HEC MONTRÉAL AFFILIÉE À L'UNIVERSITÉ DE MONTRÉAL

Évaluation d'options sur plusieurs sous-jacents par des modèles de copules

Par

Bouchra Abakarim

Sciences de la gestion

Mémoire présenté en vue de l'obtention du grade de maîtrise ès sciences

(M. Sc.)

Aout 2005 ©Bouchra Abakarim, 2005

Sommaire

Nous développons ici un modèle d'évaluation des options écrites sur plusieurs sous-jacents. Nous avons utilisé le modèle GJR-GARCH avec la méthode de Duan (1995). Cette méthode ne considère que des options sur un seul sous-jacent, auquel nous combinons les fonctions copules pour tenir compte de la structure de dépendance entre les différents sous-jacents.

Dans ce travail, nous nous proposons d'étudier la relation entre les prix des options sur plusieurs titres et la structure de dépendance entre les sousjacents. Pour ce faire, nous allons considérer plusieurs familles de copules à savoir des copules elliptiques et des copules archimédiennes. Ensuite, nous allons comparer les prix ainsi obtenus.

Notre modèle est appliqué aux options européennes de type «*rain-bow*»dans les cas de trois et de cinq titres sous-jacents. Dans le premier cas, nous considérons les trois indices boursiers Nasdaq, Dow Jones et CAC 40. Dans le second, nous prenons les cinq indices boursiers S&P|TSE60, Nasdaq, Dow Jones, CAC 40 et DAX. Cependant, ce modèle peut facilement servir à l'évaluation d'autres types d'options.

Remerciements

Tout d'abord, je remercie Dieu qui m'aide et me guide dans les travaux que j'entreprends.

Je tiens à remercier mon directeur de recherche, Bruno Rémillard, pour ses précieux conseils tout au long du projet. Sa gentillesse et sa disponibilité ont largement contribué au bon déroulement de ce mémoire.

Je tiens aussi à remercier l'Institut de finance mathématique de Montréal, ainsi que le fond FQRNT pour leur soutien financier qui m'a permis de mener à bien ce travail.

Je saisis l'occasion pour remercier tous les professeurs du service de l'enseignement des méthodes quantitatives de gestion, pour leur disponibilité et leur professionnalisme. Je remercie particulièrement les professeurs Christian Genest de l'Université Laval et Debbie Dupuis qui ont bien voulu évaluer ce mémoire.

Finalement, je remercie chaleureusement tous les membres de ma famille. Merci à ma mère, mon père, mes beaux-parents et merci beaucoup à Omar mon mari pour leur soutien durant les périodes difficiles. Et merci à ma petite fille Hajar qui prenait de temps en temps sa petite sieste pour me laisser travailler.

Table des matières

1	Intr	roduct	ion		1
2	Rev	vue de	littératu	ıre	3
	2.1	Métho	odes stand	lards pour l'évaluation des options sur plusieurs	
		sous-j	acents .		3
	2.2	À pro	pos des co	opules	5
	2.3	Métho	odes avec	copules	6
		2.3.1	Intérêt o	les copules	6
		2.3.2	Les mét	hodes d'évaluation	7
			2.3.2.1	Approche avec fonction de densité	7
			2.3.2.2	Approche avec fonction de répartition	8
			2.3.2.3	Approche avec fonction de répartition condi-	
				tionnelle	9
	2.4	Concl	usion		11

TABLE DES MATIÈRES

3	Rap	opel su	r les cop	oules	12
	3.1	Défini	tion et pr	opriétés	12
	3.2	Famill	es de cop	ules considérées	15
		3.2.1	La copu	le normale	15
		3.2.2	La copu	le de Student	16
		3.2.3	Les copu	les archimédiennes	16
4	Mé	thodol	ogie		18
	4.1	Les op	otions rair	nbow	18
	4.2	Modèl	e de van o	den Goorbergh, Genest et Werker (2005) \ldots	20
	4.3	Modél	isation .		21
		4.3.1	Modélisa	ation des densités marginales	22
		4.3.2	Modélisa	ation de la structure de dépendance	25
			4.3.2.1	Estimation des paramètres des copules : les	
				options three-color rainbow	26
			4.3.2.2	Les options five-color rainbow	31
		4.3.3	Évaluati	on des options	33
		4.3.4	Simulati	ons	34
			4.3.4.1	Méthode des distributions	35
			4.3.4.2	Méthode des distributions conditionnelles	37

		4.3.4.3 Méthode de Marshall et Olkin	40		
	4.4	Conclusion	42		
5	\mathbf{R} és	sultats et analyse	43		
	5.1	Description des données	44		
	5.2	Les paramètres des processus GJR-GARCH	45		
	5.3	Les paramètres des copules	47		
		5.3.1 Copules elliptiques	47		
		5.3.2 Copules archimédiennes	48		
	5.4	Les prix des options	50		
		5.4.1 Les options three-color rainbow	50		
		5.4.2 Les options five-color rainbow	55		
6	Cor	nclusion	66		
Bi	Bibliographie 67				
A	Me	sures martingales équivalentes	73		
в	Cor	nditions d'existence des moments	76		
С	Tab	leaux des résultats des simulations	78		
	C.1	Three-color rainbow	78		

	C.2	Five-color rainbow	85
D	Les	codes C	94
	D.1	Programmes qui génère des observations suivant les copules choisies	94
		D.1.1 Three-color rainbow	94
		D.1.2 Five-color rainbow	101
	D.2	Programme qui calcule les prix des options pour différents prix d'exercice	113
\mathbf{E}	Les	codes Matlab 1	.19
	E.1	Programme qui estime les paramètres GJR-GARCH	119
	E.2	Programmes qui calculent les paramètres des copules	121
		E.2.1 Les sous-routines	121
		E.2.2 Le programme principal	123

Liste des figures

5.1	Rendements des prix sur les indices	45
5.2	Simulation des vecteurs $(u_1, u_2, u_3)^{\top}$ à partir des copules ellip- tiques	48
5.3	Simulation des vecteurs $(u_1, u_2, u_3)^{\top}$ à partir des copules ar- chimédiennes	49
5.4	Prix de l'option de vente sur le minimum en fonction des prix d'exercice pour différentes volatilités initiales : three-color rainbow	51
5.5	Prix de l'option d'achat sur le maximum en fonction des prix d'exercice pour différentes volatilités initiales : three-color rain- bow	52
5.6	Prix de l'option de vente sur le maximum en fonction des prix d'exercice pour une volatilité initiale moyenne : three-color- rainbow	53

5.7	Prix de l'option de vente sur le minimum en fonction des prix	
	d'exercice pour une volatilite initiale moyenne : three-color- rainbow	53
5.8	Prix de l'option d'achat sur le maximum en fonction des prix	
	d'exercice pour une volatilité initiale moyenne : three-color- rainbow	54
5.9	Prix de l'option d'achat sur le minimum en fonction des prix d'exercice pour une volatilité initiale moyenne : three-color- rainbow	54
5.10	Prix de l'option d'achat sur le maximum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes	
	valeurs du tau de Kendall : five-color rainbow	56
5.11	Prix de l'option d'achat sur le minimum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow	57
5.12	Prix de l'option de vente sur le maximum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow	58
5.13	Prix de l'option de vente sur le minimum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow	59
5.14	Prix de l'option d'achat sur le maximum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow	61

5.15	Prix de l'option d'achat sur le minimum en fonction des prix	
	d'exercice pour une volatilité initiale moyenne et pour différentes	
	valeurs du tau de Kendall : five-color rainbow $\ldots \ldots \ldots$	62

5.16	Prix de l'option de vente sur le maximum en fonction des	
	prix d'exercice pour une volatilité initiale moyenne et pour	
	différentes valeurs du tau de Kendall : five-color rainbow 6	3

5.17 Prix de l'option de vente sur le minimum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow . . . 64

Liste des tableaux

3.1	Copules archimédiennes utilisées	17
4.1	Tau de Kendall en fonction des paramètres des copules	32
5.1	Paramètres estimés des processus GJR-GARCH(1,1) $\hfill \ldots$.	45
5.2	Volatilités et les variances initiales	47
5.3	Paramètres des copules elliptiques	47
5.4	Paramètres des copules archimédiennes	49
C.1	Prix et écarts type des erreurs de l'option de vente sur le maxi- mum en fonction des prix d'exercice	79
C.2	Prix et écarts type des erreurs de l'option de vente sur le mi- nimum en fonction des prix d'exercice	79
C.3	Prix et écarts type des erreurs de l'option d'achat sur le maxi- mum en fonction des prix d'exercice	80
C.4	Prix et écarts type des erreurs de l'option d'achat sur le mini- mum en fonction des prix d'exercice	80

C.5	Prix de l'option de vente sur maximum en fonction des prix d'exercice pour différentes volatilités initiales	81
C.6	Prix de l'option de vente sur le minimum en fonction des prix d'exercice pour différentes volatilités initiales	82
C.7	Prix de l'option d'achat sur le minimum en fonction des prix d'exercice pour différentes volatilités initiales	83
C.8	Prix de l'option d'achat sur le maximum en fonction des prix d'exercice pour différentes volatilités initiales	84
C.9	Prix de l'option de vente sur le maximum en fonction des prix d'exercice pour différentes valeurs de τ	86
C.10	Prix de l'option de vente sur le minimum en fonction des prix d'exercice pour différentes valeurs de τ	88
C.11	Prix de l'option d'achat sur le maximum en fonction des prix d'exercice pour différentes valeurs de τ	90
C.12	Prix de l'option d'achat sur le minimum en fonction des prix d'exercice pour différentes valeurs de τ	92

Chapitre 1

Introduction

Avec la croissance de l'utilisation des produits dérivés financiers, les titres sur plusieurs sous-jacents sont devenus de plus en plus fréquents (e.g., les options panier ou les options spread). L'expansion des options sur plusieurs sous-jacents sur les marchés financiers nous conduit donc à réfléchir sur la ou les meilleures méthodes d'évaluation de ce type d'options, et à nous demander si les modèles déjà existants produisent des prix qui reflètent la réalité des marchés financiers.

Contrairement aux options sur un seul titre, les options sur plusieurs titres présentent le problème de dépendance entre les différents sous-jacents. Les premiers modèles d'évaluation se basaient sur une généralisation du fameux modèle de Black et Scholes (1973). Dans ce dernier, la dépendance est caractérisée par le coefficient de corrélation, ce qui constitue un sérieux handicap.

Récemment, nous avons vu émerger des modèles d'évaluation avec des copules. Dans ces modèles, la structure de dépendance est mieux caractérisée à travers des fonctions de dépendance appelées copules. Notre travail s'inscrit dans le cadre de ces modèles.

En effet, dans ce mémoire, nous allons utiliser un modèle qui permet de considérer des volatilités variables dans le temps, à savoir le modèle GJR-GARCH avec la méthode de Duan (1995). Puisque ce dernier est développé dans le cas unidimensionnel, nous allons donc l'étendre au cas multidimensionnel, avec l'utilisation des copules qui nous permettront de caractériser la dépendance entre les différents sous-jacents, ce qui est une extension du travail de van den Goorbergh, Genest et Werker (2005).

Ensuite, nous nous proposons d'étudier la relation entre les prix des options sur plusieurs titres et la structure de dépendance entre les sousjacents. Pour ce faire, nous allons considérer plusieurs familles de copules et nous allons comparer les prix obtenus par méthode Monte-Carlo, car les prix de marché de ces options ne sont pas disponibles.

Finalement, ce modèle est appliqué aux options européennes de type «*rainbow*» dans les cas de trois et de cinq titres sous-jacents. Dans le premier cas, nous considérons les trois indices boursiers Nasdaq, Dow Jones et CAC 40. Dans le second, nous prenons les cinq indices boursiers S&P|TSE60, Nasdaq, Dow Jones, CAC 40 et DAX.

Chapitre 2

Revue de littérature

Avant d'aborder les différents travaux concernant l'évaluation des options sur plusieurs titres liés directement au sujet de ce mémoire, nous allons tout d'abord faire un tour d'horizon des autres méthodes d'évaluation que nous avons choisi d'appeler «Méthodes standards pour l'évaluation des options sur plusieurs sous-jacents». Ceci permettra sans doute de mettre en exergue l'apport donné par les copules dans l'évaluation des options sur plusieurs titres.

2.1 Méthodes standards pour l'évaluation des options sur plusieurs sous-jacents

Les premiers modèles d'évaluation d'options sur plusieurs sous-jacents étaient basés sur une généralisation multidimensionnelle du modèle de Black et Scholes (1973). Ces modèles ont été introduit par Margrabe (1978), Stulz (1982), Johnson (1987), Reiner (1992), Shimko (1994) et plusieurs autres. Ces derniers considèrent que les titres sous-jacents aux options suivent un mouvement brownien multivarié, et que dans ce cas, la fonction de densité risque neutre est une loi log-normale.

Une approche, cette fois-ci en temps discret se basant sur le modèle de Cox, Ross et Rubinstein (1979), fut adoptée par Stapleton et Subrahmanyam (1984a,1984b), Boyle (1988), Boyle et coll. (1989) et Rubinstein (1992, 1994a). Ces derniers ont également travaillé avec l'hypothèse de lognormalité de la fonction de densité risque neutre, mais dans le cas discret à travers l'utilisation de la méthode des arbres binomiaux.

Dans l'ensemble, ces approches ont l'avantage d'être relativement faciles à implanter. Cependant, ils ont l'inconvénient de modéliser la dépendance entre les sous-jacents par leur coefficient de corrélation. Or, le coefficient de corrélation est une mauvaise mesure de dépendance dans les marchés financiers où les prix observés ont une volatilité stochastique et présentent des périodes de sauts qui font que la fonction de densité est différente d'une lognormale. En effet, dans le cadre financier, Embrechts, McNeil et Straumann (1999) ont démontré que le coefficient de corrélation est généralement une mauvaise mesure de dépendance sauf pour le cas où les rendements des titres suivent un mouvement brownien géométrique.

Une alternative à la log-normalité de la fonction de densité risque neutre, dans le cas unidimensionnel, est présentée dans les travaux de Shimko (1993), Dupire (1994), Rubinstein (1994b), Longstaff (1995) et Ait Sahalia et Lo (1998). Il s'agit d'une approche interpolative où la fonction de densité risque neutre est estimée à partir des prix d'options observés et des prix ajustés.

Dans le cas qui nous intéresse le plus, c'est-à-dire le cas multidimen-

sionnel, Rosenberg (1998) a présenté dans son article une nouvelle méthode interpolative appelée «flexible NLS pricing». Cette méthode est basée sur une généralisation des techniques d'évaluation interpolatives dans le cas unidimensionnel, où la fonction de densité risque neutre est estimée à partir des prix des options sur un seul titre et des prix des options sur plusieurs titres. Cette technique a l'avantage de mieux représenter la réalité des prix observés sur les marchés financiers dans la mesure où elle ne fait pas l'hypothèse de la log-normalité. Cependant, elle a le grand inconvénient d'utiliser les prix des options sur plusieurs titres dans l'estimation de la fonction de densité risque neutre.

Récemment, certains auteurs ont utilisé le concept de copule pour l'évaluation des options sur plusieurs titres. Avant de parler de leurs contributions, il serait intéressant de donner un petit aperçu historique sur l'utilisation des copules dans le monde financier.

2.2 À propos des copules

Le concept de copule fut introduit pour la première fois par Abe Sklar en 1959. Son but était alors de résoudre un problème de probabilité énoncé par Maurice Fréchet, dans le cadre de ses travaux avec Berthold Schweizer sur les espaces métriques aléatoires.

Les copules restèrent peu utilisées en statistique pendant de nombreuses années. On les retrouve dans les travaux de Paul Deheuvels vers la fin des années 70 et dans ceux de Kimeldorf et Sampson sur la dépendance en 1975.

Ce n'est que dans le milieu des années 1980 qu'une étude systématique a été réalisée par Christian Genest et ses collaborateurs. Le véritable point de départ fut d'ailleurs l'article de C. Genest et R.J. Mackay (1986) où les auteurs décrivent une classe de distributions bivariées, particulièrement facile à manipuler, appelées les copules archimédiennes.

Plusieurs développements ont par la suite été effectués par C. Genest et ses co-auteurs, en particulier P. Capéraà, A.-L Fougères, K. Ghoudi, R.J. MacKay, B. Rémillard et L.-P. Rivest.

Ces dernières années, les copules sont devenues un outil standard couramment rencontré dans la littérature concernant l'étude de la dépendance et les modèles de survie, notamment, dans le domaine du risque de crédit (e.g., Li (1999, 2000) et Hamilton, James et Weber (2002)) ainsi que l'évaluation des produits dérivés qui est le sujet de ce mémoire.

2.3 Méthodes avec copules

Avant de donner un aperçu sur les différentes méthodes possibles ainsi que les écrits utilisant les fonctions copules dans l'évaluation des options, nous expliquons, tout d'abord, l'importance de l'utilisation des copules.

2.3.1 Intérêt des copules

Les produits financiers portant sur plusieurs sous-jacents deviennent de plus en plus populaires parmi les académiciens ainsi que les praticiens. Comme le fait remarquer Cherubini, Luciano et Vecchiato (2004), dans le cas multidimensionnel, en plus du problème de non-normalité des rendements, il faut tenir compte de la dépendance entre les variables. De ce fait, les copules sont un excellent outil dans le domaine de la finance car le problème de la modélisation peut être résolu en deux étapes. La première étape consisterait à identifier les distributions marginales, ce qui permet d'utiliser les techniques développées dans le cas unidimensionnel, et la deuxième étape, à caractériser la structure de dépendance via le choix d'une copule appropriée.

2.3.2 Les méthodes d'évaluation

Il existe plusieurs méthodes d'évaluation des options sur plusieurs titres autres que celle utilisée dans ce mémoire, basée sur le modèle GJR-GARCH avec la méthode de Duan (1995). Parmi celles-ci, nous trouvons les approches suivantes.

2.3.2.1 Approche avec fonction de densité

Dans cette approche le prix $g(S_1(t), \ldots, S_d(t), t)$ étant donné l'information \mathcal{F}_t à l'instant t, d'un produit dérivé d'échéance T est donné par

$$g(S_1(t), \dots, S_d(t), t) = B(t, T) \int_{[0,\infty]^d} f(x_1, \dots, x_d)$$
$$\times c(Q_1(x_1), \dots, Q_d(x_d))$$
$$\times q_1(x_1) \cdots q_d(x_d) dx_1 \cdots dx_d$$

sachant que pour tout $i \in \{1, \ldots, d\}$,

 $-S_{i}(t)$ est le prix à l'instant t du titre i,

- $-f(x_1,\ldots,x_d)$ désigne la fonction de paiement du produit dérivé,
- $-Q_1,\ldots,Q_d$ représente les marges risque neutre étant donné \mathcal{F}_t ,

- $-q_1, \ldots, q_d$ sont les fonctions de densité marginales risque neutre,
- $-c(u_1,\ldots,u_d)$ est la densité de la copule étant donné \mathcal{F}_t ,
- -B(t,T) représente le facteur d'escompte hors risque.

Malheureusement, cette représentation requiert le calcul d'une intégrale multiple, ce qui rend le calcul des prix très difficile dans la plupart des cas.

2.3.2.2 Approche avec fonction de répartition

Cette approche découle du fameux résultat de Breeden et Litzenberger (1978), qui stipule que la relation entre le prix d'une option d'achat européenne à l'instant t écrite sur le titre Z, de prix d'exercice K et d'échéance T, dénotée C(Z, t; K, T), et la fonction de répartition Q_Z est donnée par

$$-\frac{\partial C\left(Z,t;K,T\right)}{\partial K}\frac{1}{B\left(t,T\right)}=1-Q_{Z}\left(K|\mathcal{F}_{t}\right).$$

Nous en déduisons, donc que le prix de l'option de fonction de paiement que nous pouvons écrire de manière générale

$$G(S_1(T), \dots, S_d(T), T) = \max[f(S_1(T), \dots, S_d(T), T) - K; 0]$$

est donné par

$$\frac{C\left(S_{1}\left(t\right),\ldots,S_{d}\left(t\right),t;K,T\right)}{B\left(t,T\right)}=\int_{K}^{\infty}\Pr\left(f\left(S_{1}\left(T\right),\ldots,S_{d}\left(T\right),T\right)>u|\mathcal{F}_{t}\right)du,$$

où la probabilité est calculée sous la mesure risque neutre.

Cette représentation est d'un grand intérêt lorsque la fonction de répartition jointe est facile à manipuler analytiquement ou par simulation.

