ãl = Π̃pr(al) and ãr = Π̃op(ar). One

can split ãr uniquely into a purely discontinuous finite variation part ãr
d and a

continuous finite variation part ãr
c with ãr

c(0) = 0. Since ãr
c is predictable, one

can define a map Π∗ from Âq to Aq by

Π∗a := (ãl + ãr
c, ã

r
d).

Every predictable process is also optional, so ãl, ãr
c, ã

r
d are all optional. It follows

from [21] that

〈X, a〉 = 〈X,Π∗(a)〉, (X, a) ∈ Rp × Âq. (2.2.11)
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Remark 2.2.7. (2.2.11) implies that

Π∗ : (Âq, σ(Âq, R̂p)) → (Aq, σ(Aq,Rp))

is continuous.

Remark 2.2.8. Since any predictable process is optional, it follows from Theorem

2.1.53 [51], that for any a ∈ Aq, the measure µa(A) = 〈1A, a〉 is optional and then

we have 〈X, a〉 = 〈Πop(X), a〉. That, together with (2.2.11), yields

〈Πop(X), a〉 = 〈Πop(X),Π∗(a)〉 = 〈X,Π∗(a)〉, (X, a) ∈ R̂p × Âq. (2.2.12)

Remark 2.2.9. Let Y ∈ Lp(Ω,F) be a random variable. By Doob’s Stopping

Theorem it is easy to see that the optional projection of a constant random process

Xt = Y , ∀t ∈ [0, T ] is the martingale Mt := E[Y |Ft]. Using (2.2.12), it follows

that for every Y ∈ Lp and every a = (al, ar) ∈ Âq which is also adapted, one has

E
[
(al

T + ar
T − ar

0)Y
]

= 〈X, a〉 = 〈M,a〉 . (2.2.13)

Definition 2.2.6. To every convex risk measure ρ on Rp, one associates a convex

risk measure on Lp, called the static risk,

ρ̄(Y ) := ρ

(
E
[
Y
∣∣Ft

]
0≤t≤T

)
, Y ∈ Lp,

and a static minimal penalty,

ρ#(f) := inf
{a∈Dσ |Var(a)=f}

ρ#(a), f ∈ Dσ.

Now we have the following theorem, which will be proven in the Appendix.

Theorem 2.2.3. For every risk measure ρ : Rp → R the static minimal penalty

equals the minimal static penalty i.e.

ρ# = (ρ̄)#.

Remark 2.2.10. By Corollary 2.2.1, every coherent risk measure ρ on R∞ with

the Fatou property, can be identified with a subset Q of Dσ. Let P = Var(Q) :=

{Var(a) : a ∈ Q}. By relation (2.2.13) it is easy to see that for all Y ∈ L∞,

ρ̄(Y ) = sup
f∈P

E
[
− fY

]
. (2.2.14)
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2.3. Theoretical Results

We will now state our theoretical results. Their proofs are given in the Ap-

pendix.

In [50] it is shown that having the Lebesgue property for a convex risk measure

with the Fatou property is equivalent to the weak compactness of lower contour

sets of the conjugate function. In their proof, the author of [50] use the fact

that for any uniformly integrable set P ⊆ L1 and uniformly bounded sequence

Yn converging in probability to Y we have:

sup
f∈P

E
[
Ynf

]
→ sup

f∈P
E
[
Y f
]
. (2.3.1)

In order to extend the Lebesgue property to bounded càdlàg process risk mea-

sures, we need to find an analog of (2.3.1) for the space of bounded càdlàg pro-

cesses. Uniform integrability is relative compactness in the weak topology for

L1, so we could use the σ(A1,R∞) relatively compact set of A1 instead. Here

it is worthwhile to mention that the Dunford-Pettis Theorem, which has the

same spirit, states that for any two sequences fn in L1 and Yn in the dual space

L∞, converging weakly to f, Y respectively, the sequence E[fnYn] converges to

E[fY ]. Therefore, knowing the σ(A1,R∞)-compact subsets of A1 would allow

us to characterize the Lebesgue property for convex risk measures on R∞. This

characterization, when restricted to L∞, yields the characterization in [50]. This

can be carried out with the embedding i : L∞ → R∞ defined as i(Y ) = 1[T ]Y . On

the other hand, we find that the compactness of a set Q in the topology σ(A1,R∞)

is related to the compactness of Var(Q), the variation of Q.

In this section we start by characterizing compact subsets of Aq with respect

to the compact subsets of Lq. The first result is used to characterize compact sets

of Aq. This will be useful in applications.

Theorem 2.3.1. Let 1 ≤ p, q ≤ ∞ be such that 1
p

+ 1
q

= 1, and suppose that

Q ⊂ Aq. The following conditions are equivalent:
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(C1) Q is relatively compact in σ(Aq,Rp).

(C2) Var(Q) is relatively compact in σ(Lq, Lp).

Furthermore, when p = ∞, (C1) and (C2) are equivalent to

(C3) Q is bounded and for all ε > 0 there exists η > 0 such that for all X ∈ R∞

bounded by 1 and with E[X∗] ≤ η, we have

sup
a∈Q

〈|X|, a〉 < ε. (2.3.2)

The following corollary is an immediate consequence of Theorem 2.3.1.

Corollary 2.3.1. Q ⊆ A1 is σ(A1,R∞)− relatively compact if and only if Var(Q)

is uniformly integrable.

In the following discussions we consider that the risk measures always have a

robust representation such as (2.2.2) with Dσ ∩ Aq instead of Dσ. By Theorem

2.2.1 for the case p = ∞, it is equivalent to assume that the convex risk measures

have the Fatou property.

Proposition 2.3.1. For 1 ≤ p < ∞, every convex risk measure ρ : Rp → R

having representation (2.2.2) also has the Lebesgue property.

When p = ∞, we have the following result.

Theorem 2.3.2. Let ρ : R∞ → R be a convex risk measure with Fatou property.

Then the following are equivalent:

(L1) ρ has Lebesgue property.

(L2) For all c ∈ R, {a ∈ A1; ρ∗(a) ≤ c} is relatively compact in σ(A1,R∞).

(L3) For all c ∈ R, {a ∈ Dσ; ρ#(a) ≤ c} is relatively compact in σ(A1,R∞).

(L4) ρ always attains its maximum in (2.2.3) .
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(L5) ρ̄ has Lebesgue property.

(L6) For all c ∈ R, {f ∈ L1; (ρ̄)∗(f) ≤ c} is relatively compact in σ(L1, L∞).

(L7) For all c ∈ R, {f ∈ Dσ; (ρ̄)#(f) ≤ c} is relatively compact in σ(L1, L∞).

(L8) ρ̄ always attains its maximum in (2.2.6).

We complete the section by stating a result which is a form of James’ Theorem

for the duality (Aq,Rp). Indeed, for the case 1 < p <∞ one can immediately see,

by Remark 2.2.5, that the Theorem 2.3.3 is a form of James’ Theorem. As for the

case p = 1, it can be easily seen that Theorem 2.3.3 holds by direct application of

the James’ Theorem on duality (R̂∞, Â1) and using the continuity of Π∗ (Remark

2.2.7). What is not immediate and needs some justifications is the case p = ∞,

which will be proven in the Appendix.

Theorem 2.3.3 (James’ Theorem for (Aq,Rp)). Let Q ⊆ Aq
+ be a convex,

σ(Aq,Rp)-closed subset of Aq. The set Q is compact in σ(Aq,Rp) if and only if

for each member X ∈ Rp it attains its supremum on Q.

2.4. Examples of Risk Measures with Lebesgue Property

In this section we present the first series of examples. In the sequel we will

see how our results can help to figure out whether a convex risk measure has the

Lebesgue property or not.

Before giving examples, we show how the Lebesgue property can be used in

order to approximate the risk. Let X be a random process in R∞. A natural

way of approximating this process within a time discretization is to construct the

following sequence

Xn =
2n−1∑
i=0

1[ i
2n T, i+1

2n T )X i
2n T +XT . (2.4.1)

It is clear that since X is a càdlàg process, (Xn −X)∗ converges to zero in prob-

ability. Now, for a convex risk measure ρ with Lebesgue property we have that

ρ(Xn) → ρ(X). This is no longer true if we only know that the risk measure
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has the Fatou property. Actually having the Fatou property, we can only say that

ρ(Xn) converges to ρ(X) if Xn decreases to X. On the other hand, as a decreasing

sequence, we cannot choose

X ′
n =

2n−1∑
i=0

1[ i
2n T, i+1

2n T ) sup
[ i
2n T, i+1

2n T )

Xt +XT , (2.4.2)

which is no longer adapted. As one can see, the Lebesgue property is a very

strong assumption in approximating risk. In what follows, interestingly we will

see that many important examples have the Lebesgue property which enables us to

approximate.

In the following discussions, the first two examples are taken from [22]. The

third one is the Snell envelope of a random process which is used in pricing

an American option. In the fourth example we introduce for the first time a

Cumulative-Stopping risk measure. This risk measure, besides having a very nat-

ural structure, provides us an exact formula for allocation when we deal with an

α-stable random process.

In the sequel Pσ is a subset of Dσ ∩ Lq for 1 ≤ q ≤ ∞. The coherent risk

measure ρσ is defined on Lp as follows

ρσ(X) := sup
f∈Pσ

E
[
− fX

]
. (2.4.3)

Example 2.4.1. Let Θ be a set of stopping times and ρ be defined as follows

ρ(Y ) = sup
a∈QΘ

〈−Y, a〉, (2.4.4)

where QΘ =

{(
0,E[f |Fθ]1t≥θ

)∣∣∣∣f ∈ Pσ, θ ∈ Θ

}
.

For example, Θ can be a ruin time or the time that insurance surplus hits a

specific barrier (see for instance [6]). Also, Θ can be the set of exercising times

of an American option.

It is easy to see that

ρ(X) = sup
θ∈Θ

ρσ(Xθ) , ∀X ∈ Rp.
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By (2.2.12) and Remark 2.2.10, the static risk is calculated as

ρ̄(Y ) = sup
a∈Q

〈−(E[Y |Ft])t∈[0,T ], a〉

= sup
f∈Pσ ,θ∈Θ

E
[
E[−Y |Fθ]f

]
= sup

f∈Pσ ,θ∈Θ
E
[
− Y E[f |Fθ]

]
.

According to Theorem 2.2.2, when p = ∞, ρ̄ has Lebesgue property iff{
E[f |Fθ]

∣∣∣∣θ ∈ Θ , f ∈ Pσ

}
is uniformly integrable. Therefore, by Theorem 2.3.2, ρ has Lebesgue property iff

the above set is uniformly integrable. In particular, it has Lebesgue property when

Pσ is uniformly integrable. In other words, ρ has Lebesgue property if ρσ does.

Example 2.4.2. For any random variable f ∈ Pσ ⊆ Dσ ∩ Lq (for some 1 ≤ q ≤

∞) and stopping time θ ∈ Θ, define the random process fθ as follows:

fθ(t) =


t
θ
E[f |Ft] t ≤ θ,

E[f |Fθ] otherwise.

(2.4.5)

Then, on Rp , let

ρ(X) = sup
a∈Q

〈−X, a〉,

where Q =

{
(fθ, 0)

∣∣∣∣f ∈ Pσ , θ ∈ Θ

}
. It is easy to see that

ρ(X) = sup
θ∈Θ

ρσ

(
1

θ

∫ θ

0

Xtdt

)
,

Var(Q) =

{
E[f |Fθ]

∣∣∣∣ f ∈ Pσ , θ ∈ Θ

}
,

ρ̄(Y ) = sup
f∈Pσ , θ∈Θ

E
[
− Y E[f |Fθ]

]
, for Y ∈ Lp.

By part (C2) of Theorem 2.3.1 and (L3) of Theorem 2.3.2, ρ has Lebesgue prop-

erty iff

Var(Q) =

{
E[f |Fθ]

∣∣∣∣ f ∈ Pσ , θ ∈ Θ

}
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is uniformly integrable when p = ∞. Also it has Lebesgue property if Pσ is

uniformly integrable

Example 2.4.3 (Snell Envelope and American Option Price Stability). Let X ∈

R∞ and S ≤ T be a stopping time. Let

ΘS =
{
θ ≥ S

∣∣θ is [0, T ]-value stopping time
}
.

Set

ρS(X) = ess sup
a∈QS

〈−X, a〉

= ess sup

{
E
[
−Xθ

∣∣FS]

∣∣∣∣θ ∈ ΘS

}
.

The process ρt(X) is the smallest super-martingale larger than −X which is called

the Snell envelope of −X, see, e.g., [22].

Now for any measurable set A ∈ FS define

ρA
S (X) = E

[
ρ

S
(X)1

A

]
. (2.4.6)

It is exactly equivalent to put Pσ =
{

1
P(A)

1A

}
and Θ = ΘS in Example 1. From

Example 1 we know that ρA
S has the Lebesgue property. Since the choice of A ∈ FS

is arbitrary, then by (2.4.6), we have that for each stopping time S the Snell

envelope ρS(X) is continuous in the weak star topology. In particular, setting

ρt = ρΩ
t , then ρt(Xn) → ρt(X) when (Xn − X)∗ → 0. This shows how one

can approximate the price of an American option in continuous time by time

discretization.

Example 2.4.4 (Cumulative-Stopping Risk). Let ρσ be a risk measure on Lp.

A natural way to assess the risk of a random process is the average of the risk

over the time interval, i.e. 1
T

∫ T

0
ρσ(Xs)ds. On the other hand, let us suppose

that there exists a stopping time (or a general random time) which shows some

crucial moments, important for the risk user. Then a way to measure the risk of

a random process X in Rp is to calculate

ρ(X) =

∫ T

0

ρσ(Xs)fθ(s)ds, (2.4.7)

where fθ is the density function of θ. This new convex risk measure is called the

Cumulative-Stopping risk.
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In fact, for any measure µ on [0, T ],∫ T

0

ρσ(Xs)µ(ds)

will work and it is a mixture risk measure.

It is not very difficult to see that when the risk measure ρσ is σ(Lp, Lq)-lower

semi-continuous then ρ is also lower semi-continuous. It means that when ρσ

has a representation like (2.2.6) then ρ has a representation like (2.2.2) (with

Dσ ∩ Aq instead of Dσ). On the other hand, when p = ∞, the convex risk ρ has

the Lebesgue property iff ρσ does. Actually this follows from part (L5) of Theorem

2.3.2.

2.5. Applications to the Capital Allocation Problem

In this section, we give an application of Theorem 2.3.2 to allocation of risk

capital. This problem for one-period coherent risk measures was discussed in

[33], where the weak star sub-gradient of a coherent risk measure was defined. It

was shown that the existence of a solution for the capital allocation problem is

equivalent to having a nonempty sub-gradient. James’ Theorem played a key role

in showing that the weak sub-gradient is not empty. In our setting, Theorem 2.3.3

plays almost the same role. The same allocation problem for dynamic coherent

risk measures for discrete times was studied in [24]. For coherent allocation of

risk capital, see [35] and the references therein.

We begin by recalling the definition of capital allocation. For more details see

[32], [11] and [17].

In general, let X1, ..., XN be N random processes in Rp representing N fi-

nancial positions, for example, the values of N departments of a firm. The total

capital required to face the risk of X1 + · · · + XN is ρ(
N∑

i=1

Xi) = k. We want to

find a “fair” allocation (k1, . . . , kN) so that k1 + · · ·+ kN = k.

Definition 2.5.1. An allocation (k1, . . . , kN) with k = k1+· · ·+kN is called fair in

fuzzy game approach (simply an allocation) if for all αj , j = 1, . . . , N, 0 ≤ αj ≤ 1
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we have ∑
j

αjkj ≤ ρ

(∑
j

αjXj

)
.

Before moving on with our discussion we define the weak sub-gradient.

Definition 2.5.2. For a function ρ : Rp → R, the weak sub-gradient (in this

article simply sub-gradient) of ρ at X is defined by

5ρ(X) := {a ∈ Aq|ρ(X +W ) ≥ ρ(X) + 〈W, a〉, ∀W ∈ Rp}. (2.5.1)

When p = ∞ this set can be empty but for p 6= ∞ this set is always nonempty

[59, Proposition 3.1].

We have the following extension of Theorem 17, Section 8.2 [32] without proof.

Actually if one looks at the proof of Theorem 17, Section 8.2 [32], every part of

the proof can be stated with X as a random process instead of random variable.

Theorem 2.5.1. Let ρ be a coherent risk measure with representation (2.2.4)

given by a family Q ⊆ Dσ ∩ Aq. Then a ∈ 5ρ(X) iff −a ∈ Q and ρ(X) =

〈−X,−a〉 = 〈X, a〉.

As a direct consequence of Theorems 2.3.2, 2.5.1 and 2.3.3, we have

Theorem 2.5.2. Let ρ : Rp → R be a coherent risk measure with representation

(2.2.4) when Q ⊆ Dσ ∩ Aq. The the following conditions are equivalent:

• 5ρ(X) 6= ∅ , ∀X ∈ Rp;

• Q is σ(Aq,Rp)-compact;

• Var(Q) is σ(Lq, Lp)-compact;

• ρ has the Lebesgue property;

• ρ̄ has the Lebesgue property.

Finally, we can state the solution of the optimal allocation problem, using

Theorems 2.5.1, 2.3.3 and 2.5.2.

Theorem 2.5.3. If X = X1 + · · · + XN and if −a ∈ 5ρ, then the allocation

ki = 〈−Xi, a〉 is a fair allocation.

2.5.1. Calculating the Sub-gradient

Before giving the examples we calculate the sub-gradient of the risk measure

constructed in Example 1 by considering Θ = {θ}. Again we consider a subset
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Pσ ⊆ Dσ ∩ Lq and we let Q =
{(

0,E[f |Fθ]
)
1

θ≥t

∣∣f ∈ Pσ

}
. It is easy to see that:

ρ(X) = sup
a∈Q

〈−X, a〉 = sup
f∈Pσ

E[−Xθf ] = ρσ(Xθ). (2.5.2)

Now, consider that −f ∈ 5ρσ(Xθ). We have

ρ(X) = ρσ(Xθ) = E
[
−Xθf

]
=
〈
−X,

(
0,E

[
f |Fθ

])
1

t≥θ

〉
. (2.5.3)

Since
(
0,E

[
f |Fθ

])
1

t≥θ
∈ Q, then by Theorem 2.5.1,

(
0,E

[
−f |Fθ

])
1

t≥θ
∈ 5ρ(X).

Hence {(
0,E[−f |Fθ]

)
1

t≥θ

∣∣∣∣− f ∈ 5ρσ(Xθ)

}
⊆ 5ρ(X). (2.5.4)

On the other hand, if we take −a ∈ 5ρ(X) then from Theorem 2.5.1 it turns out

that a =
(
0,E[f |Fθ]1t≥θ

)
. Therefore,

ρσ(Xθ) = ρ(X) =
〈
−X,

(
0,E[f |Fθ]1t≥θ

)〉
= E[−Xθf ]. (2.5.5)

Since f ∈ Pσ, this shows that −f ∈ 5ρσ(Xθ), which in turn yields

5ρ(X) ⊆
{(

0,E[−f |Fθ]
)
1

t≥θ

∣∣− f ∈ 5ρσ(Xθ)
}
.

Combining that with (2.5.4), we end up with

5ρ(X) =

{(
0,E[−f |Fθ]

)
1

t≥θ

∣∣∣∣− f ∈ 5ρσ(Xθ)

}
. (2.5.6)

2.5.2. Examples of Capital Allocation

Here we present some examples which could be used in real life problems. They

are mostly designed to consider the problem of capital allocation for departments

of a firm such as an insurance company. The risk processes which make the core

of the insurance risk theory is one of the main subjects we frequently look at.

In particular, we solve the whole problem for capital allocation for α-stable risk

processes. In this section we present the following four examples. Example 5 is a

general problem of Quantile Based Allocation, which gives the allocation in term

of the process at maturity and the stopping time. This example is a basis for the

two next examples. In Example 6 we consider the same problem of quantile based

allocation for a Brownian motion case. In Example 7 we pose an insurance risk

problem from the point of view of an insurance company. In Example 8 we study
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the same problem as in Example 7, with Cumulative-Stopping risk measure and

also an α-stable process.

Example 2.5.1 (Quantile Based Allocation). Let X1, . . . , XN be random pro-

cesses representing the evolution of the future values of N departments. Let

X = X1 + · · ·+XN , Θ = {θ}, and

Pσ =

{
h ∈ L1(Ω,FT ,P)+

∣∣∣∣ E[h] = 1, 0 ≤ h ≤ 1

α

}
,

for some confidence level 0 < α < 1. Here ρσ is AVaRFT
α . Since Pσ ⊆ L∞ then

ρσ is a risk measure on L1 and the corresponding measure ρ is defined for R1.

From [32, Section 8], we know that if Xθ is continuous then

5AVaRα(Xθ) =

{
− 1

α
1A

}
, (2.5.7)

where A =
{
Xθ ≤ qα(Xθ)

}
.

From Theorem 2.5.3 and Example 4, the allocation (k1, . . . , kn) is given by:

ki = − 1

α
E
[
Xi,θ1A

]
, (2.5.8)

Now let Q be an equivalent measure to P under which X is a martingale. Then

we have

A =

{
E[XT

dQ
dP |Fθ]

E[dQ
dP |Fθ]

≤ qα

(
E[XT

dQ
dP |Fθ]

E[dQ
dP |Fθ]

)}
. (2.5.9)

which gives A in terms of X at maturity and stopping time θ.

Example 2.5.2. Let W = (W 1, . . . ,WM) be an M dimensional of independent

Brownian motions. In the Example 2.5.1 let

d ~Xt = µtdt+ σdW, (2.5.10)

where each (possibly random) component µi
t of µt is a positive function satisfying

Novikov’s conditions and σ is a deterministic N ×M matrix. By applying Doob’s

inequality for martingales, one can see that Xi ∈ R1. Actually since the function

x 7→ |x| is a convex function then |Wt| is a sub-martingale. Then by Doob’s

martingale inequality we have

P
[
W ∗ = sup

0≤t≤T
|Wt| ≥ c

]
≤ E [|WT |2]

c2
.
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Now

E [W ∗] =

∫ ∞

0

P [W ∗ ≥ c] dc ≤ 1 + E
[
|WT |2

] ∫ ∞

1

1

c2
dc <∞.

