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il

RESUME

Cette these s’articule autour de quatre essais rédigés en format article. Ces articles
sont présentés en anglais ayant été soumis a publication. Les quatres articles ont été ré-
digés en collaboration avec mes directeurs de recherche, Nicolas Papageorgiou et Bruno

Rémillard.

Le premier chapitre constitue l'article clé de cette these Replicating the Properties

of Hedge Fund Returns. Cet article propose une extension des méthodes de couver-
ture d’options a la réplication distributionnelle, appliquée spécifiquement aux fonds de
couverture. Une nouvelle mesure de performance est proposée afin d’évaluer la valeur
ajoutée d'un fonds de couverture a un portefeuille initial en fonction de sa densité mar-
ginale des rendements, et de sa structure de dépendance avec le portefeuille considéré.
Une méthodologie de réplication est alors dérivée, permettant la construction d’un por-
tefeuille de densité bivariée de rendements ayant des propriétés identiques a celles du
fonds de couverture dans son contexte d’intégration au portefeuille de référence.
Le deuxieme chapitre vise a illustrer les innovations présentées dans I’article précédent
en comparant certains résultats de tarification et de réplication a une méthodologie
plus classique dérivée des hypotheses du modele de Black-Scholes (1973), adaptée dans
le méme contexte par Kat et Palaro (2005) dans le cadre de leurs travaux de recherche.
Cet article, intitulé Optimal Hedging Strategies with an Application to Hedge Fund
Replication, est une courte documentation technique ayant pour objectif une démons-
tration de 'efficacité de la méthodologie de couverture.

Le troisieme chapitre est une application des techniques proposées a I'assurance de por-
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tefeuille. L’article intitulé The Payoff Distribution Model : A Portfolio Insurance Ap-
proach met I’emphase sur la gestion dynamique d'un protocole d’assurance et compare
différentes stratégies classiques de gestion des pertes avec une approche par controle
de densité. Ceci représente une extension du modele de réplication présenté dans les
deux premiers articles, et propose d’intégrer une option d’assurance en déformant la
distribution univariée des rendements du portefeuille initial non couvert.

Le quatrieme chapitre propose d’intégrer une meilleure modélisation du processus du
sous-jacent a un algorithme de réplication d’options européennes cohérent. L’article
intitulé Option Pricing and Hedging for Regime-Switching Models se concentre sur la
modélisation du processus de rendements inhérent a la stratégie de réplication. Une mo-
délisation par processus a changements de régimes est proposée avec la dérivation d’une
méthodologie de couverture en temps discret appropriée. Des résultats en-échantillon
et hors-échantillon illustreront 1'efficacité du modele en terme de réactivité aux condi-

tions de marché.

Classification JEL : G10, G13, G20, G28, C15, C16, C22
Mots clés : fonds de couverture, réplication de distributions, stratégie de répli-
cation, assurance de portefeuille, portefeuille synthétique, processus a changements de

régimes, chaines de Markov cachées, couverture en temps discret



ABSTRACT

This thesis focuses on four essays. These articles have been submitted for publica-
tion. The four articles are written in collaboration with my research directors, Nicolas

Papageorgiou and Bruno Rémillard.

The first chapter is the key section of this thesis Replicating the Properties of Hedge
Fund Returns. In this paper, we implement a multivariate extension of Dybvig (1988)
Payoff Distribution Model that can be used to replicate not only the marginal distri-
bution of most hedge fund returns but also their dependence with other asset classes.
In addition to proposing ways to overcome the hedging and compatibility inconsisten-
cies in Kat and Palaro (2005), we extend the results of Schweizer (1995) and adapt
American options pricing techniques to evaluate the model and also derive an opti-
mal dynamic trading (hedging) strategy. The proposed methodology can be used as
a benchmark for evaluating fund performance, as well as to replicate hedge funds or
generate synthetic funds.

The second section aims to illustrate the innovations proposed in the previous article
comparing some results of pricing and replication with a more conventional methodo-
logy derived from the model assumptions of Black-Scholes (1973). This article, Optimal
Hedging Strategies with an Application to Hedge Fund Replication, is a short technical
documentation that demonstrates the effectiveness of the proposed methodology.

The third chapter is an application of the proposed techniques to portfolio insurance.
We propose an innovative approach for dynamic portfolio insurance that overcomes
many of the limitations of the earlier techniques. In this paper, The Payoff Distribu-
tion Model : A Portfolio Insurance Approach, we transform the Payoff Distribution

Model, originally introduced by Dybvig (1988) as a performance measure, to a fund
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management tool. This approach allows us to generate funds with pre-specified dis-
tributional properties. Specifically, we generate funds that are characterized by a Left
Truncated Gaussian distribution and then demonstrate out-of-sample that this ap-
proach to managing market exposure results in more reliable portfolio protection at a
lower cost than more popular techniques such as the CPPI.

Chapter four proposes to integrate a better modeling of the underlying process in the
hedging algorithm. In this paper, Option Pricing and Hedging for Regime-Switching
Models, we implement optimal (mean-variance) dynamic hedging in discrete time for
a class of regime-switching models. This methodology for pricing and hedging options
is robust and flexible and overcomes the main drawbacks of the Black-Scholes-Merton
model. We compare our discrete time methodology to a continuous time model approxi-
mation using regime-switching geometric Brownian motion, for which it has recently
been shown that the optimal hedging and associated pricing can be deduced from a risk
neutral distribution. We provide both in-sample and out-of-sample results to support

our approach.

JEL Classification : G10, G13, G20, G28, C15, C16, C22
KeyWords : Hedge Funds, Distributional Replication, Hedging Strategy, Portfolio
Insurance, Synthetic Funds, Switching Regimes, Hidden Markov Chains, Discrete Time

Hedging
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Chapitre 1

Introduction

L’objectif principal de cette contribution de recherche est de répondre a un enjeu es-
sentiel en finance de marché soit la structuration du profil de risque du portefeuille d'un
investisseur. L’idée sous-jacente est de faire correspondre les besoins (rendements) et
capacité (risque) d’un investisseur privé ou institutionnel au profil de rendements de son
portefeuille de marché dont la composition en actifs est une fonction de ses préférences.
De nombreux intervenants construisent leur modele d’affaire autour de la définition du
processus de déformation des intrants (rendements des actifs) en extrants (rendements
du portefeuille profilé). On citera de fagon non exhaustive les banquiers personnels et
conseillers en épargne retraite avec un mandat de structuration d’un portefeuille de
décaissement optimal en fonction du portefeuille de ’épargnant, les banquiers d’affaire
avec un mandat de controle de la volatilité des revenus de placement et les courtiers avec
un mandat de gestion de pertes d'un portefeuille institutionnel. Ces concepts prennent
naissance dans la théorie des options et dans le mécanisme de transfert de risque. Afin
de caractériser notre approche, une simplification de la problématique s’impose. Nous
considérons le cas d’un investisseur ayant acces a un sous-jacent risqué S et dont la
fonction de préférence est déterminée selon des spécifications reliées a 1’évolution de S.
Ceci définit une hypothese de travail selon laquelle la valeur du portefeuille de I'inves-

tisseur sera déterminée par une fonction possiblement non-linéaire en S. Cet enjeu est



classiquement adressé par la définition d’un ” payoff ” optionnel écrit sur le sous-jacent
S (option d’achat, option de vente, option exotique, combinaison d’options). L’investis-
seur détermine les spécificités de son profil de rendement a terme selon ses préférences,
soit des prix d’exercice, maturité, et toutes autres caractéristiques particulieres a la
définition de l'option. L’option est alors caractérisée comme un instrument de transfert
de risque d’une partie de la distribution des rendements de S sur ’horizon fixé. Le
mécanisme de transfert de risque peut alors étre confié au marché, en transigeant 1’op-
tion avec une contrepartie, ou géré dynamiquement par l'investisseur, en transigeant
activement S selon un protocole déterminé qui déterminera le ” payoff ” & maturité.
L’équivalence théorique de ces deux approches est cruciale. La déformation du profil de
risque de S se fait selon un protocole II d’investissement en S a un cout Cj. Le cott Cj
du transfert de risque est donc intimement lié au protocole de structuration du ” payoft
7. On appellera Cy le cott de I'option et II la stratégie dynamique de réplication de
I'option. Notre approche est donc de proposer une méthodologie conforme a ce cadre
de travail, en contribuant successivement aux différentes problématiques du sujet. La
littérature a vastement couvert la théorie des options. Depuis Black-Scholes (1973) qui
ont défini la théorie des options selon leurs hypotheses de marché, de nombreux auteurs
ont proposé des extensions et améliorations dans le but de palier aux inconsistences
du modele initial. Le modele Black-Scholes a permis le développement de solutions
analytiques simples pour la tarification de produits dérivés standard. Cependant les
hypotheses restrictives de volatilité constante, processus gaussien en temps continu
et de rendements indépendants, ont rapidement été identifiées comme non adaptées
a la réalité des marchés (Fama (1965), Mandelbrot (1963), Schwert (1989)). De plus,
Boyle et Emanuel (1980), Gilster (1990), Mello et Neuhaus (1998) et Buraschi et Ja-

ckwerth (2001) ont caractérisé le biais d’erreur de réplication introduit par ’hypothese



de couverture en temps continu. De nombreux modeles en temps discret basés sur 1’op-
timisation de différentes fonctions objectifs ont été proposés. On citera Owen (2002),
Potters, Bouchaud et Sestovic (2001) et Pochart et Bouchaud (2004). Notre approche
est d’identifier la stratégie de réplication en temps discret optimale auto financée telle
que définie par Cox et Ross (1976) et Harrison et Kreps (1979). A partir des travaux
de Follmer et Schweizer (1990) et Schweizer (1992, 1995), nous dériverons une straté-
gie dynamique optimale de couverture en temps discret basée sur la minimisation de
I'erreur quadratique de réplication.

L’idée est alors de travailler dans un premier temps sur la définition d’une nouvelle

I

fonction de 7 payoff 7, dont le déterminant ne sera, non pas le niveau de S mais le
rendement a terme de S. A partir des travaux de Dybvig (1988), nous caractériserons
la fonction objectif de densité de rendements périodiques de I'investisseur. Ce ” payoff
” de densité sera appliqué dans un contexte univarié, en tant que protocole d’assurance
de portefeuille, et dans un contexte bivarié, dans un cadre de réplication de densité
de rendements mensuels de fonds de couverture apparié a un portefeuille de référence.
Une seconde contribution sera apportée en définissant une nouvelle méthodologie de
réplication de ” payoff 7. Nous viendrons ici répondre a la problématique de couver-
ture en temps discret par un processus d’investissement en S d’une fonction objectif
définie sur S. Ceci sera illustré tant dans un cadre de réplication d’options d’achat et
de vente classiques que dans un cadre de réplication de densité de rendements. Une
des caractéristiques de cette méthodologie est sa définition dans un environnement non
gaussien sous probabilité physique. Nous venons alors répondre aux lacunes du modele
Black-Scholes restreint a un environnement de réplication en temps continu sous un

processus de rendements indépendants et identiquement distribuées de loi gaussienne.

Afin d’illustrer cette caractéristique du modele, nous définirons la stratégie optimale



de réplication sous un processus de rendements du sous-jacent suivant dans un pre-
mier temps une mixture de lois gaussiennes et dans un second temps un processus a
changements de régimes. Cette these rédigée au format article sera composée de trois
essais et d’une note technique. Dans le but de soumettre ces articles aux revues scienti-
fiques spécialisées, ces articles seront rédigés en anglais et une bibliographie spécifique
a chaque article sera proposée.

La premiere partie sera intitulée Replicating the Properties of Hedge Fund Returns
et a fait I'office d’une publication dans la revue ” Journal of Alternative Investments ”
édition ” Fall 2008 ”. Cet article illustre la méthodologie de réplication de ” payoff ” de
densité bivariée sous processus de rendements suivant une mixture de lois gaussiennes.
L’idée est ici de permettre a 'investisseur de reproduire la densité marginale de rende-
ments de fonds de couverture ainsi que la structure de dépendance entre son portefeuille
de référence et le fonds de couverture considéré. Par cette approche I'investisseur pourra
tarifer la distribution de rendement d’un fonds de couverture conditionnellement aux
caractéristiques spécifiques de son portefeuille. Une regle de décision sera établie afin
d’évaluer 'opportunité de répliquer cette distribution par une stratégie d’investisse-
ment en temps discret dans les portefeuilles d’actifs liquides appropriés. En adressant
I’évaluation et la réplication de fonds de couverture, cette contribution trouve sa place
dans la littérature de l'investissement alternatif. De cet article, une note technique
Optimal Hedging Strategies with an Application to Hedge Fund Replication est publiée
dans I’édition de Janvier-Février 2008 de ” Wilmott Magazine ”. Cette note a pour but
d’illustrer 'avantage de la méthodologie proposée en comparaison avec une approche
Black-Scholes, spécifiquement dans la minimisation de I’erreur de couverture et de sa
variance, dans un contexte ou la structure de dépendance discutée est définie par une

fonction de Copules.