2.3.2.3 Approche avec fonction de répartition conditionnelle

Cette approche consiste à utiliser les fonctions de distribution conditionnelles au lieu des fonctions de distributions. Le produit dérivé est ainsi déterminé pour un sous-jacent conditionnellement aux autres sous-jacents, ensuite on intègre par rapport à ces derniers. L'utilisation des copules nous permet de déterminer les mesures risque neutre conditionnelles, puisque

$$Q(S_1|S_2 = s_2, \dots, S_d = s_d, \mathcal{F}_t) = \frac{\partial u_2 \cdots \partial u_d C(S_1, s_2, \dots, s_d)}{\partial u_2 \cdots \partial u_d C(1, s_2, \dots, s_d)}.$$

Les travaux concernant l'évaluation des options sur plusieurs sousjacents qui utilisent les copules ne sont pas très nombreux à cause de la nouveauté du concept. Ces travaux ont l'avantage de modéliser la dépendance entre les titres sous-jacents par des fonctions copules, ce qui permet de mieux décrire cette dépendance contrairement au coefficient de corrélation qui n'est qu'une constante. En effet, les copules sont des fonctions de répartition multidimensionnelles de marges uniformes, qui lient les fonctions de répartition multidimensionnelles avec leurs fonctions de répartition marginales.

Ce résultat découle du fameux théorème de Sklar qui est à la base de tous ces travaux. Ce théorème stipule que chaque fonction de répartition multidimensionnelle peut être représentée, dans certains cas de façon unique, par ses marges et par une copule.

Par conséquent, l'utilisation des copules permet d'une part de modéliser chacune des distributions marginales séparément, et d'autre part de représenter la structure de dépendance entre les différents sous-jacents à l'aide d'une copule. Le premier article, en finance, utilisant les fonctions copule est celui de Rosenberg (1999). Dans son approche, le calcul de la fonction de densité risque neutre bivariée est fait en utilisant la copule de Plackett. Celle-ci est construite à partir des densités marginales risque neutre et du coefficient de corrélation risque neutre. Pour trouver les densités marginales risque neutre, Rosenberg (1999) utilise une estimation semi-paramétrique à partir des données liées aux options sur un seul titre.

Une méthode, cette fois-ci non paramétrique, est proposée par Rosenberg (2003). D'une part, la densité risque neutre multidimensionnelle est obtenue à l'aide d'une estimation non-paramétrique des densités marginales risque neutre à partir des données sur les options. D'autre part, la copule empirique est estimée à partir des données historiques sur les rendements.

Ensuite, le travail de Rosenberg (1999) a été repris par Cherubini et Luciano (2002). Ces derniers ont fait une généralisation de son approche en utilisant des copules générales, dont la copule de Plackett utilisée par Rosenberg (1999) est un cas particulier.

Ces travaux considèrent la structure de dépendance entre les sousjacents comme étant fixe. Par contre, dans l'article de van den Goorbergh, Genest et Werker (2005), le modèle présenté permet de considérer une volatilité variable à travers l'utilisation du modéle GARCH de Duan (1995) et une structure de dépendance qui varie dans le temps. Pour ce faire, les auteurs ont utilisé des copules dynamiques dans une approche paramétrique, contrairement à Rosenberg (2001). Toutefois, cette méthode présente des problèmes théoriques et pratiques liées à l'estimation des copules dynamiques, compte tenu de la non stationnarité de la loi jointe.

2.4 Conclusion

À travers la revue de littérature, nous remarquons l'apport considérable des copules dans la modélisation de la dépendance entre les titres sousjacents. Notre travail qui s'inscrit dans cette dynamique, s'inspirera de l'article de van den Goorbergh, Genest et Werker (2005). Ainsi nous allons travailler avec le modèle GJR-GARCH en utilisant la méthode de Duan (1995), qui est développé pour le cas d'options sur un seul sous-jacent, auquel nous combinons les fonctions copules. Cependant nous utilisons des copules statiques pour tenir compte de la structure de dépendance entre les différents sous-jacents. De plus, dans ce mémoire, nous traitons le cas multidimensionnel (d > 2).

Chapitre 3

Rappel sur les copules

Dans ce chapitre, nous donnons, dans un premier temps, la définition d'une copule multidimensionnelle et quelques propriétés importantes de cellesci. Dans un deuxième temps, nous décrivons les copules avec lesquelles nous travaillerons.

3.1 Définition et propriétés

Une copule multidimensionnelle (ou d-copule) correspond à la définition suivante.

Définition 1 Une copule multidimensionnelle est une fonction C définie sur $[0,1]^d$, et qui possède les propriétés suivantes.

1. Pour tout $u = (u_1, \ldots, u_d) \in [0, 1]^d$ tel que si, au moins une composante de u est nul, alors C(u) = 0; 2. C est d-croissante, c'est-à-dire

$$\sum_{i_1=1}^2 \dots \sum_{i_d=1}^2 (-1)^{i_1+\dots+i_d} C(u_{1,i_1},\dots,u_{1,i_d}) \ge 0,$$

pour tout $u_1 = (u_{1,1}, \ldots, u_{d,1})$ et $u_1 = (u_{1,2}, \ldots, u_{d,2}) \in [0,1]^d$ tels que $u_1 \le u_2$, *i.e.*, $u_{i,1} \le u_{i,2}$, pour tout $i = 1, \ldots, d$;

3. Pour tout $i \in \{1, ..., d\}$, les marges C_i de C sont uniformes, i.e., satisfont

$$C_i(u) = u, \quad u \in [0,1]$$

À partir de cette définition, C peut représenter la fonction de répartition jointe de variables aléatoires uniformes U_1, \ldots, U_d . Autrement dit,

$$C(u_1,\ldots,u_d)=P(U_1\leq u_1,\ldots,U_d\leq u_d).$$

Les copules sont donc des outils parfaitement adaptés à la construction des distributions multidimensionnelles. C'est justement ce que stipule le théorème de Sklar.

Théorème 2 (Sklar 1959) Soit F une fonction de répartition multidimensionnelle dont les marges sont F_1, \ldots, F_d . Alors F admet la représentation

$$F(x_1,\ldots,x_d) = C(F_1(x_1),\ldots,F_d(x_d)),$$

en terme d'une copule C.

La copule C est unique si les marges sont continues. Et inversement, si C est une copule et $F(x_1), \ldots, F(x_d)$ sont des fonctions de répartition continues, alors, $F(x_1, \ldots, x_d) = C(F_1(x_1), \ldots, F_d(x_d))$ est une fonction de répartition jointe dont les marges sont F_1, \ldots et F_d .

Ce théorème est très important puisqu'il donne une représentation canonique d'une distribution multidimensionnelle. D'une part, nous avons les marges F_1, \ldots, F_d et d'autre part, nous avons la structure de dépendance entre les marges à travers la copule. Par conséquent, nous pouvons analyser la structure de dépendance des distributions multidimensionnelles sans avoir à étudier les marges associées.

Une des propriétés importantes des copules est la propriété d'invariance pour des transformations strictement monotones. Ce résultat découle du théorème de Schweizer et Wolff (1976, 1981) dont l'énoncé est le suivant.

Théorème 3 (Schweizer et Wolff 1976, 1981) Soit X un vecteur de variables aléatoires continues de copule C. Si $\alpha_1, \ldots, \alpha_d$ sont des transformations croissantes, presque sûrement, en $\alpha_i : Dom F_i \to R^*$, alors les variables $\alpha_1(X_1), \ldots, \alpha_d(X_d)$, de marges $H_1 = F_1(\alpha_1^{-1}), \ldots, H_d = F_d(\alpha_d^{-1})$ et de distribution jointe H, sont également de copule C, c'est-à-dire que pour tout u dans $\mathbb{R}^d : H(u) = C(H_1(u_1), \ldots, H_d(u_d))$.

D'après ce théorème, nous avons

- Si la valeur de l'option P_0 est croissante par rapport à valeur initiale des sous-jacents S_0 , alors la valeur P_t au temps t et la valeur du sous-jacent S_t au temps t ont la même copule.
- Les rendements et les prix des titres ont la même copule conditionnelle.

3.2 Familles de copules considérées

Afin de tester notre modèle d'évaluation, nous allons considérer plusieurs familles de copules à savoir, la copule normale, la copule de Student et les trois copules archimédiennes suivantes : copule de Clayton, copule de Frank et copule de Gumbel-Hougaard. Celles-ci sont bien définies pour toute dimension $d \ge 2$.

3.2.1 La copule normale

La copule normale est la copule associée à la distribution normale multidimensionnelle.

Définition 4 Soit R une matrice symétrique, définie positive avec diagR = I et Φ_R la distribution normale multidimensionnelle standard de matrice de corrélation R. La copule normale est alors définie de la façon suivante

$$C_{R}(u_{1},\ldots,u_{d}) = \Phi_{R} \left\{ \Phi^{-1}(u_{1}),\ldots,\Phi^{-1}(u_{d}) \right\},\$$

où Φ^{-1} est l'inverse de la distribution normale standard unidimensionnelle.

En utilisant la définition, nous trouvons la densité de la copule normale

$$c_R(u_1,\ldots,u_d) = \frac{1}{|R|^{1/2}} \exp\left\{-\frac{1}{2}\xi^T \left(R^{-1} - I\right)\xi\right\},$$
 (3.1)

où $\xi_i = \Phi^{-1}(u_i)$ et I la matrice identité de dimension $(d \times d)$.

3.2.2 La copule de Student

La copule de Student est la fonction de dépendance associée à la distribution de Student multidimensionnelle.

Définition 5 Soit R une matrice symétrique, définie positive avec diagR = 1et $t_{R,\nu}$ la distribution de Student multidimensionnelle standard à ν degrés de liberté et de matrice de corrélation R. La copule de Student est alors définie de la façon suivante

$$C_{R,\nu}(u_1,\ldots,u_d) = t_{R,\nu}\left(t_{\nu}^{-1}(u_1),\ldots,t_{\nu}^{-1}(u_d)\right)$$

où t_{ν}^{-1} est l'inverse de la distribution de Student standard unidimensionnelle à ν degrés de liberté.

En utilisant la définition, nous obtenons la densité de la copule de Student

$$c_{R,\nu}(u_1,\ldots,u_d) = \frac{1}{|R|^{1/2}} \frac{\Gamma\left(\frac{\nu+d}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(\frac{\Gamma\left(\frac{\nu}{2}\right)}{\Gamma\left(\frac{\nu+1}{2}\right)}\right)^d \frac{\left(1 + \frac{1}{\nu}\xi^T R^{-1}\xi\right)^{-\frac{\nu+d}{2}}}{\prod_{j=1}^d \left(1 + \frac{\xi_j^2}{\nu}\right)^{-\frac{\nu+1}{2}}}, \quad (3.2)$$

où $\xi_j = t_{\nu} \left(u_j \right)$.

3.2.3 Les copules archimédiennes

Les copules archimédiennes sont construites à partir d'une fonction $\varphi : (0,1] \rightarrow [0,\infty]$, continue, décroissante et convexe telle que $\varphi(1) = 0$. Cette fonction est appelée générateur. Si de plus $\varphi(0) = +\infty$, alors φ est dite générateur strict. **Définition 6** Soit φ un générateur strict avec φ^{-1} monotone sur $[0, \infty]$, tel que pour tout k dans $\{1, \ldots, d\}$: $(-1)^k \frac{\partial^k (\varphi^{-1})}{\partial s^k} (s) > 0$. Alors la copule archimédienne C est la fonction définie par

$$C(u_1,\ldots,u_d) = \varphi^{-1}(\varphi(u_1) + \cdots + \varphi(u_d))$$

Dans le tableau suivant, nous donnons les copules archimédiennes à un paramètre avec lesquelles nous allons travailler.

Famille	$arphi\left(u ight)$	$C\left(u_1,\ldots,u_d\right)$
Gumbel	$\left(-\ln\left(u ight) ight)^{ heta}$	$\exp\left\{-\left[\sum_{i=1}^{d}\left(-\ln u_{i}\right)^{\theta}\right]^{\frac{1}{\theta}}\right\}, \theta > 1$
Clayton	$u^{-\theta} - 1$	$\left[\sum_{i=1}^{d} u_i^{-\theta} - d + 1\right]^{-\frac{1}{\theta}}, \theta > 0$
Frank	$-\ln\left(\frac{\exp\left(-\theta u\right)-1}{\exp\left(-\theta\right)-1}\right)$	$-\frac{1}{\theta}\ln\left\{1-\frac{\prod_{i=1}^{d}\left(1-e^{-\theta u_{i}}\right)}{\left(1-e^{-\theta}\right)^{d-1}}\right\},\$
		avec $\theta > 0$

Tableau 3.1: Copules archimédiennes utilisées

Chapitre 4

Méthodologie

Dans le présent chapitre, nous allons détailler la méthodologie utilisée dans cette recherche. Mais avant, nous commencerons tout d'abord par décrire les options à évaluer. Puis, nous donnerons un aperçu sur le modèle de van den Goorbergh, Genest et Werker (2005).

4.1 Les options *rainbow*

Dans ce travail, nous nous intéressons à l'évaluation des options de type européen écrites sur plusieurs sous-jacents, dans le cas de trois (respectivement cinq) sous-jacents, connues sous le nom de *three-color rainbow options* (respectivement *five-color rainbow options*). Ce modèle peut aussi bien être appliqué à d'autres types d'options sur plusieurs sous-jacents.

Les options *rainbow* sont habituellement transigées de gré à gré. Les prix ne sont donc pas disponibles. Ainsi le modèle ne peut être testé empiriquement. Toutefois, une étude comparative de plusieurs modèles avec différentes hypothèses peut être entreprise. D'ailleurs, notre étude considère plusieurs familles de copules, par conséquent, nous obtenons différents prix que nous pouvons ensuite comparer.

Une option *rainbow* est un titre contingent dont le sous-jacent est le minimum ou le maximum entre plusieurs titres. Nous distinguons quatre catégories de ce type d'options.

- Option d'achat sur le maximum des sous-jacents.
- Option d'achat sur le minimum des sous-jacents.
- Option de vente sur le maximum des sous-jacents.
- Option de vente sur le minimum des sous-jacents.

Dans notre cas, nous nous intéressons, dans un premier temps, aux options sur les trois indices boursiers Nasdaq, Dow Jones et CAC 40. Ensuite, nous regardons les options sur les cinq indices boursiers S&P|TSE60, Nasdaq, Dow Jones, CAC 40 et DAX. De manière générale, les fonctions de paiement pour des options écrites sur N indices, à la maturité, sont les suivantes.

- Option d'achat sur le maximum : max {max { S_1, \ldots, S_d } K, 0}
- Option d'achat sur le minimum : max {min { S_1, \ldots, S_d } K, 0}
- Option de vente sur le maximum : max $\{K \min\{S_1, \ldots, S_d\}, 0\}$
- Option de vente sur le minimum : max $\{K \min\{S_1, \ldots, S_d\}, 0\},\$

où S_1, \ldots, S_d désignent les prix des indices à la maturité, et K le prix d'exercice de l'option.

En observant les prix des indices, nous constatons que les prix initiaux sont très différents, ce qui causera des problèmes au niveau de l'évaluation des options. Donc, pour éviter ces problèmes, nous allons prendre pour les fonctions de paiement non pas les prix des indices mais les rendements suivants

$$R_i = 1000 * S_i / S_i^0 \quad \forall i \in \{1, \dots, d\},$$
(4.1)

où S_i^0 est le prix de l'indice *i* à la date initiale.

Ceci reviendrait à initialiser les rendements R_i à une valeur de 1000. Les options à évaluer seront, dans ce cas, plus intéressantes et les nouvelles fonctions de paiement des options deviennent

- Option d'achat sur le maximum : max $\{\max\{R_1,\ldots,R_d\}-E,0\}$
- Option d'achat sur le minimum : max $\{\min \{R_1, \ldots, R_d\} E, 0\}$
- Option de vente sur le maximum : max $\{E \max\{R_1, \ldots, R_d\}, 0\}$
- Option de vente sur le minimum : max $\{E \min\{R_1, \ldots, R_d\}, 0\},\$

où E est le prix d'exercice de l'option

4.2 Modèle de van den Goorbergh, Genest et Werker (2005)

Dans leur article, Goorbergh, Genest et Werker s'intéressent également à l'évaluation des options *rainbow* mais écrites, seulement, sur deux titres. Pour ce faire, ils adoptent le schéma d'évaluation suivant.

- Estimation des densités marginales objectives des rendements de chacun des indices à partir des données journalières en utilisant des processus GARCH(1,1).
- Générer des innovations risque neutre à partir de plusieurs familles de copules par des simulations Monte-Carlo. Ces innovations sont par la suite transformées en des rendements risque neutre en utilisant le

modèle GARCH de Duan (1995).

 Finalement les prix des options sont obtenus en prenant une moyenne actualisée des fonctions de paiement sur les rendements des indices sous la mesure risque neutre.

L'idée principale de cet article est d'utiliser une structure de dépendance qui varie dans le temps. Pour ce faire, les auteurs estiment leurs copules conditionnelles à partir du tau de Kendall. Celui-ci est défini via la spécification suivante

$$\tau_t = \gamma \left(h_{1,t}, h_{2,t} \right),$$

où τ_t est le tau de Kendall à l'instant t, $h_{i,t}$ est la variance conditionnelle des rendements de l'indice i estimé à l'instant t et

$$\gamma(h_1, h_2) = \gamma_0 + \gamma_1 \log\left(\max\left(h_1, h_2\right)\right).$$

Malheureusement, l'estimation des copules dynamiques par cette méthode présente des problèmes théoriques et pratiques compte tenu de la non stationnarité de la loi jointe.

4.3 Modélisation

Dans cette étude, nous adoptons le même schéma d'évaluation que celui proposé par Goorbergh, Genest et Werker (2005). Cependant, nous utilisons des copules statiques au lieu des copules dynamiques. Nous faisons également appel aux processus GJR-GARCH au lieu des processus GARCH. Finalement, nous considérons une méthode différente d'estimation des paramètres des copules à savoir la méthode du pseudo-maximum de vraisemblance, telle que décrite par Genest, Ghoudi et Rivest (1995).

Tout au long de cette section, nous décrivons en détail les différentes étapes entreprises dans cette recherche.

4.3.1 Modélisation des densités marginales

Comme mentionné auparavant, nous utilisons le modèle d'évaluation de Duan (1995). Dans celui-ci, les distributions marginales objectives sont distribuées suivant des processus GARCH(1,1).

Les processus GARCH (Generalized AutoRegressive Conditional Heteroskedasticity), furent introduit par Bollerslev (1986). Ce sont des processus stochastiques qui permettent de modéliser les séries chronologiques dont la variance instantanée dépend du passé. Ils sont bien adaptés à la modélisation des séries financières. En général, les processus GARCH(p,q)possèdent p+q+1 paramètres, le plus simple étant le processus GARCH(1,1).

Cependant les modèles GARCH standards réagissent de la même manière aux événements positifs et négatifs. Ceci fait que ce type de processus ne permet pas de considérer l'effet de levier (*leverage effect*). D'autres types du processus GARCH, comme les modèles EGARCH, NGARCH et GJR-GARCH, permettent de bien représenter cet effet d'asymétrie. En particulier, nous utilisons, dans ce travail, les processus GJR-GARCH connus également sous le nom de threshold GARCH ou TGARCH. Ceux-ci furent introduit par Glosten, Jagannathan et Runkle (1993) et permettent de tenir compte de l'asymétrie, causée par l'introduction des nouvelles sur les volatilités.

Le choix du modèle GJR-GARCH(1,1) permet non seulement de considérer une volatilité variable dans le temps, mais il permet aussi un bon changement de mesure. En effet, Duan (1995) donne une généralisation de la relation de l'évaluation risque neutre conventionnelle en introduisant la notion de LRNVR (locally risk-neural valuation relationship), et montre que sous certaines conditions le changement de mesure revient à un changement dans la moyenne des innovations.

Il est important de noter que nous pouvons tout aussi bien choisir n'importe quel autre processus GARCH. Voir par exemple l'annexe A. Dans ce travail, nous avons choisi le GJR-GARCH parce qu'il semble être le processus le plus utilisé pour tenir compte de l'effet d'asymétrie de la volatilité. De plus, le logiciel MATLAB contient des fonctions intégrées permettant l'estimation des paramètres des processus GJR-GARCH.