Note that

dX =

( N∑
i=1

µi
t

)
dt+

N∑
i=1

M∑
j=1

σijdW
j, (2.5.11)

which can be rewritten as

dX = µ̃tdt+ σ̃dW̃ , (2.5.12)

where µ̃ =
∑n

i=1 µ
i
t , σ̃ =

(
M∑

j=1

(
N∑

i=1

σi
j

)2)1/2

and W̃ is a Brownian motion.

So we have Xt

σ̃
= 1

σ̃

∫ t

0
µ̃sds+ W̃t. By Girsanov’s Theorem Xt

σ̃
is a martingale

under the measure Q defined as

E
[
dQ
dP

∣∣∣∣Ft

]
= exp

(
−
∫ t

0

µ̃s

σ̃
dW̃ +

1

2

∫ t

0

(
µ̃s

σ̃

)2

ds

)
.

Using (2.5.8) we have

ki = − 1

α
E
[
1A Xi,θ

]
, (2.5.13)

where

A =

{
E
[
XT exp

(
−
∫ T

θ

µ̃s

σ̃
dW̃ +

1

2

∫ T

θ

(
µ̃s

σ̃

)2

ds

)∣∣∣∣Fθ

]

≤ qα

(
XT exp

(
−
∫ T

θ

µ̃s

σ̃
dW̃ +

1

2

∫ T

θ

(
µ̃s

σ̃

)2

ds

))}
,

which gives A in terms of X at maturity and stopping time θ.

Example 2.5.3. Suppose that there is an insurance company consisting of N

departments. The surplus of the i-th department is denoted with Xi,t, 1 ≤ i ≤ N .

Suppose that ~X = (X1,t, . . . , XN,t) is modeled by the following process:

~Xt = ~c(t) + ~Lt, (2.5.14)

where ~c(t) is an increasing process and ~Lt is an N-dimensional process ~Lt ∈

(R1)N . This model appears in the insurance risk theory when in general Lt is

a Lévy process with non-positive jumps. This is what one calls the generalized

Cramèr-Lundberg process. In more detail, ci(t) represents the premium received

by the i-th department while Li,t represents the claims (see, e.g., [56] and [52]).

For instance, using Doob’s martingale inequality, (similar to what we have done
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in the previous example) one sees that an α-stable Lévy process with parameters

1 < α < 2 and β = −1 is a Lévy process without positive jumps in R1. The

characteristic function of all Lévy processes without positive jumps is given as

E
[
ei~λ· ~X1

]
= exp

{
i~a · ~λ +

1
2
~λT Q~λ +

∫
(−∞,0)N

(
ei~λ·~x − 1 − i~λ · ~x1{|~x|<1}

)
Π(d~x)

}
,

where i2 = −1, Q is a positively definite N×N matrix, ~a is an N-dimensional drift

vector and Π is a measure on (−∞,∞)N for which
∫

RN (1∧|x|2)Π(d~x) <∞. From

this last relation one can see that the process X = X1 + · · ·+XN equals c(t)+Lt,

where c(t) = c1(t) + · · · + cN(t) is an increasing premium and Lt =
∑

j Lj,t is a

claim process without positive jumps. Let µj = E[Lj,1]. It is clear that Lj,t − µjt

is a martingale. Let dj(t) = cj(t) + µjt and d(t) =
∑
dj(t). Then Xt − d(t) and

Xj,t − dj(t) for 1 ≤ j ≤ N are martingales.

Now the quantile allocation is given by (2.5.8) as follows

kj = − 1

α
E
[
1A

(
Xj,T − d(T ) + d(θ)

)]
, (2.5.15)

where

A =

{
E[XT |Fθ] + dj(θ) ≤ qα

(
E[XT |Fθ] + dj(θ)

)}
. (2.5.16)

An interesting observation about (2.5.15) is the incorporation of the stopping

time in the allocation. It shows how the allocation is jointly affected by XT and

θ. For example we see what happens when Fθ is independent from XT : in such a

case we have

kj = −dj(T ) + d(T )− 1

α
E[θ|θ ≤ qα(θ)],

where we can see how everything depends only on the stopping time.

Example 2.5.4 (Cumulative-Stopping Allocation). In this example again we

consider an insurance company with N departments. We set up the model of the

previous example when X is a multivariate α-stable process and the risk measure

is a Cumulative-Stopping risk. For that, let (Z1,t, . . . , ZN,t) be a N-dimensional

α-stable Lévy processes with 1 < α < 2. By Doob’s martingale inequality we
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know that Zi ∈ R1. For some positive numbers ci and positive numbers, ai
1, a

i
2,

i = 1, . . . , N let

Xi,t = cit+ ai
1Z1,t + · · ·+ ai

NZN,t , i = 1, . . . , N.

In this example we suppose that the company is concerned with some finan-

cial position made in the market. There are some crucial moments in which this

financial position is at risk. These moments are modeled with a random time θ.

The company uses the risk measure AVaRa to asses the risk at each single time

t ∈ [0, T ]. ( To avoid any confusion between the α’s in the definition of risk AVaRα

and the α in α-stable process we use the notation AVaRa for some 0 < a < 1 in-

stead of AVaRα.) We would like to find the risk allocated to each department with

respect to the Cumulative-Stopping risk AVaRθ,CS
a (X) =

∫ T

0
AVaRa(Xs)fθ(s)ds.

Let (k′1,t, . . . , k
′
N,t) be an allocation for the static problem Xt = X1,t+· · ·+XN,t

using the risk measure AVaRa. We define the random variables Ki,θ(ω) = k′i,θ(ω)

and then we define ki,θ = E [Ki,θ] for i = 1, . . . , N . For 0 ≤ α1, . . . , αN ≤ 1 we

have:

α1k1,θ + . . . , αNkN,θ = E [α1K1,θ + · · ·+ αNKN,θ]

=

∫ T

0

(α1k
′
1,s + · · ·+ αNk

′
N,s)fθ(s)ds

≤
∫ T

0

AVaRa(α1X1,s + · · ·+ αNXN,s)fθ(s)ds

= AVaRθ,CS
a (α1X1 + · · ·+ αNXN),

and the inequality is equality when α1 = · · · = αN = 1. According to definition

(k1,θ, . . . , kN,θ) is an allocation for (X1, . . . , XN).

Let (l′1,t, . . . , l
′
N,t) be an allocation for (Z1,t, . . . , ZN,t). It is clear that

(l′1,t, . . . , l
′
N,t) = (c1t+ k′1,t, . . . , cN t+ k′N,t).

Since Zt = Z1,t+· · ·+ZN,t has the scaling property (i.e. Zt
d
= t

1
αZ1) and AVaRa is

positively homogeneous and law invariant risk measure, we have that l′i,t = t
1
α l′i,1.

Therefore we have

k′i,t = −cit+ t
1
α (k′i,1 + ci) for i = 1, . . . , N.
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Now

ki,θ = E[Ki,θ]

=

∫ T

0

k′i,sfθ(s)ds

=

∫ T

0

(
−cit+ t

1
α (k′i,1 + ci)

)
fθ(s)ds

= −ciE[θ] + (k′i,1 + ci)E
[
θ

1
α

]
.

We also know that k′i,1 = −E
[
Xi,1|X1,1 + · · · + XN,1 ≤ qa(X1,1 + · · · + XN,1)

]
,

which yields:

ki,θ = −ciE[θ]−
(

E
[
Xi,1

∣∣∣∣X1,1 + · · ·+ XN,1 ≤ qa(X1,1 + · · ·+ XN,1)
]

+ ci

)
E
[
θ

1
α

]
.

Here one can see that using an α-stable model in Example 8, along with

Cumulative-Stopping risk measure, yields an allocation ki,θ that is proportional

to the allocation ki,1. The constant of proportionality is nothing but the expecta-

tion of the stopping time to the power 1/α. This shows that the later the event

associated to θ occurs, the larger the effect on ki,1 is. Moreover, this shows an

inverse relation between the parameter α and the effect of the second term.
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2.6. Proofs of the Theoretical Results

2.6.1. Proof of Theorem 2.3.1

We split the proof into two main parts according as p 6= ∞ and p = ∞.

Proof for p 6= ∞.

(C2) ⇔ (C1)

Since by Remark 2.2.5 Âq is the topological dual of (R̂p, σ(R̂p, Âq)), Âq is endowed

with the weak* topology. Therefore, Q is relatively compact iff it is bounded and

the latter is true iff Var(Q) is bounded. In other words, Q is relatively compact

in σ(Âq, R̂p) iff Var(Q) is relatively compact in σ(Lq, Lp). Now the assertion

(C2) ⇔ (C1) is true because of the continuity of Π∗ : Âq → Aq (Remark 2.2.7).

Proof for p = ∞.

(C2) ⇒ (C1) We define a topology on R∞, generated by a family of semi-norms.

For any weakly relatively compact subset P in L1 let

V (P) :=

{
a ∈ A1

∣∣∣∣∃f ∈ P s.t.Var(a) ≤ |f |
}

and define the associated semi-norm for P on R∞ with

PP(X) = sup
a∈V (P)

〈X, a〉.

This topology is compatible with the vector structure because all V (P)’s are bounded.

We denote this topology by σ1. Let (R∞)
′ be the dual of R∞ with respect to the

topology σ1. It is clear that A1 ⊆ (R∞)
′. We want to show that A1 = (R∞)

′.

Let µ be an arbitrary element of (R∞)′ and Xn be a non-negative sequence of

uniformly bounded members in R∞ such that (Xn)∗
P−→ 0. By (2.3.1), we have

0 ≤ PP(Xn) ≤ sup
f∈P

E[(Xn)∗|f |] → 0. (2.6.1)

(2.6.1) implies that Xn
σ1

−→ 0 and therefore µ(Xn) → 0. This shows that µ is

finitely additive. Also from (2.6.1) it yields that the functional µ is order bounded

(i.e., for every W , sup{U≤W} µ(U) < ∞). Since R∞ is a Riesz space, from

the general theory of Riesz spaces µ can be decomposed into the difference of

its positive and negative parts (for example see [3], Theorem 3.3). Let µ+ be
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the positive part. By definition of the positive part, for any X ≥ 0 , µ+(X) =

sup
0≤W≤X

µ(W ). Let Xn be a positive and decreasing sequence for which (Xn)∗ ↓ 0

in probability. Let 0 ≤ Wn ≤ Xn be such that µ+(Xn) ≤ µ(Wn) + 1
n
. Since

(Wn)∗
P−→ 0, by (2.6.1) we get that

0 ≤ µ+(Xn) ≤ µ(Wn) +
1

n
→ 0.

Given Theorem 2 of chapter VII in [34], one deduces that µ+ ∈ A1. Similarly

µ− ∈ A1 and therefore µ ∈ A1. This completes the proof that A1 = (R∞)′.

The Corollary to Mackey’s Theorem 9, section 13, chapter 2 [44] leads us to σ1 ⊆

τ(R∞,A1), where τ(R∞,A1) is the Mackey topology. Just to recall, Mackey’s

topology is a topology generated with a basis of open sets around the origin defined

as

{
X ∈ R∞

∣∣∣∣ sup
C
〈X, a〉 < 1

}
,

for all σ(A1,R∞)-compact subsets C ⊆ A1.

Let P be a σ(L1, L∞) relatively compact subset of L1. By definition, the set

{X|PP(X) < 1} is an open set in σ1. Since σ1 ⊆ τ , this set is also an open set in

τ . Therefore, there exists a σ(A1,R∞)-compact set C such that {X| sup
C
〈X, a〉 <

1} ⊆ {X|PP(X) < 1}. By polarity (which is decreasing with respect to inclusion)

we have that {X|PP(X) ≤ 1}◦ ⊆ {X|PP(X) < 1}◦ ⊆ {X| sup
a∈C

〈X, a〉 < 1}◦. From

the generalized Bourbaki-Alaoglu Theorem we know that the polar set of every

open set in (R∞, σ1), which we know has A1 as its dual, is σ(A1,R∞)-compact.

Therefore, {X| sup
C
〈X, a〉 < 1}◦ is σ(A1,R∞)-compact. Since {X|PP(X) ≤

1}◦ ⊆ {X| sup
C
〈X, a〉 < 1}◦ then {X|PP(X) ≤ 1}◦ is σ(A1,R∞)-relatively com-

pact. By definition of polarity it is clear that V (P) ⊆ {X|PP(X) ≤ 1}◦, which

yields that V (P) is σ(A1,R∞)-relatively compact. Now let P = Var(Q), since

Q ⊆ V (Var(Q)), one concludes that Q is σ(A1,R∞)-relatively compact.
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(C1) ⇒ (C3). Let

G =

{
X ∈ R∞

∣∣∣∣E[X∗] ≤ 1 , X is bounded by 1
}
.

Thus, G is a bounded set in the topology σ(R∞,A1). Indeed, this is true since

for every a ∈ A1 we have |〈X, a〉| ≤ E[X∗]Var(a) ≤ Var(a). This implies that for

every relatively compact subset Q in σ(A1,R∞),

sup
X∈G

(sup
a∈Q

|〈X, a〉|) =: L <∞. (2.6.2)

Indeed, X 7→ sup
a∈Q

〈X, a〉 is a semi-norm from which the Mackey topology is gener-

ated. Since by Mackey’s Theorem 9, section 13, chapter 2, [44], τ(A1,R∞) has

the same dual as σ(A1,R∞), G is also bounded in τ , which implies (2.6.2).

Now let η = ε
L
.

(C3) ⇒ (C2) Let XU = Πop(1U) where U is a measurable set such that P(U) < η.

For a given a ∈ Q, let U± = U ∩ {a±T − a±0 > 0}. We have:

E[±1U±(a±T − a±0 )] = 〈|XU±|, a〉 < ε,

which shows that Var(Q±) and consequently Var(Q) are uniformly integrable.

�

2.6.2. Proof of Theorem 2.2.3

We postponed the proof of this theorem after the proof of Theorem 2.3.1 because

we need to use its results. First of all, we show that ρ# is a convex and lower

semi-continuous function on Dσ. Let f, g, h ∈ Dσ be such that f = λg+ (1− λ)h

for some λ ∈ (0, 1). Let b, c ∈ Dσ be such that Var(b) = g and Var(c) = h. Since

b, c ∈ Dσ then Var(λb + (1 − λ)c) = λVar(b) + (1 − λ)Var(c) = f which gives

λb+ (1− λ)c ∈ {a ∈ Dσ |Var(a) = f}. Therefore we have

inf
{a∈Dσ |Var(a)=f}

ρ∗(a) ≤ ρ∗(λb+ (1− λ)c) ≤ λρ∗(b) + (1− λ)ρ∗(c),

where in the second inequality we use the convexity of ρ∗. Taking the infimum

over all b, c for which Var(b) = g and Var(c) = h, we have the convexity of ρ#.
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Let X ∈ R∞ and define φ(f) = sup
{a∈Dσ |Var(a)=f}

〈X, a〉 for all f ∈ Dσ. We claim

that φ is linear and σ(L1, L∞)-lower semi-continuous on Dσ. One can consider

that X > 1, since otherwise one takes X + ‖X‖R∞ + 1 instead.

First, let us see that since X = Πop(X) then 〈X, a〉 = 〈Πop(X), a〉 = 〈X,Π∗(a)〉

for all a ∈ D̂σ. This gives that

φ(X) = sup
{a∈Dσ |Var(a)=f}

〈X, a〉 = sup
{a∈D̂σ |Var(a)=f}

〈X, a〉 , ∀X ∈ R∞. (2.6.3)

Let 0 < ε ≤ 1 and define Xε as

Xε := min{X,X∗ − ε}.

It is clear that Xε is a càdlàg process and then in R̂∞. Also (Xε)∗ = X∗ − ε.

Let θε = inf{t ≤ T |Xε = X∗ − ε = (Xε)∗}. Thus, θε is a random time and

not necessarily a stopping time. It is also clear that Xε
θε = (Xε)∗ = X∗ − ε. Let

f ∈ Dσ, and define φε(f) = sup
{a∈Â1|Var(a)=f}

〈Xε, a〉. Let aε = (0, 1[θε,T ]f). It is clear

that aε ∈ D̂σ and Var(aε) = f .

From the definition of φ, Xε and θε we have

φε(f) ≥ 〈Xε, aε〉 = E[Xε
θεf ] = E[(X∗ − ε)f ].

On the other hand it is clear that

φε(f) ≤ E[(Xε)∗f ] = E[(X∗ − ε)f ].
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This inequality along with the previous one yield φε(f) = E[(X∗ − ε)f ].

By (2.6.3) we have

|φ(f)− φε(f)| =
∣∣∣∣ sup
{a∈D̂σ |Var(a)=f}

〈X, a〉 − sup
{a∈D̂σ |Var(a)=f}

〈Xε, a〉
∣∣∣∣

≤ sup
{a∈D̂σ |Var(a)=f}

|〈Xε −X, a〉|

≤ εE[f ]
ε→0−−→ 0

This shows that φ(f) = E[fX∗] on Dσ. In general when X > 1 is not necessarily

true, it is easy to see that φ(f) = E[((X + X∗)∗ − X∗)f ], which shows that φ

is linear as well as σ(L1, L∞)-lower semi continuous. Now observe that since by

Theorem 2.3.1 {a ∈ Dσ |Var(a) = f} is a convex compact set in the locally convex

topological space (A1, σ(A1,R∞)), a Minimax Theorem mentioned in [33] yields

ρ#(f) = inf
Var(a)=f

ρ#(a) = inf
{Var(a)=f}

sup
{ρ(X)≤0}

〈−X, a〉 = sup
{ρ(X)≤0}

inf
{Var(a)=f}

〈−X, a〉.

This relation along with the previous discussions yields that ρ# is the supremum

of a family of linear lower semi-continuous functions on Dσ. This implies that

ρ# is a lower semi-continuous function on Dσ.

On the other hand we have

{Y ∈ Aρ̄} = {ρ̄(Y ) ≤ 0}

=

{
sup
a∈Dσ

{
〈−(E[Y |Ft])t∈[0,T ], a〉 − ρ#(a)

}
≤ 0

}
=

{
E[−YVar(a)] ≤ ρ#(a) , ∀a ∈ Dσ

}
=

{
E[−Y f ] ≤ inf

{Var(a)=f}
ρ#(a) , ∀f ∈ Dσ

}
=

{
E[−fY ] ≤ ρ#(f) ,∀f ∈ Dσ

}
.
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Now let g ∈ Dσ, since ρ# is a convex lower semi continuous function and a

supremum of linear functions on Dσ, we have

(ρ̄)#(g) = sup
{Y ∈Aρ̄}

E[−gY ]

= sup{
E[−fY ]≤ρ#(f) ,∀f∈Dσ

}E[−gY ] = ρ#(g).

�

2.6.3. Proof of Proposition 2.3.1

We define the convex risk ρ1 : R̂p → R for p 6= ∞ by

ρ1(X) := ρ(Πop(X)).

It is not very difficult to see that every finite value and monotone convex function

on a Banach lattice is continuous. For a proof see Proposition 3.1 [59]. Therefore,

the convex risk ρ1 is continuous.

On the other hand by Remark 2.2.5, Âq is the dual of R̂p. Therefore by quoting

the Alaoglu theorem we conclude that the set {a ∈ Âq : ρ∗1(a) ≤ c} is σ(Âq, R̂p)-

compact for every c ∈ R. Let us assume that a ∈ Aq. By (2.2.12) we have

〈Πop(X), a〉 − ρ(Πop(X)) = 〈X, a〉 − ρ1(X). This relation implies that ρ∗1(a) =

ρ∗(a) for a ∈ Aq, so that Π∗
(
{a ∈ Âq : ρ∗1(a) ≤ c}

)
= {a ∈ Aq : ρ∗(a) ≤ c}.

Since Π∗ : Âq → Aq is continuous, the set {a ∈ Aq : ρ∗(a) ≤ c} is σ(Aq,Rp)-

compact.

�

2.6.4. Proof of Theorem 2.3.2

(L5) ⇔ (L6) ⇔ (L7) ⇔ (L8). By Theorem 2.2.2 and Remark 2.2.3.

(L1) ⇒ (L5). Let (Yn)n∈N be a uniformly bounded sequence in L∞ converging

in probability to Y ∈ L∞. Since (Yn)n∈N is uniformly bounded, it is also uni-

formly integrable and consequently Yn → Y in L1. Now we have
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cP
(

sup
t≤T

|E[Yn − Y |Ft]t∈[0,T ]| > c

)
≤ cP

(
sup
t≤T

E[|Yn − Y ||Ft] > c

)
≤ ‖Yn − Y ‖L1 ,

for all c > 0. We used Jensen’s and Doob’s inequalities, in the first and second in-

equalities respectively. Since Yn → Y in L1, we have Xn → X in probability over

[0, T ], where Xn = (E[Yn|Ft])t∈[0,T ] and X = (E[Y |Ft])t∈[0,T ]. From the Lebesgue

property it turns out that ρ(Xn) → ρ(X), which by definition gives the Lebesgue

property for ρ̄.

(L6) ⇒ (L2). Let a ∈ A1
+ be such that ρ∗(a) ≤ c for some real number c.

By the conjugate function definition, ∀X ∈ R∞ we have 〈X, a〉 − ρ(X) ≤ c. In

particular, this is true for every random process like Πop(Y ) where Y ∈ L∞. By

(2.2.13) we conclude that E[Var(a)Y ] − ρ̄(Y ) ≤ c for every Y ∈ L∞. Therefore,

we have Var({a ∈ A1
+|ρ∗(a) ≤ c}) ⊆ {µ ∈ L1

+|ρ̄∗(µ) ≤ c}. By assumption (L6),

Var({a ∈ A1
+|ρ∗(a) ≤ c}) is relatively compact in σ(L1, L∞), hence by Theorem

2.3.1 {a ∈ A1
+|ρ∗(a) ≤ c} is relatively compact in σ(A1,R∞).

(L2) ⇒ (L3) is clear.

(L3) ⇒ (L1). First we assume that ρ is positively homogeneous. With this

assumption, for every real number c the set {a ∈ Dσ|ρ#(a) ≤ c} is equal to

{a ∈ Dσ|ρ#(a) = 0}. We denote this set by Q.

Let Xn be a bounded sequence inR∞ for which for some X ∈ R∞ , (Xn−X)∗
P−→ 0.

Since ρ is positively homogeneous (therefore sub-additive) and also decreasing we

have

|ρ(W )− ρ(V )| ≤ ρ(−(W − V )+) + ρ(−(V −W )+) , ∀W,V ∈ R∞.