Le deuxieme article est intitulé The Payoff Distribution Model : An Application to
Dynamic Portfolio Insurance. L’idée est ici d’appliquer le modele décrit précédemment
dans un contexte d’assurance de portefeuille. La stratégie de réplication est appliquée
a un portefeuille composé d’'une combinaison d’actif risqué S et d’actif sans risque dont
I’objectif est la protection d'un rendement minimum périodique tout en controlant la
volatilité des rendements résultants. La fonction de ” payoff ” sera définie comme une
densité de rendements de loi gaussienne tronquée. Le niveau de troncature déterminera
le seuil de garantie. La méthodologie sera comparée aux approches plus classiques
de gestion d’assurance, soit un modele de 7 stop-loss 7, un modele de ” CPPI 7 et
une réplication d’option de vente écrite sur S sous un environnement Black-Scholes.
Ces approches avaient été précédemment étudiées par Brennan et Schwartz (1979),
Rubinstein et Leland (1981), Black et Jones (1987) et Black et Perold (1992).

Le troisieme article est intitulé Option Pricing and Dynamic Hedging for Regime-
Switching Geometric Random Walks Models. La contribution est de proposer un al-
gorithme de réplication d’option d’achat et de vente consistant avec un processus de
rendements a changements de régimes. Chaque état est caractérisé par une loi gaus-
sienne spécifique. Des études en échantillons et hors échantillons seront proposées, ainsi
qu'une analyse de robustesse de la méthodologie. L’approche sera comparée a une ap-
proche Black-Scholes classique ainsi qu’a une modélisation par une mixture de lois
gaussiennes. Les processus a changements de régime popularisés par Hamilton (1990)
et Kim, Piger et Startz (2008) permettent une caractérisation intuitive des états per-
turbateurs des rendements du portefeuille, en associant une fonction de passage d'un

état a un autre, assurant alors la conditionnalité des états.



Chapitre 2

Replicating the Properties of Hedge Fund Returns

2.1 Introduction

The impressive growth of the hedge fund industry has naturally led to an increa-
sed scrutiny of the fund managers and of their investment strategies. Given the often
exorbitant management and performance fees charged by hedge fund managers, it is
not surprising that investors are starting to question what they are actually getting for
their money. Shrewd investors and institutional fund of funds are becoming increasin-
gly careful about paying alpha fees for beta returns. The challenge that investors and
researchers are therefore confronted with is how to reliably separate the funds that are
generating alpha returns from the ones that are simply repackaging beta.

The approach that has generally been favored by academics and practitioners in
order to extract information about hedge fund returns is the factor model approach. The
underlying idea is to try and separate the returns that are due to systematic exposure to
risk factors (beta returns) from those that are due to managerial skill (alpha returns).
Once the relevant risk factors have been identified, one can evaluate whether the funds
exhibit abnormal returns based on the intercept of a linear regression of the fund returns
against the factor returns. A further advantage of this methodology is that if the linear

model is well-specified, one can attempt to replicate the returns of the hedge fund by



investing in the appropriate portfolio of factors. A recent paper by Hasanhodzic and

Lo (2007) provides some evidence that linear replication can be successful for certain

strategies whilst offering certain advantages to hedge fund investing. These include
more transparency, increased liquidity and fewer capacity constraints. However the
authors warn that the heterogeneous risk profile of hedge funds and the non-linear
risk exposures greatly reduce the ability of these models to consistently replicate hedge
fund returns. Over the last few months, several banks including Goldman Sachs, JP
Morgan and Merril Lynch have launched linear replication funds.

Certain generic hedge fund characteristics help explain some of the difficulty in
identifying a well specified linear model. The use of financial derivatives, the use of
dynamic leverage, the use of dynamic trading strategies and the asymmetric perfor-

mance fee structures are some of the most obvious sources of non-linearities in hedge

fund returns. Several recent papers, such as Mitchell and Pulvino (2001), Fung and

Hsieh (2001). [Agarwal and Naik (2004). |Chen and Liang (2006). Kazemi and Schnee-

weis (2003) have dealt with the inclusion of risk premia and conditional betas that
attempt to account for these non-linearities. The inclusion of the above option-based
factors significantly improves the explanatory power of factor models, however, most of
these factors are not tradable and therefore cannot be used to construct a replicating
portfolio.

In order to circumvent the issue of identifying tradable risk factors, an interesting

alternative approach was proposed by |Amin and Kat (2003) and more recently exten-

ded by [Kat_and Palard (2005). Based on earlier work by [Dybvig (1988), the authors

evaluate hedge fund performance not by identifying the return generating betas, but
rather by attempting to replicate the distribution of the hedge fund returns. The under-

lying idea is based on the hypothesis that much of the trading activity undertaken by



hedge funds is not creating value, just altering the timing of the returns available from
traditional assets. In effect, many hedge funds are simply distorting readily available
asset distributions. So the real challenge is whether or not we can find a more efficient

method to distort these distributions than by investing in hedge funds. Armed with

their new efficiency measure, [Kat and Palard (2005) show that hedge fund returns are

by no means exceptional and that for the majority of funds an alternative dynamic
strategy would have provided investors with superior returns. This methodology not
only provides a model free benchmark for evaluating hedge funds, it can also be used

to create synthetic funds with predetermined distributional properties.

The efficiency measure as presented by [Kat and Palard (2005) is however subject
to several shortcomings and inconsistencies. The most significant of these relates to
the way that the daily trading strategies are derived from the distribution of monthly
returns. The properties of the estimated monthly distributions and copula functions
proposed by the authors are not infinitely divisible and therefore the true properties
of the daily returns are not known. As a result, the replicating strategy will not be
precise. A further weakness pertains to the fact that although the hedge fund returns
and traded assets are clearly non-normal, the efficiency measure is calculated within
the confines of the Black-Scholes-Merton world, hence ignoring the higher moments of

the distributions.

In this paper, we will implement a multivariate extension of |[Dybvig (1988) Payoff
Distribution Model that can be used to replicate not only the marginal distribution
of most hedge fund returns but also their dependence with other asset classes. In

addition to proposing ways to overcome the hedging and compatibility inconsistencies

in previous papers, we extend the results of [Schweizen (1995) and adapt American

options pricing techniques to evaluate the model and also derive an optimal dynamic



trading (hedging) strategy. The proposed methodology can be used as a benchmark for
evaluating fund performance, as well as to replicate hedge funds or generate synthetic
funds.

The rest of the paper will be structured as follows. Section 2 will explain the intui-
tion behind the multivariate extension of Dybvig’s Payoff Distribution model. Section
3 presents the technical details relating to the modeling and estimation of the distribu-
tions. Section 4 presents the payoff function. Section 5 presents the replication issues
and presents the optimal dynamic trading strategy. Section 6 presents some numerical

results. Section 7 concludes.

2.2 The Multivariate Payoff Distribution Model

In Kat and Palara (2003), the authors show that given two risky assets S and S,

it is possible to “reproduce” the statistical properties of the joint return distribution of
asset SM) and a third asset S®). Let’s assume asset S() is the investor portfolio, asset
S is a tradable security and asset S is a hedge fund, this result implies that we
can generate the distribution of the hedge fund and its dependence with the investor
portfolio, by only investing in the tradable security S and the investor portfolio S(.
Note that we do not replicate the month by month returns of the hedge fund, but
instead we replicate its distributional properties (i.e. expectation, volatility, skewness
and kurtosis) as well as dependence measures with respect to the returns of the investor
portfolio (i.e. Pearson, Spearman correlations...).

Essentially, there exist a payoff function that will allow us to transform the joint
distribution of assets S and S® into the bivariate distributions of S and S®). This
payoff function is easily shown to be calculable using the marginal distribution functions

Fi, F, and F3 of Sf(pl), Sf([?), Sf([?’), and the copulas C; 2 and C; 3 associated respectively
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with the joints returns (R((f%, R((f%) and (R&%,R((f%). The exact expression for the
payoff function is given in section 2.4

The challenge that we are confronted with is how to best evaluate this function,
and this is by no means a trivial problem. The problem can however be broken down
into three separate components. The first part relates to the proper modeling of the
distributions and copula functions. The second part consists in calculating the payoff
function. The third part consists in selecting an approach that will allow us to generate
a dynamic trading strategy that provides us with the best possible approximation of

the payoff function.

2.3 Modeling the returns

In order to provide a robust solution in this framework, we propose the following
steps. First, we will model the joint daily distribution of S and S using bivariate
Gaussian mixtures. Since we will be trading these assets on a daily basis, it is impe-
rative that the distribution of the monthly returns for both the investor portfolio and
the reserve asset are consistent with the distribution of the daily returns. We need to
be sure that by dynamically trading the assets based on the joint daily distributions
we will be able to generate the desired monthly properties. We will therefore estimate
the parameters of the bivariate Gaussian mixtures of Ry, (investor portfolio and reserve
asset) using the historical daily returns of S™ and S®. We can then solve for the law
of the monthly returns that is compatible with the law of daily returns. Furthermore,
the daily dependence which is modeled with the bivariate mixtures will allow us to
obtain the desired monthly dependence. This would not have been possible if we used
univariate laws to model the marginal distributions and a copula to model the depen-

dence structure. Although copula provide us with much flexibility in terms of modeling
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the dependence, there is however no proof to this day that the statistical properties
of copula functions are divisible. Finally, we need to estimate the monthly distribu-
tion of the hedge fund returns as well as the dependence between the hedge fund and
the investor portfolio. There are no particular restrictions regarding the choice of the
distribution of S® and the copula C1,3. We have developed statistical tests that allow
us to select the most appropriate marginal distribution and copula function. We now

consider each of these steps in detail.
2.3.1 Mixtures of Gaussian distributions

The choice of Gaussian mixtures to model the bivariate distribution of investor
portfolio and the reserve asset is due to both the flexibility of the mixtures in capturing
high levels of skewness as well as the fact that the bivariate distribution is infinitely
divisible. In this section, we will first provide a brief description of bivariate Gaussian
mixtures and discuss the goodness-of-fit test that we developed in order to estimate

the mixtures and select the optimal number of regimes.

Definition of mixtures of Gaussian bivariate vectors

A bivariate random vector X is a Gaussian mixture with m regimes and parameters

() iys (ue)pe, and (Ag)Rh,, if its density is given by

fla) =" muda(w; i, Ar)

k=1

e s@-w AT @—p
21102 (1—p2)1/2

where ¢o(x; p, A) = is the density of a bivariate Gaussian vector with

2
07 PO102

9 . Its distri-
PO102 0y

mean vector p = (uy, p1o) " and covariance matrix A = (

bution function is

F(Z'l,l’g) = Zﬂ-k(PQ (xl - Mkla i Iuk27pk) )

Ok1 Ok2
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where ®y(-, ; p) is the bivariate standard Gaussian distribution function with correla-
tion p. Some of the important properties of mixtures of bivariate Gaussian variables

are discussed in Appendix 2.7
Estimation and goodness-of-fit
In order to choose the optimal number of regimes, we need to first estimate the

parameters of the model, and then provide a goodness-of-fit test to evaluate whether

a greater number of regimes is required. The estimation method is based on the EM

algorithm of (Dempster et all, [1977).
A new goodness-of-fit test is proposed to assess the suitability as well as to select

the number of mixture regimes m. The proposed test. based on the work in Genest

et al. (2009), uses the Rosenblatt’s transformll.

For the selection of the number m of regimes, the following two steps procedure is

suggested :

(a) Find the first mg for which the P-value of the test is larger than 5%.

(b) Estimate parameters for mg + 1 regimes and apply the likelihood ratio test to
check if the null hypothesis Hy : m = mqg vs Hy : m = mg + 1. If Hy is rejected
at the 5% level, repeat steps (a) and (b) starting at m = mg + 1. However, if
the parameters under H; yield a degenerate density (e.g., |pr| = 1), stop and set

m = mmy.
2.3.2 Choice/estimation of the marginal distribution £}

There are no restrictions on the choice of Fj, which is the distribution of the hedge
fund that we seek to replicate (or the desired distribution in the case of a synthetic

fund). Unlike the reserve asset and investor portfolio that require divisible laws, we are

1. The derivation of the goodness-of-fit test for Gaussian mixtures is available on request from the
authors.
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only interested in monthly return distribution and hence can introduce any distribution.
In the case of the replication of an existing hedge fund, goodness-of-fit is important

and therefore we test using a Durbin type testA.
2.3.3 Choice/estimation of the copula C; 3

Again, there are no restrictions on the choice of copula function C; 3, between the
monthly returns of the hedge fund and the investor portfolio. Suppose that we have
historical monthly returns (Y1, Z1), ..., (Y, Z,) belong to a copula family Cy. To esti-
mate #, one often uses the so-called IFM method. However, we do not recommend it
as the parameters of the copula function rely on the estimated marginal distributions.
Any mis-specification of the marginal distributions will bias the choice of copula. For

reasons of robustness, it is therefore preferable to use normalized ranks, i.e. if R;; re-

presents the rank of Y; among Yi,...,Y,, and if R;; represents the rank of Z; among
Zi, ..., 4y, with R;; = 1 for the smallest observations, then set
R; R; .
U, = 1, V, = 2, 1=1,...,n.
n+1 n+1

To estimate 6 one could try to maximize the pseudo-log-likelihood

Z 1Og CG(Uiu ‘/Z)v

i=1

as suggested in (Genest et al) (1995). For example, if the copula is the Gaussian copula
with correlation p, the pseudo-likelihood estimator for p yields the famous van der Waer-
den coefficient defined to be the correlation between the pairs {®~1(U;), @ (V;);i =
1,...,n}. For other families that can be indexed by Kentall’s tau, e.g., Clayton, Frank

and Gumbel families, one could estimate the parameter by inversion of the sample

Kendall’s tau. See, e.g., (Genest et al) (20006).