Ainsi, dans notre cas, soit $r_{i,t+1} = \log (R_{i,t+1}/R_{i,t})$ le rendement logarithmique de l'indice $i \in \{1, \ldots, d\}$ entre l'instant t et l'instant t+1, et $\mathcal{F}_t = \sigma (r_{1,u}, \ldots, r_{d,u} : u \leq t)$ le système d'information à l'instant t. Alors, la distribution jointe des rendements, sous la mesure objective P, est déterminée conditionnellement à l'information disponible à l'instant t.

Sous la mesure objective P, les fonctions marginales des rendements des titres sous-jacents suivent chacune un GJR-GARCH(1,1). Donc, pour tout $i \in \{1, ..., d\}$,

$$\begin{aligned} r_{i,t+1} &= \mu_i + \eta_{i,t+1}, \\ \eta_{i,t+1} | \mathcal{F}_t &\sim N(0, h_{i,t+1}), \\ h_{i,t+1} &= \omega_i + \alpha_i (\mu_i - r_{i,t})^2 + \beta_i h_{i,t} + \gamma_i \max(0; \mu_i - r_{i,t})^2, \end{aligned}$$

où $\mu_i > 0, \, \omega_i > 0, \, \alpha_i > 0, \, \beta_i > 0$ et $\gamma_i > 0.$

Dans ce modèle, les variances conditionnelles sont des fonctions linéaires

des carrés des innovations passées $\eta_{i,t}$ et des variances conditionnelles passées $h_{i,t}$. Ceci fait que les volatilités varient de manière non déterministe.

Sous la mesure risque neutre Q, les fonctions marginales des rendements sont données, pour tout $i \in \{1, ..., d\}$, par

où r_f est le taux sans risque supposé constant.

Pour pouvoir appliquer le modèle de Duan, nous supposons que les distributions marginales sont définies conditionnellement à toute l'information disponible à l'instant t c'est-à-dire \mathcal{F}_t , alors que la loi conditionnelle des rendements de chaque indice dépend uniquement de ses rendements passés et non ceux des autres indices, c'est-à-dire que

$$L_P(r_{i,t+1}|\mathcal{F}_t) = L_P(r_{i,t+1}|\mathcal{F}_{i,t}),$$

où $\mathcal{F}_{i,t} = (\sigma(r_{i,u}) : u \leq t)$ indique l'information de l'indice *i* à l'instant *t* et L_P la loi sous la mesure *P*.

Finalement, les rendements R_i à la date terminale T sont donnés par la relation

$$R_{i,T} = R_{i,0} \cdot \exp\left(Tr_f - \frac{1}{2}\sum_{s=1}^T h_s + \sum_{s=1}^T \eta_s\right), \text{ pour tout } i \in \{1, \dots, d\},$$
(4.3)

où $R_{i,0}$ est la valeur initiale de R_i .
4.3.2 Modélisation de la structure de dépendance

Selon l'inverse du théorème de Sklar, nous pouvons construire la distribution jointe des rendements en reliant les distributions marginales avec une copule. Dans la section précédente, nous avons donné les distributions marginales des rendements sous la mesure risque neutre. Reste à déterminer la copule risque neutre.

Hypothèse Il est important de noter que notre méthode suppose que, sous la mesure objective P, la copule des innovations standardisées

$$\epsilon_t = \left(\frac{r_{1,t} - \mu_1}{\sqrt{h_{1,t}}}, \dots, \frac{r_{d,t} - \mu_d}{\sqrt{h_{d,t}}}\right), \quad t \ge 1,$$

est la même que celle des innovations standardisées

$$\epsilon_t^* = \left(\frac{r_{1,t} - r_f + \frac{1}{2}h_{1,t+1}}{\sqrt{h_{1,t}}}, \dots, \frac{r_{d,t} - r_f + \frac{1}{2}h_{d,t+1}}{\sqrt{h_{d,t}}}\right), \quad t \ge 1,$$

sous la mesure risque neutre Q.

Cette hypothèse est due au fait que les données sur les prix des options sur plusieurs titres ne sont pas disponibles. Par conséquent, nous ne pouvons pas estimer la copule risque neutre. Ceci permet donc l'utilisation des données historiques sur les rendements pour estimer la fonction de dépendance des indices. Cette hypothèse est également présente dans Rosenberg (2001), ainsi que dans van den Goorbergh, Genest et Werker (2005).

Comme déjà mentionné, nous considérons plusieurs copules pour modéliser la distribution jointe des rendements des indices. Nous proposons d'étudier les prix de deux types d'options, à savoir des options three-color rainbow et five-color rainbow. Pour les options three-color rainbow, nous allons estimer les paramètres des diverses copules à partir des données historiques, en utilisant une méthode liée au pseudo-maximum de vraisemblance. Pour les options five-color rainbow, nous allons comparer les prix pour plusieurs niveaux de dépendance, déterminés par les différentes copules.

4.3.2.1 Estimation des paramètres des copules : les options threecolor rainbow

Notre but, dans cette section, est d'estimer les paramètres des différentes copules en faisant appel à la méthode du pseudo-maximum de vraisemblance proposée par Genest, Ghoudi et Rivest (1995). Pour trois titres sous-jacents, cette méthode repose sur les deux étapes suivantes.

1. Estimer les distributions marginales à partir des distributions empiriques en utilisant des statistiques d'ordre. Sachant que la copule à estimer est celle des innovations standardisées (ϵ_t), et non celle des rendements (r_t), alors nous devons calculer les pseudo-observations $e_t = (e_{1,t}, \ldots, e_{d,t})$, définies par

$$e_{i,t} = \frac{r_{i,t} - \hat{\mu}_i}{\sqrt{\hat{h}_{i,t}}}, \quad i = 1, \dots, d,$$

à partir des données sur les rendements $r_{i,t}$, que nous transformons ensuite en pseudo-observations $u_{i,t}$ par la relation suivante

$$u_{i,t} = \frac{Y_{i,t}}{n+1}, \quad \forall (i,j) \in \{1,\dots,d\} \times \{1,\dots,n\}$$

où $Y_{i,t}$ est le rang de $e_{i,t}$ parmi $(e_{i,1}, \ldots, e_{i,n})$, et n la taille de l'échantillon des données¹.

2. Estimer via la méthode du maximum de vraisemblance les paramètres de la copule

 $\hat{\theta} = \arg \max_{\theta} \left[l(\theta) \right] = \arg \max_{\theta} \left[\sum_{t=1}^{n} \ln \left\{ c(u_{1,t}, \dots, u_{d,t}, \theta) \right\} \right], \text{ où } c$ est la densité de la copule.

La seconde étape est explicitée pour chaque famille de copules dans les parties qui suivent.

• Copule normale

L'estimation de la copule normale revient à estimer sa matrice de corrélation $R = (R_{ij})_{1 \le i,j \le d}$, et $R_{ij} = r_{ij}$ tel que r_{ij} représente le coefficient de corrélation de van der Waerden. En utilisant l'équation (3.1), nous obtenons la fonction de vraisemblance suivante

$$l(\theta) = -\frac{n}{2}\ln(|R|) - \frac{1}{2}\sum_{i=1}^{n}\xi_{i}^{\top} (R^{-1} - I)\xi_{i},$$

où I est une matrice identité $(d \times d)$, n désigne la taille de l'échantillon, et $\xi_i = \left\{ \Phi^{-1}(u_1^{(i)}), \dots, \Phi^{-1}(u_d^{(i)}) \right\}^\top$.

Donc, l'estimateur \hat{R} de R est donné par²

$$\hat{R} = \frac{\sum_{i=1}^{n} \xi_i \xi_i^{\top}}{\sum_{i=1}^{n} \left\{ \Phi^{-1} \left(\frac{i}{n+1} \right) \right\}^2}.$$

¹Nous auri
ons aussi pu transformer les observations de la façon suivante :
 $u_{i,t} = \Phi(e_{i,t})$, car selon le modèle de Duan (1995),
 $\epsilon_t \sim N(0,1)$.

 $^{^{2}}$ Klaassen et Wellner (1997)

• Copule Student

L'estimation de la copule Student revient à estimer les degrés de liberté ν et la matrice de corrélation R.

La matrice de corrélation $R = (R_{ij})_{1 \le i,j \le d}$ satisfait la relation suivante³ : $R_{ij} = \sin(\tau_{ij}\pi/2)$, où τ_{ij} est le tau de Kendall entre la *i*-ème et la *j*-ème composante. L'estimateur (préliminaire) \hat{R} de R est une matrice définie positive, qui peut être déterminée comme suit : $\hat{R}_{ij} = \sin(\hat{\tau}_{ij}\pi/2)$, où $\hat{\tau}_{ij}$ est l'estimateur du tau de Kendall (défini ci-dessous), en autant que cette dernière soit définie positive. Sinon, on choisit une approximation définie positive de cette estimateur préliminaire \hat{R} .

Définition 7 Soient $(x_1, y_1), \ldots, (x_n, y_n)$ n observations du couple de variables aléatoires continues (X, Y). On dit que les paires (x_i, y_i) et (x_j, y_j) sont **concordantes** si $(x_i, y_i)(x_j, y_j) \ge 0$, et **discordantes** si $(x_i, y_i)(x_j, y_j) \le$ 0. Si c dénote le nombre de couples concordants et d le nombre de couples discordants, alors $\hat{\tau} = \frac{(c-d)}{(c+d)}$.

Le degré de liberté ν est estimé par ⁴

$$\hat{\nu} = \arg \max_{\nu} \left[\sum_{j=1}^{n} \ln \left\{ c(u_1^{(j)}, \dots, u_d^{(j)}; \nu, \hat{R}) \right\} \right], \tag{4.4}$$

où c est donné par l'équation (3.2).

L'estimation des copules archimédiennes revient à estimer le paramètre $\theta.$ L'estimateur de θ est donné par

³Abdous et coll. (2005)

 $^{^{4}}$ Mashal et Zeevi (2002)

$$\hat{\theta} = \arg\max_{\theta} \left[\sum_{j=1}^{M} \ln \left\{ c(u_1^{(j)}, \dots, u_d^{(j)}, \theta) \right\} \right], \tag{4.5}$$

où $c = \frac{\partial^d C}{\partial u_1 \cdots \partial u_d}.$

• Copule de Clayton

On a, dans la cas particulier de trois sous-jacents

$$C(u_1, u_2, u_3, \theta) = \left(\sum_{i=1}^3 u_i^{-\theta} - 2\right)^{-\frac{1}{\theta}} \quad \text{avec} \quad \theta > 0, \tag{4.6}$$

alors

$$c(u_1, u_2, u_{3,\theta}) = \theta^2 \left(\frac{1}{\theta} + 1\right) \left(\frac{1}{\theta} + 2\right) \left(\prod_{i=1}^3 u_i\right)^{-\theta-1} \left(\sum_{i=1}^3 u_i^{-\theta} - 2\right)^{\frac{-1}{\theta} - 3}.$$
(4.7)

• Copule de Gumbel

On a, dans la cas particulier de trois sous-jacents

$$C(u_1, u_2, u_3, \theta) = \exp\left\{-\left[\sum_{i=1}^{3} \left(-\ln\left(u_i\right)\right)^{\theta}\right]^{\frac{1}{\theta}}\right\} \text{ avec } \theta > 1, \qquad (4.8)$$

alors

$$c(u_1, u_2, u_3, \theta) = A \times [B + C],$$
(4.9)

avec

$$A = \frac{\prod_{i=1}^{3} (-\ln(u_i))^{\theta-1} e^{-\left[\sum_{i=1}^{3} (-\ln(u_i))^{\theta}\right]^{\frac{1}{\theta}}}}{u_1 u_2 u_3},$$

$$B = \left\{ \sum_{i=1}^{3} (-\ln(u_i))^{\theta} \right\}^{\frac{3}{\theta}-3} - 3\theta \left(\frac{1}{\theta} - 1\right) \left\{ \sum_{i=1}^{3} (-\ln(u_i))^{\theta} \right\}^{\frac{2}{\theta}-3},$$

$$C = \theta^2 \left(\frac{1}{\theta} - 1\right) \left(\frac{1}{\theta} - 2\right) \left\{ \sum_{i=1}^{3} (-\ln(u_i))^{\theta} \right\}^{\frac{1}{\theta}-3}.$$

• Copule de Frank

On a, dans la cas particulier de trois sous-jacents

$$C(u_1, u_2, u_3, \theta) = -\frac{1}{\theta} \ln \left\{ 1 + \frac{\prod_{i=1}^3 \left(e^{-\theta u_i} - 1\right)}{\left(e^{-\theta} - 1\right)^2} \right\} \quad \text{avec} \quad \theta > 0, \qquad (4.10)$$

alors

$$c(u_1, u_2, u_3, \theta) = A' - B' + C', \qquad (4.11)$$

avec

$$A' = \frac{\theta^2 \exp\left(-\sum_{i=1}^3 \theta u_i\right)}{\left(-1 + e^{-\theta}\right)^2 \cdot \left\{1 + \frac{\prod_{i=1}^3 \left(e^{-\theta u_i} - 1\right)}{\left(e^{-\theta} - 1\right)^2}\right\}},$$

$$B' = \frac{3\theta^2 \exp\left(-\sum_{i=1}^3 \theta u_i\right) \cdot \prod_{i=1}^3 \left(e^{-\theta u_i} - 1\right)}{\left(-1 + e^{-\theta}\right)^4 \cdot \left\{1 + \frac{\prod_{i=1}^3 \left(e^{-\theta u_i} - 1\right)}{\left(e^{-\theta} - 1\right)^2}\right\}^2},$$

$$C' = \frac{2\theta^2 \exp\left(-\sum_{i=1}^3 \theta u_i\right) \cdot \prod_{i=1}^3 \left(e^{-\theta u_i} - 1\right)^2}{\left(-1 + e^{-\theta}\right)^6 \cdot \left\{1 + \frac{\prod_{i=1}^3 \left(e^{-\theta u_i} - 1\right)}{\left(e^{-\theta} - 1\right)^2}\right\}^3.$$

4.3.2.2 Les options five-color rainbow

Pour les options sur cinq titres, nous allons considérer plusieurs niveaux de dépendance, puis nous allons comparer les prix pour les diverses copules choisies.

Or, les copules sont reliées à une variété de mesures de dépendance. Parmi celles-ci nous considérons le tau de Kendall τ . Pour une copule C de paramètre θ , le tau de Kendall est donné par la relation suivante

$$\tau\left(\theta\right) = 4E\left[C\left(U_1, U_2, \theta\right)\right] - 1,$$

où le vecteur (U_1, U_2) est distribué suivant C, et E désigne l'opérateur d'espérance.

Afin que les copules soient comparables, nous choisissons des copules dont les lois sont échangeables. En particulier, la loi de (U_i, U_j) , pour $i \neq j$, est la même que celle de (U_1, U_2) . Pour les copules normale et de Student, nous prendrons R équicorrellée, i.e. $R_{ij} = \sin(\tau \frac{\pi}{2})$ pour $i \neq j$.

Dans le tableau suivant, nous donnons les relations entre le tau de Kendall et les paramètres θ des différentes copules. Pour la copule normale et la copule de Student, θ est le coefficient de corrélation. Remarquons que pour la copule de Student, le tau de Kendall ne dépend pas du nombre de degrés de libertés. Pour les copules archimédiennes, θ est le paramètre de la copule, tel que défini précédemment. D_1 désigne la fonction de Debye de premier ordre donnée par

$$D_1(\theta) = \frac{1}{\theta} \int_0^{\theta} \frac{t}{e^t - 1} dt.$$

Copule	Tau de Kendall
normale et Student	$\frac{2}{\pi} \arcsin\left(\theta\right)$
Clayton	$\frac{\theta}{\theta+2}$
Gumbel	$1-\frac{1}{\theta}$
Frank	$1 - \frac{4}{\theta} [D_1(\theta) - 1]$

Tableau 4.1: Tau de Kendall en fonction des paramètres des copules

4.3.3 Évaluation des options

Après avoir spécifié les distributions marginales des rendements des différents sous-jacents, ainsi que les copules à utiliser pour générer les innovations risque neutre, il ne nous reste plus qu'à trouver les prix des options.

Sachant que les prix actualisés sous la mesure risque neutre Q sont des martingales, le prix C d'une option de fonction de paiement $f \ge 0$ est alors donné par

$$C = e^{-r_f * T} E^Q \{ f (R_{1,T}, \dots, R_{d,T}) \}$$

Dans notre cas, les prix des options sont calculés à partir des formules suivantes :

- Option achat sur le maximum :

$$C_0^{max} = e^{-r_f * T} E^Q \left\{ \max \left[\max \left(R_{1,T}, \dots, R_{d,T} \right) - E, 0 \right] \right\}$$

– Option vente sur le minimum :

$$P_0^{\min} = e^{-r_f * T} E^Q \left\{ \max \left[E - \min \left(R_{1,T}, \dots, R_{d,T} \right), 0 \right] \right\}$$

- Option achat sur le minimum :

$$C_0^{min} = e^{-r_f * T} E^Q \left\{ \max \left[\min \left(R_{1,T}, \dots, R_{d,T} \right) - E, 0 \right] \right\}$$

– Option vente sur le maximum :

 $P_0^{max} = e^{-r_f * T} E^Q \{ \max [E - \max (R_{1,T}, \dots, R_{d,T}), 0] \},$ où T est la date d'échéance de l'option, E est le prix d'exercice et $R_{i,T}$ et le rendement à l'échéance T de l'indice $i \in \{1, \dots, d\}.$

Compte tenu du choix du modèle GARCH pour la modélisation des fonctions marginales des rendements des sous-jacents, les lois des rendements ne peuvent pas être décrites de manière analytique. Donc, la simulation Monte-Carlo reste la méthode la plus appropriée pour l'évaluation de nos options. Plus précisément, nous allons générer des variables aléatoires uniformes U_i pour tout i dans $\{1, \ldots, d\}$ à partir de la copule choisie. Ces variables seront ensuite transformées en des variables normales $N(0, h_{i,t})$ notées $\eta_{i,t}^*$ à l'aide de la transformation inverse, c'est-à-dire $\eta_{i,t}^* = \sqrt{h_{i,t}} \cdot \Phi^{-1}(U_i)$, où Φ^{-1} est la fonction de répartition inverse de la loi normale centrée réduite.

Puis, nous calculerons récursivement les rendements et les variances risque neutre, jusqu'à l'échéance de l'option T, grâce à la méthode de Duan, en utilisant l'équation (4.2), les paramètres étant estimés à partir des données historiques. Finalement, les prix des options seront obtenus en prenant une moyenne actualisée des paiements engendrés par les rendements générés $R_{i,T}$ donnés par l'équation (4.3).

4.3.4 Simulations

Dans cette section, nous explicitons les méthodes utilisées pour générer des observations, suivant les diverses copules choisies, pour chacune des options considérées.

Dans le cas tridimensionnel, nous optons, particulièrement, pour trois méthodes dépendamment de la copule à simuler. La première est dite méthode des distributions qui servira pour la simulation de la copule normale et la copule de Student. La deuxième, dite méthode des distributions conditionnelles, permettra d'estimer la copule de Clayton et la copule de Frank. Enfin, pour la copule de Gumbel, nous utiliserons la troisième méthode qui est celle proposée par Marshall et Olkin (1988).

Pour le cas des options *five-color rainbow*, nous utilisons seulement la méthode des distributions pour la simulation des copules elliptiques, et la

méthode de Marshall et Olkin pour la simulation des copules archimédiennes compte tenu de la complexité de la méthode des distributions conditionnelles pour d = 5.

4.3.4.1 Méthode des distributions

Cette méthode est intéressante lorsque la distribution générée par la copule est plus facile que la copule elle même. Ceci est le cas pour la copule normale et la copule de Student.

De manière générale, nous avons

$$C(U_1,\ldots,U_d) = F(F^{-1}(U_1),\ldots,F^{-1}(U_d)),$$

où F est la distribution multidimensionnelle et F_i les marges associées.

Donc, pour simuler un vecteur $U = (U_1, \ldots, U_d)$ il suffit de générer le vecteur aléatoire $X = (X_1, \ldots, X_d)$ de distribution F, ensuite appliquer la transformation $U = (F_1(x_1), \ldots, F_d(X_d)).$

Pour les options three-color rainbow, nous donnons dans ce qui suit les algorithmes utilisés pour générer un vecteur de variables aléatoires $(u_1, \ldots, u_d)^{\top}$ à partir de la copule normale et de Student.