This inequality allows us to consider that Xn ≤ 0 , X = 0 and (Xn)∗
P−→ 0. Using

assumption (L2), Q is relatively compact in the topology σ(A1,R∞). Therefore,

Theorem 2.3.1 gives that the closed convex set Var(Q) is σ(L1, L∞)-compact and

as a consequence (by Theorem 2.2.2) the convex function Y 7→ sup
f∈Var(Q)

E[−fY ]
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has the Lebesgue property. Hence by (2.2.2) we have:

0 ≤ ρ(Xn) = sup
a∈Q

〈−Xn, a〉 ≤ sup
f∈Var(Q)

E[(Xn)∗f ]
n−→ 0.

Now consider that the convex function ρ is not necessarily positive homogeneous.

Let Xn and X be bounded in R∞ such that (Xn − X)∗
P−→ 0 (we adopt this part

of the proof from the proof of Theorem 2.4 [50]). Since Xn is uniformly bounded

then there is a bounded sequence cn ∈ R+ and a positive number ε such that:

ρ(Xn) ≤ sup
ρ#(a)≤cn

〈−Xn, a〉 − cn + ε.

Let c be a cluster point of cn and I ⊆ N such that |cn − c| < ε for all n ∈ I.

Let ρ1(X) := sup
{ρ#(a)≤c+ε}

〈−X, a〉. Since ρ1 is positively homogeneous, it has the

Lebesgue property. Now we have

ρ(X) ≥ sup
{ρ∗(µ)≤c+ε}

〈−X,µ〉 − c− ε

= ρ1(X)− c− ε

= lim
n∈I

ρ1(Xn)− c− ε

≥ lim
n∈I

sup
{ρ∗(µ)≤cn}

〈−Xn, µ〉 − c− ε

≥ lim
n∈I

ρ(Xn)− 3ε

≥ lim inf ρ(Xn)− 3ε.

Since ε > 0 is arbitrary the proof is complete.

(L2) ⇒ (L4). Let X ∈ R∞ be fixed. For every 0 < ε ≤ 1, by (2.2.2) there

is an aε ∈ Dσ such that ρ(X) ≤ −〈X, a〉 − ρ∗(a) + ε. Then it follows that

ρ∗(aε) ≤ −〈X, aε〉 − ρ(X) + ε ≤ Const(X), for all 0 < ε ≤ 1, where Const(X)

is a real number only depending on X. Since ε can be chosen small enough,

one can see that ρ(X) = sup
{a∈Dσ |ρ∗(a)≤Const(X)}

{−〈X, a〉 − ρ∗(a)}. By our as-

sumption {a ∈ Dσ|ρ∗(a) ≤ Const(X)} is compact. Now {a 1
n}n∈N is a se-

quence in {a ∈ Dσ|ρ∗(a) ≤ Const(X)}, which by compactness, has a subse-

quence {a
1

nk } tending to some a ∈ {a ∈ Dσ|ρ∗(a) ≤ Const(X)}. Taking lim inf
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of both sides of ρ(X) ≤ −〈X, a
1

nk 〉 − ρ∗(a
1
n ) + 1

n
, by lower semi-continuity of

ρ∗ we get ρ(X) ≤ −〈X, a〉 − ρ∗(a). On the other hand by (2.2.2) we have

ρ(X) ≥ −〈X, a〉 − ρ∗(a) which implies ρ(X) = −〈X, a〉 − ρ∗(a).

(L4) ⇒ (L8). Fix Y ∈ L∞ and let X = (E[Y |Ft])t∈[0,T ]. Then by assumption

there is aX ∈ Dσ in which the maximum in (2.2.3) is attained, i.e. ρ̄(Y ) = ρ(X) =

−〈X, aX〉−ρ#(aX) = E[−YVar(aX)]−ρ#(aX). This implies that for every a with

Var(a) = Var(aX) we have E[−YVar(aX)]− ρ#(aX) ≥ E[−YVar(a)]− ρ#(a) and

consequently ρ#(aX) ≤ ρ∗(a) , ∀a,Var(a) = Var(aX). It follows that

ρ#(aX) = inf
{a∈Dσ |Var(a)=Var(aX)}

ρ#(a),

which by Theorem 2.2.3 yields ρ#(aX) = ρ#(Var(aX)) = (ρ̄)#(Var(aX)). Now it

turns out that ρ̄(Y ) = E[−YVar(aX)] − ρ̄#(Var(aX)), which shows ρ̄ attains its

maximum at Var(aX).

�

2.6.5. Proof of Theorem 2.3.3

(⇒) Is clear.

(⇐) Define the convex function ρ by:

ρ(X) := sup
a∈Q

〈X, a〉. (2.6.4)

It is not difficult to see that Var(Q) is convex and weakly closed. Let Y ∈ Lp. It

is easy to see that ρ̄(Y ) = sup
f∈Var(Q)

E[Y f ]. By assumption, for any Y ∈ Lp there

exists an a ∈ Q such that

ρ((E[Y |Ft])0≤t≤T ) = 〈(E[Y |Ft])0≤t≤T , a〉.

This gives ρ̄(Y ) = E[Var(a)Y ]. This fact with James’ Theorem implies that

Var(Q) is weakly compact. Now by Theorem 2.3.1 we deduce that Q is compact

in σ(Aq,Rp). �



Chapter 3

RISK MEASURES ON THE SPACE OF

INFINITE SEQUENCES

Résumé

Les mesures axiomatiques du risque ont été l’objet de nombreuses études et général-

isations dans ces dernières années. Dans la littérature, nous trouvons principale-

ment deux grandes écoles: les mesures cohérentes de risque [5] et les mesures de

risque d’assurance [66]. Dans cet article, nous étudions une autre extension mo-

tivée par une troisième mesure axiomatique de risque qui a été introduite récem-

ment. Dans [53], la notion de statistiques naturelles de risque, traduction libre de

“natural risk statistics”, est présentée comme une mesure du risque pour les bases

de données, c’est-à-dire, comme une mesure du risque axiomatique définie dans

l’espace Rn. Un inconvénient de ce type de mesures de risque est leur dépendance

à l’égard de la dimension n de l’espace. Afin de contourner ce problème, nous

proposons un moyen de définir une famille {ρn}n≥1 de statistiques naturelles de

risque dont les éléments sont définis sur Rn et liés d’une façon adéquate. Cette

construction nécessite la généralisation de “natural risk statistics” dans l’espace

des suites infinies l∞.
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Abstract

Axiomatically based risk measures have been the object of numerous studies and

generalizations in recent years. In the literature we find two main schools: coher-

ent risk measures [5] and insurance risk measures [66]. In this note, we set to

study yet another extension motivated by a third axiomatically based risk measure

that has been recently introduced. In [53], the concept of natural risk statistics is

discussed as a data-based risk measure, i.e. as an axiomatic risk measure defined

in the space Rn. One drawback of these kind of risk measures is their dependence

on the space dimension. In order to circumvent this problem, we propose a way to

define a family {ρn}n≥1 of natural risk statistics whose members are defined on Rn

and related in an appropriate way. This construction requires the generalization

of natural risk statistics to the space of infinite sequences l∞.

3.1. Introduction

Designing risk measures with the right properties is an important problem from

a practical point of view and, at the same time, it leads to interesting mathematical

constructions. The usual approach is to postulate some reasonable axioms and

then characterize the set of risk measures that satisfy these axioms. Coherent risk

measures [5] and insurance risk measures [66] are examples of such constructions.

In a recent research paper the concept of natural risk statistics has been in-

troduced [53] in order to resolve some of the incompatibilities between these two

main axiomatic risk measures. An interesting feature of this risk measure is that

it is defined on Rn, i.e. the new risk measure assigns a value to a finite sample

(x1, . . . , xn). This function measures the risk associated with a data sample from

a financial (or insurance) position (no assumption on the distribution is required)

instead of measuring the risk associated with the random variable itself (which

requires further assumptions on the underlying distribution). One can argue that,

more often than not, this is the kind of information upon which a risk manager

relies to perform any risk analyzing. As a by-product, this new risk measure gives

an axiomatic construction of VaR.
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This characterization is what makes natural risk statistics consistent with in-

dustrial practices. These risk measures can be found as the supremum over a

set of different scenarios defined by wi. The set containing all the scenarios Wn

depends on n. From where we can see that a key element needed to define a risk

measure in this setting is the data size (i.e. n). Different values for n lead to

structurally different natural risk statistics. This inconsistency could lead two in-

dependent observers with non-disjoint collection of data of different sizes to infer

substantially different risk values. This problem motivates us to define a family

of natural risk statistics {ρn} which are related in an appropriate way and stem

from one source.

Our construction is carried out in three steps. First, we find an appropriate

family of extensions ψn : Rn → cl or l∞ (here l∞ is the family of bounded se-

quences and cl the set of members in l∞ having a limit). Second, we define a

suitable natural risk statistics ρ : cl or l∞ → R. And finally, we combine the

extension and the natural risk statistics defined on cl or l∞, in order to obtain a

family of risk measures. The family {ρn}n=1,2,... is defined as ρn = ρ ◦ ψn. This

procedure is illustrated in Figure 4.1.

Rn

6

ψn

cl or l∞ -
ρ

R

�
�

�
�

�
�

�
�

�
���

ρn

Figure 3.1. The commutator diagram

Through this procedure, we can construct a family of natural risk statistics that

is consistently defined for data sample of all sizes. As we will see in the exam-

ples of Section 3.5, the representation of risk measures in l∞ naturally produces

families of natural risk statistics with built-in consistency.
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The main goal of this note is to extend the notion of natural risk statistics

to l∞ so that we can deal with data samples of any size in a consistent way. In

this setting, we suppose that we have an infinite collection of data (xi)i=1,2,... that

can be seen as an element in l∞. We discuss in this work how an axiomatic risk

measure ρ can be defined on l∞.

Our motivation for studying functions on l∞ is two-fold. First, this space

allows us to study all finite collection of data without considering any bound on

data size. Second extending the theory of coherent and convex risk measures to

include risk measures on l∞ is an interesting mathematical exercise on its own

right.

We start with a brief discussion of the concept of natural risk statistics in

Section 3.2. As we have illustrated in Figure 4.1, our construction is carried

out in three steps. These different steps are the subject of subsequent sections.

We discuss the problem of extending vectors from Rn to cl or l∞ in Section 3.3.

The motivation behind our interest in studying functions on the subset space cl

can also be found in that section. It turns out that our interest in cl is linked

to a particular family of extensions ψn : Rn → (l∞ or cl), that we use in the

construction described in Figure 4.1. In Section 3.4, we give the characterization

of natural risk statistics in the spaces l∞ and cl. These results, along with the

extension defined in the previous sections, will produce a family of natural risk

statistics that can be used for data sets of any dimension. Finally, in Section

3.5, we illustrate this procedure with some examples and we briefly discuss some

robustness features of our extension.

3.2. Natural Risk Statistics

The concept of natural risk statistics was first introduced in [53]. This no-

tion attempts to respond to some criticized features of coherent and convex risk

measures, as introduced in [5] and [41]. One criticism, recently made about co-

herent risk measures, is that of the absence of robustness with respect to outliers

in a given data sample (x1, ..., xn) (see for instance [29] and [53]). It turns out

that there is an incompatibility between robustness and coherence for natural risk
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statistics (see [29]). This fact is documented in [1] and is a consequence of the

very characterization of natural risk statistics. As we will see in the last section,

coherent risk measures have a representation that give more weight to larger losses

and this is at the heart of this incompatibility. As it turns out, we only need to

modify the subadditivity axiom in the definition of coherent risk measures (convex

property for convex risk measure), in order to bring robustness features into our

construction.

In order to proceed with our discussion, we briefly present in this section

some definitions and results regarding natural risk statistics. We start with the

axiomatic definition of a natural risk statistics which is stated here for finite (Rn)

and infinite (l∞ or cl) data sets.

Definition 3.2.1. Let A be either one of spaces Rn, l∞ or cl. A function ρ :

A −→ R is a natural risk statistics if:

(1) It is positive homogeneous, i.e.

ρ(λX) = λρ(X), ∀X ∈ A ,

for any λ ≥ 0.

(2) It is translation invariant, i.e.

ρ(X + c1) = ρ(X) + c, ∀X ∈ A, c ∈ R,

where 1 = (1, . . . , 1︸ ︷︷ ︸
n−times

) if A = Rn and 1 = (1, 1, . . . ) if A = l∞ or cl.

(3) It is increasing, i.e.

ρ(X) ≤ ρ(Y ) ,

for all X ≤ Y in A. Here, the inequality X ≤ Y must be understood in

the component wise sense.

(4) It is comonotonic subadditive, i.e., if

(xi − xj)(yi − yj) ≥ 0

for any j 6= i, then

ρ(x1 + y1, . . . , xn + yn) ≤ ρ(x1, . . . , xn) + ρ(y1, . . . , yn) ,
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for X,Y ∈ Rn, and

ρ(x1 + y1, x2 + y2, . . . ) ≤ ρ(x1, x2, . . . ) + ρ(y1, y2, . . . ) ,

for all X, Y ∈ l∞ or cl.

(5) It is symmetric, i.e.

ρ(X) = ρ(X ij) ,

for all X ∈ A and all i, j > 0. Here the sequence X ij is the element in A

which is equal component wise to X except for the i-th and j-th component

which are interchanged.

Moreover, if ρ satisfies only (2), (3) and (5) we say it is a general symmetric risk

measure.

We notice that if A = Rn, then Definition 3.2.1 is the one in [1] and [53].

If A = l∞ or cl, then Definition 3.2.1 is an extended definition of natural risk

statistics for infinite data sets.

We also need the following definition:

Definition 3.2.2. Let X = (x1, ..., xn) be a vector in Rn. We define X↓ :=

(x↓1, . . . , x
↓
n) to be the decreasing order statistics vectors of X, i.e. x↓1 ≥ · · · ≥ x↓n.

We now present a representation theorem of natural risk statistics for finite

data. The proof can be found in both [1] and [53]. The proof in [1] is more

straightforward than the proof in [53]. Yet, the second one accepts more naturally

an extension to the infinite dimension framework.

Theorem 3.2.1. The function ρ : Rn −→ R is a natural risk statistics if and

only if there exists a subset of weights A ⊆ Rn for which

ρ(X) = sup
a∈A

n∑
i=1

x↓i ai. (3.2.1)

Furthermore, the set A in the relation (3.2.1) is convex and closed.

Remark 3.2.1. In both [53] and [1] the authors considered the increasing order

statistics (x(1), . . . , x(n)) instead of X↓. This does not make any difference in the

resulting theorem. We have chosen X↓ since this is the notation that we will use

in the infinite dimensional setting.
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3.3. Extension from Rn to l∞

As we have discussed, in order to proceed with our construction we need to

study extensions of finite sequences into the space of infinite sequences. In this

section, we give the definition of such an extension ψn : Rn → l∞ and some

examples. These examples illustrate some features that appear when we extend

the notion of natural risk statistics to l∞. In the following, we assume that the

sets cl and l∞ are equipped with a component wise ordering. We start with the

following definition.

Definition 3.3.1. A function ψn : Rn → l∞ is a natural statistics extension (or

briefly extension) if

(1) It is component wise positive homogeneous, i.e.

ψn(λx1, . . . , λxn) = λψn(x1, . . . , xn) ,

for any λ ≥ 0.

(2) It is component wise translation invariant, i.e.

ψn(x1 + c, . . . , xn + c) = ψn(x1, . . . , xn) + c 1 , ∀c ∈ R,

,

(3) It is component wise increasing, i.e. if x1 ≥ y1, x2 ≥ y2, . . . , xn ≥ yn,

then

ψn(x1, . . . , xn) ≥ ψn(y1, . . . , yn) ,

component wise.

(4) It is component wise comonotonic subadditive, i.e. if (xi−xj)(yi−yj) ≥ 0

for any j 6= i, then the following holds component wise

ψn(x1 + y1, . . . , xn + yn) ≤ ψn(x1, . . . , xn) + ψn(y1, . . . , yn) ,

(5) It is symmetric, i.e.

ψn(x1, . . . , xn) = ψn(xij
1 , . . . , x

ij
n ) ,

where the sequence (xij
1 , . . . , x

ij
n ) is the element in Rn which is equal com-

ponent wise to (x1, . . . , xn) except for the i-th and j-th component which

are interchanged.
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If we denote by Πm : l∞ → R the projection on the m-th component then it

is obvious that for any extension ψn, the family {ψm
n = Πm ◦ ψn} is a family of

natural risk statistics and we have the following proposition.

Proposition 3.3.1. {ψn}n∈N is a family of extensions if and only if, there exists

a family {ψm
n }n,m∈N of natural risk statistics for which

Πm ◦ ψn = ψm
n .

This proposition shows that the family of extensions is as vast as the family

of natural risk statistics. But we are not interested in such a large family of

extensions, in this paper, we are only concerned with a somewhat smaller family.

Let {ρ̃n}n∈N be a family of natural risk statistics. Then we can define the following

family of extensions,

ψn(x1, . . . , xn) =
(
x↓1, . . . , x

↓
n, ρ̃n(x1, . . . , xn), ρ̃n(x1, . . . , xn), . . .

)
. (3.3.1)

As we will see in the next section, this family of extensions produces a family of

natural risk statistics that only takes into account the information of data entries

larger than ρ̃n. This means that, regardless of the choice of ρ̃n in extension (3.3.1),

the resulting risk measure ρn(x1, . . . , xn) (that commutates the diagram in Figure

4.1) is always a function of the following set,

{
x ∈

{
x1, . . . , xn, ρ̃n(x1, . . . , xn)

} ∣∣∣∣ x ≥ ρ̃n(x1, . . . , xn)

}
.

There are a few features of this specific family of extensions that make it

remarkably interesting. In particular, this extension maps any vector in Rn into

the subspace cl (set of members of l∞ with a limit). This makes somewhat easier

the analysis of the resulting risk measure ρ in Figure 4.1. Thus, using extension

(3.3.1) in order to map things down to cl, has at least two benefits:

(1) As we will see in Theorem 3.4.2, when working in cl, we do not need to

impose any smoothness condition on ρ,
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(2) And, as we will see in Remark 3.4.2, working in cl, we can consider simple

risk measures, like the arithmetic average. It turns out that the arithmetic

average is not even well-defined in l∞, but it is in cl.

The number of families of extensions that can be defined through (3.3.1) are

numerous and it depends on the choice of the natural risk statistics to be used in

equation (3.3.1). Examples of natural risk statistics that could be used in defining

the family of extensions are
{
ρ̃n = VaRα

}
or
{
ρ̃n(x1, . . . , xn) = x1+···+xn

n

}
. These

choices produce risk measures that are only concerned with data entries larger

than Value at Risk and the mean, respectively.

If we want our resulting risk measure to use all information in the data set

we could use
{
ρ̃n(x1, . . . , xn) = min

1≤i≤n
xi

}
. In this case, all data entries larger or

equal than min
1≤i≤n

xi are taken into account and all data is used.

3.4. Natural Risk Statistics on cl and l∞

The second ingredient in Figure 4.1 is defining a risk measure on the spaces cl

and l∞ that can be considered as a natural extension of a natural risk statistics.

In this section, we study such an extension of the concept of natural risk statistics

on a larger space than the one in which it was originally defined.

Before continuing with our discussion, we would like to recall some concepts

and propositions from the topology on sequences which can be found in standard

texts, for instance in [2]. First c0 is a subspace of cl which its members have zero

limit.

From Theorem 16.14 in [2], we have that the topological dual of cl can be iden-

tified with R ⊕ c0 under action (X, a) where this action is defined for all a =

(a0, a1, a2, . . . ) ∈ R⊕ c0 and X ∈ cl as follows

(X, a) = a0x0 +
∞∑
i=1

aixi,

where x0 = lim
i
xi. We will also use the following simple lemma frequently in the

sequel.

Lemma 3.4.1. Let (Xn)n=1,2,... be a bounded sequence in l∞. Then we have:
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(1) (Xn)n=1,2,... converges point wise to a member X ∈ l∞ if and only if

weakstar − limXn = X in l∞.

(2) if also Xn ∈ cl , ∀n ∈ N and X ∈ cl, then Xn converges point wise to X if

and only if weak − limXn = X in cl.

Proof. We only prove the statement for l∞ because the same proof works in

the case cl.

First let consider that Xn be a bounded sequence, converging point wise to X.

Let M be a number larger than ‖X‖∞ and ‖Xn‖∞ , ∀n ∈ N. Fix a ∈ l1 and let

ε > 0 be an arbitrary positive number. There is N ∈ N such that
∞∑

i=N+1

|ai| < ε.

It is clear that ∣∣∣∣∣
∞∑
i=1

ai(x
n
i − xi)

∣∣∣∣∣ ≤
∣∣∣∣∣

N∑
i=1

ai(x
n
i − xi)

∣∣∣∣∣+ εM.

Now let n→∞. Since Xn converges point wise to X and a ∈ l1 then

lim sup
n

∣∣∣∣∣
∞∑
i=1

ai(x
n
i − xi)

∣∣∣∣∣ ≤ εM.

Since ε > 0 is arbitrary then it yields that lim
n

∣∣∣∣ ∞∑
i=1

ai(x
n
i − xi)

∣∣∣∣ = 0. Since this

happens for all a ∈ l1 then we have the result.

On the other hand let Xn converges in weak star topology to X. Let eN ∈ l1 be

a sequence which all its components are zero except the N-th component which

is one. Then |xN − xn
N | =

∣∣∣∣ ∞∑
i=1

eN
i (xn

i − xi)

∣∣∣∣ → 0 when n → ∞. This shows that

Xn converges point wise to X. �

In this paper we use the notation π(X) to denote (xπ(1), xπ(2)...) for finite or

infinite vector X = (x1, x2, ...) and finite permutation π ∈ Sn for some n ∈ N,

where Sn denotes the set of all permutations on {1, . . . , n}.

In order to proceed with our construction, we need first to extend Definition

3.2.2 to the infinite sequence setting. This is, we have to define for any X ∈ l∞,

another element of l∞ which plays the same role as X↓ in finite dimensional

spaces.

Let X = (xi)i=1,2,3,... ∈ l∞ and let sX be the set consisting of x0 = lim sup
i≥1

xi

and all members of the set {xi}i=1,2,3,... which are larger than x0. This construction

takes into account the multiplicity of entries, i.e. if we have N > 0 components
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equal to xi (for some i) in sX , then all N copies of xi are in the set sX . We now

sort the elements of sX from the largest to the smallest. We denote this sequence

X↓ in order to be consistent with the notation stated in Definition 3.2.2.