2. The derivation of the goodness-of-fit test for the choice of copula is available on request from
the authors.
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Finally, to test for goodness-of-fit, one can use Cramér-von Mises type statistics for
the empirical copula or for the Rosenblatt’s transform. The latter could be the best

choice given that Cl 3(u,v) needed to be calculated for the evaluation of the payoff

function. These tests are described in |Genest et all (2009) and in view of their results,

we recommend to use the test statistic S,gB)

2.4 The payoff function

Having estimated the necessary distribution and copula functions, one must now

calculate the payoft’s return function g. As deduced by [Kat and Palaro (2003), its

formula is given by

g(a.y) = Q{a. P (RS} <ylR(y = =)},

where Q(z,a) is the order a quantile of the conditional law of R given R x,

i.e., for any o € (0,1), q(z, ) satisfies

P {Rfjf} < Q(x,a)|R) = x} = a

Using properties of copulas, e.g. INelsen (1999), the conditional distributions can be

expressed in terms of the margins and the associated copulas.

0
P <R(()2)T < Z/|R(()% 95) = %Cm(uav)

u=r(z)v="r2(y)
0
Note that 8—6172(u,v) =P {F2 (R(()2)> <w|F; ( é%) = u}
u 9
In our methodology, since the monthly returns <R0 T R ) are modeled by a Gaus-

sian mixtures with parameters (mg)7,, ()i, and (Ag)i-,, the conditional distribu-

tions can be expressed as follows

2)¢{y; fir(x), 5%}

Ms

P (1) < i) ) -

k=1

where 7 (), fix(z) and 62 are given by formulas (2.7) and (Z.8)) in Appendix 2.7]
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2.5 Dynamic replication

Having solved for the payoff function, we need to find an optimal dynamic trading
strategy that will replicate the payoff function. We do so by selecting the portfolio

(Vb, ) such as to minimize the expected square hedging error

E [82{Vr(Vo, ¢) — Cr}?],

where [Br is the discount factor and Cr = 100 exp { g (R(()?p, Ré?)} is the payoff at

maturity.

In order to achieve this, we develop extensions of the results of [Schweizen (1995).
Note that there is no “risk-neutral” evaluation involved in our approach and that all
calculations are carried out under the objective probability measure.

If the dynamic replication is successful, i.e., Vi = Cp, then return of the investment

can be decomposed as

log(Vi/Va) = log(100/Vy) + g (B}, R )

Therefore, as proposed in |[Kat and Palara (2005), one can view o = log(100/V}) as a

measure of performance. For, if & = 0, we generate exactly the target distribution, while
if a > 0, we outperform the target distribution; if o < 0, then the fund outperforms
the replication strategy. However, whatever the value of «, statistics based on centered

moments are not affected ; only the value of the expectation depends on a.

2.5.1 Optimal hedging

Suppose that (2, P, F) is a probability space with filtration F = {Fy,..., Fr},
under which the stochastic processes are defined. For the moment, assume that the
price process S; is d-dimensional, i.e. S; = (St(l), ey St(d)>. In the next section, one

will come back with the case d = 2.
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Before defining what is meant by a dynamic replicating strategy, let 3, denote the
discount factor, i.e. f; is the value at period 0 to be invested in the non risky asset
so that it has a value of 1$ at period ¢. By definition, Sy = 1. It is assumed that the
process [ is predictable, i.e. §; is F;_i-measurable for allt =1,...,T.

A dynamic replicating strategy can be described by a (deterministic) initial value V;
and a sequence of random weight vectors ¢ = (gpt)zzo, where for any j =1,...,d, <p§j )
denotes the number of parts of assets SV) invested during period (¢ — 1,]. Because ¢
may depend only on the values values Sy, . .., S;_1, the stochastic process ¢, is assumed
to be predictable. Initially, ¢y = ¢1, and the portfolio initial value is Vj. It follows that

the amount initially invested in the non risky asset is
d . .
Vo — Z 805])5(())) = Vo — ¢{ So.
j=1
Since the hedging strategy must be self-financing, it follows that for all t =1,..., T,
B:Vi(Vo, ©) = Bi-1Viei(Vo, ) = SOtT(ﬁtSt — Bi-15i-1). (2.1)

Using the self-financing condition (2.1J), it follows that
T
BrVir = BrVr(Vo, @) = Vo+ Y _ @/ (BSt — Bi-1Si-1).- (22)
t=1
The replication strategy problem for a given payoff C' is thus equivalent to finding the

strategy (Vp, @) so that the hedging error

Gr(Vo, @) = BrVr(Vo, ¢) — brC (2.3)

is as small as possible. In this paper, we choose the expected square hedging error as a
measure of quality of replication. It is therefore natural to suppose that the prices St(j )
have finite second moments. We further assume that the hedging strategy o satisfies

a similar property, namely that for any t = 1,..., T, o/ (8:S; — B;-1S;_1) have finite
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second moments. Note that these two technical conditions were also made by [Schweizer

1995).

For simplicity, set
At:St_E(StIE—l)a t:]_,,T

Under the above moment conditions, the conditional covariance matrix >; of A,

exists and is given by

Et:E{AtA;rLFt_l}, 1§t§T

In [Schweizen (1995), the author treats the case d = 1 and assumes a restrictive

boundedness condition. Here, in contrast, we treat the general d-dimensional case and

we only suppose that > is invertible for all ¢ = 1,... 7. This was implicitly part of

the boundedness condition of [Schweizer (1995).

If 32, is not invertible for some ¢, there would exists a ¢, € F;_; such that gptT Sy =
o] E(S;|F;_1), that is, ¢, S; is predictable. Our assumption can be interpreted as saying
that the genuine dimension of the assets is d. One may now state the main result whose

proof is given in Appendix

Theorem 1 Suppose that 3; is invertible for allt =1,...,T.

Then the risk E{G*(Vy, ©)} is minimized by choosing recursively or, . .., o1 satis-

fying
o= () E({Sy — E(S|Fe)}YCo| Fior), t=T,....1, (2.4)

where Cr, ..., Cy are defined recursively by setting Cp = C' and
Bi1Ci1 = BE(Cy| Fio1) — SOtTE(ﬁtSt — Bi-1Si-1|Ficr), (2.5)

fort="1T,... 1.
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Moreover the optimal value of Vi is Cy, and

E(G*) =Y E(BG}).

t=1

where Gt = gOtT {St — E(St‘ﬂ—l)} — {Ct — E(Ct|ft_1)}, 1 S t S T.

Having found the optimal hedging strategy, according to the mean square error
criterion, one might ask what the link is between the price given by Cy, as in Theorem
[, and the price suggested by the martingale measure method. The answer is given by

the following result proven in Appendix 27

Corollary 1 Foranyt=1...,T, set
Ut — 1 - A;l— (Zt)_l E (St - 5t_15t_1/5t|]:t_1) . (26)

Further set My = 1 and M; = UM, 1, 1 < k < n. Then (M, F;)L, is a (not

necessarily positive) martingale and
Bi—1Ci—y = E(ﬁtCtUtUTt—l)-

In particular BC M, is a martingale and Cy = E(BrCrMr|Fo).

Moreover E(BuSiUs|Fi—1) = Bi—1Si-1, so 5ySiM; is a martmgale.H
The Markovian case
If the price process S is Markovian, i.e., the law of S; given F;_1 is 14(S;_1, dz), and

if the terminal payoff C7 = C only depends on the terminal prices, that is C' = fr(S7),

then the Markov property, together with Theorem [l yield that Cy = f,(.S;) and ¢, =

3. When the market is complete, there is a unique martingale measure @ and every claim is attai-
nable, so the risk associated with the optimal strategy is zero. Therefore M;, as defined in Corollary
M is positive, and as a by-product of our method, we have an explicit representation of the density of
Q@ with respect to P.
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th(S)
Lgt(S)
Ay(s)

Yi(s)

U(s, x)

ft—l(S)
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E(S)|S1 = 5) = /:):l/t(s,d:v),
E(S,S|S, 1 = s) = / vz wy(s, do),
Luls) = Lu(s)Lu(s)".

As) B {50~ Lu(9)} (SIS = 5
A [ (@ = Lus)) (s, de),

1— (Liy(s) — Bio1s/Be) T Au(s) "M (x — Lu(s)),

B (s, 80 £(S) IS = s}

Bt—l
B

- / Uy(s, 2) () (5, da).

Note that E(S;|Fi—1) = L1;(S;—1) and ¥, = A;(S;_1). Explicit calculations can be done

when the returns are assumed to be a finite Markov chain. In most models, one can

write S; = w;(S;_1, &) where & is independent of F;,_; and has law P,. When p,; has an

infinite support, there are ways to approximate ¢, and f;.

The importance of Theorem [l to the replication problem of hedge funds is obvious,

particularly under the Markovian setting. All that is needed is a way to calculate or

approximate the value of fy and of the deterministic functions ¢, (s), fi(s), t =1,.... In

particular Vy = fo and ¢, = 1;(s) gives the optimal hedging strategy when S, ; = s.

In the Markovian case, one can use the methodology developed by [Del Moral et al

2006) to calculate both the ¢,’s and the Cy’s. The algorithm for implementing the

dynamic trading strategy is based on Monte Carlo simulations and linear interpolation

and is detailed in Appendix 2.7
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2.5.2 A comparison between optimal hedging and hedging un-
der Black-Scholes setting

To compare the two methods, simply take 7" = 1 and » = 0 and d = 1. In this
case, the solution for optimal hedging yields ¢* = Cov{AS;, C(Sy)}/Var(AS), where
ASl = Sl — S(), and ‘/0* = E{C(Sl)} — gp*E(ASl)

For the Black-Scholes setting, we have
VE)BS — B {C <SoeaZ—J2/2)} and QDBS — B {6UZ—02/2C/ <SoeaZ—J2/2)} ’

with 0% = Var {log(S1/Sp)}, where Z ~ N(0,1), provided C' is differentiable. See, e.g.,

Broadie and Glasserman (1996). In general, ¢* # P9 and Vi # V25 so

B {9 = CS0Y] < B [{V(v, ") - c(sn}?] .

For an analysis of the (discrete) hedging error in a Black-Scholes setting, see, e.g.,

Wilmott (2006). To illustrate the difference in an hedge funds context, we performed a

numerical experiment in which we tried (10 000 times) to reproduce a synthetic fund
with centered Gaussian distribution with annual volatility 12% and correlation 30%
with the portfolio. The distribution of the daily returns of the (portfolio, reserve) pair
are modeled by a mixture of 4 regimes for the daily returns distribution with parameters
given in Exhibit 2.J With this choice of parameters, it turns out that the associated
monthly returns are best modeled by a bivariate Gaussian with parameters given in
Exhibit 2111

As said previously, we simulated 10 000 values of g <R((f%, R((f%), log(V}/100) (under
optimal hedging) and log(V;#%/100) (under delta hedging). Some sample characteristics
of these three variables are given in Exhibit 2.ITI] together with the corresponding true
values, while for each dynamic trading method, the estimated mean hedging error and

square Toot mean square error are given in Exhibit R2.IV]
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TABLE 2.1 — Parameters for the Gaussian mixture with 4 regimes used for modeling

daily returns

Tk

i1 HE2

O1k 02k Pk

0.0956
0.4673
0.0763
0.3607

0.0016 | 0.0008
0.0000 | 0.0002
-0.0003 | -0.0005
0.0006 | 0.0005

0.0039 | 0.0016 | 0.9754
0.0069 | 0.0032 | 0.7981
0.0115 | 0.0054 | 0.6964
0.0037 | 0.0027 | 0.4613

TABLE 2.IT — Estimation of the parameters of the Gaussian model compatible with the

daily returns

H1

2 01

02 ‘ P

0.007892797 | 0.0068086

0.029334999

0.014646356 ‘ 0.700295314

By construction, optimal hedging always produces an hedging error with zero mean.