• Copule normale

- Trouver la décomposition de Cholesky L de la matrice de corrélation R.
- Simuler un vecteur $z = (z_1, \ldots, z_d)^{\top}$ de variables aléatoires indépendantes suivant une loi normale centrée réduite.

- Poser
$$x = Lz$$
.

– Finalement, $(u_1, \ldots, u_d) = (\Phi(x_1), \ldots, \Phi(x_d))$, où Φ est la fonction de répartition de la loi normale centrée réduite.

• Copule de Student

- Trouver la décomposition Cholesky L de la matrice de corrélation R.
- Simuler un vecteur $z = (z_1, \ldots, z_d)^{\top}$ de variables aléatoires indépendantes suivant une loi normale centrée réduite.
- Simuler une variable aléatoire s indépendante de z suivant une loi χ^2 avec ν degrés de liberté.
- Poser $x = (\nu/s)^{1/2} L z$.
- Finalement, $(u_1, \ldots, u_d) = (T_{\nu}(x_1), \ldots, T_{\nu}(x_d))$, où T_{ν} est la fonction de répartition de la loi de Student avec ν degrés de liberté.

Pour les options *five-color rainbow*, nous utilisons le modèle équicorréllé. Dans ce qui suit, nous donnons les algorithmes utilisés pour générer un vecteur de variables aléatoires $(u_1, \ldots, u_d)^{\top}$ à partir de ces copules.

• Copule normale

- Calculer $\rho = \sin(0.5 \times \pi \times \tau)$.
- Simuler un vecteur $z = (z_0, \ldots, z_d)^{\top}$ de variables aléatoires indépendantes suivant une loi normale centrée réduite.
- Poser $x_i = \rho z_0 + \sqrt{1 \rho^2} z_i$ pour tout *i* dans $\{1, \ldots, d\}$.
- Finalement, $(u_1, \ldots, u_d) = (\Phi(x_1), \ldots, \Phi(x_d))$, où Φ est la fonction de répartition de la loi normale centrée réduite.

• Copule de Student

- Calculer $\rho = \sin(0.5 \times \pi \times \tau)$.
- Simuler un vecteur $z = (z_0, \ldots, z_d)^{\top}$ de variables aléatoires indépen-

dantes suivant une loi normale centrée réduite.

- Simuler une variable aléatoire s indépendante de z suivant une loi χ^2 avec ν degrés de liberté.
- Poser $x_i = (\nu/s)^{1/2} (\rho z_0 + \sqrt{1 \rho^2} z_i)$ pour tout $i \in \{1, \dots, d\}$.
- Finalement, $(u_1, \ldots, u_d) = (T_{\nu}(x_1), \ldots, T_{\nu}(x_d))$, où T_{ν} est la fonction de répartition de la loi de Student avec ν degrés de liberté.

4.3.4.2 Méthode des distributions conditionnelles

Nous allons simuler la copule de Clayton et de Frank à l'aide de la méthode des distributions conditionnelles. Nous pouvons tout aussi bien utiliser la méthode de Marshall et Olkin (1988). Mais, puisque l'implantation de la méthode des distributions conditionnelles se fait facilement pour ces deux copules dans le cas tridimensionnel, nous avons opté pour celle-ci, et d'autant plus qu'elle nous permettra d'explorer une nouvelle méthode.

Cette méthode utilise les distributions conditionnelles. En effet, si nous désirons simuler d variables aléatoires U_1, \ldots, U_d de distribution jointe C, alors la distribution conditionnelle de U_i sachant U_1, \ldots, U_{i-1} est donnée par

$$C_{i}(u_{i}|u_{1},...,u_{i-1}) = P(U_{i} \leq u_{i}|U_{1} = u_{1},...,U_{i-1} = u_{i-1})$$
$$= \frac{\partial u_{1}...\partial u_{i-1}C_{i}(u_{1},...,u_{i})}{\partial u_{1}...\partial u_{i-1}C_{i-1}(u_{1},...,u_{i})}.$$

Par conséquent, l'algorithme est le suivant :

- Simuler une variable aléatoire u_1 suivant une loi U(0,1).
- Simuler une variable aléatoire u_2 suivant $C_2(.|u_1)$.
- ...
- Simuler une variable aléatoire u_d suivant $C_2(.|u_1,...,u_{d-1})$.

Plus précisément, les algorithmes nous permettant de générer un vecteur de variables aléatoires $(u_1, u_2, u_3)^{\top}$ suivant des copules de Clayton et Frank⁵ sont :

• Copule de Clayton

- Simuler un vecteur de variables aléatoires $(v_1, v_2, v_3)^{\top}$ suivant une loi U(0, 1).
- Poser $u_1 = v_1$,

- Poser

$$v_2 = C_2(u_2|u_1) = \left(\frac{u_1 + u_2 - 1}{u_1^{-\theta}}\right)^{-\frac{1}{\theta} - 1}$$

– Et résoudre pour obtenir

$$u_2 = \left[v_1^{-\theta} \left(v_2^{-\frac{\theta}{\theta+1}} - 1\right) + 1\right]^{-\frac{1}{\theta}}$$

– De même, poser

$$v_{3} = C_{3}(u_{3}|u_{1}, u_{2}) = \frac{\varphi^{-1(2)}(c_{3})}{\varphi^{-1(2)}(c_{2})} = \left(\frac{\sum_{i=1}^{3} u_{i}^{-\theta} - 2}{u_{1}^{-\theta} + u_{2}^{-\theta} - 1}\right)^{-\frac{1}{\theta}-2}$$

- et résoudre pour obtenir

$$u_3 = \left\{ \left(u_1^{-\theta} + u_2^{-\theta} - 1 \right) \cdot \left(v_3^{-\frac{\theta}{2\theta+1}} - 1 \right) + 1 \right\}^{-\frac{1}{\theta}}.$$

• Copule de Frank

- Simuler un vecteur de variables aléatoires $(v_1, v_2, v_3)^{\top}$ suivant une loi U(0, 1).
- Poser $u_1 = v_1$,
- Poser

⁵Cherubini, Luciano et Vecchiato (2004), p. 182.

$$v_2 = C_2(u_2|u_1) = e^{-\theta u_1} \frac{e^{-\theta u_2} - 1}{e^{-\theta} - 1 + [e^{-\theta u_1} - 1] [e^{-\theta u_2} - 1]}$$

– Et résoudre pour obtenir

$$u_{2} = -\frac{1}{\theta} \ln \left\{ 1 + \frac{v_{2} \left(1 - e^{-\theta} \right)}{v_{2} \left(e^{-\theta u_{1}} - 1 \right) - e^{-\theta u_{1}}} \right\}$$

– De même, poser

$$v_3 = C_3(u_3|u_1, u_2) = A \times G, \tag{4.12}$$

avec

$$A = (e^{-\theta} - 1) \left[(e^{-\theta} - 1) + (e^{-\theta u_1} - 1) (e^{-\theta u_2} - 1) \right]^2,$$

$$G = \frac{e^{-\theta u_3} - 1}{\left[(e^{-\theta} - 1)^2 + (e^{-\theta u_1} - 1) (e^{-\theta u_2} - 1) (e^{-\theta u_3} - 1) \right]^2}.$$

– Obtenir u_3 en résolvant l'équation (4.12), ce qui revient à résoudre une équation de second degré en $x \left[x = e^{-\theta u_3} - 1, e^{-\theta} - 1 \le x \le 0 \right]$:

 Posons

$$B = (e^{-\theta u_1} - 1) (e^{-\theta u_2} - 1),$$

 et

$$A = (e^{-\theta} - 1) [(e^{-\theta} - 1) + B]^2.$$

L'équation (4.12) devient

$$B^{2}x^{2} + \left[2B\left(e^{-\theta} - 1\right)^{2} - \frac{A}{v_{3}}\right]x + \left(e^{-\theta} - 1\right)^{4} = 0.$$

Ensuite, nous retenons la solution donnée par

$$x = -\frac{\left(e^{-\theta} - 1\right)^2}{B} + \frac{A + v_3\sqrt{\Delta}}{2v_3B^2},$$

où :
$$\Delta = \frac{A^2}{v_3^2} - 4\frac{A}{v_3}B\left(e^{-\theta} - 1\right)^2$$
Finalement $u_3 = \frac{-\ln(1+x)}{\theta}$.

4.3.4.3 Méthode de Marshall et Olkin

Contrairement à la simulation de la copule copule de Clayton et de Frank, la simulation de la copule de Gumbel par la méthode des distributions conditionnelles dans le cas tridimensionnel devient très compliquée. Dans ce cas, nous utilisons la méthode de Marshall et Olkin. Dans le cas de cinq sous-jacents, nous utilisons la méthode de Marshall et Olkin pour toutes les copules archimédiennes.

Cette méthode fait appel à la transformée de Laplace et son inverse. Rappelons que la transformée de Laplace d'une variable positive Y est définie par

$$\Psi(s) = E[e^{-sY}] = \int_0^\infty e^{-st} dF_Y(t),$$

où F_Y est la fonction de répartition de Y.

Marshall et Olkin (1988) montrent que la fonction de répartition jointe F peut s'écrire de la façon suivante

$$F(x_1, x_2, \dots, x_d) = \Psi(\Psi^{-1}(F_1(x_1)) + \dots + \Psi^{-1}(F_d(x_d))),$$

où F_i est la fonction de répartition marginale de la fonction de répartition jointe F, pour tout $i \in \{1, 2, ..., d\}$.

Or, les générateurs des copules de Clayton, de Frank et de Gumbel sont les transformées de Laplace de variables aléatoires positives. Nous en déduisons, donc, les algorithmes suivants, proposé par Frees et Valdez (1998), nous permettant de générer un vecteur de variables aléatoires $(u_1, \ldots, u_d)^{\top}$ suivant la copule de Clayton, de Frank et de Gumbel.

• Copule de Clayton

Pour la copule de Clayton, Y suit une loi loi Gamma $(1/\theta, 1)$. Celle-ci est donc très facile à simuler et l'algorithme de simulation est le suivant :

- Générer une variable aléatoire Y suivant une loi Gamma $(1/\theta, 1)$.
- Simuler un vecteur de variables aléatoires indépendantes $(v_1, \ldots, v_d)^{\perp}$ suivant une loi U(0, 1), et indépendant de Y.
- Finalement, calculer pour tout *i* dans $\{1, \ldots, d\}$ $u_i = F_i^{-1}(v_i^*)$, où $v_i^* = \Psi\left(\frac{-\ln(v_i)}{Y}\right)$ et $\Psi(s) = (1+s)^{\frac{1}{\theta}}$.

• Copule de Gumbel

Pour la copule de Gumbel, nous savons que Y suit une loi stable positive de paramètre $1/\theta$. Et l'algorithme de simulation est le suivant :

– Générer une variable aléatoire Y suivant une loi stable positive à partir de la relation suivante⁶ :

$$Y = \frac{\sin\left(\frac{s}{\theta}\right)}{\cos\left(s\right)^{\theta}} \cdot \left[\cos\left(\frac{(1-1/\theta)s}{\xi}\right)\right]^{\theta-1},$$

où ξ est distribuée suivant une exponentielle de moyenne égale à 1 et s est distribuée suivant une uniforme sur $[-\pi/2, \pi/2]$ et indépendante de ξ .

- Simuler un vecteur de variables aléatoires indépendantes $(v_1, \ldots, v_d)^{\top}$

 $^{^6\}mathrm{Tiré}$ de Samorodnitsky et Taqqu, 1995, p. 42.

suivant une loi U(0,1), et indépendant de Y.

- Finalement, calculer pour tout $i \in \{1, \ldots, d\}$ $u_i = F_i^{-1}(v_i^*)$, où $v_i^* = \Psi\left(\frac{-\ln(v_i)}{\gamma}\right)$ et $\Psi(s) = \exp\left(-s^{\frac{1}{\alpha}}\right)$.

• Copule de Frank

Pour la copule de Frank, la variable Y a une distribution de série logarithmique sur les nombres naturels. Et l'algorithme de simulation est le suivant :

- Générer une variable aléatoire Y suivant une distribution de série logarithmique sur les nombres naturels.
- Simuler un vecteur de variables aléatoires indépendantes $(v_1, \ldots, v_d)^{\perp}$ à partir une loi U(0, 1), et indépendant de Y.
- Finalement, calculer pour tout *i* dans $\{1, \ldots, d\}$ $u_i = F_i^{-1}(v_i^*)$, où $v_i^* = \Psi\left(\frac{-\ln(v_i)}{Y}\right)$ et $\Psi(s) = \theta^{-1} \ln\left[1 + e^s\left(e^{\theta} 1\right)\right]^7$.

4.4 Conclusion

Nous avons, dans ce chapitre, détaillé notre modèle d'évaluation. Ensuite nous avons montré comment estimer les paramètres des diverses copules utilisées. Finalement, nous avons donné les méthodes de simulation à partir de ces copules. Dans les chapitres qui suivent nous allons implanter l'ensemble de ces étapes pour arriver aux prix des options que nous nous proposons d'évaluer et que nous avons déjà décrites au début de ce chapitre.

⁷Voir Marshall et Olkin (1988)

Chapitre 5

Résultats et analyse

Nous avons maintenant tous les ingrédients nécessaires pour entamer la phase de la programmation. Cette phase comporte deux volets : le premier volet portant sur l'estimation des paramètres faite à l'aide de MATLAB, et le deuxième concernant la procédure de la simulation faite avec le langage C. Les principaux codes utilisés sont donnés en annexe. Dans la suite de ce chapitre, nous allons donner les résultats auxquels nous avons abouti. Mais avant, nous allons décrire les séries de données avec lesquelles nous avons travaillé.

Dans ce travail, comme déjà mentionné, on se propose d'appliquer notre modèle aux options *three-color rainbow* écrites sur les indices boursiers Nasdaq, Dow Jones et CAC 40, et aux options *five-color rainbow* écrites sur les indices boursiers S&P|TSE 60, Nasdaq, Dow Jones, CAC 40 et DAX.

Pour les options three-color rainbow écrites sur Nasdaq, Dow Jones et CAC 40, nous estimons les paramètres des diverses copules utilisées ; ensuite, nous analysons les prix obtenus. Pour les options five-color rainbow écrites

sur S&P|TSE 60, Nasdaq, Dow Jones, CAC 40 et DAX, nous comparons les prix obtenus, à partir les diverses copules, pour différents niveaux de dépendance, indexés par τ , allant de 0.1 jusqu'à 0.95.

5.1 Description des données

Nos séries de données sont composées des valeurs journalières des indices sur une période allant du 1^{er} janvier 1995 au 1^{er} février 2005. Ces données sont ensuite ajustées, pour donner un échantillon de 2473 valeurs pour chaque indice. Finalement, les valeurs sont placées dans des fichiers de type csv.

Dans la figure suivante, nous présentons les rendements journaliers des indices Nasdaq, Dow Jones et CAC 40, sous-jacents aux options *three-color rainbow*, calculés à partir de notre échantillon de données.

Figure 5.1: Rendements des prix sur les indices

5.2 Les paramètres des processus GJR-GARCH

Dans le tableau ci-après, nous donnons les estimations des paramètres GJR-GARCH, obtenues à l'aide de la méthode de maximum de vraisemblance, pour les distributions marginales des rendements des indices.

Paramètres	TSE 60	Nasdaq	Dow Jones	CAC 40	DAX
$\mu \times 10^2$	0.0595	0.1218	0.0408	0.0323	0.0463
$\omega \times 10^5$	0.1108	0.0922	0.2126	0.1923	0.2682
β	0.9038	0.8811	0.9034	0.9297	0.8993
α	0.0415	0.0909	0.0074	0.0208	0.0443
γ	0.0969	0.0558	0.1382	0.0789	0.0874

Tableau 5.1: Paramètres estimés des processus GJR-GARCH(1,1)

Nous constatons que la somme des paramètres α , β et $\gamma/2$, pour chaque

indice, est inférieure à 1, ce qui vérifie bien la condition de stationnarité des covariances. Voir annexe B.

Pour pouvoir calculer les prix des options en utilisant le modèle GARCH de Duan, nous avons besoin de spécifier les volatilités initiales des différents indices. Pour ce faire, nous avons estimé les volatilités initiales σ_i^0 , pour chaque indice, à partir des données historiques journalières sur les indices, en utilisant notre modèle GJR-GARCH déjà estimé.

En effet, si n est la taille de l'échantillon des données journalières sur les rendements des indices et d le nombre des indices sous-jacents, alors $\forall (i, j) \in$ $\{1, \ldots, d\} \times \{1, \ldots, n\}$ la variance des rendements de l'indice i au jour j + 1est donnée par

$$h_{i,j+1} = \omega_i + \beta_i h_j + \alpha_i (r_{i,j} - \mu_i)^2 + \gamma_i \max(0; \mu_i - r_{i,j})^2,$$

où $r_{i,j}$ est le rendement historique de l'indice *i* au jour *j*.

Finalement,

$$\sigma_i^0 = \sqrt{h_{i,n+1}}.$$

Notons que, afin de calculer les variances, nous avons besoin de la variance au jour j = 1. Nous avons donc pris :

$$h_{i,1} = \left[n \sum_{j=0}^{n} r_{i,j}^2 - \left(\sum_{j=0}^{n} r_{i,j} \right)^2 \right] / (n (n-1)).$$

Les valeurs obtenues pour les variances et les volatilités initiales sont données dans le tableau suivant :

	TSE 60	Nasdaq	Dow Jones	CAC 40	DAX
Volatilité $\times 10^3$	8.0076	8.1717	6.3260	6.9459	7.0043
Variance $\times 10^5$	6.4121	6.6776	4.0018	4.8245	4.9060

Tableau 5.2: Volatilités et les variances initiales

5.3 Les paramètres des copules

Dans cette partie, nous présentons les résultats concernant l'estimation des paramètres des copules, par la méthode du maximum de vraisemblance, pour les indices : Nasdaq, Dow Jones et CAC 40. Nous commençons par les copules elliptiques; ensuite, nous passons aux copules archimédiennes.

5.3.1 Copules elliptiques

Dans le tableau ci-après, nous donnons les estimations des matrices de corrélation, les matrices de décomposition de Cholesky associées, ainsi que les degrés de liberté pour la copule de Student :

Tableau 5.3: Paramètres des copules elliptiques

	Paramètres		
normale	$R = \begin{bmatrix} 1 & .6678 & .4256 \\ .6678 & 1 & .4281 \\ .4256 & .4281 & 1 \end{bmatrix}; L = \begin{bmatrix} 1 & 0 & 0 \\ .6678 & .7423 & 0 \\ .4256 & .1932 & .8840 \end{bmatrix}$		
Student	$R = \begin{bmatrix} 1 & .6917 & .4283 \\ .6917 & 1 & .4472 \\ .4283 & .4472 & 1 \end{bmatrix}; L = \begin{bmatrix} 1 & 0 & 0 \\ .6917 & .7222 & 0 \\ .4283 & .2091 & .8791 \end{bmatrix}$ $\nu = 8.2995$		

Dans la figure 5.2, nous présentons des observations simulées (n = 500)à partir de ces deux copules, pour les indices : Nasdaq, Dow Jones et CAC 40, en utilisant les algorithmes de simulation présentés dans le chapitre 3.

Figure 5.2: Simulation des vecteurs $(u_1, u_2, u_3)^{\top}$ à partir des copules elliptiques

Nous remarquons que notre copule de Student génère des points un peu plus dispersés que la copule normale. Donc, nous pouvons supposer que ces copules produiront des prix différents, mais avec des écarts qui ne sont peut être pas significatifs.

5.3.2 Copules archimédiennes

Dans cette partie, nous donnons les estimations des paramètres de dépendance θ pour chacune des différentes copules archimédiennes utilisées :

Dans la figure 5.3, nous présentons des observations simulées (n = 500)à partir de ces trois copules, en utilisant les algorithmes de simulation présentés dans le chapitre 3 :

Tableau 5.4: Paramètres des copules archimédiennes

Figure 5.3: Simulation des vecteurs $(u_1, u_2, u_3)^{\top}$ à partir des copules archimédiennes

Suite aux résultats de van den Goorberg, Genest et Werker (2005), nous pouvons conjecturer que ces copules produiront des prix différents.

5.4 Les prix des options

Nous présentons ici les prix obtenus pour les différents types d'options. Ces prix sont obtenus en prenant une moyenne des valeurs à l'échéance, simulées à partir des copules utilisées, que nous actualisons ensuite au taux sans risque. Les résultats sur les prix des options sont calculés par une simulation Monte-Carlo de taille 10000 et pour différents prix d'exercice allant de 980 jusqu'à 1040. Nous avons également considéré une échéance de 1 mois, ce qui correspond à 20 jours ouvrables. Finalement, nous avons choisi un taux hors risque de 0.04.