Formally, x↓1 = sup
i∈N

xi the entries in X↓ are

x↓i =

 The i-th biggest number of sX if x↓i−1 > x0

x0 o.w.
(3.4.1)

We immediately notice that lim sup
i

xi = lim
i
x↓i .

Now we have the following important lemma

Lemma 3.4.2. For any X ∈ l∞ let πX
n be a permutation on {1, ..., n} such that

xπX
n (1) ≥ xπX

n (2) ≥ · · · ≥ xπX
n (n). Then we have

weak-star− lim πX
n (X) = X↓ ,

in l∞ and if also X ∈ cl then

weak− lim πX
n (X) = X↓ ,

in cl.

Proof. Sine πX
n (X) and X↓ all have the same bound ‖X‖∞, then by lemma

3.4.1 it is enough to show the point wise convergence .

It is clear that {xπX
N (j)}∞N=1 is an increasing sequence for each fixed j. On the other

hand, for any fixed ε > 0, we know that there is infinite number of components

xi such that xi > x0 − ε, where x0 = lim sup xi. Then, for every fixed j and for

large enough n, we have clearly that xπX
n (j) > x0 − ε. These arguments indicate

that lim
n
xπX

n (j) ≥ x0. Now we consider three cases

case one: There is a finite xi in sX strictly larger than x0. Let say l is the

number of these components. It is not difficult to see that there is an N such

that for n ≥ N the set {x1, . . . , xn} contains the set {x↓1, . . . , x
↓
l } and hence:

xπX
n (1) = x↓1, . . . , xπX

n (l) = x↓l ,

for n ≥ N . This implies also xπX
n (k) ≤ x0 for n ≥ N and k > l. Now, for fixed

k > l, by letting n → ∞ one gets x0 ≥ lim
n
xπX

n (k) ≥ x0. This obviously yields
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lim
n
xπX

n (k) = x0 for every k > l. This completes lim
n
xπX

n (k) = x↓k for every k.

case two: There is an infinite xi in sX strictly larger than x0. Let l ∈ N be fixed.

Then there is a large enough N in which {x1, . . . , xN} contains {x↓1, . . . , x
↓
l }. That

obviously implies that

xπX
n (l) = x↓l , for n ≥ N .

and then lim
n
xπX

n (l) = x↓l .

case three: sX only contains x0. This means that for all n we have xn ≤ x0.

Hence as we seen above since x0 ≤ lim
n
xπX

n
(l) for all l we get

lim
n
xπX

n (l) = x0 .

We show then weak-star-limit πX
n (X) = X↓ in l∞. For cl it is enough to observe

that (πX
n (X))0 = lim sup(πX

n (X)) = x0, for each n.

�

Functions X 7−→ x↓i are examples of general symmetric risk measures. These

play an important role in the characterization of a weak-star lower semi-continuous

natural risk statistics.

Proposition 3.4.1. The function supi(X) := x↓i as a function on l∞ is a weak-

star lower semi-continuous general symmetric risk measure.

Proof. It is clear that X 7−→ x↓i satisfies conditions 2,3 and 5 of Definition

3.2.1. In order to show that supi is weak-star lower semi-continuous, we need to

prove that the set {X ∈ l∞ | supi(X) ≤ r} is weak star close for each r ∈ R.

Since supi is translation invariant then it is enough to show that Fi = {X ∈

l∞ | supi(X) ≤ 0} is weak star close. By induction we prove that Fi’s are close.

For i = 1 it is easy since F1 = {X ∈ l∞ | sup1(X) ≤ 0} = {X ∈ l∞ |xj ≤ 0 , ∀j}.

So consider that F1, ..., Fi−1 are close then we prove that Fi is close as well.

For any finite subset C ⊆ N let:

EC := {X ∈ l∞;xi ≥ 0, i ∈ C and xi ≤ 0, i 6∈ C}

It is easy to see that

Fi = F1 ∪ ... ∪ Fi−1 ∪ Ei,
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where Ei = ∪|C|=i−1EC .

Let Xn be a sequence in Fi and Xn −→ X = (x1, x2, ...) in weak-star topology.

If for some 1 ≤ l ≤ i − 1 there is a subsequence Xnk ∈ Fl, then by induction

hypothesis X ∈ Fl ⊆ Fi.

So unless finite members, Xn ∈ Ei. Let C(l) be equal to the l-th smallest

number of C i.e. C = {C(1), ..., C(i − 1)} and C(1) < ... < C(i − 1). We have

three cases:

Case 1: There exist subsequences Xnk and Cnk such that Xnk ∈ ECnk and

Cnk(i − 1) is bounded. Then there exist C and a sub-subsequence Xnkm such

that Xnkm ∈ EC . So by closeness of EC we get X ∈ EC ⊆ Fi.

Case 2: There exist subsequences Xnk and Cnk such that Xnk ∈ ECnk and

Cnk(1) −→∞. Then easily one can see that lim
k
xnk

j ≤ 0∀j and thenX ∈ F1 ⊆ Fi.

Case 3: There exist subsequences Xnk and Cnk such that Xnk ∈ ECnk and for

some 1 ≤ l < i − 1 , Cnk(l) is bounded and Cnk(l + 1) −→ ∞. Then one

can find a sub-subsequence Xnkm and a set C ′ ⊆ N such that |C ′| = l and

{Cnkm (1), ..., Cnkm (l)} = C ′. Thus lim
m
x

nkm
j ≤ 0 for j 6∈ C ′ and lim

m
x

nkm
j ≥ 0 for

j ∈ C ′ which implies X ∈ EC′ ⊆ Fl ⊆ Fi.

�

As we mentioned before, general symmetric risk measures play an important

role in our discussion and we need to state one more result regarding these mea-

sures. This result is particularly interesting because it shows that general sym-

metric risk measures on l∞ and cl only take into account information from data

entries larger than the lim sup of the sequence. This takes the form of the follow-

ing theorem and its corollary.

Theorem 3.4.1. Let ρ : l∞ or cl −→ R be a general symmetric risk measure.

In the case l∞ consider that ρ is lower semi-continuous with respect to weak star

topology. Then ρ(X) = ρ(X↓)

Proof. From Lemma 3.4.2, we know that there is a sequence of finite per-

mutation πX
n such that πX

n (X) −→ X↓ in weak star topology. So by lower semi
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continuity of ρ we have:

ρ(X↓) ≤ lim inf
n

ρ(πX
n (X)) = ρ(X). (3.4.2)

Let ε > 0 be an arbitrary positive number. Let N be large enough such that

xn < x0 + ε for n > N where x0 = lim sup
i

xi. Let πX
N be the permutation

introduced earlier i.e. πX
N is such that xπX

N (1) ≥ ... ≥ xπX
N (N). From the definition

of πX
N , it is obvious that x↓i ≥ xπX

N (i) for i ≤ N . On the other hand x↓i + ε ≥

x0 + ε > xi for i > N . So we have πX
N (X) ≤ X↓ + ε1 and then by monotonicity

and translation-invariance and symmetry:

ρ(X) = ρ(πX
N (X)) ≤ ρ(X↓) + ε. (3.4.3)

Since ε > 0 is arbitrary from (3.4.2) and (3.4.3) we get ρ(X) = ρ(X↓). This

complete the proof for l∞.

Now let us consider that ρ is on cl. Since ρ is monotone and translation invariant

hence Lipschitz, it is strong continuous. It then turns out that it is strong lower

semi-continuous and hence weak lower semi-continuous. Now by the same proof

as above and lim(πX
n (X)) = limX for all n ∈ N, we have ρ(X) = ρ(X↓).

�

Corollary 3.4.1. There is no weak-star continuous general symmetric risk on

l∞.

Proof. Without loss of generality, we can work with the normalized risk

measure ρ(X)−ρ(0) (one can think of this measure as the one satisfying ρ(0) = 0).

Under this assumption along with translation invariance we have that ρ(1, 1, . . . ) =

1.

Now, let us consider there is a general symmetric risk ρ which is weak-star contin-

uous. Let X = (1, 0, 1, 0, 1, 0, ...). Then by Theorem 3.4.1 ρ(1, 0, 1, 0, 1, 0, ...) =

ρ(1, 1, 1, ...) = 1. On the other hand let π−X
n be the permutation defined ear-

lier for −X. It is obvious that π−X
n (X) −→ 0 in weak star topology. Now

1 = ρ(X) = ρ(π−X
n (X)) −→ 0, which is a contradiction.

�
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Remark 3.4.1. Contrary to what happens in Rn, the inverse of Theorem 3.4.1

is not true anymore. For example, the function ρ(X) = lim supX is a translation

invariant, symmetric and increasing function (even subadditive and positive ho-

mogeneous) but is not lower semi-continuous for weak-star topology. For example,

if a sequence Xn = (1, 1, 1, ..., 1︸ ︷︷ ︸
n−times

, 0, 0, 0, ...) converges to X = (1, 1, 1, ...), we have

1 = lim sup
i

xi ≥ lim inf
n

(lim sup
i

xn
i ) = 0.

Remark 3.4.2. A second remark is that even the simplest example of risk mea-

sure, arithmetic average is not well defined for any member of l∞. If we want

to include measures like arithmetic average in our framework, we need to use

extensions that map any vector in Rn into cl, like the one defined in (3.3.1).

We now give representation results for natural risk statistics in the the spaces

cl and l∞. This has to be done differently for each space. We do this in two

separate subsections, starting with the characterization on cl, which poses less

complications. In a second subsection we deal with the characterization on l∞.

3.4.1. Characterization of Natural Risk Statistics on cl

First we define the following subsets of cl (or l∞) before discussing the char-

acterization of risk measures on cl. Let

B = {X ∈ cl |x1 ≥ x2 ≥ x3 ≥ ....},

B◦ = {X ∈ cl |x1 > x2 > x3 > ....}.

Lemma 3.4.3. Let ρ be a natural risk statistics on cl. For any Z ∈ B◦ with

ρ(Z) = 1, there exists a vector W = (w0, w1, w2, ...) such that

(Z,W ) = 1 (3.4.4)

(X,W ) < 1 ∀X ∈ B such that ρ(X) < 1, (3.4.5)

where (X,W ) =
∞∑
i=0

xiwi.

Proof. Let U = {X ∈ l∞ | ρ(X) < 1} ∩ B. Since ρ is natural risk statistics,

then U is convex and then its closure with respect to the weak topology; i.e. U , is

convex as well. Since ρ is translation invariant and monotone, then it is Lipschitz

and then continuous in strong topology of cl. Specially it is lower semi-continuous
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and then weak lower semi-continuous. This implies that U ⊆ {ρ(X) ≤ 1}∩B. On

the other hand, the point Z is on the boundary of U since ρ(Z − ε1) = 1− ε ↑ 1

when ε ↓ 0 and ρ(Z) = 1. So by Hahn-Banach theorem there exists a nonzero

W ∈ R⊕ l1 such that,

(W,X) ≤ (W,Z),∀X ∈ U. (3.4.6)

�

Up to this point, we have simply followed the proof of Lemma 1 in [53]. Now,

we have to adapt the proof to our setting. We can show the strict inequality

happens when X ∈ U . We can do this by contradiction. Suppose that strict

inequality in (3.4.6) does not necessarily happen when X ∈ U . This means that

there exists X ∈ U such that (X,W ) = (Z,W ). It is clear that

(Xα,W ) = (Z,W ), (3.4.7)

ρ(Xα) < 1 ,∀α ∈ (0, 1), (3.4.8)

where Xα = αZ + (1− α)X. Since Z ∈ B◦ and X ∈ B then Xα ∈ B◦. Fix some

α ∈ (0, 1) and δ > 0. Let ε̃1 = min{xα
1−xα

2

3
, δ} and ε̃i = min{xα

i−1−xα
i

3
,

xα
i −xα

i+1

3
, δ, 1

i
}

for i > 1. Let ε = (ε1, ε2, ....) be a vector in l∞ where εi = sign(wi)ε̃i. And finally

let Y = Xα + ε. The vector Y is in B◦ since:

yi > xα
i −

xα
i − xα

i+1

2
= xα

i+1 +
xα

i − xα
i+1

2
> yi+1 (3.4.9)

If we set δ small enough and use relation (3.4.8) and axioms 1) through 5) in

Definition 3.2.1, we get,

ρ(Y ) = ρ(Xα + ε) ≤ ρ(Xα + δ1) ≤ ρ(Xα) + δ < 1. (3.4.10)

This means that for small δ, we have Y ∈ U .
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On the other hand, by relation (3.4.7), we have,

(Y,W ) = (Xα + ε,W )

= (Xα,W ) + (ε,W )

= (Z,W ) +
∞∑
i=1

|wi|ε̃i > (Z,W ),

which contradicts (3.4.6).

This finally implies that,

(X,W ) < (Z,W ),∀X ∈ U. (3.4.11)

Now, since ρ(0) = 0 and then 0 ∈ U , we have (Z,W ) > 0. By rescaling W we

get that,

(Z,W ) = 1 = ρ(Z).

This above equation along with (3.4.11) imply relation (3.4.5) and the proof is

complete.

Lemma 3.4.4. Fix Z ∈ B◦. Then there is a weight W = (w0, w1, w2, . . . ) such

that

∞∑
i=0

wi = 1 , (3.4.12)

wi ≥ 0 i = 0, 1, 2, 3, .... , (3.4.13)

ρ(X) ≥ (X,W ), for all X ∈ B and ρ(Z) = (Z,W ). (3.4.14)

Proof. The existence of weight W in relations (3.4.12), (3.4.14) and the fact

that wi ≥ 0 for i = 1, 2, 3, ..., follow directly from Lemma 3.4.3 and from the

proof of Lemma 2 in [53]. It only remains to show that w0 ≥ 0.

Let Xn = (1, 1, 1, ..., 1︸ ︷︷ ︸
n−times

, 0, 0....). Then by increasing property of ρ we have,

1 = ρ(1) ≥ ρ(Xn) ≥ (Xn,W ) =
n∑

i=1

wi .
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By letting n → ∞, we get that 1 ≥
∞∑
i=1

wi. Now, by adding w0 to both sides in

this last equation and by (3.4.12) we have,

1 + w0 ≥ 1,

which implies w0 ≥ 0.

�

Now, we are in a position to state the characterization theorem for natural

risk statistics on cl. But before, we would like to make a few remarks regarding

the proof. Our main result takes its inspiration from Theorem 1 in [53]. Our

proof follows that in [53], in particular, we adapt their Lemma 1 and 2 to this

new setting, which become Lemma 3.4.3 and 3.4.4, respectively. Regarding the

alternative proof of Theorem 1 in [1], it cannot be used directly in our setting (see

Remark 3.4.3). Thanks to Lemmas 3.4.3, 3.4.4 we can also modify those in our

setting, which is given within a remark after the following theorem. Indeed, their

proof strongly counts on the openness of the set {(x1, ..., xn) ∈ Rn;x1 > x2 > ... >

xn} while in our case the corresponding set B◦ = {(x1, x2, ...) ∈ cl;x1 > x2 > ...}

is not open in strong topology. The interior of the set B is empty in strong and

any weaker topologies. In order to see this, let X = (x1, x2, . . . ) ∈ B and r > 0

be arbitrary. Denote by x0 the limxn = inf xn. There is an N ∈ N large enough

such that xN − x0 <
r
2
. Let Y = (y1, y2, . . . ) be defined as yi = xi for i 6= N and

yN = x0− r
2
. It is clear that Y 6∈ B but Y is in the open ball of radius r around X.

Since X and r are arbitrary, it turns out that int(B) is empty in strong topologies

on l∞ and cl. Obviously the interior is also empty for any weaker topology.

Theorem 3.4.2. Let ρ be a function on cl. The function ρ is a natural risk

statistics if and only if

ρ(X) = sup
a∈A

{
x0a0 +

∞∑
i=1

x↓i ai

}
, (3.4.15)

where A is a weak-star compact convex set of nonnegative sequences a = (ai)i=0,1,2,...

and
∞∑
i=0

ai = 1.

Proof. Let us consider that ρ has a representation like (3.4.15). It is clear that

ρ satisfies condition 1 through 5 in Definition 3.2.1.
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Now we prove the other direction in the implication. By Lemma 3.4.4 we know

that for every vector Z ∈ B◦ there is an associated weight vector aZ such that

ρ(X) ≥ (X, aZ) , ∀X ∈ B,

ρ(Z) = (Z, aZ).

Now define the sets of weights A and A as follows:

A := {aX |X ∈ B◦},

A := cow∗(A).

We claim that A defined as above is the right choice for our statement. First

of all, it is clear that for every a ∈ A we have ai ≥ 0 for i = 0, 1, 2, . . . and
∞∑
i=0

ai = 1. Since A is bounded, then it is obviously weak-star compact (Alaoglu’s

Theorem). On the other hand It is also true that sup
a∈A

(X, a) = sup
a∈A

(X, a) , ∀X ∈ cl.

In order to see this first observe that sup
a∈A

(X, a) ≥ sup
a∈A

(X, a) , ∀X ∈ cl. For the

other inequality let λ1, . . . , λn be nonnegative numbers suming up to one. Let V =
n∑

i=1

λia
i for n members a1, . . . , an in A. Then we have (X,V ) =

n∑
i=1

λi(X, a
i) ≤

n∑
i=1

λi sup
a∈A

(X, a) = sup
a∈A

(X, a). Fix V ∈ A and consider the net Vµ ∈ co(A) that

converges to V in weak star topology. We have that (X,V ) = lim(X,Vµ) ≤

sup
a∈A

(X, a) and by taking supremum over V ∈ A we get the inequality we need.

This could be done also by some polarity discussion ; see for example [32].

Now let X ∈ B◦ be fixed. From the discussion above, we have ρ(X) ≥ (X, aZ) for

all Z ∈ B◦, which implies that ρ(X) ≥ sup
a∈A

(X, a) = sup
a∈A

(X, a). We also know that

ρ(X) = (X, aX) and so ρ(X) = sup
a∈A

(X, a).

For those X ∈ B\B◦ we can find a sequence Xn ∈ B◦ such that ‖Xn−X‖∞ → 0.

Since elements of A are positive and sum up to one then, the function X 7→

sup
a∈A

(X, a) is translation invariant and monotone, hence Lipschitz for l∞ topology

which implies

sup
a∈A

(X, a) = lim
k

sup
a∈A

(Xk, a) .

This shows ρ(X) = sup
a∈A

(X, a) for all X ∈ B.

The function ρ is translation invariant and monotone, hence Lipschitz and con-

sequently continuous, which imply that it is also strong and weak lower semi
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continuity. Using Theorem 3.4.1 for cl we have that ρ(X) = ρ(X↓) and since

X↓ ∈ B we finally obtain

ρ(X) = ρ(X↓) = sup
a∈A

(X↓, a) = sup
a∈A

{
a0x0 +

∞∑
i=1

aix
↓
i

}
.

Remark 3.4.3. We would like to mention that an alternative proof following

[1] could also be worked out in this setting. Here we give some hints as to how

this can be achieved. Let ρ̂(X) = ρ(X) + δ(X|B) where δ(.|B) is zero on B and

+∞ outside. Following the same proof in [1] we know that ρ̂ is a convex positive

homogeneous, weak lower semi-continuous function. We need to show that ∂ρ̂(X)

is not empty for any X ∈ B◦. Let ρ∗(a) = sup
X∈cl

{(X, a) − ρ̂(X)} be the dual (or

conjugate) function. Since ρ̂ is positive homogeneous then it is easy to see that ρ∗

is zero on domρ∗ and +∞ outside. Let aX be the member in dual of cl associated to

X by Lemma 3.4.4. From Lemma 3.4.4, we have ρ̂(Z) ≥ (Z, aX) for all Z which

implies that ρ∗(aX) ≤ 0 and hence ρ∗(aX) = 0. On the other hand aX is such

that ρ̂(X) = (X, aX). Now from Fenche-Moreau theorem we know that a ∈ ∂ρ̂(X)

if and only if ρ̂(X) + ρ∗(a) = (X, a) (see [36]). It turns out that aX ∈ ∂ρ̂(X).

Following the same proof in [1] it is now clear that domρ∗ ⊆ {a|
∑∞

i=0 ai = 1}.

One can then show that for any member a ∈ ∂ρ̂(X), ai ≥ 0 for i = 1, 2, . . . .

Following the proof of Lemma 3.4.4 one can show that a0 ≥ 0. Now define

A = domρ∗ ∩ (R⊕ l1)+. The same proof as in [1] now can be carried out yielding

the result.

3.4.2. Characterization of Natural Risk Statistics on l∞

As we had mentioned, extending the concept of natural risk statistics has to

be done differently for each space l∞ and cl. In this subsection, we characterize

the natural risk measures on l∞. This representation is given in the form of the

following theorem.

Theorem 3.4.3. Let ρ be a function on l∞. The function ρ is a weak-star lower

semi-continuous natural risk statistics if and only if,

ρ(X) = sup
a∈A

∞∑
i=1

x↓i ai , (3.4.16)
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where A is a convex set of nonnegative sequences in l1 and
∞∑
i=0

ai = 1.

Proof. If ρ has a representation like the one in (3.4.16) then, it is obvious

that ρ is natural risk statistics. Now, let Xn weak-star−−−−−→ X, i.e. Xn converges

component wise to X. So, by Proposition 3.4.1, we have x↓i ≤ lim inf
n

xn↓
i . Using

Fatou lemma for a fixed ã ∈ A we have,

lim inf
n

(
sup
a∈A

∞∑
i=1

aix
n↓
i

)
≥ lim inf

n

∞∑
i=1

ãix
n↓
i

≥
∞∑
i=1

ãi lim inf
n

xn↓
i

≥
∞∑
i=1

ãix
↓
i .

By taking supremum over ã, we have finally that ρ(X) ≤ lim inf
n

ρ(Xn). This

implies that ρ is lower semi-continuous, which completes the proof of the first

implication.

As for the other implication, using Theorem 3.4.2 we know there exists Ã

a weak-star compact convex set of nonnegative sequences a = (ai)i=0,1,2,... and
∞∑
i=0

ai = 1 such that,

ρ|cl
(X) = sup

a∈Ã

{
x0a0 +

∞∑
i=1

x↓i ai

}
, ∀X ∈ cl .

Let ρ̃(X) = sup
a∈Ã

∞∑
i=1

aix
↓
n and letX ∈ B be such that x0 ≥ 1 andXn = (x1, . . . , xn, 0, 0, . . . ).