However, this is not the case in general for delta hedging. Note how far the delta hedging

method is off the goal of a zero mean of the replicating portfolio, while the optimal

hedging error is much smaller.

As our proposed method is optimal for minimizing the square hedging error, it is

not surprising that it dominates delta hedging. However, since the theoretical setting is

very close to the Black-Scholes setting, all monthly returns being Gaussian, it is worth

noting that the square root Mean Square Error of the optimal hedging is 150% less

than the one of the delta hedging.

Finally, the distribution of the respective hedging errors is illustrated in Exhibit

2.3 From that graph, it appears that the values of the replication portfolio with the

methodology proposed in

target values.

Kat and Palaro

2005

) are almost always smaller than the



22

TABLE 2.III — Replication results based on 10 000 trajectories for g <R(()2F,Ré?:)r> =
log(C7/100) and log(V7/100) under optimal hedging and delta hedging.

Parameter | True value ‘ g ‘ Optimal hedging ‘ Delta hedging
Mean 0 3.957TE-07 3.57T4E-07 -0.000422735
Std. dev. | 0.034641016 | 0.034957842 0.034961135 0.034985553
Skewness 0 -0.058910418 -0.064053039 -0.063978046
Kurtosis 0 0.029916203 0.032479236 0.032374552
p 0.3 0.30283895 0.30279462 0.30288552

TABLE 2.IV — Replication results based on 10 000 trajectories for the payoff g and
log(Vy/100) under optimal hedging and delta hedging.

Parameter ‘ Optimal hedging ‘ Delta hedging ‘ |OH/DH |
Mean hedging error 0.000004009 -0.042061101 | 10491.66889
Square root MSE 0.017861376 0.045665732 | 2.556674977

30

Optimal Hedging Error
—B&S Hedaging Error
25 A

20F &

0.2 -0.15 0.1 -0.05 0 0.05

F1GURE 2.5 — Kernel density estimation of hedging errors for optimal hedging and delta
hedging.
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2.6 Replication of hedge fund indices

In this section we will provide some empirical evidence regarding the ability of the
model to replicate hedge fund returns. For the sake of parsimony, we will present results
for the (in-sample) replication of the EDHEC indices and HFR indices. We will look at
the models ability to replicate the statistical properties of the monthly returns of the
different indices over the ten year period from 01/30/1997 to 12/29/2006 (120 months),
as well as for 2 subperiods ranging respectively from 01/30/1997 to 12/29/2001 (59

months) and from 12/30/2001 - 12/29/2006 (61 months).
2.6.1 Portfolio and Reserve assets

The first step is to select the assets that will make up the investor portfolio S™,
and the reserve asset S?). Because these two portfolios are dynamically traded on a
daily basis, we seek very liquid instruments with low transaction costs. We therefore
restrict the components of these two assets to be either Futures contracts or Exchange
Traded Funds (ETF).

All futures data comes from CRB Trader database. The cash rate is the BBA Libor
1 month rate. Log-returns on futures are calculated from the reinvestment of a rolling
strategy in the front contract. The front contract is the nearest to maturity, on the
March/June/September/December schedule and is rolled on the first business day of
the maturity month at previous close prices. Each future contract is fully collateralized,
so that, the total return is the sum the rolling strategy’s return and the cash rate. The
ETF data is obtained from Bloomberg.

The investor portfolio, which is meant to be a proxy for a typical institutional port-
folio, will be an equal-weighted portfolio of S&P500 futures contracts and 30 year US

Treasury Bond futures contracts. In order to illustrate the sensitivity of the methodo-
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logy to the choice of reserve asset, we will perform the study using two very different
reserve assets. The first asset (Reserve 1) is made up of 50% PowerShares Dynamic
Small Cap Value Portfolio, 25% iShares Lehman 20 Year Treasury Bond Fund and 25%
Citigroup Treasury 10 Year Bond Fund. The second asset (Reserve 2) is an equally
weighted portfolio Two Year Treasury Notes, Ten Year Treasury Notes, S&P500, and
Goldman Sachs Commodity Index future contracts.

Exhibit 2.V presents some of the statistical properties of our investor portfolio and
the two reserve assets for the entire ten year period and the two sub-periods. We report

the mean, standard deviation, skewness, robust skewnessg, kurtosis, robust kurtosisH

TABLE 2.VI — Summary statistics for the portfolio and the reserve assets over the three
time periods.

Asset Statistics Period 1 (97-06) Period 2 (97-01) Period 3 (02-06)
Mean 0.0035 0.0047 0.0024
S.Dev 0.0244 0.0289 0.0192
Portfolio Skew -0.2150 -0.2697 -0.2482
R. Sk -0.0813 -0.2665 -0.1097
Kurt 3.2109 2.6942 3.6637
R. Kurt 3.2467 2.7483 3.6386
Mean 0.0094 0.0095 0.0093
S.Dev 0.0225 0.0260 0.0187
Skew 0.3006 0.5346 -0.3480
Reserve 1 R. Sk 0.0362 0.0552 0.0159
Kurt 5.0025 5.0399 3.2161
R. Kurt 3.2419 4.0561 2.9244
Corr. with Port. 0.6749 0.7054 0.6206
Mean 0.0031 0.0016 0.0047
S.Dev 0.0195 0.0219 0.0168
Skew 0.0338 0.3193 -0.3886
Reserve 2 R. Sk -0.0891 -0.0161 -0.2345
Kurt 3.4509 3.3083 3.7213
R. Kurt 3.3207 3.3894 3.4959
Corr. with Port. 0.6040 0.7231 0.3989

4. Defined by {E(X) — Q(l/?)}/EﬂX — Q(1/2)|}, where @, is the a-quantile.
5. Defined by 0.09 + {Q(.975) — Q(.025)}/{Q(.75) —Q(25)).
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As explained in Section 2.3.1 we have chosen to model the daily returns of the
pairs (portfolio, reserve) by bivariate Gaussian mixtures with m regimes, denoted by
BGM(m).

In Exhibit RVTIIl the distributions of the daily and monthly returns for the (port-
folio, reserve) pairs are given, over the three time periods. These results were obtained

by using the estimation and goodness-of-it procedures described in Section 2.3.11

TABLE 2.VII - Distribution of the daily and monthly returns for the two pairs (portfolio,
reserve), over the three time periods.

Returns Period 1 (97-06) Period 2 (97-01) Period 3 (02-06)
Reserve 1 Reserve 2 Reserve 1 Reserve 2 Reserve 1 Reserve 2
Daily BGM(5) BGM(5) BGM(5) BGM(5) BGM(3) BGM(4)
Monthly BGM(2) BGM(2) BGM(4) BGM(2) BGM(2) BGM(3)

It may seems odd at first that the model for the joint monthly returns is a (bivariate)
Gaussian mixture with fewer regimes than for the daily returns. However, as explained
in Remark R.7.1] it is quite normal. In fact, in view of the central limit theorem, the
number of regimes would possibly be 1 if we were to consider returns over a two months

period.

2.6.2 Hedge fund indices

For the sake of comparison, we chose to replicate the 13 EDHEC indices and the
22 HFRI indices. According to the procedures described in Sections and 2.3.3
the marginal distribution F3 and the copula C; 3 were estimated for each hedge fund
index.

For the marginal distributions, we considered (univariate) Gaussian mixtures with
m regimes, denoted GM(m) and Johnson distribution. For the copula families, we

selected the Gaussian, Student, Clayton, Frank and Gumbel. In each case, we estimated
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Kendall’s tau, which measures the dependence between the hedge fund returns and the
portfolio returns. Except for the Student copula, which is dependent on two parameters,

the other families only depend on one parameter.

The best fitting models are displayed in Exhibits 2 VIITH2.X]
2.6.3 Performance of the replication

There are two important issues that need to be addressed when analyzing the models
ability to replicate hedge fund returns. The first issue concerns the models ability to
effectively replicate hedge fund indices. The second issue pertains to the choice of the
reserve asset and it’s impact on the models performance.

To study the effectiveness of the replication strategies, there are two main factors
to consider : the initial investment V[, that is required to replicate each index as well as

the actual quality of the replication. In order to obtain the payoff distribution of the

hedge fund indices, we follow the approach used by [Kat and Palard (2005)- we calculate

the monthly returns assuming an investment of 100 at the beginning of each month.
Therefore, if the value V{ of the replicating strategy is below 100, this would lead
us to conclude that the replicating strategy offers a cheaper alternative to the hedge
fund index, and therefore is the better investment choice. This analysis can however be
misleading if we do not also examine the precision of the replication strategy. Before
dismissing the hedge fund indices as poor-performers, we need to properly evaluate
whether the properties of the replication strategies and hedge fund indices are truly
the same. A proper examination of both the cost and the precision of the replication
strategy is fundamental before any strong conclusion can be drawn about the model’s
ability to replicate hedge fund indices.

Then arises the question of the reserve asset. Does the reserve asset impact the
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performance of the model, and if so does it affect only V} or also the ability of the
model to replicate the statistical properties of the hedge fund indices ? In other words,
does the choice of reserve asset impact the performance measure and/or for the quality
of the replication ?

Exhibits R XTH2Z XTI present the values of V; for the HFRI and EDHEC hedge fund
indices. It is quite clear that even without correcting for the well documented biases
in hedge fund indices, the replicating strategies still out-perform a large number of the
hedge fund indices over the entire period as well as over the two sub-periods. In order
to show that the replication strategies are effectively reproducing the statistical pro-
perties of the hedge fund indices, Exhibits 2.T5H2. T9 present the target mean, volatility,
Kendall’s tau, skewness and kurtosis of the indices as well as those for the replication
strategies. It is quite clear that independently of the period that is considered, the vo-
latility and Kendall’s tau are reproduced with great precision. It is important to note
that the only moment that is sensitive to the choice of reserve asset is the return of the
replication strategy - the other moments as well as the dependence coefficient appear
to be insensitive to the choice of reserve asset. Our results clearly indicate that the
reserve asset plays a role in the measure of performance, V|, but it has almost no effect
on the quality of the replication.

In order to further examine the model’s ability to replicate the statistical properties
of the hedge fund indices, Exhibit R XIV] presents the results obtained by regressing
the statistical properties of the replication portfolios against the estimated parameters
of both EDHEC and HFRI indices for the three samples periods. If the replications
were perfect, the slope would then be 1 and the intercept would be 0. As one can see,
the fit is very impressive for both reserve assets. The volatility and dependence mea-

sures (Kendal’s tau and Spearman’s Rho) are perfectly replicated, and the regression
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coefficients for the higher moments, although not perfect, support the model’s ability
to replicate the statistical properties of hedge fund returns.

The final stage of the analysis consists of breaking down the costs and other po-
tential sources of error associated with the dynamic replicating strategy. We quantify
three potential costs/errors associated with our methodology. The first is the tran-
saction costs related to the dynamic trading; the second is the rounding error that
results from not being able to trade fractions of futures contracts; the third, and most
significant, is the profit/loss that is due to the hedging error of the discrete hedging
strategy.

The transaction costs are assumed to be 1 basis point for the sale/purchase of all
futures contracts. Obviously, the amount of trading required to replicate the different
indices can vary substantially. In Exhibit R.XX] we present the average monthly tran-
saction costs (in terms of basis points) incurred for each replicating portfolio over the
whole sample period. Note that the average monthly transaction costs for the replica-
tion strategies is approximately 5 basis points.

The rounding error that results from the inability to buy or sell fractions of futures
contracts depends very much on the size of the replication portfolio and this error tends
to zero as the portfolio increases in size. For a replicating strategy with $100 Million
invested, the average monthly rounding error is approximately 1 basis point.

Finally, we calculate replicating errors, that is the average difference between the
value of the replicating strategy and the value of the hedge fund index. The results are
presented in Exhibits RXXIH2Z.XXITI Note that the average monthly hedging error on

all replications as defined in Equation is around 3 basis points.
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2.7 Conclusion

In this paper, we implement a multivariate extension of [Dybvig (1988) Payoff Dis-

tribution Model that can be used to replicate not only the marginal distribution of
hedge fund returns but also their dependence with other asset classes. In addition to

proposing ways to overcome the hedging and compatibility inconsistencies in Kat and

Palaro (2005) we extend the results of [Schweizen (1995) and adapt American options

pricing techniques to evaluate the model and also derive an optimal dynamic trading
(hedging) strategy. In section we demonstrate the superiority of the hedging al-
gorithm that is used to generate the dynamic replicating strategy. We successfully
replicate the statistical properties of the HFRI and EDHEC indices over the period
from 1997-2006, as well as for two 60 month sub-periods. Even without correcting for
the well-documented biases in hedge fund index returns, the indices can be readily
replicated using this methodology. The volatility and the dependence coefficients are
replicated with great precision; the skewness and kurtosis are also captured by the

model, however with slightly less accuracy.