5.4.1 Les options three-color rainbow

Afin de voir l'effet du niveau de la volatilité initiale sur les prix des options, nous avons considéré trois niveaux de volatilité initiale : moyenne, faible et forte.

- Volatilité initiale moyenne : $\sigma_{i,m}^0 = \sigma_i^0$,
- Volatilité initiale faible : $\sigma_{i,l}^0 = \frac{1}{4}\sigma_i^0$,
- Volatilité initiale forte : $\sigma_{i,h}^0 = 4\sigma_i^0$.

où σ_i^0 est la volatilité de l'indice *i* donnée par le tableau 5.2.

Nous donnons, dans les figures ci-après, les différentes courbes des prix de l'option de vente sur le minimum et de l'option d'achat sur le maximum en fonction des prix d'exercice, selon les trois niveaux de volatilité précédemment définis et pour les diverses copules que nous avons considérées¹.

 $^{^1\}mathrm{Les}$ tableaux des prix pour les quatre options sont donnés en annexe dans les tableaux B.5, B.6, B.7 et B.8.

Les figures 5.4 et 5.5 donnent les courbes des prix, respectivement, pour l'option de vente sur le minimum et pour l'option d'achat sur le maximum.

Figure 5.4: Prix de l'option de vente sur le minimum en fonction des prix d'exercice pour différentes volatilités initiales : three-color rainbow

Figure 5.5: Prix de l'option d'achat sur le maximum en fonction des prix d'exercice pour différentes volatilités initiales : three-color rainbow

L'examen de ces courbes nous révèle, d'une part, que notre modèle produit des prix qui réagissent correctement à la variation de la volatilité puisque les prix augmentent (respectivement diminuent) lorsque nous augmentons (respectivement diminuons) la volatilité initiale, et ceci pour les différents prix d'exercice et pour toutes les copules choisies.

D'autre part, nous constatons que les écarts entre les prix générés par les différentes copules varient lorsque nous changeons le niveau de volatilité initial. En effet, les écarts entre les prix calculés à partir des diverses copules sont généralement plus importants lorsque le niveau de volatilité initiale augmente et ceci pour les différents prix d'exercice.

Dans la suite de ce chapitre, nous allons considérer de plus près les écarts entre les prix des options obtenus par les différentes copules dans le cas des volatilités initiales $\sigma_i^{.0}$. Nous allons illustrer notre analyse à l'aide de courbes tracées par des interpolations linéaires des valeurs présentées dans les tableaux des $prix^2$.

Nous donnons dans les figures 5.6, 5.7, 5.8 et 5.9 les courbes des prix, respectivement, pour l'option de vente sur le maximum, l'option de vente sur le minimum, l'option d'acaht sur le maximum et l'option d'achat sur le minimum des indices Nasdaq, Dow Jones et CAC 40 pour une simulation de taille 10000.

Figure 5.6: Prix de l'option de vente sur le maximum en fonction des prix d'exercice pour une volatilité initiale moyenne : three-color-rainbow

Figure 5.7: Prix de l'option de vente sur le minimum en fonction des prix d'exercice pour une volatilité initiale moyenne : three-color-rainbow

 $^{^{2}}$ Les tableaux des prix et des écarts type sur les erreurs pour les quatre options sont donnés en annexe dans les tableaux B.1, B.2, B.3 et B.4.

Figure 5.8: Prix de l'option d'achat sur le maximum en fonction des prix d'exercice pour une volatilité initiale moyenne : three-color-rainbow

Figure 5.9: Prix de l'option d'achat sur le minimum en fonction des prix d'exercice pour une volatilité initiale moyenne : three-color-rainbow

En comparant les courbes des prix calculés à partir des différentes copules, nous constatons, et conformément à ce que nous avons observé au niveau des figures 5.2 et 5.3, plusieurs points :

 Pour toutes les catégories d'options considérées, d'une part, la copule de Clayton donne des prix qui diffèrent de manière considérable des prix donnés par les autres copules archimédiennes, à savoir les copules de Gumbel et Frank. D'autre part, la copule de Clayton produit des prix proches de ceux générés par les copules elliptiques.

- Parmi toutes les copules utilisées, les copules elliptiques à savoir les copules normale et de Student, produisent des prix très proches, dans notre contexte. Nous remarquons également que ces deux copules donnent des prix très différents de ceux donnés par les copules de Gumbel et de Frank. Plus précisément, les copules normale et de Student donnent des prix inférieurs à ceux donnés par les copules de Gumbel et de Frank pour les options de vente sur le minimum et d'achat sur le maximum. L'inverse est observé pour les options de vente sur le maximum et d'achat sur le maximum et d'achat sur le minimum et d'achat sur le maximum et d'achat sur le minimum et d'achat sur le minimum.
- Les prix générés par les copules de Gumbel et de Frank sont généralement proches. Cependant, les écarts entre ces prix sont plus ou moins grands, dépendamment de l'option évaluée.

5.4.2 Les options five-color rainbow

Dans cette partie, nous allons voir l'impact du changement du niveau de dépendance sur les courbes des prix des options obtenues à partir de différentes familles de copules. Ainsi, nous présentons, ci-après, les prix des options five-color rainbow sur les indices : TSE60, Nasdaq, Dow Jones, CAC 40 et DAX, pour plusieurs valeurs de τ allant de 0.1 à 0.95. Les prix sont obtenues par des simulations de taille 10000. Les courbes sont tracées par des interpolations linéaires des valeurs présentées dans les tableaux des prix³.

 $^{^{3}\}mathrm{Les}$ tableaux des prix pour les quatre options sont donnés en annexe dans les tableaux B.9, B.10, B.11 et B.12

Figure 5.10: Prix de l'option d'achat sur le maximum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow

Figure 5.11: Prix de l'option d'achat sur le minimum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow

Figure 5.12: Prix de l'option de vente sur le maximum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow

Figure 5.13: Prix de l'option de vente sur le minimum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow

Lorsque nous examinons les courbes des prix de nos options, nous constatons :

– D'une part, lorsque le niveau de dépendance, caractérisé par τ , est voisin de 0 (respectivement de 1), nous pouvons voir que toutes les copules donnent plus ou moins les mêmes prix. Excepté pour la copule de Student, ceci est dû au fait que nous nous approchons de l'indépendance (respectivement de la dépendance parfaite). Également, au fur et à mesure que nous nous éloignons de 0 (respectivement de 1) les écarts entre les prix deviennent de plus en plus importants.

D'autre part, pour les valeurs de τ considérées, les copules elliptiques donnent toujours des prix très proches. Ceci est peut être dû au nombre de degrés de liberté choisi. Pour les copules archimédiennes, nous remarquons que, pour une option donnée, lorsque nous faisons varier le niveau de dépendance l'ordre des courbes des prix, produites à partir des différentes copules, reste généralement inchangé, alors que les écarts entre ces courbes changent. De plus, la copule de Gumbel donne toujours des prix proches des copules elliptiques, mais pour les copules Frank et Clayton nous observons des comportements qui diffèrent selon l'option évaluée.

Pour une meilleure visualisation des courbes des prix, nous donnons, ci -après :

- Pour les copules elliptiques, les prix obtenus à partir de la copule normale.
- Pour les copules archimédiennes, les deux copules produisant le maximum et le minimum des prix.

Figure 5.14: Prix de l'option d'achat sur le maximum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow

Figure 5.15: Prix de l'option d'achat sur le minimum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow

Figure 5.16: Prix de l'option de vente sur le maximum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow

Figure 5.17: Prix de l'option de vente sur le minimum en fonction des prix d'exercice pour une volatilité initiale moyenne et pour différentes valeurs du tau de Kendall : five-color rainbow

Nous pouvons constater que les copules donnant les prix maximums et les prix minimums diffèrent surtout selon le type d'option évaluée et non pas selon le niveau de dépendance τ . Ainsi, pour les options d'achat, les extremums des prix sont donnés par les familles de Clayton et de Gumbel, alors que, pour les options de vente, ils sont données par les familles de Clayton et de Frank.

De plus, la famille de Gumbel donne des prix très proches de ceux produits par la famille normale, contrairement aux autres familles. Nous pouvons en déduire que lorsque la dépendance entre les sous-jacents est non normale, il convient dans ce cas, de choisir des copules archimédiennes autre que la copule de Gumbel.

Chapitre 6

Conclusion

Nous avons présenté, dans ce mémoire, une étude sur la relation entre les prix des options sur plusieurs titres et la structure de dépendance entre les sous-jacents. Notre modèle d'évaluation est basé sur le modèle GARCH de Duan, ce qui nous permet de considérer une volatilité variable dans le temps. Il fait également appel à la notion de copule, puisque la structure de dépendance est caractérisée par diverses copules.

Plus précisément, cette étude porte sur l'évaluation des options européennes de type *rainbow* écrites sur trois et cinq indices boursiers, et considère plusieurs familles de copules à savoir les copules elliptiques et les copules archimédiennes.

La comparaison des prix obtenus à partir de notre modèle nous révèle d'une part des différences considérables entre les prix calculés à partir des copules elliptiques et ceux calculés à partir des copules archimédiennes. De plus, ces différences sont encore plus importantes en périodes de haute volatilité. D'autre part, lorsque nous faisons varier le niveau de dépendance l'ordre des courbes des prix, produites à partir des différentes familles de copules, reste généralement inchangé, alors que les écarts entre ces courbes changent.

La précision de nos résultats sur les prix semble satisfaisante. mais peut encore être améliorée en utilisant une technique de réduction de variance. De plus, les résultats sont observés seulement pour cinq familles de copules : normale, Student, Clayton, Gumbel et Frank. Il serait donc intéressant d'explorer d'autres types de copules et de voir le comportement des prix obtenus, et d'essayer de dégager des caractéristiques.

Finalement, dans ce mémoire, nous considérons une structure de dépendance constante. Celui-ci peut être enrichi par une étude dans le contexte d'une structure de dépendance qui varie dans le temps.

Bibliographie

- ABDOUS, B., C. GENEST, ET B. RÉMILLARD (2005). «Dependence properties of meta-elliptical distributions», dans *Statistical Modeling* and Analysis for Complex Data Problem, P. Duchesne and B. Rémillard eds., Springer New York Academic, 1-15.
- [2] AIT SAHALIA, Y. ET A.W. LO (1998). «Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices», Journal of Finance, 53, 499–547.
- [3] BLACK, F. ET M. SCHOLES (1973). «The Pricing of Options and Corporate Liabilities», Journal of Political Economy, 81, 637–654.
- [4] BOLLERSLEV, T. (1986). «Generalized Autoregressive Conditional Heteroskedasticity», Journal of Econometrics, 31, 307–327.
- [5] BREEDEN, D.T. ET LITZENBERGER, R.H (1978). «Prices of statecontingent claims implicit in option prices», Journal of Business, 51, 621–651.
- [6] BOYLE, P. P. (1988). «A Lattice Framework for Option Pricing with Two State Variables», Journal of Financial and Quantitative Analysis, 23, 1–12.
- [7] BOYLE, P. P., J. EVNINE ET S. GIBBS (1989). «Numerical Evaluation of Multivariate Contingent Claims», *Review of Financial Studies*,

2, 241-250.

- [8] CHERUBINI, U.ET E. LUCIANO (2002). «Bivariate option pricing with copulas», *Taylor and Francis Journals*, 9(2), 69–85.
- [9] CHERUBINI, U., E. LUCIANO ET W. VECCHIATO (2004). Copula Methods in Finance, John Wiley & Sons.
- [10] COX, J, S. ROSS ET M. RUBINSTEIN (1979). «Option pricing : a simplified approach», Journal of Financial Economics, 7, 229–263.
- [11] DUAN, J.-C. (1995). «The garch option pricing model», Mathematical finance, 5(1), 13–32.
- [12] DUPIRE, B. (1994). «Pricing with a Smile », *Risk*, 7, 32–38.
- [13] EMBRECHTS, P., A. MCNEIL ET D. STRAUMANN (1999). «Correlation : Pitfalls and Alternatives», *RISK Magazine*, 69–71.
- [14] FREES, E.W. ET E. A. VALDEZ (1998). «Understanding relationship using copulas», N. Amer. Actuarial J., 2, 1–25.
- [15] GENEST, C., K. GHOUDI ET L.-P. RIVEST (1995). «A semiparametric estimation procedure of dependence parameters in multivariate families of distributions», *Biometrika*, 82, 543–552.
- [16] GENEST, C. ET R. J. MACKAY (1986). «The joy of copulas : Bivariate distributions with uniform marginals», American Statistician, 40, 280– 283.
- [17] GLOSTEN, L., R. JAGANNATHAN ET D. RUNKLE (1993). «Relationship between the Expected Value and the volatility of the Nominal Excess Return on Stocks», *Journal of finance*, 48, 1779–1801.
- [18] VAN DEN GOORBERGH, R. W. J., C. GENEST ET B. J. M. WERKER, (2005). «Bivariate Option Pricing Using Dynamic Copula Models», *In*surance : Mathematics and Economics, 37, 101–114.

- [19] HAMILTON, D., J. JAMES ET N. WEBBER, (2002). «Copula Methods and the Analysis of Credit Risk», Submitted paper.
- [20] HE, C. ET T. TERASVIRTA, T. (1999). «Properties of moments of a family of GARCH processes», *Journal of Econometrics*, 92, 173–192.
- [21] JOHNSON, H. (1987). «Options on the Maximum or Minimum of Several Assets», Journal of Financial and Quantitative Analysis, 22, 277–283.
- [22] KLAASSEN, C. A. J. ET J. A. WELLNER (1997). «Efficient estimation in the bivariate normal copula model : normal margins are least favourable», *Bernoulli*, 3, 55–77.
- [23] LI, D. X. (1999). «The valuation of basket credit derivatives», Credit Metrics Monitor, 2, 34–50.
- [24] LI, D. X. (2000). «On default correlation : a copula function approach», Journal of Fixed Income, 9, 43–54.
- [25] LING, S. ET M. MCALEER (2002). «Stationarity and the existence of moments of a family of GARCH processes», *Journal of Econometrics*, 106(1), 109–117.
- [26] LONGSTAFF, F. A. (1995). «Option Pricing and the Martingale Restriction», *Review of Financial Studies*, 8, 1091–1124.
- [27] MARGRABE, W. (1978). «The Value of an Option to Exchange One Asset to Another», Journal of Finance, 33, 177–186.
- [28] MARSHALL, A. W. ET I. OLKIN (1988). «Families of multivariate distributions», J. Amer. Statist. Assoc., 83, 30–44.
- [29] MASHAL, R. ET A. ZEEVI (2002). «Beyond Correlation : Extreme Comovements between Financial Assets», Columbia Business School, working paper.
- [30] REINER, E. (1992). «Quanto Mechanics», In From Black-Scholes to Black-Holes : New Frontiers in Options, RISK Books, 147–154.

- [31] ROSENBERG, J. (1998). «Pricing Multivariate Contingents claims Using Estimated Risk-Neutral Density Functions», Journal of International Money and Finance, 17, 229–247.
- [32] ROSENBERG, J. (1999). «Semiparametric Pricing of Multivariate Contingent Claims», Stern School of Business, Working Paper, S-99-35.
- [33] ROSENBERG, J. (2003). «Nonparametric Pricing of Multivariate Contingent Claims», Journal of derivatives, 10(3), 9–26.
- [34] RUBINSTEIN, M. (1992). «One for Another», In From Black-Scholes to Black-Holes : New Frontiers in Option Pricing, Risk Magazine/FINEX, 147–154.
- [35] RUBINSTEIN, M. (1994a). «Implied Binomial Trees», Journal of Finance, 49, 771–818.
- [36] RUBINSTEIN, M. (1994b). «Return to Oz», *Risk*, 7, 67–71.
- [37] SAMORODNITSKY, G. ET M.S. TAQQU (1995). Stable Non-Gaussian Random Processes, Stochastic Models with Infinite Variance, Chapman & Hall, New York and London.
- [38] SCHWEIZER, B. ET E. WOLFF (1976) «Sur une mesure de dépendance pour les variables aléatoires», C.R. Acad. Sci. Paris, 283, 659–661.
- [39] SCHWEIZER, B. ET E. WOLFF (1981). «On non-parametric measures of dependance for random variables», Ann. Statist., 9, 879–885.
- [40] SHIMKO, D. C. (1993). «Bounds of Probability», Risk, 6, 33–37.
- [41] SHIMKO, D. C. (1994). «Options on Futures Spreads-Hedging, Speculation, and Valuation», *Journal of Futures Markets*, 14, 183–213.
- [42] SKLAR, A. (1959). «Fonctions de répartition à n dimensions et leurs marges», Publ. Inst. Univ. Paris, 8, 229–231.

- [43] STAPLETON, R. C. ET M. G. SUBRAHMANYAM (1984a). «The Valuation of Multivariate Contingent Claims in Discrete Time Models», *Journal of Finance*, 39, 207–228.
- [44] STAPLETON, R. C. ET M. G. SUBRAHMANYAM (1984b). «The Valuation of Options when Asset Returns are Generated by a Binomial Process», *Journal of Finance*, 39, 1525–1539.
- [45] STULZ, R. M. (1982). «Options on the Minimum or the Maximum of Two Risky Assets : Analysis and Applications», Journal of Financial Economics, 10, 161–185.

Annexe A

Mesures martingales équivalentes

Un processus markovien conditionnellement gaussien s'écrit sous la forme suivante, sous la mesure objective P

$$X_t | \mathcal{F}_{t-1} \sim N(\mu_t, h_t), \ \mu_t, h_t; \mathcal{F}_{t-1} - \text{mesurables}, \ t \ge 1.$$
 (A.1)

Soit (a_t) un processus prévisible, i.e. a_t est \mathcal{F}_{t-1} -mesurable pour $t \ge 1$. Alors, si on pose $Z_t = \exp \left\{ a_t (X_t - \mu_t) - \frac{1}{2} a_t^2 h_t \right\}, t \ge 1$, on a que

$$M_t = Z_1 \cdots Z_t$$

est une ($\mathbb{F},P)\text{-martingale positive. On peut donc définir une mesure équivalente } Q$ par

$$\left. \frac{dQ}{dP} \right|_{\mathcal{F}_t} = M_t, \quad t \ge 1.$$

Rappelons que pour toute variable $Y \mathcal{F}_t$ -mesurable, on a

$$E^{Q}(Y|\mathcal{F}_{t-1}) = \frac{E^{P}(YM_{t}|\mathcal{F}_{t-1})}{E^{P}(M_{t}|\mathcal{F}_{t-1})} = E^{P}(YZ_{t}|\mathcal{F}_{t-1}), \quad t \ge 1.$$
(A.2)

Par conséquent, pour tout $\lambda \in \mathbb{R}$,

$$E^{Q} \{ \exp(\lambda X_{t}) | \mathcal{F}_{t-1} \} = E^{P} \{ \exp(\lambda X_{t}) Z_{t} | \mathcal{F}_{t-1} \}$$

$$= E^{P} \left[\exp \left\{ \lambda X_{t} + a_{t} (X_{t} - \mu_{t}) - \frac{1}{2} a_{t}^{2} h_{t} \right\} \Big| \mathcal{F}_{t-1} \right]$$

$$= \exp \left(\lambda \mu_{t} - \frac{1}{2} a_{t}^{2} h_{t} \right) E^{P} \left[\exp \{ (\lambda + a_{t}) (X_{t} - \mu_{t}) \} | \mathcal{F}_{t-1} \right]$$

$$= \exp \left\{ \lambda \mu_{t} - \frac{1}{2} a_{t}^{2} h_{t} + \frac{1}{2} (\lambda + a_{t})^{2} h_{t} \right\}$$

$$= \exp \left\{ \lambda (\mu_{t} + a_{t} h_{t}) + \frac{1}{2} \lambda^{2} h_{t} \right\}.$$

Donc, pour tout $\lambda \in \mathbb{R}$,

$$E^{Q}\left\{\exp(\lambda X_{t})|\mathcal{F}_{t-1}\right\} = \exp\left\{\lambda(\mu_{t} + a_{t}h_{t}) + \frac{1}{2}\lambda^{2}h_{t}\right\}, \quad t \ge 1.$$
(A.3)

On en déduit donc de (A.3) que sous Q, la loi conditionnelle de X_t , étant donné \mathcal{F}_{t-1} , est une gaussienne d'espérance $\mu_t + a_t h_t$ et de variance h_t , $t \ge 1$.