Since xk ≥ 0 ∀k, and ai ≥ 0 ∀i, then ρ̃(Xn) ≤ ρ̃(X). Using this along with

(Xn)0 = 0, a0 ≥ 0, x0 ≥ 0 and lower semi-continuity of ρ, we have

ρ(X) ≤ lim inf
n

ρ(Xn) = lim inf
n

ρ̃(Xn) ≤ ρ̃(X) ≤ ρ(X) ,

which yields ρ(X) = ρ̃(X). Now, let Ãε = {a ∈ Ã | a0 ≤ ε}. It is clear that Ãε is

increasing with respect to ε and also is weak star compact. So, by compactness

the intersection is not empty.
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Let X ∈ B be such that x0 ≥ 1. Since ρ(X) = ρ̃(X) then, for given ε > 0,

there exists aε ∈ Ã such that

ρ(X) <
∞∑
i=1

aε
ixi + ε . (3.4.17)

On the other hand, by representation of ρ we have
∞∑
i=1

aε
ixi + aε

0x0 ≤ ρ(X).

From these two last relations we get aε
0x0 < ε which, because of x0 ≥ 1, yields

aε
0 < ε. Since Ã is weak star compact, then there exists a net εk → 0 and a ∈ Ã

such that aεk → a in weak star topology. This has two direct implications: 1)

first of all a0 = 0, and 2) since X ∈ cl, we have (X, aεk) → (X, a).

Using (3.4.17), we have that ρ(X) = (X, a) which gives

ρ(X) = sup
a∈A

∞∑
i=1

aixi , (3.4.18)

where A = ∩ε>0Ãε. Notice that we can also see A as a subset of l1.

Now, letX ∈ l∞. Since ρ is weak-star lower semi-continuous then, by Theorem

3.4.1, we have that ρ(X) = ρ(X↓). Using now the fact that
∞∑
i=1

ai = 1 and (3.4.18),

we have

ρ(X↓)− x0 + 1 = ρ(X↓ − x0 + 1)

= sup
a∈A

∞∑
i=1

ai(x
↓
i − x0 + 1)

= sup
a∈A

∞∑
i=1

aix
↓
i − x0 + 1.

This completes the proof.

�

This result endows us with a characterization of natural risk statistics in l∞.

This results used along with the extension defined in Section 3.3 allows us to

construct a family of consistently defined natural risk statistics that can be used

for data samples of any size. This will be illustrated in Section 3.5. But before

doing this we would like to briefly discuss one mathematical issue regarding the

characterization of risk measures in l∞. As we have seen, it turns out that the
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function limsup is important when working in the space of infinite sequences. The

limsup of an infinite sequence gives the maximum trend of the infinite collection

of data. Yet this simple function is not lower semi-continuous in l∞ and, as such,

it cannot be incorporated into our framework. This is discussed in the following

subsection.

3.4.3. A limsup Topology for l∞

We start by noticing that there are simple functions that are not weak-star

lower semi-continuous in l∞. One such function is lim sup. We have seen,

that weak-star lower semi-continuous general symmetric risk measures only take

into account data entries larger or equal to lim sup. But unfortunately the func-

tion lim sup despite being convex, symmetric translation invariant and increasing

(convex natural risk statistics) is not weak-star lower semi-continuous. In order

to construct the smallest topology for which the function lim sup is lower semi-

continuous we should add the set {X ∈ l∞| lim supX ≤ 0} and its translations to

the family of the closed sets. In this subsection we carry out such a construction.

We start with the following definition:

Definition 3.4.1. We say Xn converges to X in lim sup convergence and write

Xn lim sup−−−−→ X if Xn converges component wise to X and furthermore x0 ≤

lim inf
n

xn
0 .

This convergence is clearly stronger than weak star convergence since for ex-

ample Xn = (1, 1, ..., 1︸ ︷︷ ︸
n−times

, 0, 0, ...) converges in weak-star topology to X = (1, 1, 1, ...)

but, it does not converge in lim sup, i.e. we do not have Xn limsup−−−→ X as defined

in Definition 3.4.1. This convergence is also weaker than strong topology, for

example Xn = (1, 1, ..., 1︸ ︷︷ ︸
n−times

, 1, 0, 1, 0, 1, 0, ....) converges in lim sup to (1, 1, 1, ....) but

‖Xn − Xn+1‖l∞ = 1. We give some remarks to relate this topology to topolo-

gies on cl , c0. We start by noticing that on cl weak-convergence implies lim sup

convergence. More precisely, if (Xn)n be a sequence in cl and ,X ∈ cl such

that Xn cl-weak−−−−→ X, then we have xn
k → xk and xn

0 → x0. In turn, this implies

Xn limsup−−−→ X. Clearly this implication is also true when Xn and X are in c0. As
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for the reverse implication is only true in c0 and not necessary on cl. For instance

Xn = (0, 0, ..., 0︸ ︷︷ ︸
n−times

, 1, 1, ...) tends to (0, 0, . . . ) in lim sup topology but not in weak

topology on cl.

Now we have the following theorem which gives the characterization of the

natural risk statistics on l∞ endowed with limsup topology.

Theorem 3.4.4. The natural risk statistics ρ : l∞ → R is lower semi-continuous

in limsup topology if and only if, there exists a family A of nonnegative sequences

{ai}i=0,1,2,... for which
∞∑
i=0

ai = 1 and we have:

ρ(X) = sup
a∈A

{
x0a0 +

∞∑
i=1

x↓i ai

}
. (3.4.19)

Proof. For the first implication, let Xn lim sup−−−−→ X. By definition we know

Xn converges component wise to X or in other words in weak-star topology. So

then by Proposition 3.4.1 we have x↓i ≤ lim inf
n

xn↓
i . On the other hand, from

Definition 3.4.1, we know that x0 ≤ lim inf
n

xn
0 . Now for a fixed ã ∈ A we have,

lim inf
n

(
sup
a∈A

∞∑
i=0

aix
n↓
i

)
≥ lim inf

n

∞∑
i=0

ãix
n↓
i

≥
∞∑
i=0

ãi lim inf
n

xn↓
i

≥
∞∑
i=0

ãix
↓
i ,

where use the convention x↓0 := x0 and xn↓
0 := xn

0 . By taking supremum over ã

we have ρ(X) ≤ lim inf
n

ρ(Xn).

As for the second implication, let πX
n be the sequence of permutations de-

fined in Section 3.4. We know that πX
n (X) converges component wise to X↓.

On the other hand, since lim supX = lim supπX
n (X) = lim supX↓ we get that

πn(X)
lim sup−−−−→ X. Using the proof of Theorem 3.4.1, this fact yields ρ(X) = ρ(X↓).

The function ρ|cl
is a natural risk statistics on cl, so by Theorem 3.4.2 there

existsA, a weak-star compact convex set of nonnegative sequences a = (ai)i=0,1,2,...

and
∞∑
i=0

ai = 1 such that,
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ρ|cl
(X) = sup

a∈A

{
x0a0 +

∞∑
i=1

x↓i ai

}
. (3.4.20)

Now, since ρ(X) = ρ(X↓) = ρ|cl
(X↓), the proof is complete.

�

3.5. Examples of Natural Risk Statistics

In this section we give a few examples in order to illustrate how we can put

together the results of the previous sections in order to construct a family of

natural risk statistics through the procedure in Figure 4.1. In the following, we

put together the extension defined in Section 3.3, the results in Section 3.4 and

particular choices of weights in order to produce what we believe to be interesting

examples. These represent only a few possible combinations of all the ingredients

discussed in this paper. We would like to highlight the fact that all the examples

presented here are families of natural risk statistics as originally defined in [53].

The difference here is that they have been constructed through our procedure and,

as such, they are naturally derived from the representation theorems discussed in

Section 3.4. Without the results developed here, these new natural risk statistics

cannot be immediately identified as such. Moreover, all members of these families

are consistently defined through one single set of weights that is independent of

the data sample size n. This could not be achieved without a formal extension of

risk measures on the spaces l∞ and cl.

Example 3.5.1 (Mean Exponential Risk). This example is a risk measure which

combines exponential weights and an arithmetic average statistics.

(1) Extension: We use the arithmetic average as natural risk statistics ρ̃n in

extension given in (3.3.1).

Let us set ψn(x1, . . . , xn) =
(
x↓1, . . . , x

↓
n,

x1+···+xn

n
, x1+···+xn

n
, . . .

)
.

(2) Weights: We use a singleton set of exponential weights in the charac-

terization in Theorem 3.4.2, i.e. the set A in (3.4.15) is composed of

one single infinite sequence of weights (a0, a1, a2, . . . ) where a0 = 0 and

ai = e−αi(eα − 1) , i = 1, 2, . . . for some risk parameter α.
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(3) By using the characterization in Theorem 3.4.2, the resulting family of

natural risk statistics is:

Let j = j(x1, . . . , xn) = max{i|x↓i ≥ x1+···+xn

n
}. Then

ρn(x1, . . . , xn) = (eα − 1)−1

j∑
i=1

x↓i e
−αi +

e−αj

eα − 1

(
x1 + · · ·+ xn

n

)
. (3.5.1)

Indeed, it is a straightforward exercise to verify that this risk measure has

the subadditivity property (item (4) in Definition 3.2.1). Alternatively, we can

notice that the sequence of exponential weights is decreasing which implies that

the resulting risk measures are subadditive(see part 2 in Theorem 2 in[1]). In

Figure 3.2 we illustrate the weight function of the Mean Exponential Risk.

Notice that, for every n > 0, equation (3.5.1) is a natural risk statistics. This

risk measure has a form that is naturally implied by the representation (3.4.15)

in Theorem 3.4.2. Such a measure could not be intuitively proposed as a natural

risk statistics without our construction.

Notice that the resulting natural risk statistics in (3.5.1) is now a function of

n and of the data sample (x1, x2, . . . , xn), hence the name statistics. It is actually

a weighted sum of the sample order statistics larger or equal than the mean.

Example 3.5.2 (Conditional Median Normal Risk). This example is a risk mea-

sure that combines weights with a normal kernel and the sample conditional me-

dian given observations larger than VaRα. The sample conditional median is

simply the sample median of those observations larger than the sample VaRα.

This statistics can itself be written as a sample VaR at a level 1+α
2

. In order to

see this we notice that, by the very definition of VaRα, the proportion of observa-

tions larger than VaRα is at most 1− α. Thus, the median of these observations

will be the one observation that divides this proportion in half, i.e. it will be the

observation smaller or equal than the remaining 1−α
2

proportion of those observa-

tions larger than VaRα. Clearly, this observation is itself a sample quantile (or

VaR) at level α + 1−α
2

= 1+α
2

hence the definition VaR 1+α
2

. This example is a

generalization of the Conditional Median Normal Risk suggested in [53].
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(1) Extension: We use the conditional median VaR 1+α
2

, for some level α, as

the risk measure ρ̃ in the extension given in (3.3.1). Notice that VaR 1+α
2

is the conditional median of data entries larger than VaRα.

Let mα = Medianα(x1, . . . , xn) = VaR 1+α
2

(x1, . . . , xn). We set

ψn = (x↓1, . . . , x
↓
n,mα,mα, . . . ).

(2) Weights: We use a singleton set of weights. In this example, we use a

normal kernel for the components (a0, a1, a2, . . . ) of the single sequence

composing the set A in the characterization in Theorem 3.4.2, i.e. let

a0 = 0 and ai = 1
M
e
|i−µ|2

σ , i = 1, 2, . . . with M =
∞∑
i=1

e
|i−µ|2

σ for some

conveniently chosen parameters µ and σ > 0.

(3) By using the characterization in Theorem 3.4.2, the resulting family of

natural risk statistics is:

Let j = j(x1, . . . , xn) = max
{
i|x↓i ≥ VaR 1+α

2
(x1, . . . , xn)

}
, then

ρn(x1, . . . , xn) =

j∑
i=1

x↓i
1

M
e
|i−µ|2

σ +mα

(
1

M

∞∑
i=j+1

e
|i−µ|2

σ

)
. (3.5.2)

Notice that the resulting natural risk statistics in (3.5.2) is now a function

of n and of the data sample (x1, x2, . . . , xn). It is actually a weighted sum of

the sample order statistics larger or equal than the conditional median VaR 1+α
2

.

In Figure 3.3 we illustrate the weight function of the conditional median normal

risk. Notice that the weight function is not decreasing and the resulting family of

natural risk statistics is not coherent. Moreover, for every n > 0, equation (3.5.2)

is a natural risk statistics that is naturally implied by the representation (3.4.15)

in Theorem 3.4.2. Such a measure could not be intuitively proposed as a natural

risk statistics without our construction.

Example 3.5.3 (Multi-Conditional Median Normal Risk). This example extend

the idea of the previous example by considering a larger set of weight sequences

A in the representation (3.4.15) of Theorem 3.4.2. We do this, by considering all

possible means N ∈ N for the parameter µ in our normal kernel. The result is a

generalization of the previously defined Conditional Median Normal Risk.
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(1) Extension: Like in the previous example, we use the conditional median

VaR 1+α
2

, for some level α, as the risk measure ρ̃ in the extension given in

(3.3.1).

Let mα = Medianα(x1, . . . , xn) = VaR 1+α
2

(x1, . . . , xn).Define

ψn = (x↓1, . . . , x
↓
n,mα,mα, . . . ).

(2) Weights: As a set A, in the characterization in Theorem 3.4.2, we use

weight sequences with normal-based entries. In other words, we consider

all possible normal kernels for the components {(a0,N , a1,N , a2,N , . . . )}N∈N

of sequences in A , i.e. for N ∈ N, let a0 = 0 andai,N = 1
MN,σ

e
|i−N|2

σ with

MN,σ =
∞∑
i=1

e
|i−N|2

σ for some conveniently chosen parameter σ > 0.

(3) By using the characterization in Theorem 3.4.2, the resulting family of

natural risk statistics is:

Let j = j(x1, . . . , xn) = max
{
i|x↓i ≥ VaR 1+α

2
(x1, . . . , xn)

}
. Then

ρn(x1, . . . , xn) = sup
N∈N

( j∑
i=1

x↓i
1

Mσ,N

e
|i−N|2

σ +mα

(
1

Mσ,N

∞∑
i=j+1

e
|i−N|2

σ

))
. (3.5.3)

Notice that the resulting natural risk statistics in (3.5.3) is now a function of

n and of the data sample (x1, x2, . . . , xn). It is actually the supremum, over all

possible values of the parameter µ, of weighted sums of the sample order statistics

larger or equal than the conditional median VaR 1+α
2

. In Figure 3.4 we illustrate

the weight function of the multiple conditional median normal risk. Moreover, for

every n > 0, equation (3.5.2) is a natural risk statistics that is naturally implied

by the representation (3.4.15) in Theorem 3.4.2. Such a measure could not be

intuitively proposed as a natural risk statistics without our construction.

3.5.1. Robustness Properties

In this section, we denote by Dp the space of distributions with finite p-th

moment. Now let ρ : Dp → R be a distribution-based risk measure and let ρ̂n :

Rn → R be a historical risk estimator.

The risk measures discussed in this paper are functions of data samples (hence

the name statistics). In the last two decades there have been numerous studies
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on robustness properties of data statistics (see [47] and references therein). In

particular, we can study the robustness of our examples within the framework laid

out in [29]. This is, if ρ(FX) is a distribution-based risk measure, we say that a

historical estimator of this measure ρ̂n(x1, . . . , xn) is robust if a small variation

from the distribution FX results in a small change in the distribution of the esti-

mator. In order to formally state this we need the following notation. We denote

by Ln(ρ̂n, F ) the law of ρ̂n(x1, . . . , xn) where x1, . . . , xn is a random sample of

size n ≥ 1 from F . Moreover, let dP denote the Prohorov metric for probability

measures. A formal definition of robustness can now be given.

Definition 3.5.1. We say that the historical estimator ρ̂n is Dp-robust at F if,

for any ε > 0, there exist δ > 0 and n0 ≥ 1 such that if G ∈ Dp and dP (F,G) < δ

then dP (Ln(ρ̂n, F ),Ln(ρ̂n, G)) < ε for all n > n0.

Now, let us consider distribution-based risk measures ρφ : Dp → R of the form

ρφ(F ) =

∫ 1

0

V aRu(F )φ(u) du , F ∈ Dp , (3.5.4)

where φ is a density function in Lq(0, 1) such that 1
p

+ 1
q

= 1. It turns out that

for this type of distribution-based risk measures of the form (3.5.4), we have the

following very interesting result given in [29],

Proposition 3.5.1 (Corollary 2 in [29]).

(1) Historical estimators of distribution-based risk measures of the form (3.5.4)

which are coherent, i.e. with decreasing weighting function φ, are not Dp-

robust at any F for 1
p

+ 1
q

= 1.

(2) For a F ∈ Dp such that no discontinuity of φ coincides with a discontinuity

of the quantile function of F , the historical estimator of a distribution-

based risk measure of the form (3.5.4) is Dp-robust at F if and only if

supp(φ) ∈ [β̄, 1− β̄], for some β̄ > 0.

In other words, an estimator of a distribution-based risk measure of the form

(3.5.4) is not robust if the weighting function is decreasing. Moreover, the ro-

bustness of the estimator of such a distribution-based risk measure depends on the

support of the weighting density φ in the representation (3.5.4). If this support
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takes the form of a closed interval which is strictly contained within [0, 1], then

the corresponding risk measure estimator is robust.

Proposition 3.5.1 has interesting implications for some of our examples. In

order to see how the natural risk statistics in our first two examples are historical

estimator of distribution-based risk measure of the form in (3.5.4), let us consider

the following distribution-based risk measure,

ρ(F ) =

∫ 1

0

(V aRu(F ) ∨ V aRα(F )) φ(u) du

(3.5.5)

= V aRα(F )

∫ α

0

φ(u) du+

∫ 1

α

V aRu(F )φ(u) du ,

where φ : [0, 1] → R+ ∪ {∞} is a weight function, i.e.
∫ 1

0
φ(u) du = 1.

We notice that the risk measure in (3.5.5) is of the form (3.5.4) and, as such,

Proposition 3.5.1 would apply for their estimators. In order to write (3.5.5) in

the form (3.5.4), let us define the following weight function

φ̃(x) =



φ(s) , α < s ≤ 1 ,

(
∫ α

0
φ(t) dt)δα , s = α ,

0 0 ≤ s < α .

(3.5.6)

We can now write the risk measure in equation (3.5.5) in the form (3.5.4) as

follows,

ρ(F ) =

∫ 1

0

V aRu φ̃(u) du , (3.5.7)

where φ̃ is the well-defined weight function given in (3.5.6).

A first remark regarding measures of the form in (3.5.5) is that they have an

alternative form for special cases, in terms of a random variable with distribution

FX . Let us consider for a moment that FX has an inverse. Then VaRα(X) =

F−1
X (α), and by a simple change of variable u = FX(y) in (3.5.5), we get easily

the following equivalent form:

ρ(X) = E [(X ∨ V aRα(FX))φ (FX(X))] . (3.5.8)
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We find this form particularly informative in terms of the interpretation for such

risk measure. It is the expectation of the weighted values larger than V aRα, where

the weights are given as a function of the probability of observing such large values.

Now, let (x1, . . . , xn) be a random sample of a continuous distribution function

F . We can now construct the following empirical distribution,

Fn(x) =
1

n

n∑
i=1

I{xi≤x} , x ∈ R . (3.5.9)

It is well-known that this empirical distribution is a sample-based functional

estimator of F . In order to see how our first two examples of natural risk statis-

tics are historical estimators of some distribution-based risk measure like that in

(3.5.5), let us define the following alternative measure defined through a distortion

of the underlying distribution,

ρ̃(F ) := ρ(kn ◦ F ) , (3.5.10)

where kn : [0, 1] → [0, 1] is continuous increasing piece-wise linear function con-

necting ( i
n
, 2i−1

2i ) to ( i+1
n
, 2i+1−1

2i+1 ), for 0 ≤ i ≤ n− 2, and connecting (n−1
n
, 2n−1−1

2n−1 )

to the point (1, 1). We denote each interval over which kn is linear, with I1, . . . In,

and the restriction kn|Ii
with li. It is clear that li(x) = ci(x − xi) + bi for some

ci > 0, bi, xi ≥ 0 where i = 1, . . . , n.

Here, the function kn plays the role of an auxiliary transformation function

that serves as a distortion. In fact, it is clear that the function kn ◦ Fn is the

probability distribution of the following random variable,

X̃(ω) =
n−1∑
i=1

x↓i I( 1

2i , 1

2i−1 ](ω) + x↓nI[0, 1
2n−1 ](ω) , ω ∈ Ω = [0, 1] , (3.5.11)

where (x↓1, . . . , x
↓
n) is the vector of decreasing order statistics of the random sample.

We can construct estimators of the risk measure in (3.5.5). In order to con-

struct an estimator ρ̃ through (3.5.10), we only need a particular choice for the

weight function φ. For instance, if we use the following weight function

φ(ω) =
∞∑
i=1

2iaiI( 1

2i , 1

2i−1 ](ω) , ω ∈ Ω = [0, 1] , (3.5.12)
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in the expression for the risk measure (3.5.5), we have

ρ̃(Fn) =

j∑
i=1

aix
↓
i +

(
∞∑

i=j+1

ai

)
x↓j , (3.5.13)

where j = max{i |x↓i ≥ V aRα(x1, . . . , xn)}. If we compare equation (3.5.13) with

(3.5.1) and (3.5.2) we can see that they have the same form. In fact, by an ap-

propriate choice of weights (a1, a2, . . . ), we can recuperate our first two examples.

In light of this, we can study the robustness properties of (3.5.13) through the

distorted measure (3.5.10) using Proposition 3.5.1. All we need to show is that

(3.5.10) has the same form as (3.5.4).

For any continuous cumulative distribution function F , we have,

ρ̃(F ) = ρ(kn ◦ F )

=

∫ 1

0

VaRu(kn ◦ F )φ̃(u)du

=

∫ 1

0

(kn ◦ F )−1(u)φ̃(u)du

=

∫ 1

0

F−1(k−1
n )(u)φ̃(u)du

=
n∑

i=1

∫
Ii

F−1(l−1
i (u))φ̃(u)du

=
n∑

i=1

∫
l−1
i (Ii)

F−1(y)φ̃(li(y))cidy

=

∫ 1

0

F−1(y) ˜̃φ(y)dy

=

∫ 1

0

VaRu
˜̃φ(u)du,

where ˜̃φ(y) =
n∑

i=1

ci1l−1(Ii)(y)φ̃(li(y)). Therefore ρ̃(F ) has the same form as (3.5.4)

and we can use Proposition 3.5.1 to study the robustness of our natural risk

statistics in (3.5.1) and (3.5.2).