Contrary to the conclusions put forth by recent studies at EDHEC (Amenc et all,

2007) and Northwater (Simons and Hussey, 2007), the choice of reserve asset does not
impact the model’s ability to replicate the statistical properties of the indices. The
choice of reserve asset only impacts the initial cost of investing in the replicating port-
folio (and hence only impacts the return of the replicating strategy). This is not to say
that the return generated by the model is not important, however it is not a measure of
the model’s success. One must dissociate the technical issues of the replicating metho-
dology (i.e how to best model the returns and solve for the optimal trading strategy)
from the choice of the reserve asset. Our contribution is to provide a robust framework

for the replication methodology, and address the technical shortcomings of the much
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publicized research of Kat and Palaro.

As is the case with any investment strategy, the returns depend on the choice of
assets. The results in this paper indicate, however, that it is not necessary to select
the best performing assets over the sample period in order to replicate and outperform
the hedge fund indices. In fact, we show that by using run-of-the-mill exposures in
our reserve asset we can nonetheless outperform the majority of hedge fund indices.
We purposely selected two reserve assets that have exposures to different yet common
market premia over the sample period, and we find that both reserve assets outperform
a large percentage of the indices. (reserve 1 being the better of the two). We also find
that the EDHEC indices, which are subject to less significant biases, are more easy to
replicate that the HFRI indices. It is important to remember that we are comparing
an investable trading strategy to non-investable indices- the actual return we would
anticipate from investing in a hedge fund index would be considerably lower than the
"non-investable” index returns used in this study. Our results reinforce the notion that

on aggregate, hedge funds are on aggregate simply repackaging beta returns.
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Appendix A : Replication Tables

TABLE 2.VIII — Marginal distribution, copula and Kendall’s tau for entire period (1997
2006).

Fund Marginal ~ Copula  Kendall’s tau
EDHEC-Convertible Arbitrage GM(3) Frank 0.0927
EDHEC-CTA Global GM(2) Gumbel 0.0552
EDHEC-Distressed Securities GM(2) Clayton 0.2311
EDHEC-Emerging Markets Johnson Frank 0.3394
EDHEC-Equity Market Neutral GM(2) Frank 0.2302
EDHEC-Event Driven GM(3) Frank 0.3724
EDHEC-Fixed Income Arbitrage GM(3) Frank 0.0997
EDHEC-Global Macro GM(3) Frank 0.3316
EDHEC-Long/Short Equity GM(2) Student 0.4529
EDHEC-Merger Arbitrage GM(2) Frank 0.2956
EDHEC-Relative Value GM(3)  Gaussian 0.3324
EDHEC-Short Selling GM(2) Frank -0.4636
EDHEC-Funds of Funds GM(4)  Gaussian 0.3536
HFRI Convertible Arbitrage Index GM(3) Frank 0.1048
HFRI Distressed Securities Index GM(3) Clayton 0.2160
HFRI Emerging Markets (Total) Johnson  Student 0.3269
HFRI Equity Hedge Index GM(2) Clayton 0.4530
HFRI Equity Market Neutral Index GM(3) Frank 0.1345
HFRI Equity Non-Hedge Index GM(3) Student 0.4770
HFRI Event-Driven Index GM(3) Clayton 0.3700
HFRI Fixed Income (Total) GM(3) Frank 0.3168
HFRI Fixed Income : Arbitrage Index GM(3) Ind. 0
HFRI Fixed Income : High Yield Index =~ GM(2) Student 0.2036
HFRI FOF : Conservative Index Johnson Frank 0.3021
HFRI FOF : Diversified Index GM(3) Frank 0.2945
HFRI FOF : Market Defensive Index GM(2) Frank 0.1020
HFRI FOF : Strategic Index GM(3) Frank 0.3555
HFRI FOF Composite Index GM(3) Frank 0.3327
HFRI FOF Composite Index (Off.) GM(3) Frank 0.3180
HFRI Fund Weighted Composite Index ~ GM(3) Clayton 0.4403
HFRI Macro Index GM(2) Clayton 0.2364
HFRI Merger Arbitrage Index GM(3) Frank 0.2568
HFRI Regulation D Index GM(3)  Gaussian 0.2210
HFRI Relative Value Arbitrage Index GM(3)  Gaussian 0.2567
HFRI Short Selling Index GM(3) Frank -0.4520
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TABLE 2.IX — Marginal distribution, copula and Kendall’s tau for first sub-period
(1997-2001).

Fund Marginal ~ Copula  Kendall’s tau
EDHEC-Convertible Arbitrage GM(3) Gumbel 0.0777
EDHEC-CTA Global GM(2) Ind. 0
EDHEC-Distressed Securities GM(3) Clayton 0.2309
EDHEC-Emerging Markets GM(3) Frank 0.3241
EDHEC-Equity Market Neutral GM(2)  Gaussian 0.3691
EDHEC-Event Driven Johnson  Clayton 0.3793
EDHEC-Fixed Income Arbitrage GM(3) Frank 0.1268
EDHEC-Global Macro GM(3) Frank 0.4198
EDHEC-Long/Short Equity GM(2) Frank 0.4868
EDHEC-Merger Arbitrage GM(4) Gumbel 0.2951
EDHEC-Relative Value GM(3) Clayton 0.3454
EDHEC-Short Selling GM(2) Frank -0.4695
EDHEC-Funds of Funds GM(2) Frank 0.3934
HFRI Convertible Arbitrage Index GM(3) Frank 0.1011
HFRI Distressed Securities Index GM(3)  Gaussian 0.1939
HFRI Emerging Markets (Total) GM(3) Frank 0.3148
HFRI Equity Hedge Index GM(2) Frank 0.4880
HFRI Equity Market Neutral Index GM(2) Frank 0.1607
HFRI Equity Non-Hedge Index Johnson Frank 0.4962
HFRI Event-Driven Index GM(3) Frank 0.3461
HFRI Fixed Income (Total) GM(3) Frank 0.3078
HFRI Fixed Income : Arbitrage Index GM(3) Ind. 0
HFRI Fixed Income : High Yield Index =~ GM(3) Frank 0.2367
HFRI FOF : Conservative Index GM(3) Frank 0.3310
HFRI FOF : Diversified Index Johnson Frank 0.2915
HFRI FOF : Market Defensive Index GM(3) Frank 0.1257
HFRI FOF : Strategic Index GM(3) Frank 0.3600
HFRI FOF Composite Index GM(2) Frank 0.3427
HFRI FOF Composite Index (Off.) GM(2) Frank 0.3276
HFRI Fund Weighted Composite Index ~— GM(3) Frank 0.4567
HFRI Macro Index GM(2) Clayton 0.2975
HFRI Merger Arbitrage Index Johnson  Gumbel 0.2285
HFRI Regulation D Index GM Gaussian 0.2736

(3)
HFRI Relative Value Arbitrage Index GM(3) Frank 0.2705
HFRI Short Selling Index GM(2) Frank -0.4402
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TABLE 2.X — Marginal distribution, copula and Kendall’s tau for second sub-period
(2002-2006).

Fund Marginal ~ Copula  Kendall’s tau
EDHEC-Convertible Arbitrage GM(3)  Gaussian 0.0885
EDHEC-CTA Global GM(2) Frank 0.0743
EDHEC-Distressed Securities GM(2)  Gaussian 0.2224
EDHEC-Emerging Markets GM(3) Frank 0.2710
EDHEC-Equity Market Neutral Johnson Frank 0.0896
EDHEC-Event Driven Johnson  Gaussian 0.3052
EDHEC-Fixed Income Arbitrage GM(3) Ind. 0
EDHEC-Global Macro GM(2)  Gaussian 0.1987
EDHEC-Long/Short Equity GM(2) Clayton 0.3377
EDHEC-Merger Arbitrage GM(3) Clayton 0.3126
EDHEC-Relative Value GM(2) Clayton 0.2973
EDHEC-Short Selling GM(2) Frank -0.4266
EDHEC-Funds of Funds Johnson  Clayton 0.2470
HFRI Convertible Arbitrage Index GM(3) Gumbel 0.0743
HFRI Distressed Securities Index GM(2) Clayton 0.2109
HFRI Emerging Markets (Total) GM(3) Frank 0.2797
HFRI Equity Hedge Index GM(3) Frank 0.2993
HFRI Equity Market Neutral Index GM(2) Frank 0.0874
HFRI Equity Non-Hedge Index GM(2) Frank 0.3687
HFRI Event-Driven Index GM(3)  Gaussian 0.3377
HFRI Fixed Income (Total) GM(3)  Gaussian 0.2303
HFRI Fixed Income : Arbitrage Index GM(3) Ind. 0
HFRI Fixed Income : High Yield Index =~ GM(2) Gumbel 0.1311
HFRI FOF : Conservative Index GM(2) Frank 0.2164
HFRI FOF : Diversified Index GM(2) Clayton 0.2437
HFRI FOF : Market Defensive Index GM(2) Frank 0.0831
HFRI FOF : Strategic Index GM(3) Clayton 0.2885
HFRI FOF Composite Index GM(2) Clayton 0.2383
HFRI FOF Composite Index (Off.) GM(2) Clayton 0.2164
HFRI Fund Weighted Composite Index ~— GM(2) Frank 0.3243
HFRI Macro Index GM(2) Gumbel 0.0787
HFRI Merger Arbitrage Index GM(2) Clayton 0.2984
HFRI Regulation D Index Johnson  Clayton 0.1552

HFRI Relative Value Arbitrage Index GM(2) Clayton 0.2328
HFRI Short Selling Index GM(2) Frank -0.4319
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TABLE 2.XI — Initial investment Vj in the replication of EDHEC and HFRI indices for
both reserve assets over the entire period (1997-2006).

Fund

Reserve 1

Vo

Reserve 2

EDHEC-Convertible Arbitrage
EDHEC-CTA Global
EDHEC-Distressed Securities
EDHEC-Emerging Markets
EDHEC-Equity Market Neutral
EDHEC-Event Driven
EDHEC-Fixed Income Arbitrage
EDHEC-Global Macro
EDHEC-Long/Short Equity
EDHEC-Merger Arbitrage

99.88746927
99.22395238
100.0433158
99.20994993
100.0923959
99.99904541
99.68524183
99.83012861
99.91948345
99.94738788

100.3546058
100.2822217
100.5343205
100.5118262
100.3305248
100.5027729
100.0620038
100.4453958
100.5253251
100.3347095

EDHEC-Relative Value 100.044295  100.3582369
EDHEC-Short Selling 97.91881695  99.96879961
EDHEC-Funds of Funds 99.88679097  100.4167799
Percentage of Vo under 100$ 76.92% 7.69%

HFRI Convertible Arbitrage Index 99.9104685  100.321649
HFRI Distressed Securities Index 99.9100765  100.446987
HFRI Emerging Markets (Total) 99.1617091  100.497154
HFRI Equity Hedge Index 99.760536 100.537810
HFRI Equity Market Neutral Index 99.8160615  100.178244
HFRI Equity Non-Hedge Index 99.2694693  100.529065
HFRI Event-Driven Index 99.8678282 100.443743
HFRI Fixed Income (Total) 99.8533463  100.180401
HFRI Fixed Income : Arbitrage Index 99.4744962  99.9612590
HFRI Fixed Income : High Yield Index  99.4606113  100.118320
HFRI FOF : Conservative Index 99.8019766  100.171418
HFRI FOF : Diversified Index 99.5428340  100.224120
HFRI FOF : Market Defensive Index 99.6295097  100.290348
HFRI FOF : Strategic Index 99.3496291  100.310468
HFRI FOF Composite Index 99.6186407  100.240115
HFRI FOF Composite Index (Off.) 99.4353982  100.150926
HFRI Fund Weighted Composite Index  99.7328707  100.309632
HFRI Macro Index 99.6917718  100.369990
HFRI Merger Arbitrage Index 99.8584340  100.285088
HFRI Regulation D Index 99.9386375  100.681884
HFRI Relative Value Arbitrage Index 100.055301 100.346992
HFRI Short Selling Index 97.5229297  99.8979799
Percentage of Vo under 100$ 95.45% 9.09%
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TABLE 2.XII — Initial investment Vj in the replication of EDHEC and HFRI indices
for both reserve assets for first sub-period (1997-2001).