Soit (r_t) un processus de taux d'intérêt prévisible. Posons

$$S_t = S_0 \exp\left(X_1 + \dots + X_t\right), \quad t \ge 1.$$

Le processus de prix actualisé $e^{-r_t}S_t$ est une (\mathbb{F}, Q) -martingale si et

seulement si

$$e^{-r_{t-1}}S_{t-1} = E^{Q} \left(e^{-r_{t}}S_{t} \middle| \mathcal{F}_{t-1} \right)$$

= $e^{-r_{t}}S_{t-1}E^{Q} \left(e^{X_{t}} \middle| \mathcal{F}_{t-1} \right)$
= $e^{-r_{t}}S_{t-1} \exp \left(\mu_{t} + a_{t}h_{t} + \frac{1}{2}h_{t} \right),$

d'après (A.3). On doit donc avoir

$$a_t = \frac{r_t - r_{t-1} - \frac{1}{2}h_t}{h_t}, \quad t \ge 1,$$

qui est bien un processus prévisible.

Finalement, dans ce dernier cas, on a $\mu_t + a_t h_t = r_t - r_{t-1} - \frac{1}{2}h_t$, et on en déduit que sous Q, la loi conditionnelle de X_t , étant donné \mathcal{F}_{t-1} , est une gaussienne d'espérance $r_t - r_{t-1} - \frac{1}{2}h_t$ et de variance h_t , $t \ge 1$.

Par exemple, pour un modèle GJR-GARCH(1,1), on a $\mu_t=\mu,$ et

$$h_t = \omega + \alpha (\mu - X_t)^2 + \beta h_{t-1} + \gamma \{ \max(0, \mu - X_{t-1}) \}^2, \quad t \ge 1.$$

Si en plus $r_t = tr_f$, alors sous Q, la loi conditionnelle de X_t , étant donné \mathcal{F}_{t-1} , est une gaussienne d'espérance $r_f - \frac{1}{2}h_t$ et de variance h_t , $t \ge 1$.

Annexe B

Conditions d'existence des moments

He et Terasvirta (1999) ont défini la classe générale suivante du processus GARCH(1,1)

$$\varepsilon_t = z_t h_t, \quad h_t^{\delta} = g(z_{t-1}) + c(z_{t-1}) h_{t-1}^{\delta},$$
 (B.1)

où $(z_t)_{t\geq 0}$ est une suite de variables aléatoires indépendantes et identiquement distribuées de moyenne zéro et de variance 1, $\Pr\{h_t > 0\} = 1, \delta > 0$, et g(x), c(x) sont des fonctions non négatives.

D'après He et Terasvirta (1999), la condition nécessaire et suffisante pour l'existence du m^{ieme} moment inconditionnel de h_t^{δ} , tel que défini par (B.1), est

$$E[\{c(z_t)\}^m] < 1,$$
 (B.2)

où m est un entier positif et $\delta = 1$ ou 2.

Par exemple, d'après Ling et McAleer (2002), pour un modèle GJR-GARCH (1,1), on a $\delta = 1$, $g(z) \equiv \omega$ et $c(z) = \beta + (\alpha + \gamma I(z)) z^2$, avec I(z) = 1 si z < 0 et I(z) = 0 sinon.

(i) Pour ce modèle, $E[c(z_t)] = \beta + \alpha + \gamma b$, où $b = E[I(z_t) z_t^2]$. Si z_t a une loi symétrique par rapport à zéro, alors par calcul direct $b = \frac{1}{2}$. Dans ce cas, la condition du deuxième moment est donnée par

$$\beta + \alpha + \frac{1}{2}\gamma < 1.$$

(ii) De plus, si $z_t \sim N(0, 1)$, alors la condition du quatrième moment est donnée par

$$\beta^2 + 2\beta\alpha + 3\alpha^2 + \beta\gamma + \frac{3}{2}\gamma^2 < 1.$$

Annexe C

Tableaux des résultats des simulations

C.1 Three-color rainbow

	Prix			-				•		
х	Normale	Ecart type	$\mathbf{Student}$	Ecart type	Clayton	Ecart type	Gumbel	Ecart type	Frank	Ecart type
980	1,0023	0,0533	1,1694	0,0562	1,6949	0,0761	0,2928	0,0233	0,2023	0,0193
066	1,9923	0,0725	2,1403	0,0739	2,8909	0,0972	0,7973	0,0387	0,6178	0,0352
1000	3,9249	0,1018	3,7817	0,1011	5,2523	0,1285	1,7331	0,0591	1,5288	0,0551
1010	6,3495	0,1284	6,5052	0,1330	7,8795	0,1574	3,5727	0,0877	2,9921	0,0787
1020	10,3673	0,1668	10,5844	0,1674	11,9022	0,1925	6,5699	0,1199	5,9218	0,1133
1030	15,4516	0,1953	15,9437	0,1982	16,95	0,2184	11,3798	0,1544	10,189	0,1469
1040	22,6074	0,2296	22,7499	0,2318	24,1368	0,2537	17,4222	0,1877	16, 3269	0,1795

Tableau C.1: Prix et écarts type des erreurs de l'option de vente sur le maximum en fonction des prix d'exercice

Tableau C.2: Prix et écarts type des erreurs de l'option de vente sur le minimum en fonction des prix d'exercice

	Prix	et écarts typ.	e des erreu	rs de l'option	de vente s	ur le minimu	m en fonct.	ion des prix d	l'exercice	
К	Normale	Ecart type	Student	Ecart type	Clayton	Ecart type	Gumbel	Ecart type	Frank	Ecart type
980	12,2909	0,2051	12,6145	0,2127	11,077	0,1971	14,4162	0,2110	14,8803	0,2193
066	17,3507	0,239	17,4777	0,2386	15,8298	0,2331	21,1752	0,2516	20,9605	0,2454
1000	24,8011	0,2738	23,9028	0,2641	22,8674	0,2656	27,5409	0,2705	29,508	0,2762
1010	31,4585	0,2912	31,2087	0,2936	29,4326	0,2858	36,2523	0,2915	37,2061	0,2847
1020	39,841	0,3114	39,5328	0,3120	37,6787	0,3057	45,7055	0,3031	46,1755	0,2950
1030	48,6391	0,3174	49,1436	0,3223	46,3751	0,3120	55,1301	0,3095	55,7138	0,3017
1040	58,8606	0,3305	58,8709	0.3286	56,695	0,3244	64,4479	0,3071	65,9894	0,3036

	•									
К	Normale	Ecart type	Student	Ecart type	Clayton	Ecart type	Gumbel	Ecart type	\mathbf{Frank}	Ecart type
980	43,8526	0,2797	43,7508	0,2862	43,1997	0,2901	48,9071	0,2630	50,1169	0,2583
066	34,8686	0,2636	34,5489	0,2671	34,518	0,2717	39,1875	0,2588	40,5886	0,2492
1000	26,2378	0,249	26,3424	0,2478	26,0393	0,2544	30,4909	0,2441	31,0549	0,2420
1010	19,3338	0,2224	19,4676	0,2248	19,3392	0,2269	22,0777	0,2239	23,0736	0,2216
1020	13,579	0,191	13,7035	0,1961	13,6724	0,1946	15,3016	0,1943	16,2267	0,1959
1030	8,7888	0,1588	8,6324	0,1618	8,9277	0,1602	9,8551	0,1616	10,3688	0,1613
1040	5,3362	0,1265	5,3108	0,1248	5,5787	0,1291	6,0486	0,1297	6,2634	0,1324

•	exercice
÷	ਹੇ
•	prix e
-	des
•	nction
د	2
	um en 1
•	maxim
-	ΓE
	sur
_	nat
5	ਹੁ
•	σ,
	d
	on
-	pti
-	l'opti
-	e l'opti
	de l'opti
	erreurs de l'opti
	des erreurs de l'opti
	type des erreurs de l'opti-
	ecarts type des erreurs de l'opti-
	t ecarts type des erreurs de l'opti-
	et ecarts type des erreurs de l'opti-
	rix et ecarts type des erreurs de l'opti-
	Prix et ecarts type des erreurs de l'opti-
	.3: Prix et ecarts type des erreurs de l'opti-
	C.3: Prix et ecarts type des erreurs de l'opti-
	lableau C.3: Prix et ecarts type des erreurs de l'opti-

Tableau C.4: Prix et écarts type des erreurs de l'option d'achat sur le minimum en fonction des prix d'exercice

	Prix	et écarts typ	e des erreu	urs de l'option	d'achat su	ır le minimun	n en fonctic	on des prix d'	exercice	
К	Normale	Ecart type	Student	Ecart type	Clayton	Ecart type	Gumbel	Ecart type	Frank	Ecart type
980	13,7132	0,1806	14,1128	0,1861	14,7288	0,1819	9,6691	0,1482	8,8627	0,1359
066	8,5731	0,1428	8,6773	0,1451	9,3538	0,1454	5,8371	0,1163	4,7775	0,0973
1000	5,0988	0,1114	5,3578	0,1129	5,4637	0,1113	3,2241	0,0843	2,3634	0,0674
1010	2,7504	0,0789	3,0074	0,0826	2,9703	0,0802	1,542	0,0564	1,0565	0,0433
1020	1,4663	0,0551	1,5589	0,0582	1,4907	0,0530	0,5823	0,0335	0,3872	0,0239
1030	0,661	0,0354	0,6906	0,0385	0,6651	0,0353	0,2292	0,0187	0,1366	0,0134
1040	0,2713	0,0221	0,2456	0,0213	0,2482	0,0210	0,1	0,0133	0,0324	0,0065

	K	faible	moyenne	forte
	980	0.0513	1.0023	3.5018
	990	0.3606	1.9923	5.0186
	1000	1.5697	3.9249	7.5289
Normale	1010	4.5928	6.3495	9.6143
	1020	10.4677	10.3673	12.9834
	1030	18.5855	15.4516	16.6746
	1040	28.3347	22.6074	22.1809
	980	0.0798	1.1694	3.6849
	990	0.4496	2.1403	5.6715
	1000	1.5751	3.7817	7.5691
Student	1010	4.6842	6.5052	9.8096
	1020	10.6259	10.5844	13.2059
	1030	18.8904	15.9437	17.0839
	1040	28.3704	22.7499	22.0794
	980	0.1451	1.6949	5.1037
	990	0.6486	2.8909	7.4178
	1000	1.9093	5.2523	9.3125
Clayton	1010	5.1464	7.8795	11.8107
	1020	11.5281	11.9022	16.0923
	1030	19.6255	16.9500	20.0030
	1040	28.9843	24.1368	24.6016
Gumbel	980	0.0087	0.2928	1.3894
	990	0.0792	0.7973	2.1962
	1000	0.6179	1.7331	3.2490
	1010	3.0691	3.5727	5.4573
	1020	8.1896	6.5699	7.5467
	1030	16.2687	11.3798	10.9886
	1040	25.6767	17.4222	14.5565
	980	0.0040	0.2023	1.0846
	990	0.0689	0.6178	1.7861
	1000	0.5085	1.5288	2.7929
Frank	1010	2.6629	2.9921	4.4964
	1020	7.5425	5.9218	6.2231
	1030	15.5724	10.1890	9.2546
	1040	25.0036	16.3269	13.3084

Tableau C.5: Prix de l'option de vente sur maximum en fonction des prix d'exercice pour différentes volatilités initiales

	K	faible	moyenne	forte
	980	1.9239	12,2909	31.4223
	990	4.8698	17,3507	37.4941
	1000	10.6762	24,8011	46.1933
Normale	1010	18.2749	31,4585	51.9941
	1020	27.5098	39,841	59.8609
	1030	37.2665	48,6391	67.7439
	1040	47.4451	58,8606	77.8204
	980	1.9932	12,6145	31.6522
	990	5.0946	17,4777	38.1360
	1000	10.3367	23,9028	44.3967
Student	1010	18.2087	31,2087	52.1628
	1020	27.7446	39,5328	60.6330
	1030	37.4550	49,1436	68.4369
	1040	47.4699	58,8709	77.4746
	980	1.7057	11,077	28.4895
	990	4.5765	15,8298	34.9951
Clayton	1000	9.4104	22,8674	41.0585
	1010	17.2108	29,4326	48.4501
	1020	26.9027	37,6787	57.1664
	1030	36.6718	46,3751	65.6087
	1040	46.5849	56,695	74.1563
	980	2.4309	14,4162	37.7554
	990	5.6681	21,1752	43.3772
	1000	11.7746	27,5409	51.5178
Gumbel	1010	20.6594	36,2523	60.2488
	1020	30.1214	45,7055	68.3678
	1030	40.1491	55,1301	77.8694
	1040	50.2599	64,4479	87.5009
	980	2.2826	14,8803	37.2307
	990	5.8742	20,9605	44.8297
	1000	12.1929	29,508	52.6100
Frank	1010	21.1818	37,2061	61.4200
	1020	30.8498	46,1755	70.3579
	1030	40.7868	55,7138	79.0218
	1040	50.6405	65,9894	88.7951

Tableau C.6: Prix de l'option de vente sur le minimum en fonction des prix d'exercice pour différentes volatilités initiales

	K	faible	moyenne	forte
	980	14.4332	13.7132	15.7697
	990	7.2564	8.5731	11.5089
	1000	2.6683	5.0988	8.5213
Normale	1010	0.6494	2.7504	6.1326
	1020	0.1028	1.4663	4.5309
	1030	0.0076	0.6610	3.0879
	1040	0.0024	0.2713	2.0296
	980	14.5004	14.1128	15.9686
	990	7.4070	8.6773	11.9946
	1000	2.8097	5.3578	8.8985
Student	1010	0.7214	3.0074	6.2170
	1020	0.1090	1.5589	4.4165
	1030	0.0093	0.6906	3.1274
	1040	0.0009	0.2456	2.0536
	980	15.2050	14.7288	16.6916
	990	7.8537	9.3538	12.5221
Clayton	1000	2.9061	5.4637	8.9710
	1010	0.7049	2.9703	6.6008
	1020	0.0706	1.4907	3.9572
	1030	0.0081	0.6651	3.0856
	1040	0.0001	0.2482	1.9353
	980	12.0570	9.6691	10.6585
	990	5.5548	5.8371	7.4186
	1000	1.6639	3.2241	5.0470
Gumbel	1010	0.3230	1.5420	3.2232
	1020	0.0328	0.5823	2.2791
	1030	0.0018	0.2292	1.4199
	1040	0.0000	0.1000	0.8961
	980	11.4358	8.8627	8.6452
	990	4.8513	4.7775	5.7550
	1000	1.3907	2.3634	4.0830
Frank	1010	0.1912	1.0565	2.4862
	1020	0.0072	0.3872	1.4907
	1030	0.0001	0.1366	0.8613
	1040	0.0000	0.0324	0.4930

Tableau C.7: Prix de l'option d'achat sur le minimum en fonction des prix d'exercice pour différentes volatilités initiales

	K	faible	moyenne	forte
	980	31.9438	43.8526	63.6706
	990	22.3223	34.8686	55.1823
	1000	13.1574	26.2378	46.7773
Normale	1010	6.4564	19.3338	40.0667
	1020	2.5115	13.5790	33.8467
	1030	0.6582	8.7888	27.7678
	1040	0.1593	5.3362	22.0945
	980	31.6830	43.7508	63.4538
	990	22.0724	34.5489	55.1906
	1000	13.1561	26.3424	47.0328
Student	1010	6.5352	19.4676	40.0620
	1020	2.4624	13.7035	33.6508
	1030	0.6548	8.6324	27.4062
	1040	0.1548	5.3108	21.9424
	980	31.3169	43.1997	62.4235
	990	21.6677	34.5180	54.7083
Clayton	1000	13.1152	26.0393	46.7513
	1010	6.3196	19.3392	40.0435
	1020	2.3061	13.6724	32.1247
	1030	0.7070	8.9277	27.6588
	1040	0.1578	5.5787	22.0412
	980	34.3184	48.9071	71.5889
	990	24.5701	39.1875	62.7339
	1000	15.0560	30.4909	54.2029
Gumbel	1010	7.2005	22.0777	44.7491
	1020	2.7724	15.3016	38.7257
	1030	0.7405	9.8551	31.2405
	1040	0.1471	6.0486	25.1891
	980	34.9121	50.1169	73.8078
	990	25.1123	40.5886	64.4505
	1000	15.7327	31.0549	56.4967
Frank	1010	7.5686	23.0736	47.4369
	1020	2.8649	16.2267	40.1022
	1030	0.7147	10.3688	32.8165
	1040	0.1529	6.2634	26.3325

Tableau C.8: Prix de l'option d'achat sur le maximum en fonction des prix d'exercice pour différentes volatilités initiales

C.2 Five-color rainbow

		$\tau =$:0,1		
K	Normale	Student	Clayton	Gumbel	Frank
980	0,0646	0,0358	0,0608	0,0271	0,0211
990	0,1716	0,1634	0,1694	0,1286	0,1196
1000	0,4469	0,4886	0,5286	0,4291	0,4256
1010	1,2517	1,2319	1,3399	$1,\!0857$	1,1309
1020	2,937	2,8232	2,7781	2,6662	2,6143
1030	$5,\!6705$	5,6497	5,5296	5,7579	5,2149
1040	10,2015	10,2138	9,9469	10,0649	9,7232

Tableau C.9: Prix de l'option de vente sur le maximum en fonction des prix d'exercice pour différentes valeurs de τ

		$\tau =$	0,25		
K	Normale	Student	Clayton	Gumbel	Frank
980	0,2833	0,2217	0,3262	0,1836	0,17
990	0,6011	0,6158	0,7977	0,4654	0,4134
1000	1,3448	1,3777	1,5636	1,1519	1,1281
1010	2,7617	2,7695	2,9326	2,5545	2,3759
1020	5,3366	5,215	5,083	4,9121	4,6692
1030	8,9097	8,8313	8,8268	8,8345	8,2021
1040	14,2048	14,1188	13,7797	13,9364	12,9575

		τ =	=0,5		
K	Normale	Student	Clayton	Gumbel	Frank
980	1,2128	1,2034	1,4062	0,8404	0,7954
990	2,1683	2,2001	2,5677	1,7994	1,5534
1000	3,9824	3,9817	4,2077	3,4339	2,8638
1010	6,3712	6,502	6,4657	6,0266	5,0516
1020	10,4532	10,3407	9,8825	9,6458	8,772
1030	15,2265	15,1743	14,732	14,536	13,4375
1040	21,7194	21,5238	20,9028	20,9197	19,0683

	au=0,75									
K	Normale	Student	Clayton	Gumbel	Frank					
980	3,0309	3,1099	3,1262	2,555	2,1574					
990	4,8379	4,8817	4,8381	4,3952	3,8534					
1000	7,8952	7,8533	7,5558	7,2221	6,3321					
1010	11,4157	11,5945	10,9002	10,6371	9,6288					
1020	16,7431	16,7589	15,9335	16,0109	14,3555					
1030	22,7713	22,7468	21,213	21,8669	20,713					
1040	30,2302	30,0162	28,9084	29,4708	27,5421					

au = 0,95									
Κ	Normale	Student	Clayton	Gumbel	Frank				
980	4,767	4,9236	4,6697	4,8579	4,3821				
990	7,3239	7,3582	7,449	7,2812	6,6226				
1000	11,3476	11,3114	10,9012	10,9028	10,3622				
1010	15,8298	16,0552	$15,\!6435$	15,4242	15,0036				
1020	22,0279	22,2415	21,1509	21,6682	20,5322				
1030	28,9941	29,0535	27,9172	29,0688	27,9281				
1040	37,0449	36,8132	$35,\!8986$	37,2937	$35,\!3707$				

	au = 0, 1								
K	Normale	Student	Clayton	Gumbel	Frank				
980	21,3316	21,4716	21,5939	21,8493	22,426				
990	29,2425	28,96	29,3509	29,646	29,4732				
1000	37,8431	$37,\!9532$	37,4396	38,2274	38,4673				
1010	46,8849	47,447	47,2853	46,9005	47,4132				
1020	$57,\!3382$	57,5721	56,251	56,9678	57,6414				
1030	67,0149	$66,\!6767$	66,3128	66,8423	66,4854				
1040	$76,\!9568$	76,8002	76,9423	76,5887	76,8749				