Now we can see that our first family of natural risk statistics, the so called

mean exponential risk, can be seen as a historical estimator of a distribution-based

risk measure when we choose exponential weights ai = e−αi(eα − 1) in (3.5.12).

Since these weights are decreasing, we have by Proposition 3.5.1 that the mean
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exponential risk statistics is not a robust. This is particularly interesting because

illustrates the incompatibility of coherence and robustness in a single risk measure.

And we can intuitively understand the mechanics behind this fact. If we want a

risk measure to be coherent then the weights in (3.5.12) have to be decreasing,

but if the weights are decreasing this means that we are giving more weight to the

largest observations, hence yielding estimators that are more sensitive to sample

outliers.

As for the second example of natural risk statistics, the so-called conditional

median normal risk, we can see that equation (3.5.13) is the conditional median

normal risk statistics, if we use a normal kernel for the weights (a1, a2, . . . ).

This is, if we use the weights ai = 1
M
e
|i−µ|2

σ with M =
∞∑
i=1

e
|i−µ|2

σ and for some

conveniently chosen parameters µ and σ > 0, then the conditional median normal

risk can be seen as a historical estimator of (3.5.5). In view of Proposition 3.5.1,

we can see that the robustness of the conditional median normal risk statistics

depends on the support of the weight function φ̃. In particular, it is clear that

suppφ̃ = [α, 1] and so the robustness of the estimator only depends on the right

end of the support of φ. There are many ways of defining a weight function φ,

for instance, one could envision a definition that would have a right end of its

support away from one, guaranteeing the robustness of the estimator (3.5.13).

One final remark regarding the risk measures of the form (3.5.5). This par-

ticular form is suggested by the structure of natural risk statistics as produced

by our construction. We notice that, for risk measures in cl and l∞, the entries

smaller than the limsup of the sequence are not taken into account (see the proof

of Theorem 3.4.1). This fact brings about the idea of considering risk measures,

like (3.5.5) in the first place. These measures only take into account data entries

larger than a conveniently chosen quantity, like V aRα for example. We believe

that these risk measures deserve further analysis.
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Figure 3.3. Weights for the Conditional Median Normal Risk
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Figure 3.4. Weights for the Multi-Conditional-Median Normal





Chapter 4

GOOD DEALS AND THE COMPATIBLE

MODIFICATION OF RISK AND PRICING

RULES: A REGULATORY TREATMENT

Résumé

Dans cet article nous étudions la situation dans laquelle un marché peut être

déstabilisé en présence de “bonnes affaires” (Good Deals). Une bonne affaire est

une situation financière à coût zéro qui n’entraîne aucun risque. Nous étudions

les bonnes affaires dans un scénario où les entreprises utilisent des mesures co-

hérentes pour évaluer leurs risques et où les prix du marché sont déterminés

par une règle de tarification sous-linéaire. Le résultat le plus important dans

ce travail est l’observation que l’existence d’une bonne affaire est équivalente à

l’incompatibilité entre la règle de tarification et la mesure de risque. L’incompatibilité

a été introduite et étudiée dans [13]. Nous nous penchons sur cette situation du

point de vue réglementaire afin d’exclure de bonnes affaires avec l’intention de

stabiliser les marchés financiers. Nous proposons quelques façons pratiques de

modifier une mesure du risque de telle sorte qu’un organisme régulateur puisse

établir des niveaux appropriés de capital pour les institutions financières.

Abstract

In this paper we study a situation in which a market might be destabilized in

the presence of Good Deals. A Good Deal is a zero-cost financial position that
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does not produce any risk. We study Good Deals in a scenario whereby a firm

uses decision-making tools based on a coherent risk measure, and where the market

price is determined with a sub-linear pricing rule. The most important observation

of this work is that the existence of a Good Deal is equivalent to the incompatibility

between the pricing rule and the risk measure. Incompatibility has been introduced

and studied in [13]. In this paper, we look at this situation from a regulatory

point of view in order to rule out Good Deals, with the purpose of stabilizing

financial markets. We propose some practical ways of modifying a risk measure

such that a regulator can set appropriate levels of capital requirements for financial

institutions, in order to be considered in a safe position.

4.1. Introduction

Stability of financial markets is one of the biggest concerns of regulators, in

particular central banks. In the last century the world has witnessed many fi-

nancial crises that have provoked regulators to establish some rules in order to

make markets safer and more stable. For example, in the European Union, Basle

II (finance) and Solvency II (insurance) contain sets of rules which the industry

section should respect in order to place corporations in a safer position. Following

these rules, any corporation computes its “capital reserves”, i.e. additional capi-

tal devoted mainly to overcome periods of loss in their economic activities. The

appropriate size of reserve could be considered as the risk level associated with

the firm’s activities. The importance of these rules, and accordingly the “capital

reserves” is to keep the markets in a safer and more stable state. It is generally

accepted that stability of a market is mainly reached while the market is in equilib-

rium. The general theory of market equilibrium has been developed during the last

century (see [30]). It is also known that equilibrium balances the market partici-

pant’s needs and their preferences. In general, the state of stability is an outcome

of a fair allocation of available resources among market participants. However,

one cannot always rely on the existence of an equilibrium while there are financial

opportunities which destabilize a market. Most of the time, market destabilizers

are financial positions deemed to be simultaneously safe and profitable. The best
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known example of such positions are arbitrages. An arbitrage is easily detectable

and cannot survive for a long time in a market. But Arbitrages are not the only

positions which destabilize a market.

In recent years, different risk measures have been used in financial institutions

and regulatory sectors in order to assess the risk of financial positions, and in

order to calculate the capital requirement. Sometimes, these risk measures provoke

a new generation of market destabilizers. These financial positions are the major

objectives we will study in this paper. We study a kind of pathological financial

position called a Good Deal. These kinds of positions are introduced and studied in

[28] and [19]. Cochrane and Saà-Requejo [28] first introduce the notion of a Good

Deal as a financial position with particularly high Sharpe ratio. In that work,

the authors assume that Good Deals do not exist in market equilibrium, and they

show that this assumption holds if and only if there is a bound on the variance

of the members of the Stochastic Discount Factor set (SDF). In Cochrane and

Saà-Requejo [28], this problem is analyzed for the one-period, multi-period, and

the continuous time settings. The definition of a Good Deal has been extended in

Černý and Hodges [19], where the authors define a set of "desirable” positions.

They define a Good Deal as a desirable position with the non-negative price and

use the No Good Deal assumption to price the claims in an incomplete market.

In another work, Černý [? ] defines a Good Deal by mean of a generalized

Sharpe ratio, developing the ideas in Cochrane and Saà-Requejo [28] and Černý

and Hodges [19].

Björk and Slinkor [? ] extend the results of Cochrane and Saà-Requejo [28]

to a dynamic setting with a general Markov process, allowing a study of the Good

Deal bounds for processes with jumps. Cherny [25] extends the definition of Good

Deals to positions with a high performance ratio (a generalization of Sharpe ratio).

All these works aim to price a financial position in an incomplete market when

equilibrium is reached.

Our work differs from the existing literature in two ways. First, we use our

results for regulatory purposes (assessing the capital requirement), not for pric-

ing. Second, we are interested in investigating a situation in which a Good Deal
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exists. We found that underestimating the risk of a financial position (or under-

capitalization) produces a Good Deal. To avoid under-capitalization, the financial

institutions have to modify their risk measures to ones which always dominate the

primary risk measures in use. In fact, the modified risk measure must dominate

the primary risk measure in addition to dominating the short selling price. In

this paper, we propose two ways of modifying a risk measure. The first regards

the fundamentals of the risk user, and the second regards the fundamentals of the

market. We also focus on concrete risk measures. Special attention is devoted

to CVaR because this coherent risk measure has become very popular among re-

searchers and practitioners. We apply our findings to CVaR so as to build the

Compatible Conditional Value at Risk (CCVaR) in a general incomplete market.

In an incomplete market, Compatible CVaR can be found by seeking a stochastic

discount factor with the smallest European call option price. This modifies the

discussion in Balbás and Balbás [13], in which Compatible CVaR is introduced in

a complete perfect market (i.e. SDF is a singleton).

This paper is organized as follows. In Section 2, we will present the nota-

tions and the general framework with which we will work. We will consider an

Arbitrage-free market (in general incomplete and/or imperfect) with a sub-linear

pricing rule π and a coherent risk measure ρ. In Section 3, we define the concept

of a Good Deal, inspired by definitions in Černý and Hodges [19] and Cherny [25].

We will show that incompatibility is equivalent to the existence of Good Deals. In

Section 4, we will show the existence of a minimal compatible modification of a

coherent risk measure. We will see that the existence of a minimal compatible

modification is tied to the existence of a minimal point of a partial order on SDF.

In Section 5, which constitutes the second part of the paper, we will propose two

ways of modifying a risk measure.

4.2. Preliminaries and Notation

Consider the probability space (Ω,F ,P) composed of the set Ω representing

the“states of the world”, a σ-field F and a probability measure P. Let p, q ∈ [1,∞]
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be two numbers such that 1/p+1/q = 1. For p 6= ∞, Lp denotes the space of real-

valued random variables X on Ω such that E (|X|p) <∞ where E represents the

mathematical expectation. The space L∞ consists of all bounded random variables.

Recall that according to the Riesz Representation Theorem, Lq is the dual space

of Lp when p 6= 1,∞. We mainly endow the space Lp and Lq by two topologies,

first the norm topology and second the topology induced by Lq i.e. the coarsest

topology in which all members of Lq are continuous. As usual the latter topology

is called by weak topology and is denoted by σ(Lp, Lq) (there is one exception for

p = ∞ when σ(L∞, L1) is called weak star topology).

In this paper we consider only two periods of time, today and tomorrow, rep-

resented by 0 and T respectively. Every random variable represents the pay-off of

a financial position at time T . Whenever we talk about risk or price of a financial

position we mean the present value of the price and the present risk associated to

the financial position. In addition, to simplify the discussions we consider that

the interest rate is zero.

Let us assume that X ⊂ Lp is a closed convex cone containing R (the set of

real numbers), representing all viable pay-offs, i.e. for every X ∈ X there is a

price associated with X.

Definition 4.2.1. A Lp-continuous mapping π : X → R is a sub-linear pricing

rule if

i) π(X + k) = π(X) + k,∀X ∈ X , ∀k ∈ R;

ii) π(λX) = λπ(X),∀X ∈ X , ∀λ > 0;

iii) π(X + Y ) ≤ π(X) + π(Y ),∀X, Y ∈ X ;

iv) π(X) ≤ π(Y ),∀X, Y ∈ Lp and X ≤ Y .

Remark 4.2.1. The pricing rule π can be for example considered the super-

replication price, when X consists of all random variables like X such that there

exists a viable self-financing process which can super-hedge X.

Definition 4.2.2. A continuous mapping ρ : Lp → R is a coherent risk measure

if

1) ρ (X + k) = ρ (X)− k for every X ∈ Lp and k ∈ R;

2) ρ (λX) = λρ (X) for every X ∈ Lp and λ > 0;
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3) ρ (X + Y ) ≤ ρ (X) + ρ (Y ) for every X,Y ∈ Lp;

4) ρ(X) ≤ ρ(Y ) for every X,Y ∈ Lp and X ≥ Y .

A particularly interesting example is the Conditional Value at Risk (CVaR)

of Rockafellar et al. [58] defiend as

CVaRα(X) =
1

α

∫ α

0

VaRs(X)ds.

Let

∆ρ := {Z ∈ Lq| − E (XZ) ≤ ρ (X) ,∀X ∈ Lp} . (4.2.1)

The set ∆ρ is obviously convex. Bearing in mind the Representation Theorem

2.4.9 in Zalinescu [67] for p 6= ∞, and using a proof similar to that of the Rep-

resentation Theorem of a risk measure, from what is stated in Rockafellar et al.

[58], it can be seen that ∆ρ is σ (Lq, Lp)−compact, and

ρ (X) = max
Z∈∆ρ

E [−ZX] , ∀X ∈ Lp. (4.2.2)

Furthermore, by 1) and 4) of Definition 4.2.2 one can see that

∆ρ ⊂ {Z ∈ Lq
+|E (Z) = 1} . (4.2.3)

By means of the Hahn-Banach Separation Theorem, one can easily prove that

if ∆ρ ⊂ Lq is convex and σ (Lq, Lp)−compact, and ∆ρ satisfies (4.2.3), then there

exists a unique continuous mapping ρ : Lp → R satisfying 1), 2), 3) and 4) such

that (4.2.2) holds.

For p = ∞, in order to have the same representation, ρ needs to have the

Fatou property introduced by Delbaen [33]. We say that ρ has the Fatou property

if for any bounded sequence {Xn}n ⊆ L∞, converging in probability to X we have

that ρ(X) ≤ lim inf
n

ρ(Xn). For coherent risk measures this is equivalent to the

continuity from above i.e., for every sequence {Xn}n in L∞ such that Xn ↓ X

we have that ρ(Xn) → ρ(X) (see Delbaen [33]). With this assumption ∆ρ is a

subset of L1, but not in general σ(L1, L∞)-compact. In the sequel for p = ∞

we also add the assumption that ∆ρ is σ(L1, L∞)-compact, which with the aid of

the Dunford-Pettis Theorem means that ∆ρ is uniformly integrable. It is worth

mentioning that the σ(L1, L∞)-compactness is equivalent to the so-called Lebesgue
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property of ρ defined in Jouini et al. [50]. A coherent risk measure ρ satisfies

the Lebesgue property if for any bounded sequence {Xn}n ⊆ L∞ converging in

probability to X we have that ρ(Xn) → ρ(X). For coherent risk measures this

property is also equivalent to the continuity from below i.e. if Xn ↑ X then

ρ(Xn) → ρ(X). For further discussions see for example Föllmer and Schied [43]

Proposition 4.21. It is also important to know that most common law invariant

coherent (convex in general) risk measures display this property. For instance,

for the coherent risk measure CVaRα (where α ∈ (0, 1) is a confidence level) we

know that ∆CVaRα = {f : Ω → R| 0 ≤ f ≤ 1
α
, E[f ] = 1}, which is uniformly

integrable (and hence σ(L1, L∞)-compact). It is shown in Delbaen [? ] that a law

invariant coherent (convex in general) risk measure on L∞ is continuous from

below if and only if its extension to L1 takes finite value for some position which

is unbounded from below. This is important to know because we will see that any

coherent risk measure defined on Lp which can be extended to L1 is incompatible

with pricing rules induced by unbounded stochastic discount factors (like one given

by the Black-Scholes model).

4.3. Compatibility and Good Deals

This section will be devoted to introduce the notion of compatibility between

a coherent risk measure and a sub-linear pricing rule and its relation with Good

Deals.

Definition 4.3.1. Let π be a sub-linear pricing rule and ρ a coherent risk mea-

sure. We say π and ρ are compatible if there is no sequence (Xn)∞n=1 ⊂ X such

that the following conditions simultaneously hold

π (Xn) ≤ 0, ∀n ∈ N (4.3.1)

limn→∞ρ (Xn) = −∞. (4.3.2)

We say π and ρ are incompatible if they are not compatible.

As one can see if π and ρ are incompatible, then every manager who uses ρ to

assess the risk can make the risk as negative as he/she wishes, which does not
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make any economical sense. For further discussion we refer the reader to Balbás

et al. [14].

Now we give our definition of a Good Deal inspired by definitions in Černý

and Hodges [19] and Cherny [25].

Definition 4.3.2. A Good Deal is a position X ∈ X such that π(X) ≤ 0 and

ρ(X) < 0. No Good Deal is an assumption when there is no Good Deal.

Theorem 4.3.1. Let ρ be a coherent risk measure and π a sub-linear pricing rule

. Let

R :=

{
Z ∈ Lq

+

∣∣∣∣E[Z] = 1, π (X)− E (XZ) ≥ 0,∀X ∈ X
}
. (4.3.3)

The No Good Deal assumption holds if and only if

∆ρ ∩R 6= ∅.

Proof. This is easily concluded by using Theorem 3.4 in Cherny [25]. �

Here we try to present an example of a Good Deal, illustrating how these

pathological positions could appear in a market.

Example: Let Y be a random variable in L1 \L2. Without loss of generality one

can consider that Y is bounded above by a positive number M (otherwise one can

pick either −|Y |1{Y <0} +M or −|Y |1{Y≥0} +M in lieu of Y ). Let ρ be any law

invariant risk measure on L∞ i.e., for all X, ρ(X) is a function of density of X.

Since ρ is law invariant, it is finite on L1 (see Remark 4.3.1) which implies that

ρ(Y ) < ∞. Let Xn = Y 1{Y≥−n} + ρ(Y ) and note that ρ(Xn) ↑ 0. Let X = L∞

and define π(X) = E( 1
‖Y ‖L1

|Y |X). Considering the above notations, we have

π(Xn) = π(Y 1{Y≥−n} + ρ(Y ))

= π(Y 1{Y≥−n} −M) +M + ρ(Y )

= π(−|Y 1{Y≥−n} −M |) +M + ρ(Y )

≤ 1

‖Y ‖L1

E(−Y 21{Y≥−n}) + 2M + ρ(Y ) −−−→
n→∞

−∞,

where in the limit we used the fact that Y 6∈ L2. One can see that for a large

enough integer number n0, there is a position Xn0 such that ρ(Xn0) ≤ 0 whereas
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π(Xn0) < 0. By definition Xn0 is a Good Deal. In addition, according to Defini-

tion 4.3.1, ρ and π are incompatible (using Xn in the definition).

4.3.1. A Hedging Problem

Here we consider a more practical discussion when we want to hedge a finan-

cial position g with all possible choices we can make subject to a given budget

constraint over a set X . This problem will help us to better discover the relation

between the concepts of incompatibility and Good Deals.

Let us consider the following problem


min ρ (X − g) + c

π (X) ≤ c

X ∈ X , c ∈ R.

(4.3.4)

This problem has been studied in Balbás et al.[12], Balbás et al. [14] and Balbás

et al. [15]. The dual of problem (4.3.4) is found in Balbás et al. [12] as

 max E[gZ]

Z ∈ ∆ρ ∩R
. (4.3.5)

Following the discussions in Balbás et al. [12], Balbás et al. [14] and Balbás et

al. [15] we have the following theorem

Theorem 4.3.2. The following statements are equivalent:

(1) π and ρ are compatible.

(2) R∩∆ρ 6= ∅.

(3) Problem (4.3.4) is bounded.

(4) Problem (4.3.5) has a feasible solution.

(5) There is no duality gap between (4.3.4) and (4.3.5).

As one can see (4.3.5) has a solution if and only if ∆ρ∩R 6= ∅, which obviously

reminds us of Theorem 4.3.1. Now we add the following statements to Theorem

4.3.2

Theorem 4.3.3. All statements of Theorem 4.3.2 are equivalent to the followings:

(1) The No Good Deal assumption holds.

(2) ρ+ π ≥ 0.
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Proof. From Definition 4.3.2, it is obvious that the No Good Deal assump-

tion holds iff for all X in X , π(X) ≤ 0 implies ρ(X) ≥ 0. Therefore, since

π(X − π(X)) = 0, we have that ρ(X − π(X)) ≥ 0. Since ρ is translation in-

variant, we conclude that ρ(X) + π(X) ≥ 0, showing that 1 implies 2. Now we

prove the other implication. To this end, let us suppose that there exists a Good

Deal X ∈ X . By Definition 4.3.2, there exists X ∈ X such that ρ(X) < 0 and

π(X) ≤ 0 which implies ρ(X) + π(X) < 0. �

In the following remark we show that Good Deals are not rare positions.

Remark 4.3.1. Suppose that p 6= 1.Let ρ be a law invariant coherent risk mea-

sure on Lp i.e. ρ(X) = ρ(Y ) for any two random variables X, Y with identical

distributions. It has recently been proven in Filipovic and Svindland [39] that

every law invariant coherent risk measure on L∞ can canonically be extended to

L1. Let us for a moment denote this extension with ρ̃. According to previous dis-

cussions, ∆ρ̃ is a σ(L∞, L1)-closed convex set of L∞. Since Lp ⊆ L1, ∆ρ is also

σ(Lq, Lp)-closed convex set of Lq. This implies that ρ̃ restricted to Lp can be rep-

resented as ρ̃(X) = sup
∆Z∈ρ̃

E[−XZ] which by σ(Lq, Lp)-closeness of ∆ρ̃ implies that

ρ(X) = sup
∆Z∈∆ρ

E[−XZ]. This shows that ∆ρ = ∆ρ̃. Now according to Theorem

4.3.1, this shows that a law invariant risk measure (like CVaR) with a pricing

model which has unbounded stochastic discount factors (like the Black-Sccholes

model) produces Good Deals.

4.4. Risk Modification

Discussions in the Remark 4.3.1 show that compatibility may fail in very im-

portant cases. This motivates us to modify risk measures to ones compatible with

pricing rules.

Definition 4.4.1. With the same notation as above, let π be a sub-linear pricing

rule on X ⊆ Lp, and ρ a coherent risk measure on Lp. A minimal compatible

modification, denoted by ρm, is a coherent risk measure on Lp such that:

a) π and ρm are compatible, and ρ ≤ ρm;

b) ρm is minimal, i.e. for any risk measure ρ̃ such that π and ρ̃ are compatible

and ρ ≤ ρ̃ ≤ ρm, we have that ρ̃ = ρm.
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Note that the minimal compatible modification is not necessarily unique.

To study the existence of minimal compatible modification we need the follow-

ing notation. For a given Z ∈ Lq \∆ρ let

C(Z) := co({Z} ∪∆ρ). (4.4.1)

where co denotes the convex hull. It is easy to see that since ∆ρ is σ(Lq, Lp)-

compact then C(Z) is σ(Lp, Lq)-closed. Define � for two members Z1, Z2 ∈ Lq \

∆ρ:

Z1 � Z2 ⇔ C(Z1) ⊆ C(Z2). (4.4.2)

Equivalently

Z1 � Z2 ⇔ Z1 ∈ C(Z2). (4.4.3)

This relation shows that � is a transitive relation and then a partial ordering. In

the following theorem we see that if R ∩ ∆ρ = ∅, the partial ordering � has at

least one minimal.

Theorem 4.4.1. Suppose that R ∩ ∆ρ = ∅. Then there exists a minimal point

Z ∈ (R,�).