Fund Vo
Reserve 1 Reserve 2
EDHEC-Convertible Arbitrage 100.2944853  100.8987467
EDHEC-CTA Global 99.46788172 100.9472588

EDHEC-Distressed Securities
EDHEC-Emerging Markets
EDHEC-Equity Market Neutral

99.90059626
98.69192451
100.3954179

100.720508
100.9835661
100.7210641

EDHEC-Event Driven 100.0609365  100.868357
EDHEC-Fixed Income Arbitrage 99.59077798  100.2017969
EDHEC-Global Macro 99.97142407  100.979203
EDHEC-Long/Short Equity 100.1375749  101.127196

EDHEC-Merger Arbitrage
EDHEC-Relative Value
EDHEC-Short Selling
EDHEC-Funds of Funds

100.2331299
100.2203665
99.03421453
99.96160577

100.7861365
100.6965085
102.1095181
100.9516279

Percentage of Vy under 100$

53.84%

0.00%

HFRI Convertible Arbitrage Index
HFRI Distressed Securities Index
HFRI Emerging Markets (Total)
HFRI Equity Hedge Index

HFRI Equity Market Neutral Index
HFRI Equity Non-Hedge Index

HFRI Event-Driven Index

HFRI Fixed Income (Total)

HFRI Fixed Income : Arbitrage Index
HFRI Fixed Income : High Yield Index
HFRI FOF : Conservative Index
HFRI FOF : Diversified Index

HFRI FOF : Market Defensive Index
HFRI FOF : Strategic Index

HFRI FOF Composite Index

HFRI FOF Composite Index (Off.)
HFRI Fund Weighted Composite Index
HFRI Macro Index

HFRI Merger Arbitrage Index

HFRI Regulation D Index

HFRI Relative Value Arbitrage Index
HFRI Short Selling Index

100.2829484
99.72936197
98.09524276
100.056951
100.038409
99.05531596
99.97242706
99.75412401
99.3254573
99.31890751
99.86644524
99.52279888
99.80508973
99.28992499
99.60846434
99.36188049
99.75155852
99.76812518
100.1469401
100.5815208
100.1412334
98.51962283

100.8055676
100.6646377
100.9525596
101.5042088
100.6734399
101.2392224
100.980233
100.3504572
100.0324407
100.1544936
100.4768867
100.9361689
100.7630553
100.9862717
100.7634087
100.7094413
100.9238131
100.8842713
100.7111258
101.5412257
100.6153432
100.8070637

Percentage of Vy under 100$

72.72%

0.00%
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TABLE 2.XIIT — Initial investment V{ in the replication of EDHEC and HFRI indices
for both reserve assets for second sub-period (2002-2006).

Fund

Reserve 1

Vo

Reserve 2

EDHEC-Convertible Arbitrage
EDHEC-CTA Global
EDHEC-Distressed Securities
EDHEC-Emerging Markets
EDHEC-Equity Market Neutral
EDHEC-Event Driven
EDHEC-Fixed Income Arbitrage
EDHEC-Global Macro
EDHEC-Long/Short Equity
EDHEC-Merger Arbitrage
EDHEC-Relative Value
EDHEC-Short Selling
EDHEC-Funds of Funds

99.54307232
99.00591261
100.2752537
100.0757102
99.85680498
99.87363087
99.88868645
99.84474995
99.60337666
99.70200103
99.81967336
98.05685558
99.74332198

99.91754606
99.85286557
100.645535
100.4515871
99.99383759
100.3162115
100.0907229
100.2384539
100.1087833
99.99705359
100.109444
99.04396197
100.0559835

Percentage of Vy under 100$

84.62%

38.46%

HFRI Convertible Arbitrage Index
HFRI Distressed Securities Index
HFRI Emerging Markets (Total)
HFRI Equity Hedge Index

HFRI Equity Market Neutral Index
HFRI Equity Non-Hedge Index

HFRI Event-Driven Index

HFRI Fixed Income (Total)

HFRI Fixed Income : Arbitrage Index
HFRI Fixed Income : High Yield Index
HFRI FOF : Conservative Index
HFRI FOF : Diversified Index

HFRI FOF : Market Defensive Index
HFRI FOF : Strategic Index

HFRI FOF Composite Index

HFRI FOF Composite Index (Off.)
HFRI Fund Weighted Composite Index
HFRI Macro Index

HFRI Merger Arbitrage Index

HFRI Regulation D Index

HFRI Relative Value Arbitrage Index
HFRI Short Selling Index

99.60821174
100.2391759
100.0572944
99.58364075
99.66759956
99.37314042
99.80612072
99.95688427
100.0072767
100.0771647
99.82149692
99.7547993
99.56207483
99.62610152
99.73892366
99.68519975
99.78329249
99.73199639
99.66510204
99.47794411
99.94588108
98.37750341

99.93483497
100.6380069
100.8595669
100.014334
99.85722405
100.2792862
100.3402519
100.1391919
100.1695353
100.3417642
100.0377755
100.0216789
99.97381601
99.96801828
100.0563079
100.0475484
100.2000232
100.3030235
100.0050475
100.3049513
100.1510614
99.15058551

Percentage of Vy under 100$

81.81%

22.73%
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TABLE 2.XIV — Regression of EDHEC and HFRI indices returns with the replication
returns (for reserve assets 1-2) for the following target parameters : volatility, skewness,
robust skewness, kurtosis, robust kurtosis, Kendall’s tau and Pearson’s rho.

Period : (1997—-2006) Reserve 1 Reserve 2
Target Intercept Slope R%(%) Intercept Slope R%(%)
Volatility 0.000624738 0.997485421  99.38  0.000132117 1.034882095  99.38
Skewness -1.21833672  1.135438624  63.48 -0.660897414 1.017065756  78.82
Robust Skew 0.005285212 0.591422785  38.74 0.049971694  0.845539485  68.79
Kurtosis 1.427089662 1.320048662  26.05 1.738641971  1.116543294  79.34
Robust Kurt 2.057766094  0.48321167  36.19  1.800169291 0.491547026  34.31
Kendall’s Tau 0.040820382  1.009779392  98.80  0.034979443  1.024409652  99.36
Pearson’s Rho 0.031939885 1.046644073 95.80  0.030103056  1.064383569  96.32
Period : (1997-2001) Reserve 1 Reserve 2
Target Intercept Slope R*(%) Intercept Slope R?(%)
Volatility 0.000246245 0.999597258  98.15  0.000303651 1.026011825  98.27
Skewness -0.58025733 0.917232282  32.10  -0.86585092 1.542889847  65.17
Robust Skew 0.044192227 0.916761936  56.14  -0.00965482  0.729453739  54.08
Kurtosis 5.581125649 0.675401646  15.27  2.081736175 1.733323643  20.62
Robust Kurt -0.85346256 1.451214328 67.35  -0.58104505 1.267471264  63.20
Kendall’s Tau 0.0254162 1.019450292  98.52  0.020171502 1.016297547  99.18
Pearson’s Rho 0.056163582  1.022429795 91.53  0.021180004  1.06516375 94.76
Period : (2002-2006) Reserve 1 Reserve 2
Target Intercept Slope R*(%) Intercept Slope R?(%)
Volatility -0.00015482  0.987878677  99.84  0.000145601 0.984626992  99.59
Skewness -0.07264573  1.035201227  83.03  0.045240922 1.104989802  80.44
Robust Skew 0.004977508 0.816341527  53.79  0.068954198 1.033664472  61.45
Kurtosis 1.26397635  0.768109088  35.44  0.536774019 0.93664374  67.14
Robust Kurt 1.471815049 0.540835024  45.90  1.421018259 0.566191474  26.63
Kendall’s Tau -0.00043248 1.069855948 98.96  0.019777659 1.034958883  98.97
Pearson’s Rho 0.059853575 1.027479829  91.93  0.119157269 1.054127939  91.77
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FIGURE 2.15 — Mean return of replication for both reserve assets vs mean return for
EDHEC (top) and HFRI (bottom) indices (2002-2006)
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FIGURE 2.16 — Volatility of the replication with each reserve asset vs target volatility

for EDHEC (top) and HFRI (bottom) indices (2002-2006)
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FiGURE 2.17 — Kendall’s tau of the replication with each reserve asset vs target Ken-

dall’s tau for EDHEC (top) and HFRI (bottom) indices (2002-2006)
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FIGURE 2.18 — Skewness of the replication with each reserve asset vs target skewness

for EDHEC (top) and HFRI (bottom) indices (2002-2006)
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F1GURE 2.19 — Kurtosis of the replication with each reserve asset vs target kurtosis for

EDHEC (top) and HFRI (bottom) indices (2002-2006)
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TABLE 2.XX — Transaction costs (basis points) of the EDHEC and HFRI indices for
each of two reserve assets over the entire period (1997-2006).

Fund Transaction costs
Reserve 1 Reserve 2
EDHEC-Convertible Arbitrage -3.5760 -2.6937
EDHEC-CTA Global -5.1209 -3.6392
EDHEC-Distressed Securities -3.1461 -2.9916
EDHEC-Emerging Markets -10.436 -8.5692
EDHEC-Equity Market Neutral -1.1785 -1.2782
EDHEC-Event Driven -4.9894 -3.7833
EDHEC-Fixed Income Arbitrage -5.6955 -3.5177
EDHEC-Global Macro -3.1539 -3.5487
EDHEC-Long/Short Equity -3.5405 -3.5815
EDHEC-Merger Arbitrage -3.5994 -2.7794
EDHEC-Relative Value -2.1994 -1.8390
EDHEC-Short Selling -14.472 -12.690
EDHEC-Funds of Funds -2.5685 -2.7680
Average of the transaction costs over the indices — -4.8982 -4.1292
HFRI Convertible Arbitrage Index -2.9748 -2.3503
HFRI Distressed Securities Index -3.7409 -3.1175
HFRI Emerging Markets (Total) -10.409 -11.231
HFRI Equity Hedge Index -5.2928 -5.5529
HFRI Equity Market Neutral Index -1.9814 -1.8804
HFRI Equity Non-Hedge Index -7.6039 -7.7172
HFRI Event-Driven Index -3.7228 -3.3989
HFRI Fixed Income (Total) -2.8376 -2.2500
HFRI Fixed Income : Arbitrage Index -6.1764 -4.3318
HFRI Fixed Income : High Yield Index -6.4438 -3.6841
HFRI FOF : Conservative Index -2.4110 -2.1042
HFRI FOF : Diversified Index -4.7314 -4.0279
HFRI FOF : Market Defensive Index -3.6750 -2.8050
HFRI FOF : Strategic Index -6.2475 -6.1420
HFRI FOF Composite Index -3.7260 -3.9430
HFRI FOF Composite Index (Off.) -4.6198 -4.6972
HFRI Fund Weighted Composite Index -4.2733 -4.2082
HFRI Macro Index -3.3393 -3.5459
HFRI Merger Arbitrage Index -3.9681 -2.8237
HFRI Regulation D Index -3.5011 -3.7099
HFRI Relative Value Arbitrage Index -2.4469 -1.7284
HFRI Short Selling Index -19.302 -17.595

Average of the transaction costs over the indices — -5.1557 -4.6747
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TABLE 2.XXI — Hedging errors (basis per points) of the EDHEC and HFRI indices for
each of two reserve assets over the entire period (1997-2006).

Fund

Hedging error

Reserve 1

Reserve 2

EDHEC-Convertible Arbitrage
EDHEC-CTA Global
EDHEC-Distressed Securities
EDHEC-Emerging Markets
EDHEC-Equity Market Neutral
EDHEC-Event Driven
EDHEC-Fixed Income Arbitrage
EDHEC-Global Macro
EDHEC-Long/Short Equity
EDHEC-Merger Arbitrage
EDHEC-Relative Value
EDHEC-Short Selling
EDHEC-Funds of Funds

-5.022966343
-8.058744042
4.124754378
-11.21163859
-1.471590683
-3.020763751
-5.177575949
-4.053867497
4.47809413
-3.442046302
-1.10554998
-24.29013217
2.033494462

2.689724779
5.645421806
19.47155871
13.259774
1.56198415
6.22406221
3.189905767
4.395207
3.734220311
2.242736202
2.836227619
18.8506452
8.749446216

Average of the hedging errors over the indices

-4.324502488

7.142377997

HFRI Convertible Arbitrage Index
HFRI Distressed Securities Index
HFRI Emerging Markets (Total)
HFRI Equity Hedge Index

HFRI Equity Market Neutral Index
HFRI Equity Non-Hedge Index

HFRI Event-Driven Index

HFRI Fixed Income (Total)

HFRI Fixed Income : Arbitrage Index
HFRI Fixed Income : High Yield Index
HFRI FOF : Conservative Index
HFRI FOF : Diversified Index

HFRI FOF : Market Defensive Index
HFRI FOF : Strategic Index

HFRI FOF Composite Index

HFRI FOF Composite Index (Off.)
HFRI Fund Weighted Composite Index
HFRI Macro Index

HFRI Merger Arbitrage Index

HFRI Regulation D Index

HFRI Relative Value Arbitrage Index
HFRI Short Selling Index

-4.675913708
3.722398591
7.097564556

-1.643622346

-2.258515275
7.453328183
2.862294451

-2.603139406

-4.087640896
2.638073684

-2.598299696

-5.7248332
-7.19063663

-8.584197214

-4.800243375

-7.540482923
2.244013529

-2.491140954

-3.635490602

-4.354249204

-1.757126584

-30.41350326

2.609102503
16.58984332
12.66959323
11.19037495
2.472596466
4.603254198
12.29110626
2.402853856
4.977681096
2.387582196
2.863947585
-2.263005293
3.850690389
7.510126485
3.856993799
5.850515308
15.42135204
7.274298256
2.457954561
3.999422953
4.245628798
21.98728382

Average of the hedging errors over the indices

-3.106425558

6.989782153
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TABLE 2.XXII — Hedging errors (basis per points) of the EDHEC and HFRI indices
for each of two reserve assets over the first sub-period (1997-2001).