Tableau C.10: Prix de l'option de vente sur le minimum en fonction des prix d'exercice pour différentes valeurs de τ

au=0,25								
K	Normale	Student	Clayton	Gumbel	Frank			
980	18,6392	18,9272	17,9852	19,4985	19,0962			
990	25,7146	$25,\!3358$	25,0191	26,1342	25,7261			
1000	33,6046	33,7546	32,2835	33,6291	34,142			
1010	41,8928	42,555	41,0359	42,4064	43,1705			
1020	51,9881	52,197	50,2211	51,7707	52,3871			
1030	61,5024	61,1909	60,318	61,4282	61,3892			
1040	71,3709	71,16	70,5145	71,2176	71,524			

au = 0,5								
Κ	Normale	Student	Clayton	Gumbel	Frank			
980	14,1281	$14,\!5506$	13,2308	14,8169	16,1561			
990	19,8409	19,492	18,8806	20,4843	21,7699			
1000	26,5021	26,6192	25,377	26,7449	28,2167			
1010	33,6136	34,2332	32,8624	34,7218	36,074			
1020	42,7137	42,8808	41,3951	42,902	45,2622			
1030	51,7396	51,5442	51,0891	51,8318	54,161			
1040	61,2942	61,0319	60,9203	61,2517	63,6211			

	au=0,75								
K	Normale	Student	Clayton	Gumbel	Frank				
980	10,0075	$10,\!3536$	9,6575	10,4888	11,3332				
990	14,2	14,0996	13,8876	15,0617	15,8275				
1000	19,7901	19,8165	19,7161	20,4808	21,7485				
1010	25,7197	26,1819	26,2183	26,2198	27,5587				
1020	$33,\!5755$	33,7663	34,244	34,0244	35,5031				
1030	41,8362	41,7846	42,152	41,9402	44,481				
1040	50,9054	50,6327	52,6885	51,2276	53,5559				

au=0,95									
Κ	Normale	Student	Clayton	Gumbel	Frank				
980	7,3746	7,6561	7,5133	7,799	8,2217				
990	10,5633	$10,\!5751$	$11,\!2057$	10,7415	$11,\!2776$				
1000	15,2984	$15,\!2528$	15,5256	14,9443	16,0309				
1010	20,3125	20,5944	21,38	20,1336	21,5242				
1020	27,1153	$27,\!369$	27,906	27,021	27,8659				
1030	$34,\!6955$	34,7576	35,8611	35,0683	36,3716				
1040	43,3342	43,0972	44,8001	43,8881	44,655				

au=0,1								
K	Normale	Student	Clayton	Gumbel	Frank			
980	59,6191	59,3699	59,8766	59,2971	60,0148			
990	49,8899	49,742	49,9058	49,4634	50,6198			
1000	40,0776	39,9721	40,7479	$39{,}5302$	40,4915			
1010	30,9201	30,4091	31,1691	31,0676	31,1492			
1020	22,3299	22,8425	23,1814	22,5186	22,5859			
1030	15,4596	15,3874	15,7588	14,8712	15,8797			
1040	10,0267	9,7705	10,1182	9,9098	9,9625			

Tableau C.11: Prix de l'option d'achat sur le maximum en fonction des prix d'exercice pour différentes valeurs de τ

	au=0,25								
K	Normale	Student	Clayton	Gumbel	Frank				
980	54,799	54,2828	$55,\!6059$	54,2181	56,5403				
990	45,1755	45,1288	45,9606	44,2962	46,3766				
1000	35,7883	35,5874	36,8423	35,3898	36,6619				
1010	27,4039	26,792	28,3593	27,0301	27,7461				
1020	19,5316	19,9696	20,7299	19,3709	20,5187				
1030	13,596	13,4496	14,0985	12,8392	14,055				
1040	8,8684	8,6345	9,095	8,1159	8,9811				

au=0,5								
K	Normale	Student	Clayton	Gumbel	Frank			
980	46,1935	45,4942	48,1552	45,9741	48,4066			
990	37,1321	37,1623	39,0862	36,2516	39,1576			
1000	28,7129	28,425	30,7238	28,4604	31,0198			
1010	21,4727	20,9404	23,6581	21,0446	23,0238			
1020	15,036	15,2787	17,2984	14,7799	16,1579			
1030	10,3211	10,1611	11,3271	9,858	11,2098			
1040	6,7223	6,5412	7,6931	6,1667	7,0394			

au=0,75									
Κ	Normale	Student	Clayton	Gumbel	Frank				
980	37,4886	36,7176	40,576	37,9963	39,8025				
990	29,2209	29,3277	32,4178	28,5849	31,4034				
1000	21,9827	21,5851	24,6142	21,5107	23,4487				
1010	15,9711	15,504	18,4486	15,9943	17,8204				
1020	10,8023	10,9341	13,487	10,7712	12,3263				
1030	7,2619	7,1045	9,1938	7,0725	8,2738				
1040	4,6541	4,5792	5,6261	4,5396	5,3215				

au = 0,95									
Κ	Normale	Student	Clayton	Gumbel	Frank				
980	31,1946	30,4162	32,8379	30,5635	32,1845				
990	23,6058	23,8127	25,5807	23,6986	$25,\!4565$				
1000	17,321	16,907	19,0331	17,5103	18,1873				
1010	12,3057	11,9472	13,5907	12,2725	12,9366				
1020	8,0904	8,2178	9,5885	8,3978	9,0173				
1030	5,3752	5,2929	6,5127	5,2904	5,8313				
1040	3,4144	3,4284	3,9497	3,4103	3,5505				

au = 0, 1						
K	Normale	Student	Clayton	Gumbel	Frank	
980	4,5715	4,5422	4,5032	4,8049	4,5017	
990	2,2313	$2,\!1787$	2,1916	2,3601	$2,\!1799$	
1000	0,8799	$0,\!8979$	0,8378	1,0504	0,87	
1010	0,2808	0,3108	0,2724	0,4686	0,282	
1020	0,0927	0,0801	0,0607	0,139	0,0898	
1030	0,0138	0,0207	0,0116	0,0479	0,022	
1040	0,0059	0,0032	0,0018	0,0083	0,0027	

Tableau C.12: Prix de l'option d'achat sur le minimum en fonction des prix d'exercice pour différentes valeurs de τ

au=0,25						
K	Normale	Student	Clayton	Gumbel	Frank	
980	$7,\!4903$	7,3842	7,3359	8,1438	7,2463	
990	4,3544	4,2451	3,9289	4,5511	4,1352	
1000	2,1331	2,0912	1,9402	2,5354	2,0398	
1010	0,9298	0,9437	0,7876	1,2832	0,8981	
1020	0,3682	0,3486	0,3064	0,5542	0,369	
1030	0,1222	$0,\!1385$	0,0778	0,2078	0,1243	
1040	0,057	0,0509	0,0179	0,0958	0,034	

au = 0,5						
K	Normale	Student	Clayton	Gumbel	Frank	
980	13,2756	13,0443	12,3453	13,8396	11,617	
990	8,8502	8,7651	7,8157	8,8719	7,4819	
1000	5,2266	5,0758	4,3651	5,7505	4,6797	
1010	2,9457	2,8524	2,2951	3,409	2,5725	
1020	1,4468	1,4362	1,062	1,8805	1,258	
1030	0,7016	0,7311	0,4295	0,9225	0,5289	
1040	0,3408	0,3392	0,1657	0,4331	0,227	

au = 0,75						
K	Normale	Student	Clayton	Gumbel	Frank	
980	20,1576	$19,\!6965$	18,0791	20,6916	18,433	
990	14,2863	14,3803	12,5867	14,1462	12,868	
1000	9,4818	9,1691	7,6843	$9,\!65$	8,414	
1010	5,9897	5,7842	4,7002	6,3687	5,3927	
1020	3,3617	3,3971	2,6063	3,7067	3,0378	
1030	1,8521	1,8657	1,3031	2,0965	1,5977	
1040	0,989	1,0013	0,494	1,0884	0,7227	

au=0,95						
K	Normale	Student	Clayton	Gumbel	Frank	
980	25,5847	24,9621	24,0949	24,9805	24,487	
990	18,7005	18,8724	17,5707	18,7101	18,492	
1000	13,0198	12,6204	12,0969	13,1605	12,32	
1010	8,5819	8,2984	7,7467	8,5599	8,0287	
1020	5,0039	5,0913	4,6633	5,2105	4,9496	
1030	2,8045	2,7922	2,6263	2,8251	2,7039	
1040	1,4652	1,4776	1,2982	1,4477	1,2778	

Annexe D

Les codes C

D.1 Programmes qui génère des observations suivant les copules choisies

D.1.1 Three-color rainbow

#include <stdio.h>

#include <stdlib.h>

#include <malloc.h>

 $\# include < \! gsl/gsl_cdf.h \! > \!$

#define Pi 3.14159265358979323846264338

double *generateur(double loi)

{

double rndval();

double norminv(double);

double cumnorm(double);

double $L_Exp()$;

 $\operatorname{int}\,\mathrm{i}\,;$

double v1, v2, v3, z1, z2, z3;

 ${\rm double} \ ^{\ast}\! {\rm u}, ^{\ast}\! {\rm x}, {\rm s}, {\rm z}, {\rm theta}\, ;$

double e,B,c,delta,y,F;

double U,V,a;

double A[]= $\{0.9972, 0.66590, 0.7423, 0.4245, 0.1927, 0.8816\};$

//Décomposition Cholesky de la matrice

 $//{\rm de}$ corrélation de la copule Normale

double $At[] = \{1.0, 0.6917, 0.7222, 0.4283, 0.2091, 0.8791\}; //Décomposition Cholesky de la matrice$

//de corrélation de la copule Student

double nu = 8.2995; //degrés de liberté de Student

v1 = rndval();

z1 = norminv(v1);

v2 = rndval();

 $z_2 = norminv(v_2);$

```
v3 = rndval();
z3 = norminv(v3);
x = (double *)(malloc(sizeof(double) * 3));
u = (double *)(malloc(sizeof(double) * 3));
if (loi == 0.0){
x[0] = A[0]^* z1;
x[1] = A[1]^*z1 + A[2]^*z2;
x[2] = A[3]^*z1 + A[4]^*z2 + A[5]^*z3;
for(i=0; i<3; i++)
  u[i] = cumnorm(x[i]);
if (loi == 1.0) {
x[0] = At[0]*z1;
x[1] = At[1]^*z1 + At[2]^*z2;
x[2] = At[3]^*z1 + At[4]^*z2 + At[5]^*z3;
z = rndval();
s = gsl_cdf_chisq_Pinv(z,nu);
for(i=0; i<3; i++){
```
```
x[i]=sqrt(nu/s)^{\ast}x[i]\,;
```

```
u[i] = gsl\_cdf\_tdist\_P (x[i],nu);\}\}
if (loi == 2.0) {
theta = 1.4628;
u[0] = v1;
u[1] = pow(v1,-theta)^{*}(pow(v2,-theta/(1+theta))-1.0) + 1.0;
u[1] = pow(u[1],-1/theta);
e = theta/(-1.0-2*theta);
u[2] = (pow(u[0],-theta) + pow(u[1],-theta) - 1.0)*(pow(v3,e)-1.0);
u[2] = pow(u[2]+1.0,-1/theta);
if (loi == 3.0) {
theta = 1.1365;
a = 1/theta;
V = Pi^*v1;
F = -log((double)v2);
c = pow(sin((double) V), -1/a);
e = pow((double) sin((1-a)*V)/F, 1/a-1.0);
```

```
V = \sin(a^*V)^*e^*c;
for(i{=}0\,;i{<}3\,;i{+}{+})\ \{
    U = L_Exp();
    u[i] = \exp(\text{-} pow(U/V,a))\,;\}\,\,\}
if (loi == 4.0) {
theta = 0.6355;
u[0] = v1;
u[1] = v2 *(1-exp(-theta))/(v2*(exp(-theta*u[0])-1)-exp(-theta*u[0]));
u[1] = -log(1+u[1])/theta;
c = \exp(-\text{theta})-1;
B = (\exp(-\text{theta}^*u[0])-1)^*(\exp(-\text{theta}^*u[1])-1);
F = c^*(c+B)^*(c+B);
delta = F/v3^*F/v3 - 4^*B^*c^*c^*F/v3;
y = (F/(2*v3*B*B))-(c*c/B)+ (sqrt(delta)/(2*B*B));
u[2] = -log(1+y)/theta; \}
return u;}
double norminv(double u){//la fonction "norminv" calcule la cumulative de la distribution nor-
```

98

male

```
//inverse centrée réduite avec l'aproximation de Odeh et Evans (1974)
double \ A0, A1, A2, A3, A4;
double B0,B1,B2,B3,B4;
{\rm double}\,\, {\rm x,y}\,;
double\;v\,;
A0 = -0.322232431088;
A1 = -1;
A2 = -0.342242088547;
A3 = -0.0204231210245;
A4 = -0.0000453642210148;
B0 = 0.099348462606;
B1 = 0.588581570495;
B2 = 0.531103462366;
B3 = 0.10353775285;
B4=0.0038560700634\,;
v = u;
if (v >= 0.5) v = 1 - u;
y=\operatorname{sqrt}(\operatorname{-log}(v^*v))\,;
```

 $x = y + (A0 + y^{*}(A1 + y^{*}(A2 + y^{*}(A3 + y^{*}A4))))) /$

$$(B0 + y^{*}(B1 + y^{*}(B2 + y^{*}(B3 + y^{*}B4))));$$

 $\mathrm{if}\;(u<0.5)\;\mathrm{return}\;\mathrm{-x}\,;$

else return x;

double cumnorm (double x){// la fonction "cumnorm" calcule la cumulative de la distribution normale

```
//centrée réduite avec l'aproximation d' Abramowitz et Stegun\left(1972\right)
```

double A0,A1,A2,A3,A4,A5,B0;

double y,z;

A0 = 1/(sqrt(2*Pi));

A1 = 0.319381530;

A2 = -0.356563782;

A3 = 1.781477937;

- A4 = -1.821255978;
- A5 = 1.330274429;
- B0 = 0.2316419;
- $z=x\,;$

```
{\rm if}\;(x<0)\;x={\rm -}x\,;\\
```

 $y = 1/(1 + B0^*x);$

 $x = 1 - A0^* exp(-x^*x/2)^*y^*(A1 + y^*(A2 + y^*(A3 + y^*(A4 + y^*A5))));$

if (z < 0) return 1-x ; //si z négatif : on prend le complément de x

else return x; //sinon, on retourne x A1 = 0.319381530; }

struct seed_type { unsigned long int i;

 $unsigned \ long \ int \ j \, ;$

unsigned long int k;}

 $seed = \{274159265L, 392436169L, 721287629L\};\$

double rndval () //permet de générer des observations uniformes sur [0,1].

 $\{\text{seed.j} = \text{seed.j} (\text{seed.j} < <17);$

seed.k = (seed.k (seed.k < <18)) & 0x7FFFFFFL;

return $(1 + (seed.i = 69069L^{*seed.i} + 23606797L) +$

(seed.j = (seed.j >> 15)) + (seed.k = (seed.k >> 13))) /

4294967296.;}

double $L_Exp()$

 $\{ double U; \}$

U = rndval();

return $-\log(U); \}$

D.1.2 Five-color rainbow

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <malloc.h>

 $\# include < \! gsl_cdf.h \! > \!$

 $\# include"tau_inv_frank.c"$

#define Pi 3.14159265358979323846264338

double *generateur2(double loi, double tau)

{ double rndval();

double cumnorm(double);

double norminv(double);

double $L_Exp()$;

double L_Gaussian();

double L_Gamma();

double L_Stable_pos();

int $L_Log_Series();$

double u, u1, rho, gamma, theta, nu, alpha, x, $^{*}\mathrm{U},\,\mathrm{V}\,;$

 $double\;a,\,eta,\,v,\,b,\,W\,;$

 $int \; j \, ; \;$

U = (double *)(malloc(sizeof(double) * 5));

 $if(tau == 0.0){$

```
for(j{=}0\,;j{<}5\,;j{+}{+})
  U[j] = rndval();
else\{
if(tau == 1.0){
u = rndval();
for(j{=}0\,;j{<}5\,;j{+}{+})
  U[j] = u; \}
else{
if (loi == 0) {
   rho = \sin(0.5^* \text{Pi}^* \text{tau});
  u1 = L_Gaussian();
  for(j=0; j<5; j++)
  U[j] = cumnorm(sqrt(1.0-rho)*L_Gaussian()+sqrt(rho)*u1); \}
 if \ (loi == 1) \{
  a=0.5^{\ast}nu\,;
  rho = \sin(0.5^* Pi^* tau);
```

```
b = sqrt( L_Gamma(a)/a );
   u1 = L_Gaussian();
   for(j=0;j<5;j++) {
   V = ( \ \mathrm{sqrt}(1.0\text{-rho})^*L_{-}\mathrm{Gaussian}() + \ \mathrm{sqrt}(\mathrm{rho})^*u1 \ )/b \, ;
   \mathrm{U}[j] = gsl\_cdf\_tdist\_P(\mathrm{V},nu)\,;
   }}
if (loi == 2){
   eta = 0.5^{*}(1.0\text{-}tau)/tau;
   V = L_Gamma(eta);
   for(j=0; j<5; j++)
   U[j] = pow((double) (1+L_Exp()/V),-eta);
}
if (loi == 3){
   a = 1.0-tau;
   V = L\_Stable\_pos(a);
   for(j{=}0\,;j{<}5\,;j{+}{+})\{
   u=L_{-}Exp()\,;
```

```
U[j] = \exp(-pow(u/V,a)); \} 
if (loi == 4) {
   theta = tau_inv_frank(tau);
   if (theta < 5.0) {
  alpha = 1.0-exp(-theta);
  V = L_Log_Series(theta);
  for(j=0;j<5;j++){
  u=L_{-} \mathrm{Exp}()/\mathrm{V}\,;
  U[j] = -\log(1 - \exp(-u) + \exp(-(theta + u)))/theta;
  }
   }
   else \{
  x = rndval();
  u=L_{-}Exp()\,;
  for(j{=}0\,;j{<}5\,;j{+}{+})\{
  W = L_Exp()/u;
  u1 = x - log(W) / theta;
```

return U; }

double cumnorm (double x){// la fonction "cumnorm" calcule la cumulative de la distribution normale

// centrée réduite avec l'aproximation d' Abramowitz et Stegun (1972)

```
double\ A0, A1, A2, A3, A4, A5, B0;
```

 ${\rm double}\,\,y,\!z\,;$

```
A0 = 1/(sqrt(2^*Pi));
```

A1 = 0.319381530;

A2 = -0.356563782;

A3 = 1.781477937;

A4 = -1.821255978;

A5 = 1.330274429;

B0 = 0.2316419;

```
z=x\,;
{\rm if}\;(x<0)\;x={\rm -}x\,;\\
y = 1/(1 + B0^*x);
x = 1 - A0^* exp(-x^*x/2)^* y^* (A1 + y^* (A2 + y^* (A3 + y^* (A4 + y^* A5))));
if (z < 0) return 1-x; //si z négatif : on prend le complément de x
else return x; //sinon, on retourne x A1 = 0.319381530;
}
struct seed_type { unsigned long int i;
unsigned long int j;
unsigned long int k;
}
seed = \{274159265L, 392436169L, 721287629L\};\
double rndval
() //permet de générer des observations uniformes sur
 [0,1].
\{ \text{ seed.j} = \text{seed.j} (\text{seed.j} << 17); \
seed.k = (seed.k (seed.k << 18)) & 0x7FFFFFFFL;
return (1 + (seed.i = 69069L^{*seed.i} + 23606797L) +
(seed.j ^= (seed.j>>15)) + (seed.k ^= (seed.k>>13))) /
4294967296.;}
```

double $L_Exp()$

```
{ double U;
U = rndval();
return -log(U); }
double L_Gaussian()
{ double U1, U2;
U1 = rndval();
U2 = rndval();
return cos((double) 2.0*Pi*U1)*s
```

 $return\ cos((double)\ 2.0*Pi*U1)*sqrt((double)-2.0*log((double)U2))\,;\}$

double L_Gamma(double alpha)

 $\{ double W, b, c, T, V, e, Z, U, X, R, U1, U2, a; \}$

 ${\rm int}\ I\,;$

if (alpha <= 1.0) /* Ahrens & Dieter, 1974 : Devroye, p. 425. */

 $\{ e = exp((double) 1.0);$

 $\mathbf{b} = (alpha + e)/e;$

c = 1/alpha;

 $I=0\,;$

while(I==0)