Before proving the theorem we need to prove the following lemma

Lemma 4.4.1. Let {Zn}n be a sequence in R such that Z1 � Z2 � Z3 � . . . and

Zn → Z in σ(Lq, Lp). Then

∩n∈NC(Zn) = C(Z). (4.4.4)

Proof. Fix an arbitrary integer number N ∈ N. By our assumption we have

Zn � ZN ,∀n ≥ N which in turn yields Zn ∈ C(ZN) ,∀n ≥ N . Since C(ZN) is

closed and N is arbitrarily chosen, we deduce that Z ∈ C(ZN). That gives for all

N ≥ 1 , C(Z) ⊆ C(ZN) which yields C(Z) ⊆ ∩n∈NC(Zn), showing that the right

hand-side of (4.4.4) is included in the left hand-side.

In order to prove the other inclusion let Z̃ be a member of ∩n∈NC(Zn). For

any n ∈ N, by definition of C(Zn) there exists λn ∈ [0, 1] and Z∗
n ∈ ∆ρ such that

Z̃ = (1− λn)Zn + λnZ
∗
n.
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Since ∆ρ is σ(Lq, Lp)-compact and [0, 1] is bounded, one can extract convergent

subsequences from Z∗
n and λn converging to Z∗ ∈ ∆ρ and λ ∈ [0, 1] respectively.

In the limit we have

Z̃ = (1− λ)Z + λZ∗,

which means that Z̃ belongs to the convex hull of Z and ∆ρ. By definition of

C(Z) this gives that Z̃ ∈ C(Z). �

Proof of Theorem 4.4.1 Fix a member Z̄ of R and let

A =

{
Z ∈ C(Z̄) ∩R

∣∣∣∣Z � Z̄

}
. (4.4.5)

We show that
(
A,�

)
satisfies the conditions of Zorn’s Lemma. Since Z̄ ∈ C(Z̄),

the set A is obviously nonempty. On the other hand let {Zn}n be a chain in A i.e.

Z1 � Z2 � . . . . Since A is σ(Lq, Lp)-compact, there exists a subsequence {Znk
}k

such that Znk
→ Z in σ(Lq, Lp), for some Z ∈ A. By applying Lemma 4.4.1 and

using the fact that C(Z1) ⊇ C(Z2) ⊇ . . . we have that ∩i∈NC(Zi) = C(Z). This

means that Z is a supremal point of the chain. By applying Zorn’s Lemma, there

exists a �-minimal point Z ∈ A.

Now we claim that Z is a minimal point for R. Suppose there exists Z̃ in R

such that Z̃ � Z. Since Z̃ � Z � Z̄, and since � is transitive (see (4.4.3)) we

have that Z̃ ∈ C(Z̄) which by definition gives Z̃ ∈ A. Since Z is a minimal point

for (A,�) consequently Z = Z̃ which implies that Z is minimal for (R,�).

Now the proof of the following theorem is straightforward

Theorem 4.4.2. Suppose that the No Good Deal assumption does not hold. The

risk measure ρm is a minimal compatible modification of ρ if and only if

∆ρm = C(Z)

for some minimal Z in
(
R,�

)
.

The following corollary gives a perfect geometrical description of a minimal

compatible extension of a coherent risk measure modifying the results in Balbás

and Balbás [13].

By Theorems 4.4.1 and 4.4.2 we have the following corollary:
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Corollary 4.4.1 (Minimal Modification). Suppose that the No Good Deal as-

sumption does not hold and ρm is a minimal modification of ρ. Then

ρm(X) = max
{
ρ(X),−E(ZX)

}
for some minimal point Z in (R,�).

4.5. Modification Rules

In the following discussions we propose two major methods for finding a min-

imal compatible modification ρm of ρ. The first method relies on minimizing a

third function φ, which is interpreted as a spread criteria. This new measure φ

concerns the fundamentals of the ρ-user. For instance, we will see, by considering

φ(.) = ‖.‖L1, that ∆ρ does not spread out very far in terms of the L1-norm.

As for the second proposed way of modifying the risk measure, our method is an

outcome of finding the No Better Choice (NBC) pricing rule of the Global/Local

Efficiency Ratio (see Cherny [25]). A Global/Local Efficiency Ratio is a perfor-

mance ratio which takes the market fundamentals as well as the risk user desires

into account.

4.5.1. Minimal Risk Spread

Let us start with the following definition

Definition 4.5.1. A function φ : Lq → R is a spread criteria if

(φ1) φ is positive and convex.

(φ2) The function (Z,Z1) 7→ φ(Z−Z1) attains its minimum at a point (Zmin, Z
∗) ∈

R×∆ρ.

(φ3) The equality φ(Z) = 0 holds if and only if Z = 0.

The following theorem enables us to find a minimal compatible modification

of a coherent risk measure ρ based on a spread criteria φ.

Theorem 4.5.1. Suppose that the No Good Deal assumption does not hold. Then,

in the above notation Zmin is a minimal point for (R,�).

Proof. Since No Good Deal assumption does not hold, by Theorem 4.3.3

we know that R ∩ ∆ρ = ∅. To prove the theorem’s statement we suppose, to
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the contrary, that Zmin is not minimal. Then there exists Z̃ ∈ R such that

Z̃ ∈ C(Zmin) and Z̃ 6= Zmin. Since Zmin 6= Z̃ ∈ C(Zmin), by definition there

exists λ ∈ (0, 1] and Z1 ∈ ∆ρ such that

Z̃ = (1− λ)Zmin + λZ1.

By convexity of ∆ρ we know that Z2 = (1−λ)Z∗+λZ1 ∈ ∆ρ. Given assumptions

(φ1), (φ3) we have

φ(Z̃ − Z2) = φ

(
(1− λ)Zmin + λZ1 − ((1− λ)Z∗ + λZ1)

)
= φ

(
(1− λ)(Zmin − Z∗)

)
≤ (1− λ)φ(Zmin − Z∗).

Since 0 ≤ 1 − λ < 1, by definition of Zmin we have that φ(Zmin − Z∗) = 0.

By condition (φ3) we get that Zmin = Z∗ which contradicts our Good Deal

assumption. �

4.5.1.1. Compatible Conditional Value at Risk (CCVaR)

In this part we are going to use the theory we have developed in the last

section by implementing φ(X) =
∫

Ω
|X|dP and ρ = CVaRα, for some confidence

level α ∈ (0, 1) in Theorem 4.5.1. Interestingly, we will see that in order to find

the Compatible CVaR (i.e., compatible with a given π), we will have to find a

stochastic discount factor with the least European call option price with strike

price 1
α
. We start with the following lemma.

Lemma 4.5.1. For a given g ∈ L1
+ with E[g] = 1, the L1-distance between g and

∆CVaRα equals 2
∫

Ω

(
g − 1

α

)+ i.e.

min
Z∈∆CVaRα

∫
Ω

|g − Z| = 2

∫
Ω

(
g − 1

α

)+

.

Furthermore, the minimum is attained only in points Z∗ given as

Z∗ =
1

α
1{g≥ 1

α
} + (g + h)1{g< 1

α
}, (4.5.1)

where h is a non-negative function for which (g + h)1{g< 1
α
} ≤ 1

α
and
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∫
{g< 1

α
}
h =

∫
Ω

(
g − 1

α

)+

. (4.5.2)

Proof. First recall from Rockafellar et al. [58] that

∆CVaRα =

{
f ∈ L1

∣∣∣∣0 ≤ f ≤ 1

α
,E[f ] = 1

}
.

Let Z ∈ ∆CVaRα and define

Z1 := (Z − g)1Z≥g,

Z2 := (g − Z)1{g≥Z,g< 1
α
},

Z3 := min(Z, g),

Z4 := (
1

α
− Z)1g≥ 1

α
,

Z5 := (g − 1

α
)1g≥ 1

α
.

It is clear that

Z1 + Z3 = Z,

g = Z2 + Z3 + Z4 + Z5.

Therefore, ∫
Z1 +

∫
Z3 = 1, (4.5.3)

1 =

∫
Z2 +

∫
Z3 +

∫
Z4 +

∫
Z5. (4.5.4)

On the other hand, since Z2 and Z4 are non-negative we have

2

∫
Z2 +

∫
Z4 ≥ 0. (4.5.5)

Combining (4.5.5) with (4.5.3) and (4.5.4), yields∫
Z1 +

∫
Z2 ≥

∫
Z5.

Adding one more
∫
Z5 to both sides of the last inequality, we obtain∫

Z1 +

∫
Z2 +

∫
Z5 ≥ 2

∫
Z5.

Having this, one can see that
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∫
|Z − g| =

∫
Z1 +

∫
Z2 +

∫
g≥ 1

α

(g − Z) (4.5.6)

≥
∫
Z1 +

∫
Z2 +

∫
Z5 (4.5.7)

≥ 2

∫
Z5 = 2

∫ (
g − 1

α

)+

. (4.5.8)

Therefore, 2
∫ (

g − 1
α

)+ is smaller than
∫
|Z − g| for all Z.

Now we take three steps to conclude the proof: First, we show that at least

one Z∗ exists. Second, we show that every Z∗ introduced in (4.5.1) is a minimal

point. Third, we prove that every minimal point has the same structure as in

(4.5.1).

Step 1. We show that there exists a function h which satisfies the conditions in

Lemma 4.5.1 and can be put into (4.5.1).

Observe that since 0 > 1− 1
α

=
∫

(g− 1
α
) =

∫
g≥ 1

α
(g− 1

α
)+
∫

g< 1
α
(g− 1

α
) we have∫

g≥ 1
α
(g − 1

α
) <

∫
g< 1

α
( 1

α
− g). Let λ :=

R
g≥ 1

α
(g− 1

α
)R

g< 1
α

( 1
α
−g)

,and note that λ < 1. Defining

h := λ( 1
α
− g)1g< 1

α
, it is clear that h fulfills the conditions of Lemma 4.5.1.

Step 2. Suppose that h is a non-negative function for which (g + h)1{g< 1
α
} ≤ 1

α

and (4.5.2) holds. Define

Z∗ :=
1

α
1g≥ 1

α
+ (g + h)1g< 1

α
.

First we show that Z∗ ∈ ∆CVaRα . By construction it is clear that 0 ≤ Z∗ ≤ 1
α
.

On the other hand by (4.5.2) we have that∫
Ω

Z∗ =

∫
g≥ 1

α

1

α
+

∫
g< 1

α

g +

∫
g< 1

α

h

=

∫
g≥ 1

α

1

α
+

∫
g< 1

α

g +

∫
Ω

(
g − 1

α

)+

=

∫
g≥ 1

α

1

α
+

∫
g< 1

α

g +

∫
g≥ 1

α

(
g − 1

α

)
=

∫
Ω

g = 1.
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Now we show that Z∗
2 = Z∗

4 = 0. It is easy to see that Z∗
4 = 0. As for Z∗

2 = 0,

just observe that by definition of Z∗, {g < 1
α
, g ≥ Z∗} = {h = 0}, and therefore

Z∗
2 = (g − Z∗)1{g≥Z∗ , g< 1

α
} = −h1{g≥Z∗ , g< 1

α
} = −h{h=0} = 0.

On the other hand, it is also clear that (g − Z∗)1{g≥ 1
α
} = 0. Given this, since

Z∗
2 = Z∗

4 = 0, we have equalities in (4.5.7) and (4.5.8), which implies that Z∗ is

a minimal point.

Step 3. Let us denote a minimal point by Z∗. From Steps 1,2 it is clear that the

minimum is

2

∫ (
g − 1

α

)+

.

This, along with (4.5.7) and (4.5.8), shows that for any minimal point Z∗ ∈ ∆ρ

we must have Z∗
2 = Z∗

4 = 0. The equality Z∗
4 = 0 implies that

Z∗1g≥ 1
α

=
1

α
. (4.5.9)

This is the first part of (4.5.1).

Let h := (Z∗ − g)1{g< 1
α
}. By construction, Z∗1{g< 1

α
} = (h + g)1{g< 1

α
}, which

is the second part of (4.5.1).

Now we must show that h is non-negative, (g+h)1{g< 1
α
} ≤ 1

α
and that (4.5.2)

holds. From 0 = Z∗
4 = (g − Z∗)1{g≥Z∗,g< 1

α
} it turns out that g cannot be larger

than Z∗ on {g < 1
α
}. This gives that the function h = (Z∗ − g)1{g< 1

α
} is non-

negative. Since Z∗ ≤ 1
α
, it is also clear that (g + h)1{g< 1

α
} ≤ 1

α
.

Now by assumption that Z∗ is minimal, definition of h and (4.5.9) we have that

2

∫ (
g − 1

α

)+

=

∫
|g − Z∗|

=

∫
g≥ 1

α

(
g − 1

α

)
+

∫
g< 1

α

h

=

∫ (
g − 1

α

)+

+

∫
g< 1

α

h,

which shows that (4.5.2) hold and the proof is complete.

From Theorem 4.5.1 and Lemma 4.5.1 we deduce the following theorem:
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Theorem 4.5.2. Let SDF be the set of all Stochastic Discount Factors (e.g.

EMM in an incomplete market). Suppose that the minimum of 2E[(· − 1
α
)+] over

SDF is attained at g∗ ∈SDF. Then g∗ is a minimal point of (SDF,�).

Remark 4.5.1. Interestingly one can see that finding the minimal extension for

CVaR is equivalent to finding a stochastic discount factor with the least European

call option price with strike 1
α
.

Remark 4.5.2. In an incomplete market, there is more than one equivalent mar-

tingale measure. Among many choices, the right pick is always an important

question. For instance, the minimal martingale measure provided by the Föllmer-

Schweizer decomposition, the one which is the nearest in Lq-norm to the histor-

ical measure P, or the one which has the least entropy could be named among

many (see Chan [20]). Here, we can add another to this list, which concerns the

existence of Good Deals.

4.5.2. Global Risk and Performance Maximization

In this section we propose the second way of modifying a risk measure which

will be carried out via studying the following coherent risk measure:

X 7→ max{ρ(X), π(−X)}.

We call this risk measure as Global Risk measure and denote by GR(X). Indeed

the Global Risk does not only assess the trader’s risk, but also the market response

to going short on X, which could be interpreted as the market risk. As usual in

the literature of coherent risk measure, in the sequel, we will denote the function

−ρ by u, and we will call it the monetary utility associated with ρ.

For our discussions in this section we need the following assumption on R:

R is σ(Lq, Lp)− compact. (4.5.10)

Now we start to study the efficiency ratio u(X)
GR(X)

in order to propose another

way of finding a minimal compatible modification of risk measure ρ. We have the

following definition



109

Definition 4.5.2. For a couple (π, ρ) the Global/Local performance ratio GL is

defined as follows:

GL(X) =


+∞ if GR(X) < 0,

u(X)
GR(X)

if GR(X) ≥ 0 and u(X) > 0,

0 if GR(X) ≥ 0 and u(X) ≤ 0,

(4.5.11)

when positive
0

= +∞.

It is easy to show that

GL(X) =


+∞ if u(X) > 0 and π(−X) ≤ 0,

u(X)
π(−X)

if u(X) > 0 and π(−X) > 0,

0 if u(X) ≤ 0.

(4.5.12)

This is a measure to see how much it is worth to keep X. Further interpretation

is left to the reader.

Now let us suppose that the No Good Deal assumption holds. Let X be a

financial position such that π(X) ≤ 0. It is clear since R∩∆ρ 6= ∅ then u(X) ≤ 0,

and by (4.5.12) we have GL(X) = 0. However, in the opposite case, when the

No Good Deal assumption does not hold, i.e. R ∩ ∆ρ = ∅, we always have

sup
π(X)≤0

GL(X) > 0. This number shows how far a market is from the No Good

Deal assumption. This can be summarized in the following proposition

Proposition 4.5.1. The No Good Deal assumption holds if and only if GL(X) =

0 for all X in {π ≤ 0}.

Here we lead the discussion to the No Better Choice pricing rule associated

with the performance ratio GL defined by Cherny [25].

Definition 4.5.3. For any financial position g the NBC price of g is a real

number x such that

sup
{X+h(g−x) | π(X)≤0 , h∈R}

GL

(
X + h(g − x)

)
= sup

{X | π(X)≤0}
GL(X). (4.5.13)

Actually it is the cost for g in which the maximum efficiency ratio does not

increase by adding the new product g. The set of all NBC prices are denoted by

INBC .
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We denote the supremum in (4.5.13) by R∗, i.e.

R∗ = sup
{X | π(X)≤0}

GL(X).

In Cherny [25] it is shown that

R∗ = inf

{
R ≥ 0

∣∣∣∣ ( 1

1 +R
∆ρ +

R

1 +R
c̄o
(
∆ρ ∪R

))
∩R 6= ∅

}
.

Since ∆ρ and R are σ(Lq, Lp)-compact and both ∆ρ and R are convex we get

c̄o
(
∆ρ ∪R

)
= co

(
∆ρ ∪R

)
. (4.5.14)

To show (4.5.14) let X ∈ co
(
∆ρ ∪ R

)
. Then, X =

k∑
i=1

µiYi +
l∑

j=1

λjZj, where

the µi, λj are positive with
∑
µi +

∑
λj = 1, and also (Yi, Zj) ∈ ∆ρ × R for

1 ≤ i ≤ k , 1 ≤ j ≤ l. Letting µ =
∑
µi and λ =

∑
λj we have that

X = µ

(∑ µi

µ
Yi

)
+ λ

(∑ λj

λ
Zj

)
.

By convexity of ∆ρ and R it follows that every member of co
(
∆ρ ∪ R

)
can

be written as X = µY + λZ for (Y, Z) ∈ ∆ρ × R where λ + µ = 1, µ, λ ≥ 0.

Now let us suppose that Xn ∈ co
(
∆ρ ∪ R

)
converges in σ(Lq, Lp) to X. There

exist 0 ≤ λn ≤ 1, Yn ∈ ∆ρ and Zn ∈ R such that Xn = (1− λn)Yn + λnZn. Since

∆ρ and R are σ(Lq, Lp)-compact, upon taking subsequences one can assume that

Yn, Zn and λn converge to Y, Z and λ respectively in ∆ρ,R and [0, 1]. This implies

that X = (1− λ)Y + λZ ∈ co
(
∆ρ ∪R

)
.

By (4.5.14) and ∆ρ∩R = ∅ it is clear that the expression 1
1+R

Z1 + R
1+R

Z ∈ R,

for some positive number R > 0 and for some Z1 ∈ ∆ρ and Z ∈ co(∆ρ ∪ R),

implies that Z ∈ R. This implies that R∗ can be rewritten as follows

R∗ = inf

{
R ≥ 0

∣∣∣∣ ( 1

1 +R
∆ρ +

R

1 +R
R
)
∩R 6= ∅

}
.

Let

D∗ =
1

1 +R∗∆ρ +
R∗

1 +R∗ c̄o
(
∆ρ ∪R

)
.

In Cherny [25] it is shown that

INBC(g) =
{
E(Zg)

∣∣Z ∈ D∗}.
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Let us associate with each Z the following number

rZ = inf

{
R ≥ 0

∣∣∣∣ ∃(Z1, Z̃) ∈ ∆ρ × co(∆ρ ∪ R),
1

1 +R
Z1 +

R

1 +R
Z̃ = Z

}
(4.5.15)

As discussed in Corollary 3.10 Cherny [25], D∗ ∩R consists of all points in R

with minimum rZ . By discussion above it is now clear that (4.5.15) equals

inf

{
R ≥ 0

∣∣∣∣ ∃(Z1, Z̃) ∈ ∆ρ × R, 1

1 +R
Z1 +

R

1 +R
Z̃ = Z

}
Let d : ∆ρ ×R → [0,+∞],

d(Z1, Z) = inf
{
R ≥ 0

∣∣∃Z̃ ∈ R, 1
1+R

Z1 + R
1+R

Z̃ = Z
}
.

To see d(Z1, Z) geometrically, we connect Z1 to Z and continue until hitting the

last point in R, named Z̃ (since R is σ(Lq, Lp)-compact, the last point exists).

So there exists R ≥ 0 such that Z = 1
1+R

Z1 + R
1+R

Z̃. Then d(Z1, Z) = R. In the

case that the continuation of the semi line
−−→
Z1Z hits R only in Z (i.e. Z = Z̃) we

put d(Z1, Z) = +∞. The function d is lower semi-continuous.

Lemma 4.5.2. The function d defined above is σ(Lq, Lp)-lower semi-continuous.

Proof. To show that d is σ(Lq, Lp)-lower semi-continuous we have to prove

that

Ca =

{
(Z1, Z) ∈ ∆ρ ×R

∣∣∣∣ d(Z1, Z) ≤ a

}
is σ(Lq, Lp)-closed for every positive number a ∈ [0,∞]. To this end let fix

a ∈ [0,∞] and let {(Zn
1 , Z

n)}n be a sequence in Ca, converging to (Z1, Z) ∈ ∆ρ×R

in σ(Lq, Lp). The case a = +∞ is trivial. The case a = 0 is never applied since

we are assuming that ∆ρ ∩R = ∅. So let us suppose that a ∈ (0,+∞). For each

n there exists Z̃n such that Zn = 1
1+d(Zn

1 ,Zn)
zn
1 +

d(Zn
1 ,Zn)

1+d(Zn
1 ,Zn)

Z̃n. Since d(Zn
1 , Z

n)

is bounded, by σ(Lq, Lp)-compactness of R one can find subsequence nk such

that d(Znk
1 , Znk) and Z̃nk converge respectively to d (0 ≤ d ≤ a) and Z̃ ∈ R.
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In the limit we have that 1
1+d

Z1 + d
1+d

Z̃ = Z, which by definition in turn yields

d(Z1, Z) ≤ d ≤ a.

�

As mentioned above, by Corollary 3.10 Cherny [25] and Lemma 4.5.2 one can

deduce that

D∗ ∩R =
{
Z ∈ R | ∃Z1 ∈ ∆ρ , d(Z1, Z) is minimal

}
.

The members of the set D∗ ∩ R are the discount factors for the No Better

Choice pricing technique. But interestingly the members of this set are also

minimal for (R,�) (see the next theorem) which by Theorem 4.4.2 leads us to a

good choice of the risk recovery.

Theorem 4.5.3. All members of D∗ ∩R are minimal for (R,�).

Proof Let Z ∈ D∗ ∩ R. By Lemma 4.5.2 we can suppose that there exists

Zmin
1 ∈ ∆ρ such that d(Zmin

1 , Z) is minimal over ∆ρ×R. From discussions above

we know that there exists ˜̃Z ∈ R such that

Z =
1

1 + d(Zmin
1 , Z)

Zmin
1 +

d(Zmin
1 , Z)

1 + d(Zmin
1 , Z)

˜̃Z.