Fund Hedging error
Reserve 1 Reserve 2
EDHEC-Convertible Arbitrage -5.854414114  7.331726159

EDHEC-CTA Global
EDHEC-Distressed Securities
EDHEC-Emerging Markets
EDHEC-Equity Market Neutral
EDHEC-Event Driven
EDHEC-Fixed Income Arbitrage
EDHEC-Global Macro
EDHEC-Long/Short Equity
EDHEC-Merger Arbitrage
EDHEC-Relative Value

-3.261304874
-10.63141111
-41.58467617
0.216747837
5.530304616
-10.48685482
-1.950399253
-5.472302407
-7.268360093
12.74567524

15.48344278
18.21688996
10.40839934
4.117171088
15.02572238
12.72732957
10.81371999
8.63029379
9.778517204
8.974747668

EDHEC-Short Selling 9.60796941 55.3754198
EDHEC-Funds of Funds -12.45957574  9.552013774
Average of the hedging errors over the indices — -5.4514308 14.34118411
HFRI Convertible Arbitrage Index -4.443351952  3.162705469

HFRI Distressed Securities Index
HFRI Emerging Markets (Total)
HFRI Equity Hedge Index

HFRI Equity Market Neutral Index
HFRI Equity Non-Hedge Index

HFRI Event-Driven Index

HFRI Fixed Income (Total)

HFRI Fixed Income : Arbitrage Index
HFRI Fixed Income : High Yield Index
HFRI FOF : Conservative Index
HFRI FOF : Diversified Index

HFRI FOF : Market Defensive Index
HFRI FOF : Strategic Index

HFRI FOF Composite Index

HFRI FOF Composite Index (Off.)
HFRI Fund Weighted Composite Index
HFRI Macro Index

HFRI Merger Arbitrage Index

HFRI Regulation D Index

HFRI Relative Value Arbitrage Index
HFRI Short Selling Index

-9.790346341
-35.23487925
-15.50411415
-3.470329903
-23.74524481
-14.22269812
-8.573296126
-4.419486285
-11.13974405
-0.431323396
-35.19300862
-10.3549352
-12.24470309
-7.634859635
-9.434687073
-24.92998374
3.853207823
-3.887143693
-2.431374814
-12.36688683
-11.04287744

17.16305189
15.15013559
10.73944888
4.313327157
12.04989301
2.919363113
5.631050796
7.911636813
8.52434995
5.769353502
10.4684057
11.11226975
11.52847099
9.191341753
11.45793373
8.097748863
15.60074834
5.073019858
13.42772207
-0.033279555
4.216592611

Average of the hedging errors over the indices

-11.66554849

8.794331377
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TABLE 2.XXIII — Hedging errors (basis per points) of the EDHEC and HFRI indices
for each of two reserve assets over the second sub-period (2002-2006).

Fund Hedging error

Reserve 1

Reserve 2

EDHEC-Convertible Arbitrage
EDHEC-CTA Global
EDHEC-Distressed Securities
EDHEC-Emerging Markets
EDHEC-Equity Market Neutral
EDHEC-Event Driven
EDHEC-Fixed Income Arbitrage
EDHEC-Global Macro
EDHEC-Long/Short Equity
EDHEC-Merger Arbitrage
EDHEC-Relative Value
EDHEC-Short Selling
EDHEC-Funds of Funds

-0.216644211
-6.582901453
-1.016305328
-10.13043018
-1.061827125
6.84618159
-0.469146864
-0.423280278
-4.781157282
2.432702745
1.392743596
8.422391583
-0.055444422

14.71418971
36.52509979
13.72616412
31.53349596
5.534718588
12.12860342
9.667485841
15.97182143
11.93987295
11.46724918
6.816342792
44.59416583
12.87295253

Average of the hedging errors over the indices

-0.434085972

17.49939709

HFRI Convertible Arbitrage Index
HFRI Distressed Securities Index
HFRI Emerging Markets (Total)
HFRI Equity Hedge Index

HFRI Equity Market Neutral Index
HFRI Equity Non-Hedge Index

HFRI Event-Driven Index

HFRI Fixed Income (Total)

HFRI Fixed Income : Arbitrage Index
HFRI Fixed Income : High Yield Index
HFRI FOF : Conservative Index
HFRI FOF : Diversified Index

HFRI FOF : Market Defensive Index
HFRI FOF : Strategic Index

HFRI FOF Composite Index

HFRI FOF Composite Index (Off.)
HFRI Fund Weighted Composite Index
HFRI Macro Index

HFRI Merger Arbitrage Index

HFRI Regulation D Index

HFRI Relative Value Arbitrage Index
HFRI Short Selling Index

0.262326757
0.409148738
-9.733473043
-7.44974449
-0.864838511
-12.1917044

2.282364634

0.028468682
-0.000830608
0.197970856
-3.168935239
-0.756117028
-4.356542614
-5.764923859
-0.639004576
-0.945047981
-4.808300645
1.031221433

2.456653636

0.291293742

0.400473588

7.951857962

12.38729712
14.75409472
18.61313588
20.13641716
7.778622358
22.30909531
16.12105281
4.514146651
8.164211829
10.94636336
6.353466396
12.47152293
12.3839458
19.62428265
8.640850198
9.668544712
13.62398725
30.93949304
12.85418557
28.74394205
7.062009818
38.58089671

Average of the hedging errors over the indices

-1.607621953

15.30325292
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Appendix B : Some properties of mixtures of biva-
riate Gaussian variables

One property that is quite important in our setting is the fact that a sum of inde-
pendent Gaussian mixtures is still a Gaussian mixture. In fact, if Xy,..., X,, are inde-
pendent and identically Gaussian mixtures with parameter 6, then X = X; +---+ X,

is also a Gaussian mixture. To describe the associated parameters, let
A={a=(ay,...,an);a; >0and ay + ...+ o, = n}.

Then card(A) = (":1":1) so there are (":1"_"”;1) regimes. The parameters of the mixture

are (o) acds (Ha)acas (Aa)aca, where for each o € A, 7, is the multinomial probability

| m
(€3 (a1, ,am) 051! .. am! Pt k

and the mean vectors i, and covariances A, are respectively given by

P = Zakuk, Ay = Z apAg.
k=1 J=1

Remark 2.7.1 If n is moderately large, then m™ is huge and it is computationally
impossible to calculate the new parameters. In fact, most probabilities could be very
small so in fact, the sum could be a mizture of fewer terms. Therefore, one has to
estimate again the joint law of <R(()T¢)p, Rfﬁ%) by a Gaussian mizture, using the monthly
returns this time. As a result, the marginal distributions Fy and Fy are (univariate)

Gaussian miztures and Cy o is the copula deduced from the bivariate Gaussian mizture.

Finally, consider the conditional distribution of a bivariate Gaussian mixture X =
(XMW X32), Set B, = prot2 and ap = pr2 — PBrpirr, k= 1,...,m. Then it is easy to

check that the conditional distribution of X given X" = 2, is a Gaussian mixture

with parameters {7 (1) ;L , {fix(21) }ily, {07}iLy, where

Te(r1) = ZZM(II;MMJ%) (2.7)

j=1 71'j¢(551§ Hj1s 0']2‘1)



and

fu(21) = o, + Bray,
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(2.8)
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Appendix C : Estimation and goodness-of-fit

In this section, we describe the estimation procedure and the goodness-of-fit tests.

C.1 : EM algorithm for bivariate Gaussian mixtures

Let y1,...,y, be a random sample from a bivariate Gaussian mixture with para-
meters m = ()7, 4 = (uz)7, and A = (Ag)7,. Start with an initial estimator 6(*)
Given an estimator ) = (77(5), o, A(Z)) of the parameters 0 = (7, u, A), set

¢ 0 4
. 7r,(g ), (yi;/*l’](g)7Al(g)>
me (4 69) = 0 o oy b
Zj:l ;i P2 (yi;/J“j 7Aj >
and define the new estimator ¢+ = (7 (1) (D AED) vig,
Y Zm yi,09),
o zym (189 i,
and
1 < T
0+1 041 041 0+1
A =23 (5= ) (= ) e (0 /i,
i=1
for k = 1,...,m. As { increases, the numbers {7 (y,.,9<’f>) k=1,...,i=1,...,n}

stabilize and the estimators converge.

C.2 : Tests of goodness-of-fit

Testing goodness-of-fit is an essential step for modelling data. There are many tests

available but to our knowledge. the best

nes are based on empirical processes (Genest

and Rémillard, 2005, (Genest et all, 2009

)

the so-called Rosenblatt‘s transform. The first one is due to

). Here, we only consider two tests based on

Durbin (1973) but the

calculation of P-values is recent

Stute et all,

1993). For the second test designed for
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testing goodness-of-fit for bivariate data, the validity of the algorithm for calculating

P-values follows from |Genest and Rémillard (2005).

C.3 : Tests of goodness-of-fit for a univariate parametric distribution
Let Xi,..., X, be a sample of size n from a (continuous) distribution F' on R.

Suppose that the hypotheses to be tested are

Ho: F e F={F0c0O} Vs Hi: F¢&F

For example, the parametric family F could be the family of univariate Gaussian

mixtures with m regimes.

The proposed test statistic is based on [Durbin (1973). Let 0, = T,,(X;, ..., X,) be

a regular estimator of 6, in the sense of |Genest and Rémillard (2005) and set

D, (u) = %ZH:H(UZ- <wu), wel0,1],

where U; = Fy, (X;), 1 =1,...,n. To test Hy against H;, one may use the Cramér-von

Mises type statistic

1

0
1o (U2 + U2 —2max(U;, U)) 1
-y "

i=1 j=1

Since the U;’s are “almost uniformly distributed on [0, 1]” under the null hypothesis,
large values of S,, should lead to rejection of the null hypothesis. However, in general
the limiting distribution of S,, depend on the unknown parameter 6. To calculate the
P-value of S,,, one can use a parametric bootstrap approach as described below.
a) Calculate 6, and S,.
b) For some large integer N (say 1000), repeat the following steps for every k €
{1,...,N}:



o4

(i) Generate a random sample X 4, ..., X, from distribution Fjp, .

(ii) Calculate

Ui,k) = Fen,k(XZ7k)’ Z = 1’ . ’n’
1 & U2+ U2, — 2max(Ui, Ujp) 1
Snr = — i 7, ; ; e
ok n§:§ ,{ 5 +3

i=1 j=1

An approximate P-value for the test based on the Cramér—von Mises statistic S, is

then given by

Mz

1
N k>S

k=1

C.4 : Tests of goodness-of-fit for a bivariate parametric distribution
Let (X1,Y1)...,(X,,Y,) be a sample of size n from a (continuous) distribution F

on R?. Suppose that the hypotheses to be tested are
Ho: F e F={F0c0O} Vs Hi: F¢&F

For example, the parametric family F could be the family of bivariate Gaussian mix-
tures with m regimes. Denote by Gy the distribution function of X; and let Hy be the

conditional distribution function of Y; given X, i.e., Hy(z,y) = P(Y; < y|X; = z).

The proposed test statistic is based on [Durbin (1973) and the Rosenblatt’s trans-

form (Rosenblatt), [1952).

Suppose that 0, = T,,(X;, Y1, ..., X,,Y,) is a regular estimator of ¢, in the sense of

Genest. and Rémillard (2005) and set

where U; = Gy, (X;), Vi = Hp, (X;,Y:), i = 1,...,n. To test Hy against H;, one may
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use the Cramér-von Mises type statistic

1
S, = n/ /{Dn(u,v)—uv}zdudv
o Jo

R N 9
D9 M FEE R CE A RE R A e

i=1 j=1

+{1 — max(U;, U;) H1 — max(V, Vj)}].

27 yunder the null

Since the pairs (U;, V;)’s are “almost uniformly distributed on [0, 1]
hypothesis, large values of S, should lead to rejection of the null hypothesis. However,
in general the limiting distribution of S,, depend on the unknown parameter 6. To
calculate the P-value of S),, one can use a parametric bootstrap approach as described
below.
a) Calculate 6,, and S,.
b) For some large integer N (say 1000), repeat the following steps for every k €
{1,...,N}:
(i) Generate a random sample (X, Y1x), ..., (Xpk, Yoi) from distribution Fjp, .