 $\{ V = b^*rndval(); \\$

W = rndval();

while(I==0)

```
if(V \le 1.0)
\{ T = pow((double) V, (double) c); \}
if( W <= \exp((\text{double}) - T))
I=1; \}
else
{ T = (double) -log( (double) c^*(b-V) );
if
( W <= pow((double) T, (double) alpha-1.0) )
I=1; \}
} return T;}
else
\ast Cheng 1977 for alpha >1 : Devroye p. 413 \ast
   \ast avec correction de l'erreur \ast
   b = alpha - log((double) 4.0);
a = (double) 1.0/sqrt((double) 2*alpha-1.0);
c = (double) alpha + 1.0/a;
I=0\,;
```

```
\{ U1 = rndval(); \}
U2 = rndval();
V = a^* \log((double) U1/(1-U1));
X = alpha^*exp((double) V);
\mathbf{Z} = \mathbf{U}\mathbf{1}^{*}\mathbf{U}\mathbf{1}^{*}\mathbf{U}\mathbf{2}\,;
R = b + c^* V - X;
if
( R >= 4.5*Z -1.0 -log((double)4.5) )
\{I = 1;
} else
{ if
( R > = log((double) Z) )
I = 1; \} \}
return X; }
}double L_Stable_pos(double alpha)
{ double unif1, unif2;
double V, W, rep1, rep2, a;
unif1 = rndval();
unif2 = rndval();
V = Pi^*unif1;
```

 $a=1.0/alpha\,;$

```
W = -log((double)unif2);
```

rep1 = pow(sin((double) V), -a);

rep2 = pow((double) sin((1-alpha)*V)/W, a-1.0);

return sin(alpha*V)*rep2*rep1;}

int L_Log_Series(double theta)

 $\{ double V, U; \}$

U = theta*rndval();

if(theta < 5.0)

 $V = -1.0/\log(1.0 - \exp(-U));$

else V = exp(U); /** ajustement pour grand theta! **/

return floor $(1.0 + V^* L_Exp());$

}

double norminv
(double u){//la fonction "norminv" calcule la cumulative de la distribution nor-

male

//inverse centrée réduite avec l'aproximation de Odeh et Evans (1974)

double A0, A1, A2, A3, A4;

double B0, B1, B2, B3, B4;

 $double\; x,\!y\,;$

 $double\;v\,;$

```
A0 = -0.322232431088;
A1 = -1;
A2 = -0.342242088547;
A3 = -0.0204231210245;
A4 = -0.0000453642210148;
B0 = 0.099348462606;
\mathrm{B1}=0.588581570495\,;
B2 = 0.531103462366;
B3 = 0.10353775285;
B4 = 0.0038560700634;
v = u;
if (v \ge 0.5) v = 1 - u;
y = sqrt(-log(v^*v));
x = y + (A0 + y^{*}(A1 + y^{*}(A2 + y^{*}(A3 + y^{*}A4))))) /
(B0 + y^{*}(B1 + y^{*}(B2 + y^{*}(B3 + y^{*}B4))));
```

 ${\rm if}\;(u<0.5)\;{\rm return}\;{\rm -x}\,;$

 $else \ return \ x \, ;$

}

D.2 Programme qui calcule les prix des options pour différents prix d'exercice

#include "copula_gen.h"

```
#define OUTPUT "Prime.txt"
```

 ${\rm double} \ * {\rm generateur}({\rm double}) \, ;$

double max(double);

int main(){

FILE * pf = NULL;

 ${\rm int}\,\,i,j,\!e,\!n,\!cp,\!N\,;$

double E ,*eps,T,rf;

double h, hT, epsT, r, R, m;

double *payoff,*Sf1,Sm1,*Sf2,Sm2,prime;

double K[]= $\{0.98, 0.99, 1, 1.01, 1.02, 1.03, 1.04\}$;//vecteur des prix d'exercice

//les parametres GARCH du : Dow Jones, Nasdaq et Ca
c40 :

double $h0[] = \{0.00004002, 0.00006678, 0.00004825\};$

double mu[] = $\{0.00040835, 0.0012187, 0.00032372\};$

double w[] = $\{0.0000021262, 0.00000092217, 0.0000019234\};$

double alpha[] = $\{0.0074242, 0.090959, 0.020855\};$

double beta[] = $\{0.90341, 0.88111, 0.92978\};$

double gamma[] = $\{0.13821, 0.055865, 0.078949\};$ ${\rm N}$ = 10000.; //taille de la simulation $\mathrm{rf}=0.04/365\,;\,//\mathrm{taux}$ hors risque pour 1 jour. T = 20.; //l'échéance de l'option (20 jours)eps = (double *)(malloc(sizeof(double) * 3));epsT = (double *)(malloc(sizeof(double) * 3)); $\mathbf{h} = (\text{double }^*)(\text{malloc}(\text{sizeof}(\text{double}) \ ^* \ 3));$ hT = (double *)(malloc(sizeof(double) * 3));r = (double *)(malloc(sizeof(double) * 3));R = (double *)(malloc(sizeof(double) * 3));m = (double *)(malloc(sizeof(double) * 7));payoff = (double *)(malloc(sizeof(double) * N)); cp = 0; //indicateur sur la copule utilisée if(!(pf = fopen(OUTPUT, "w")))

 $printf("Erreur: Impossible d'écrire dans le fichier \%s", \, OUTPUT);\\$

 $//{\rm Calcul}$ du prix de l'option :

 $for(e{=}0; e{<}7; e{+}+)\{$

 $m[e]=0.\,;$

 prime = 0. ; //initialisation de la prime de l'option

 $for(n{=}1\,;\,n{<}{=}N\,;\,n{+}{+})\{$

 ${\rm eps}={\rm generateur(cp)}\,;\,//{\rm générer}$ des observations suivant la copule choisie

 $for(i=0; i<3; i++){$

 $eps[i] = norminv(eps[i])\,;\,//transformer \; les \; observations \; uniformes \; en$

//des observations normales standards

h[i] = (w[i]/(1-beta[i]-alpha[i])); //la variance conditionnelle initiale

eps[i] = eps[i]*sqrt(h[i]);

 $r[i] = rf - 0.5^*h[i] + eps[i];$

 $hT[i]=h[i]\,;$

epsT[i] = eps[i];

 ${\rm for}(j{=}1\,;\,j{<}T\,;\,j{+}{+})\{$

eps = generateur(cp);

 $for(i=0; i<3; i++){$

$$\begin{split} &eps[i] = norminv(eps[i])\,; \\ &eps[i] = eps[i]*sqrt(h[i])\,; \\ &h[i] = w[i] + beta[i]*h[i] + alpha[i]*(r[i]-mu[i])*(r[i]-mu[i])\,; \\ &r[i] = rf - 0.5*h[i] + eps[i]\,; \\ &hT[i] = hT[i] + h[i]\,; \end{split}$$

 $\mathrm{epsT}[i] = \mathrm{epsT}[i] + \mathrm{eps}[i]\,;\}\}$

```
for(i=0; i<3; i++){
```

 $R[i] = 1000^* exp(rf^*T - 0.5^*hT[i] + epsT[i]); //valeur de l'indice i à l'écheance par Duan \}$

//Calcul du max "Sm1" et du min "Sm2" des rendements ${\rm Ri}$:

Sf1 = (double *)(malloc(sizeof(double) * 2));

```
Sf2 = (double *)(malloc(sizeof(double) * 2));
```

 $for(i=0;i<=1;i++){$

 $if(R[i]{<}{=}R[i{+}1])\{$

 $Sf1[i] = R[i{+}1];$

 $Sf2[i] = R[i]\,;\}$

else {

 $Sf1[i]=R[i]\,;$

 $Sf2[i]=R[i{+}1]\,;\}\}$

 $\mathrm{if}(\mathrm{Sf1}[0]{<}{=}\mathrm{Sf1}[1])$

Sm1 = Sf1[1];

else $\operatorname{Sm1} = \operatorname{Sf1}[0];$

```
\mathrm{if}(\mathrm{Sf2}[0]{<}{=}\mathrm{Sf2}[1])
```

 $\mathrm{Sm2}=\mathrm{Sf2}[0]\,;$

else $\operatorname{Sm2} = \operatorname{Sf2}[1];$

 $payoff[n-1] = \exp(-rf^*T)^*max(Sm1-K[e]^*1000)\,;\,//le\ payoff\ de\ l'option\ (CALL)$

```
\label{eq:payoff} //payoff[n-1] = \exp(-rf^*T)^*max(K[e]^*1000\text{-}Sm2)\,;\,//le \ payoff \ de \ l'option \ (PUT)
if (payoff
[n-1]*0!{=}0 )//eliminer les erreurs s'il y a lieu
n = n-1;
//m[e] = m[e]{+1}\,;\}
else
prime = prime + payoff[n-1];
\operatorname{prime} = \operatorname{prime}/N\,;\,//\operatorname{prime}\,de l'option
//Calcul des erreurs sur les prix des options :
E = 0.;
for (n = 0; n < N; n++) {
E = E + (prime-payoff[n])*(prime-payoff[n]);
\mathbf{E}=\mathbf{E}/(\mathbf{N-1})\,;
E = sqrt(E/N);
//affichage des résultats :
fprintf(pf, \%.4fn, prime);
fclose(pf);
printf("Le \ fichier \ \%s \ a \ ete \ cree \ n", \ OUTPUT) \ ; \}
```

double $\max(\text{double } x)$ {

 $\mathrm{if}\;(x<=0)\;\mathrm{return}\;0\,;\\$

 $else \ return \ x \, ; \}$

Annexe E

Les codes Matlab

E.1 Programme qui estime les paramètres GJR-GARCH

 clc

 ${\rm load}\ {\rm DJAa.csv}\,;$

data1 = DJAa;

load IXFNa.csv;

data2 = IXFNa;

load FCHIa.csv;

data3 = FCHIa;

 $x1=diff(\log(data1))\,;$

```
x2 = diff(log(data2));
```

x3 = diff(log(data3));

n = length (data1);

 $x1=diff(\log(data1))\,;$

 $x2 = diff(\log(data2));$

x3 = diff(log(data3));

% Estimation des paramétres $\operatorname{GJR-GARCH}(1,1)$:

 $\% {\rm Pour}$ le Dow Jones :

 ${\rm spec} = {\rm garchset}('VarianceModel','GJR','P',1,'Q',1)$

[coeff,errors,LLF,innovations,sigmas,summary] = garchfit(spec,x1);

garchdisp(coeff, errors)

sigma = garchpred(coeff, x1, 1);

hprd = sigma*sigma

%Pour le Nasdaq :

[coeff, errors, LLF, innovations, sigmas, summary] = garchfit(spec, x2);

garchdisp(coeff, errors)

sigma = garchpred(coeff, x2, 1);

 ${\rm hprd} = {\rm sigma}^* {\rm sigma}$

%
Pour le Cac40 :

[coeff, errors, LLF, innovations, sigmas, summary] = garchfit(spec, x3);

garchdisp(coeff, errors)

sigma = garchpred(coeff, x3, 1);

hprd = sigma*sigma

E.2 Programmes qui calculent les paramètres des copules

E.2.1 Les sous-routines

function $[LL] = loglik_stud(nu,R,n,U1,U2,U3)$

T1 = tinv(U1,nu);

T2 = tinv(U2,nu);

T3 = tinv(U3,nu);

 $\mathbf{T}=\left[\mathbf{T1,}\mathbf{T2,}\mathbf{T3}\right] ;$

 $a = (gamma((nu+3)/2)/gamma(nu/2))^{*}(gamma(nu/2)/gamma((nu+1)/2))^{*}3;$

for $i\,=\,1$:n

 $b1(i) = ((1+T(i,1)^2/nu)^*(1+T(i,2)^2/nu)^*(1+T(i,3)^2/nu))^{(-(nu+1)/2)};$

 $b(i) = ((1 + T(i, :)*inv(R)*T(i, :)'/nu)^{(-(nu+3)/2)})/b1(i);$

end

```
c = det(R)^{-0.5} * a * b;
```

```
LL = - \, sum(log(c))\,;
```

function $[LL] = loglik_clay(theta, U1, U2, U3)$

 $\mathbf{a}=\mathrm{theta}\,;$

 $d = U1.^{(-a)} + U2.^{(-a)} + U3.^{(a)} - 2;$

 $c = -\log(1+a) - \log(1+2^*a) + (1+a)^*(\log(U1) + \log(U2) + \log(U3)) + (1/a+3)^*\log(d);$

 $LL=sum(c)\,;$

function $[LL] = loglik_Gumb(theta, U1, U2, U3)$

 $a=theta\,;$

b = (-log(U1)).a + (-log(U2)).a + (-log(U3)).a;

 $c = -b.^{(1/a)} + (a-1)^{*}(\log(-\log(U1)) + \log(-\log(U2)) + \log(-\log(U2))) + (-3+1/a)^{*}\log(b) - (U1 + U2 + U3) + \log(-\log(U2)) + \log(U2)) + \log(-\log(U2)) + \log(U2)) + \log(-\log(U2)) + \log(-\log($

• • •

 $+ \log(1 - 3^*a - 2^*a^2 + 3^*(a - 1)^*b.^{(1/a)} + b.^{(2/a)});$

LL = -sum(c);

function $[LL] = loglik_Fran(theta, U1, U2, U3)$

 $a=theta\,;$

 $\exp(-a^*(U1+U2))$...

 $+ \exp(-a^*(U1+U3+1)) + \exp(-a^*(U1+U2+1)) - \exp(-a^*(U2+U3)) - \exp(-a^*(1+U2)) + \exp(-a^*U1) + \exp(-a^*U1) - \exp(-$

 $\exp(-a^*U2) + \exp(-a^*U3) \dots$

 $-\exp(-a) + \exp(-2^*a) - \exp(-a^*(1+U1)) - \exp(-a^*(1+U3)) + \exp(-a^*(U2+U3+1))) - 3^*\log(\exp(-a)-2+U3+1) - 2^*\log(\exp(-a)-2+U3+1)) - 3^*\log(\exp(-a)-2+U3+1) - 2^*\log(\exp(-a)-2+U3+1)) - 3^*\log(\exp(-a)-2+U3+1) - 2^*\log(\exp(-a)-2+U3+1)) - 3^*\log(\exp(-a)-2+U3+1) - 3^*\log(\exp(-a)-2+U3+1)) - 3^*\log(\exp(-a)-2+U3+1)) - 3^*\log(\exp(-a)-2+U3+1) - 3^*\log(\exp(-a)-2+U3+1)) - 3^*\log(-a)-2+U3+1)) - 3^*\log(-a)-2+U3+1) - 3^*\log(-a)-2+U3+1) - 3^*\log(-a)-2+U3+1) - 3^*\log(-a)-2+U3+1)) - 3^*\log(-a)-2+U3+1) - 3^*\log(-a)-3+1) - 3^*\log(-a)-$

```
\exp(-a^{*}(U1+U2+U3))...
```

 $-\exp(-a^*(U1+U2))-\exp(-a^*(U1+U3))+\exp(-a^*U1)-\exp(-a^*(U2+U3))+\exp(-a^*U2)+\exp(-a^*U3))\,;\\$

```
LL = - sum(c);
```

function [c,ceq] = cond(theta,U1,U2,U3)

eps = 0.00000000001;

 $\mathbf{c} = \left[\left(\mathrm{eps-theta} \right) \right];$

 $\operatorname{ceq}=\left[\right] ;$

E.2.2 Le programme principal

function [] = estcopula

 clc

 $load\ DJAa.csv\,;$

data1 = DJAa;

load IXFNa.csv;

data2 = IXFNa;

load FCHIa.csv;

data3 = FCHIa;

```
x1 = diff(log(data1));
```

x2 = diff(log(data2));

x3 = diff(log(data3));

n = length(x1);

eps = ones(n,3);

 $\% {\rm Pour}$ le Dow Jones :

 ${\rm spec} = {\rm garchset}('VarianceModel','GJR','P',1,'Q',1)$

[coeff, errors, LLF, innovations, sigmas, summary] = garchfit(spec, x1);

eps(:,1) = innovations./sigmas;

% Pourle Nasdaq :

[coeff, errors, LLF, innovations, sigmas, summary] = garchfit(spec, x2);

eps(:,2) = innovations./sigmas;

%
Pour le Cac40 :

[coeff, errors, LLF, innovations, sigmas, summary] = garchfit(spec, x3);

eps(:,3) = innovations./sigmas;

% estimation des densités empiriques (transformation uniforme) :

 $x=\exp;$

for m = 1 :3;

mat = zeros(n,3);

```
mat(:,1) = [1:1:n]';
mat(:,2) = x(:,m);
mat = sortrows(mat,2);
h=1\,;
i = 0;
while (h \le n-1)
j=h\,;
while mat(j,2) == mat(h,2)
i = i + 1;
j = j + 1;
end
for \mathbf{k}=\mathbf{h}:j\text{-}1
mat(k,3) = i;
end
h=j\,;
\operatorname{end}
\mathrm{mat}(n,\!3)=i\!+\!1\,;
mat = sortrows(mat,1);
Rg(:,m) = mat(:,3);
```

end U1 = Rg(:,1)/(n+1);U2 = Rg(:,2)/(n+1); $U3=Rg(\;:\!,\!3)/(n{+}1)\,;$ % Copule Normale(bouye et al 2004) % transformation des données en des valeurs normales standards : Z1 = norminv(U1,0,1);Z2 = norminv(U2,0,1);Z3 = norminv(U3,0,1); $Z = [Z1 \ Z2 \ Z3];$ R = zeros(3,3);P = zeros(3,3);% estimation de la matrice de corrélation(copule Normale) :

for i=1 :n

$$P = Z(i,\,:) {}^{*}Z(i,\,:)\,;$$

 $\mathbf{R}=\mathbf{R}+\mathbf{P}\,;$

 end

ANNEXE E. LES CODES MATLAB

$fprintf('\nCopule Normale : \n');$
$fprintf('========= \n');$
R = R/n
$\mathbf{A} = \mathrm{chol}(\mathbf{R})$
%======================================
% Copule t-Student(Mashal et Zeevi 2002)
%======================================
nu = 2;
T1 = tinv(U1,nu);
T2 = tinv(U2,nu);
T3 = tinv(U3,nu);
T = [T1, T2, T3];
% estimation de la matrice de corrélation via le tau de kendall(copule de Student) :
tau = zeros(3,3);
tau(1,2) = sin(pi*kendall(T1,T2)/2);
tau(2,3) = sin(pi*kendall(T2,T3)/2);
tau(1,3) = sin(pi*kendall(T1,T3)/2);
tau = tau + tau' + eye(3,3);

 $fprintf('\nCopule\ Student\ :\ \n')\,;$

ANNEXE E. LES CODES MATLAB

 $fprintf('========== \backslash n');$

 $\mathrm{Rt}=\mathrm{tau}$

At = chol(Rt)

% estimation du degrés de liberté par maximum de vraisemblance :

options = optimset('display','iter');

 $nu = fminsearch(@loglik_stud,5,options,Rt,n,U1,U2,U3)$

% Copule de clayton

%=================

%estimation du parametre theta (copule de Clayton) :

 $fprintf('\nCopule\ Clayton:\n');$

 ${\rm fprintf('=======n')}\,;$

options = optimset('largescale','off','MaxFunEvals',5000,'MaxIter',30,'Display','iter','diagnostics','on');

 $theta_Clay = fmincon(@loglik_clay, 0.1, [], [], [], [], [], [], @cond, options, U1, U2, U3)$

% ==============

% Copule de Gumble

% ===============

% estimation du parametre theta (copule de Gumble) :

 $fprintf('\nCopule\ Gumble:\n');$

ANNEXE E. LES CODES MATLAB

fprintf('==========h');

options = optimset (`largescale', `off', `MaxFunEvals', 5000, `MaxIter', 100, `Display', `iter', 'diagnostics', `on');

 $\label{eq:gum_f} \% [theta_Gum,f] = fmincon(@loglik_Gumb,1,[],[],[],[],[],[],[],@cond1,options,U1,U2,U3)$

 $[theta_Gum, f] = fminsearch(@loglik_Gumb, 2.49, options, U1, U2, U3)$

%Copule de Frank

%============

% estimation du parametre theta (copule de Frank) :

 $fprintf('\nCopule\ Frank:\n');$

fprintf('===========(n');

options = optimset('largescale', 'off', 'MaxFunEvals', 5000, 'MaxIter', 100, 'Display', 'iter', 'diagnostics', 'on');

 $\label{eq:heta_Fran} theta_Fran = fmincon(@loglik_Fran,1,[],[],[],[],[],[],[],@cond,options,U1,U2,U3)$