Now let us suppose, to the contrary, that there exists Z̃ ∈ C(Z) ∩ R and

Z̃ 6= Z. By definition there exists Z2 ∈ ∆ρ and R ∈ [0,+∞) such that 1
1+R

Z2 +

R
1+R

Z = Z̃. From this relation it turns out that d(Z2, Z̃) ≤ R which yields

d(Zmin
1 , Z) ≤ R < +∞. This assures us that Z 6= ˜̃Z.

Since Z is convex combination of Zmin
1 and ˜̃Z the three points Zmin

1 , Z, ˜̃Z are

on the same direction. We claim that the point Z̃ cannot be on the line that

passes through Zmin
1 , Z, ˜̃Z. In order to see this, first note that since Z̃ ≺ Z ≺ ˜̃Z

we have that Z̃ 6∈
−→
Z ˜̃Z. Hence, if Z̃ lies on the same direction as Zmin

1 , Z, ˜̃Z two

possibilities exist: either Z̃ ∈ [Zmin
1 , Z) or Zmin

1 ∈ [Z̃, Z). The first is ruled out

since obviously in that case d(Zmin
1 , Z̃) < d(Zmin

1 , Z). The second possibility is

also ruled out since in that case by convexity of R, we get Zmin
1 ∈ R.

Now we have four different points Zmin
1 , Z, ˜̃Z, Z̃ which are not in the same

direction while three of them, Zmin
1 , Z, ˜̃Z are. As a result the convex combination

of these four points lie in a two dimensional affine space P . It is clear that Z2
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Figure 4.1. The proof illustration of Theorem 4.5.3

also belongs to P . Note that Z2 6= Zmin
1 , since otherwise Z̃ is on the the line

passing through Zmin
1 , Z, ˜̃Z. In the affine space P , the side ZZ2 of the triangle

4Zmin
1 ZZ2 is hit by the semi-line

−→̃
Z̃Z̃ in point Z̃. Therefore, the continuation

of
−→̃
Z̃Z̃ should hit the other side, Zmin

1 Z2 in a point denoted by Z3 (the opposite

side is impossible since again it puts Z̃ on the line passing through Zmin
1 , Z, ˜̃Z).

By convexity of ∆ρ, Z3 belongs to ∆ρ. Now on the side Zmin
1 Z of the triangle

4Zmin
1 ZZ2 we find a point Z4 such that Z3Z4 is parallel to Z2Z. Obviously

Z4 ∈ (Zmin
1 , Z). Since Z3Z4 and Z2Z are parallel we have:

|Z3Z̃|

|Z̃ ˜̃Z|
=
|Z4Z|

|Z ˜̃Z|
<
|Zmin

1 Z|

|Z ˜̃Z|
= d(Zmin

1 , Z). (4.5.16)

But by definition d(Z3, Z̃) ≤ |Z3Z̃|
|Z̃ ˜̃Z|

. Therefore, d(Z3, Z̃) < d(Zmin
1 , Z), which is a

contradiction. �





Chapter 5

FURTHER DISCUSSIONS ON GOOD DEALS

Résumé

Dans le chapitre précédent, nous avons examiné en détails le concept de “bonnes

affaires”. Nous avons vu, en particulier, comment une sous-estimation du risque

(ou une sous-capitalisation en contexte financier), pouvait engendrer de “bonnes

affaires”. Nous avons aussi vu comment l’existence de bonnes affaires pouvait être

expliqué en terme d’incompatibilité entre une mesure de risque et d’une règle de

tarification. Nous avons discuté de l’élimination de bonnes affaires en ajustant

cette incompatibilité (du point de vue de la solvabilité).

L’objectif de ce dernier chapitre est d’attirer l’attention du lecteur sur quelques

problèmes rencontrés dans les chapitres antérieurs. Comme nous l’avons vu dans

le chapitre 4, section 4.3.1, en travaillant avec une mesure de risque cohérente et

invariante par rapport à la loi de la variable, nous nous retrouvons toujours, pour

certains modèles, avec de bonnes affaires. Dans ce chapitre, nous allons dans

un premier temps étendre la notion de bonnes affaires à une plus grande famille

de mesures de risque et de règles de tarification (section 5.2), et deuxièment,

nous allons tenter de démontrer comment une information imparfaite engendre

de bonnes affaires (section 5.3.2). Finalement, nous discuterons comment, dans

un marché parfait, le choix de la mesure de risque peut engendrer de bonnes af-

faires, peu importe la règle de tarification (section 5.3.3). Cependant, avant de

commencer, nous allons montrer coment de bonnes affaires peuvent être observées

en pratique.
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Astract

In the previous chapter we looked into the concept of a Good Deal in some detail.

Indeed, we discussed how underestimating the risk (or in financial terminology

under-capitalization) could produce a Good Deal. We also showed how existence of

Good Deals can be explained in terms of the incompatibility between a risk measure

and a pricing rule. We also discussed how we can deal with incompatibility in such

a way that Good Deals are ruled out. We looked at incompatibility from a solvency

perspective.

The objective of this final chapter is to bring to the reader’s attention several

issues that arise naturally after previous discussions. As we have seen in Chapter

4 Section 4.3.1, dealing with a law invariant coherent risk measure, in some well-

known models, we always end up having Good Deals. In this chapter we will first,

extend the concept of a Good Deal for a larger family of risk measures and pricing

rules (5.2) and second, try to show how imperfect information produces a Good

Deal (Section 5.3.2). Finally we discuss how in a perfect market, the choice of a

risk measure can produce Good Deals, regardless of the choice of the pricing rule

(Section 5.3.3). However, before that we show how a Good Deal can be observed

in a real life practice.

5.1. An Example

In this section we give an example from the market which we believe can be

interpreted as a Good Deal.

Our example is a particular financial product, a Credit Default Swap (hence

CDS), which is commonly used for hedging against default of a bond. After the

years 2001 and 2002, according to some decisions made by the Federal Reserve

and the Treasury in the US, the housing market (or real estate market) started to

grow. That motivated financial institutions to issue bonds backed by mortgages.

Very soon the bonds backed by mortgages became very popular among financial

practitioners. The popularity of those bonds was due to a belief that the prices in
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the housing market almost never drop. Of course, this belief was supported with

available data from the past. Accordingly, many derivatives started to be issued on

those bonds, among which one can name CDS. A CDS is an insurance contract

on a bond in which the insurer accepts to compensate the loss of defaulting a

bond subject to receiving a regular payment, up to either default or the end of the

contract. Insurance companies (like AIG) started to issue those kind of insurance

contracts and sell those to customers. Those products seemed to be very good deals

for insurance companies because according to previous data, the bonds backed by

mortgages had almost never defaulted (due to the increasing trend of house prices),

while they also payed back regular payments.

In mathematical terms, let T be the time that a CDS contract ends and let θ be

the time the bond defaults. An insurance company is payed for sure by p×(θ∧T ),

where p is the amount of the regular payments. Since the insurance company

considers that the bond never defaults, i.e. θ = ∞, the amount the company will

receive is supposed to be p× T > 0. This implies that this contract costs −p× T

to the insurance company (indeed it pays back so it has negative price). Also, by

considering no default, the risk becomes zero Risk(CDS) = 0 (whatever the risk

measure is). Now let us look at CDS + p × T . This is a product which has a

negative risk, Risk(CDS+p×T ) = Risk(CDS)−p×T = 0−p×T < 0 (here we

consider a translation invariant function as Risk) while also CDS+p×T has zero

price, Price(CDS+p×T ) = Price(CDS)+p×T = −p×T +p×T = 0 (also we

consider a translation invariant function as Price). This shows that CDS−p×T

is a Good Deal, which is so, of course from the insurance company point of view.

The CDS we mention above is not an arbitrage. Actually, the fact is there

were some moments in US history when the price in the housing market dropped,

but those moments are very short and the drops were not very big. What makes

a CDS a Good Deal is the assessment of the default-risk based on previous data.

Indeed, according to previous data the risk of default of the bonds backed with

mortgages is negligible or even zero. The other fact is that the information about

the short drops in the housing market was “publicly available” but what may ignore

that information is the process of risk assessment which depends on the model and
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the risk measure. In other words, not only the information, but also the tools we

use in our risk assessment may be a source of producing Good Deals. These are

point which will be discussed in upcoming sections, but first we try to extend the

definition of Good Deals to a wider family of risk measures which contains a more

practical risk measures like Value at Risk.

5.2. Extending the Notion of Good Deals

In this section we see how one can extend the definition of a Good Deal in

several different directions. Each direction is aimed at involving new families of

risk measures which previously we could not bring into our discussion, for instance

natural risk statistics and expectation bounded risks. The following two extensions

are motivated from the equivalent statements given in Theorem 4.3.3.

Definition 5.2.1. Let ρ : Lp → R and π : Y ⊆ Lp → R be two translation

invariant functions, i.e.,

ρ(X + c) = ρ(X)− c , ∀X ∈ Lp, c ∈ R, (5.2.1)

π(Y + c) = π(Y ) + c , ∀Y ∈ Y , c ∈ R. (5.2.2)

We say that the couple (ρ, π) does not produce a Good Deal on Y if ρ(X)+π(X) ≥

0 , ∀X ∈ Y.

This definition includes at least the following four families:

(1) Convex risk measures.

(2) Natural risk statistics.

(3) Coherent risk contribution. Let X,Y be two random variables and ρ :

Lp → R a coherent risk measure, and consider the following definition of

coherent risk contribution:

ρ(X;Y ) = lim
ε↓0

ρ(Y + εX)− ρ(Y )

ε
. (5.2.3)

This definition appears in the works related to capital allocation (with a

slight difference), for instance see [40] and [63]. It is very easy to see from

the definition that ρ(X + c;Y ) = ρ(X;Y )− c.

(4) Distortion risk measure. Distortion risk measures are developed from pre-

mium principles studied in [65], and are defined as follows:
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A distortion function is a non-decreasing function g : [0, 1] → [0, 1] with

g(0) = 0 and g(1) = 1. A distortion risk measure associated with distor-

tion function g is defined as

ρg(X) =

∫ ∞

0

g(S(t))dt, (5.2.4)

where S(t) is the accumulative distribution function of −X. This family

of risk measures contains VaRα (when g(t) = 1[1−α,1]) and the family of

insurance risk measures.

As one can see this definition enables us to study the concepts of a Good Deal

in the framework of Chapter 2 and 3. On the other hand, in Section 5.3.3, we will

see that Value at Risk (and even a larger family which contains Value at Risk)

always produce Good Deals. Of course, as a Good Deal in that section we mean

the one we just defined.

In what follows, we introduce another family of risk measures and pricing

rules which contain the expectation bounded risk and the deviation risk measures

defined in [58] as particular cases. This extension is also important because we

can extend very easily Theorem 4.3.3 to that new framework.

Definition 5.2.2. Let ρ : Lp → R be a sub-additive functions and π a sub-

additive, translation invariant and positive homogeneous function. Then X is a

Good Deal if ρ(X) < 0 and π(X) ≤ 0 simultaneously hold.

If ρ and π are lower semi-continuous, they can be represented as follows:

ρ(X) = sup
Y ∈∆ρ

E[−XY ],

π(X) = sup
Y ∈R

E[XY ],

for ∆ρ ⊆ Lq, R ⊆ Lq and E[Y ] = 1 , ∀Y ∈ R.

This family of risk measures contains the expectation bounded risk measures

where E[Y ] = 1 for all Y ∈ ∆ρ. Following the same idea of proof as in Theorem

4.3.3, one can show that Theorem 4.3.3 is also true for expectation bounded risk

measures, which is a generalization of Theorem 4.3.3 to expectation bounded risk

measures. Here we just briefly hint why the hedging problem (4.3.4) is not bounded

in the presence of Good Deals in this new sense. Suppose that Y ∗ is a solution to
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(4.3.4) and Y ∈ Y is a Good Deal. We will show that Y ∗ + Y is a better solution

than Y ∗. Indeed, according to sub-additivity of ρ and π

ρ(Y ∗ + Y −X) ≤ ρ(Y ∗ −X) + ρ(Y ) < ρ(Y ∗ −X),

π(Y ∗ + Y ) ≤ π(Y ∗) + π(Y ) ≤ π(Y ∗) ≤ c,

Y ∗ + Y ∈ Y .

This shows that hedging is impossible when there is a Good Deal.

5.3. More About the Existence of Good Deals

In the process of risk assessment (for example capital requirement assessment),

two issues are of great importance for the person who assesses the risk: first, she

must be well-informed, second, she must be well-equipped. In other words, the

ρ-user on one hand must use an appropriate risk measure and model, and on the

other hand must receive and enough (and correct) information. Shortcomings, in

each of these two issues may be a source of making wrong decisions, sometimes

resulting in risky products, being deemed to be good deals. Here, we use the form

“good deal” in the colloquial sense. That’s what we can also observe in our the-

ory, when we see how imperfect information may cause risk underestimation and

accordingly may produce Good Deals (in the formal sense we have defined). In

upcoming discussions, we first focus on the imperfect information, and show how

it can produce a Good Deal. That can be an objective for independent research

which is outside the scope of this thesis, while we give also some hints to clarify

the idea. As for the second issue, being well-equipped, we also give an example at

the end of our discussion to show how using Value at Risk as a risk measure may

produce a Good Deal.

5.3.1. Risk Underestimations and Price Underestimations

In this section, we just recall how risk underestimations (in terms of solvency,

under-capitalization) and price underestimations would produce Good Deals. Ac-

cording to Theorem 4.3.3, a Good Deal exists when R ∩ ∆ρ 6= ∅. This means

Good Deals will disappear by enlarging the set ∆ρ or R up to touching each other.
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Enlarging ∆ρ is a financial issue which gives a modified risk measure and is dis-

cussed in Section 4.4. However, enlarging R is an issue in economics. That is

because by adding new stochastic discount factors, the equilibrium in the market

moves. This is out of the scope of this thesis and it needs to be treated on its own.

Since we can rule out Good Deals by enlarging ∆ρ, which yields a larger risk mea-

sure, we interpret this as a modification. This shows how Good Deals are result

of the risk underestimation.

Next, we discuss how this underestimation may be may be due to imperfect

information.

5.3.2. Imperfect Information

In probability, information can enter into the model via σ-fields. Given two

σ-fields G and F , we always say F provides more information compared to G

if G ⊆ F . Here we illustrate with an example how imperfect information may

produce Good Deals.

Let m be a stochastic discount factor which gives the pricing rule π(X) =

E[mX]. Consider that m has a continuous distribution function. Let us consider

that there is a coherent risk measure ρ such that its associated set ∆ρ contains

m. By Theorem 4.3.3 we know that the couple (ρ, π) does not produce any Good

Deal. Now let us consider that a manager who uses the risk measure ρ only has

access to the information provided by a finite σ-field G = σ(Σ), where Σ is a finite

partition of Ω. That means for any position X, the best way the manager can

look at X is through E[X|G]. Indeed, the projection of X ∈ L2(Ω,F) to the space

L2(Ω,G) is E[X|G]. From the manager’s point of view, the risk of X is quantified

as ρ(E[X|F ]). Therefore, we define the following risk measure

ρΣ(X) = sup
f∈∆ρ

E[−fE[X|F ]] = sup
g∈(∆ρ)Σ

E[−gX], (5.3.1)

where (∆ρ)Σ = {E[f |F ]|f ∈ ∆ρ}. It is quite clear that ρΣ(X) = ρ(E[X|Σ]),

which shows that ρΣ is the real risk measure used by the manager. Let us look at

the set (∆ρ)Σ. It is clear that this set consists of measures whose distributions are

discontinuous while the stochastic discount factor m has continuous distribution.

Therefore, it is not contained in (∆ρ)Σ. By part 3 of Theorem 4.3.3, it turns out
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that a Good Deal must exist. One can argue that the lack of information is due to

the manager’s information, since the price is something determined in the market

and one cannot consider that the stochastic discount factor is E[m|G]. This also

means that only the risk measurement is affected by imperfect information.

5.3.2.1. Law Invariant Coherent Risk Measures and Good Deals

In Section 4.3.1 we have seen that how law invariant risk measures can pro-

duce Good Deals in a very known models such as Black-Scholes model. In this

section we also show that law invariant risk measures are sensitive with respect

to imperfect information and complexity. That means if we have less information

or less complexity (less added independent random source) in the payoff random

variable, the risk assessment might fail to be accurate. In this section we show

how using a law invariant risk measure, together with imperfect information or

wrong assessment of the payoff, increases the existence of Good Deals.

Imperfect Information. The most known risk measures such as Value at Risk,

Standard Deviation and Expected Shortfall, are law invariant. Also, the classical

approach in finance using Expected Utility, is a law invariant approach in assess-

ing risk. Law invariant coherent risk measures on L∞ are exactly the dilation

monotone coherent risk measures (see [27]). As dilation monotone risk measure

ρ, we mean a risk measure for which

ρ(E[X|G]) ≤ ρ(X) (5.3.2)

for any σ-field F . Indeed, every law invariant convex function on L∞ is dilation

monotone (see [27]). For alternative proofs one could also consult [43] and [50].

Now let us see that for a law invariant coherent risk measure ρ, we have

ρ(E[X|G]) + π(X) ≤ ρ(X) + π(X).

According to Theorems 4.3.3 and 5.3.2 one can easily see that it is more likely that

in imperfect information, using a law invariant risk measure, one would come up

with a Good Deal.
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Complexity and Good Deals. By complexity, we mean a concept which sym-

bolizes the amount of the fluctuations of a random variable. In mathematical

terms, we say that a random variable Y is more complex than X, if there ex-

ists another random variable ε, independent of X, with zero mean, such that

Y
d
= X+ε. The random variable ε can be looked as a source of information which

is invisible for the person who detects X. The law invariant risk measures are

sensitive about complexity because, ρ(X) ≤ ρ(Y ). Actually, there exists X ′ ∼ X

such that E[Y |X ′] = X ′ from which one has ρ(X) = ρ(X ′) ≤ ρ(Y ). For a mo-

ment we take Y as subspace of Lp. If the real payoff is a function of Y+ ε instead

Y + ε, while the ρ-user only observe Y, then the risk of producing a Good Deal

would grow.

5.3.3. Robust Risk Measures and Good Deals

In this last section, we briefly discuss the relation between robustness and Good

Deals. This is to show that how tools we have chosen to use may be a source of

producing Good Deals. This is also important because of the critique made in [29]

about the un-robustness of coherent risk measures. They introduced a robust family

of risk measures instead. We found that this family of risk measures in a perfect

market always produce Good Deals, which shows a dilemma in risk assessment,

while a stable assessment is possible only if we accept the existence of Good Deals.

In [29], it has been shown that a law-invariant coherent risk measure is not

robust, as has been also discussed in Chapter 3 and in Section 3.5.1. Indeed, the

authors in [29], after showing that law invariant risk measures are not robust,

study the robustness of the following family of risk measures:

ρ(X) =

∫ 1

0

V aRα(X)φ(α)dα, (5.3.3)

for a density φ. They proved that the risk measure ρ in (5.3.3) is robust if and

only if there exists β > 0 such that supp(φ) ⊆ [β, 1− β] (see also Section 3.5.1).

In [8], we found that the family (5.3.3) of risk measures in a perfect market

always produce Good Deals. We quote the following theorem from [8]:



124

Theorem 5.3.1. Every robust risk ρ in a perfect market with pricing rule π

generates Good Deals.

The reason why this happens is easy to see. This is because φ, for robust

risk measures, is zero in a neighborhood around 0 and 1, which shows ρ ignores

information that appear in the tails. This makes one able to construct a Good

Deal based on the unseen information by ρ in the tails.

To justify how by using a risk measure like 5.3.3, a Good Deal is produced, we

give the following simple example:

Example: Suppose that an event is going to happen tomorrow, with probability

1 percent. We construct a simple security, which penalizes the security-owner for

100 dollar if the 1-percent event happens, and nothing otherwise. The price of

this security is simply −100× 1
100

+ 0× 99
100

= −1 dollar. We denote this security

with X i.e., π(X) = −1. It says that if someone trades X, she should be payed 1

dollar, or if she is risk-averse by more than one dollar. Therefore, let us consider

that the price is −c dollar, less than −1, but also not very far (at least we con-

sider −1 > −c > −20). Consider there is a financial practitioner who is endowed

with the risk measure VaR0.05. From her point of view, the risk associated to this

security is zero (because she is not able to see events in the 5-percent of the tail)

while she is paid −c > 0. This shows how VaR0.05 ignores information in the

5 percent in the tail and also shows how the security constructed based on the

1-percent event would produce a Good Deal (VaR0.05(X) + π(X) = 0− c < 0).

Now let us see what happens if one takes CVaR0.05 in lieu of CVaR0.05. It

is clear that CVaR0.05(X) = 1
0.05

∫ 0.01

0
100ds = 20 dollar, which is assessed quite

riskier than before. On the other hand also CVaR0.05(X)+π(X) = 20−c > 0 and

then by Theorem 4.3.3 this means that using CVaR0.05, X is not a Good Deal.



CONCLUSION

The final utility of the analyzes presented in this thesis can be found in capital re-

quirement applications. In particular, one relevant element that arises within our

analysis is the fact that underestimation in capital requirement might destabilize

the market. These applications have been extensively discussed within the thesis,

here we briefly mention again the three specific achievements in this thesis.

In Chapter 2, we have shown that the Lebesgue property of a risk measure

on bounded càdlàg processes is equivalent to the Lebesgue property of its static

version. We also used the results of Chapter 2 to solve the problem of capital

allocation in this setting.

In Chapter 3, we have shown that how the concept of natural risk statistics

could be extended to the space of infinite sequences. We also have shown that how

this extension could be used to derive a consistence family of natural risk statistics

for any dimension.

In Chapter 4, we have studied the situation when a market is destabilized in the

presence of Good Deals. We have shown how this situation can be recovered with

modifying a risk measure to a larger one. We also proposed two different ways of

modifying risk, based on minimal risk spread criteria and maximal Global/Local

preference ratio.

In this work, we developed different ideas but there are much more avenues

that remained unexplored. We believe that the work we started in this thesis led

the way to new interesting directions that are yet to be investigated. These new

directions are briefly discussed in Chapter 5 where we tried to connect all ideas in

previous chapters and by generalizing the definition of Good Deals. In particular,
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we discussed the relevant problem of how Good Deals arise and how they might

be the product of lack of information.
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