(ii) Calculate

*
nk T Tn (Xl,ka m,ka e 7Xn,ka Yn,k) )

U = Go, (Xix), Vie=Ho,, (Xig,Yir), i=1,...,n

5 3 DRI - VA) - 30 - U200 - V)

n n

1
Sn,k = E Z

=1 j=

+{1 — max(U, x, Uj x) H{1 — max(V s, ng)}]

An approximate P-value for the test based on the Cramér—von Mises statistic S, is

then given by

1 N
— nk > Sn)
N; b
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Appendix D : Implementation of the dynamic tra-
ding strategy

Before describing the algorithm, it is important to define what is meant by a par-
tition. Here we assume that S; = w;(Si-1,&), & ~ ¢ being independent of F; i,

t=1,...,T.

Definition 2.7.1 A partition P of a compact convexr set K, is any finite set P =
{S1, ..., S} of simplexes with disjoint non empty interiors, so that K = U;nzl S;. The

set of vertices of the partition P is denoted by V(P).

Note that K is then the convex hull generated by V(P).

The algorithm is based on Monte Carlo simulations, combined with a sequence of
approximations on compact sets Ky, ..., Kr_1, determined by partitions Py, ..., Pr_;.
The idea behind the algorithm is quite simple : Given approximations ft, of f;, one
first get f)lt,f;2t,At,At, Ut and ft_l, by estimating these functions at every vertices
x € V(P,_1), using Monte Carlo simulations, and then, one uses a linear interpolation
to extend them at any point z € K, ;. More precisely, one may proceed through the

following steps.

D.1 : Algorithm

~ Set fr = fr;
— Foreacht=1T,...,1

— Generate &4, ..., &N, according to iy ;



— For every s € V(P,_1), calculate

Ny

A 1

Ly(s) = EE wi (s, i)
=1

Al(s) = Loy(s) — Lyy(s)Lu(s)"

N
Loy(s) = Nizwt(&&,t)wt(&fi,tf
bz

Ut(& ) = 1— {ﬁlt(s) - 5t—15/5t}TAt(5)_1{93 - ﬁlt(s)}

N

Gy 1

) = 5o

1

Z ﬁt{s, Wt(sa gi,t)}ft{wt(sv &,t)}-
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Bl) = Al D el ) — Lad)) il 60}

— Interpolate linearly At and ,]Et—l over K;_; and extend it to all of X.

A detailed description of the linear interpolation implementation techniques is given

below, but first, the following result adapted from

that the algorithm produces good approximations.

Del Moral et al.

2006

), confirms

Theorem 2 Suppose that fr is continuous and that for all 1 < t < T, w(-,&) are

continuous for a fived €. Let Ko be a given compact convex subset of X. Let € > 0 be

giwven. Then one can find compact conver sets K1, . ..

generating respectively Ky, ..., K,_1, and integers N, . ..

interpolation method,

nax Hd}t - I;tHthl <€,

1<k<n

and

max 1 Hft - ftHKt <,

0<k<n—

whenever N7 > Nyg, ..., N, > Nyo.

, K1 C X, partitions Py, . .. Pn_1

, Nyo, so that for the simple
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D.2 : Linear interpolations

Definition 2.7.2 Given a function h and a partition P of K, a linear interpolation
of h over P is the (unique) function § defined in the following way :

If S € P is a simplex with vertices x1,...,xqy1, then set

d+1

hz) = Z Nih(;),

where the barycenters {1, ..., A\ay1} are the unique solution of

d+1 d+1

r=Y Na, > N=1 Ne[01i=1. d+1
=1 =1

If o & K, let z be the (unique) closest point to x that belongs to K, and set h(z) =

h(zk). Uniqueness follows from the convezity of K and the strict convexity of the

Fuclidean norm.

Remark 2.7.2 Note that since each x; is extreme in S, the unique solution of

d+1 d+1
LUZ‘:ZAJ‘SL’J', Z)\jzl, AJE[O,l],jzl,d—Fl,
j=1 j=1
is \i =1 and \; = 0 for all j # i, yielding §(x;) = g(x;) for all 1 < i < m. Moreover,
g 1s affine on each simplex, justifying the term “linear interpolation”.

Finally, g is continuous and bounded on X and

23}}3 |g(l’) - §(55)| S w(g, Ka meSh(P))a

where

mesh(P) = max sup ||x — z
(P) = sup x|

and w(g, K, ) is the modulus of continuity of g over K, i.e.

wlg, K, 0) = sup  |g(x) —g(2)].
z,2€K, ||lz—2||<6
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Example 2.7.1 Suppose d = 1. Then the linear interpolation § of a monotone (res-
pectively convex) function g on K = [a,b] is monotone (respectively convezx). To see
that, set a; = a +i(b—a)/m, i = 0,...,m and let P be the partition given by
P = {lai—1,a;];i = 1,...,m}. Set A; = %, 1 < i < m. Then the linear

interpolation of g over K is given by

) h(a), z <a,
h(z) =< h(a;) + (x — a;) A1, = € [az,ai44], i =0,...,m—1,
h(b) x> b,

If h is monotone, the slopes A; all have the same sign, so h has the same monotonicity.

If h is convex, the slopes A; are non decreasing, so h is also convex.

Example 2.7.2 Suppose d = 2. First define interpolation on [0,1]2. Suppose that h is
known at points (0,0), (0,1), (1,0) and (1,1). If one wants to linearly interpolate h, as
in Definition [2.7.3, a convenient choice for the partition P of [0,1]* is P = {S}, S5}

where
Sp={(z1,22) € [0,1)% 21 <o} 1= {(1,29) €[0,1)% 21 > 5}
Any x € Sy can be uniquely written as
x=A1(0,1)+ X\a(1,1) + A3(0,0),
with Ao = x1, \{ = 19 — 1, and \3 = 1 — x5, so one can define

h(z) = Mh(0,1) 4 Xh(1,1) + Ash(0,0)

= h(0,0)+x1{h(1,1) — A(0,1)} + z2{R(0,1) — h(0,0)}.
Similarly, for any x € So, one obtains

h(z) = Mh(0,1) 4+ Aoh(1,1) + Ash(0,0)

= h(0,0) + 21 {h(1,0) — h(0,0)} + zo{h(1,1) — A(1,0)}.
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Suppose now that K = [ay,b] X [ag, bs] is partition into smaller rectangles. On
each of these sub-rectangles R = [y1,ya] X [21, 22], just use the linear interpolation

on [0,1]? by transforming * € R into ¥’ = (z},2}) € [0,1]* through the mapping

/I 1=yl ) Za—2z)
1 y2—y1’ "2 z2—21"

Outside K, I is defined as follows :

T

( T € [al,bl] X (—OO,CLQ)

s
=

S
S
<

h(
fL(ZL’l,bg) Zf S [al,bl] X (bg,OO)
h(ay,z2) if = € (—00,a1) X [az, by
() = }:L(bl,:cg) if x € (by,00) X [ag, by
) h(ar,a2) if € (—00,a1) x (—00,a)
h(by,a3) if x € (by,00) X (—00,as)
h(ai,by) if x € (—00,a1) x (by,00)
L (b, by) if @ € (by,00) X (by, 00)
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Appendix E : Auxiliary results

Throughout this appendix, L? = L?(Q, F, P) is the set of all random variables on

(Q, F) which are square integrable.

Proposition 1 Suppose that X is non negative random variable on (0, F, P) such
that E(X) < oo. Suppose G is a sub o-algebra of F and let Z = E(X|G) > 0, P
almost surely. Then for any non negative G-measurable random variable &, the following

equality holds
E(EX) = E(EZ).

Proof In the case of bounded random variable &, the result follows from the very
definition of the conditional expectation. In particular it is true for &, = min(n, &) > 0,

for any n > 1. Since &, 1 &, it follows from Beppo-Levy theorem that
E(¢X) = lim E(§,X) = lim E(¢,2) = E(¢Z).
n—o0 n—o0

Proposition 2 Suppose that ¢ € R? and n € R are L? random wvariables in (Q, F)
and suppose that A = E(£€T|G) is invertible, where G is a sub o-algebra of F. Then
¢ € R minimizes E{(p"€ — )%} over all ¢ € G such that "¢ € L? if and only if

o = A7, where b= E(&n|G). In particular ¢ "€ is square integrable.

Proof Set ¢ = A~1b. To prove that ¢ ¢ € L2, note that it follows from Proposition

[ that
d
E{(T¢)?} = ZE(sDZEQ)
= ZE{so (&719)}

= ZE Azz

= (bTA D).
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Since A is symmetric and positive definite, there exist a d x d matrix M € G such
that M~' = MT and a d x d diagonal matrix A € G such that A = MAM". Set
= MT¢and b= MTb. Then A = E(E€T|G), b = E(&n|G), E(£2|G) = Ay > 0 by

hypothesis, and

b'A = bTATD
d

_ E2(éi77|g)
; E(&9)
< dE(n?G) as. ,

from Cauchy-Schwarz inequality. Hence

E{(¢"€)*} <pE(°) < o0.
Next, let ¢» be any random vector in G such that /"¢ € L?. Then
E{W ¢ =n)} = E [B{(v" ¢ —n)"19}]
and it is easy to check that
E{("€=n)?G} = v AY—20Tb+c

= W—9) AW — )+ Ap—2p"b+c

= (W—9) AW — )+ E{(¢"¢ —n)?|G}.

Hence the result.
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Appendix F : Proof of the main results

In this section, we will prove the two main results, using the propositions proved in

Appendix 211

F.1 : Proof of Theorem 1l
Recall that the process ¢ = (¢;), is predictable. For any 1 < t < T, set A; =
St — E(St|ﬂ_1) and

Gy = SDtTAt - {Ct - E(Ct|]:t—1)}a (2-9)

where Cr = C and
Bi1Crr = E(BiICi|Fir) — @i E(BiSi = Bia S| Fi). (2.10)
It follows from equations (2.9)-(2.1I0) that
BiGr = Bi1Cioy — BiCr+ @1 (BeSy — Bio1Si-1), 1<t<T. (2.11)

Note that the G; € F; and E(Gy|F;—1) = 0, for all 1 < ¢ < T. Moreover, using

22)-[23) and ([2.I1]), one gets
T T
Zﬁth = Co — BrC + Z%T(ﬁtst — Bi-1Si-1) =G+ Gy — Vo
t=1 =1
and E(G) = E(G|Fy) = Cy — V, since E(Gy|F;—1) = 0 forall t = 1,...,7T. It also
follows from well known properties of conditional expectations that

E(G?) = E(GYF)=(Co—Vo)*+ > E(BIGHF) (2.12)

t=1

= (Co—Vo)*+ > E{B} E(G}|Fi1)| Fo} .

Because G; depends only on ¢, ..., pr through C;, to minimize E(G?), it suffices

to find 7 minimizing E (G%|F), then to find ¢r_; minimizing E (G7._,|F) and so
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on. Doing so, we will find the minimum since each term is non negative. Having found
the optimal ¢, one obtains that the optimal choice for V; is Cj.

First, note that Gr = &.or — np, where & = Ap = Sp — E(Sr|Fr_1) and np =
C — E(C|Fr-1) =Cr — E(Cr|Fr_1).

Using Proposition 2] one can conclude that

YT = (ET)_1 E (fTﬂT|fT—1) = (ET)_1 E (fTCT‘]'—T—l)

minimizes F(G2|F,). Having found the optimal ¢, one can define Cr_; as in (2.10).
Suppose now that ¢, ..., @, have been defined and define G;_; and C;_; according
to (29) and ([ZI0). Then one can use again Proposition (2]) to conclude ¢;_; given by
[24) minimizes F(G?_,|F).
Therefore the risk F(G?|Fy) is minimized by choosing the ¢,’s according to ([2.4]).

Finally, using (2.12]), the optimal value of V4 is Cy. This completes the proof.

F.2 : Proof of Corollary
The proof of the representation Cy,_y = E(CUy;|F;_1) follows directly from Theorem

0 In fact, using equations ([2.4) and (2.3]), one obtains

ﬁt—lct—l = E(ﬁtctu:t—l) - QOtTE(ﬁtSt - 5t—15t—1|~7:t—1)
= E(ﬁt0t|ft—1)
~E{CA] (2)7 E(BS: — Beo1Se-1|Fir)| Fir }

= E(CU|Fi-1),

where U, is defined by (2.8]). One can easily see that E(U;|F,_1) = 1, so (M;), is a
martingale.

It only remains to prove that ;S;M,; is a martingale. All is needed is to prove

that E(5;S;Ui|Fi—1) = Pi—1Si—1. To this end, let ¢t € {1,...,T} be given and set
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& =F (ﬁtSt - 5t—15t—1|ﬁ—1)- Note that
BiSiUs = BuSe — {A + E(Sy| Fomr) Y A (Zt)_l &t
Next, since E(A¢|F;—1) = 0, one has

E(ﬁtStUt‘-Ft—1> - E(ﬁt5t|ft—1) - E(AtAtTUTt—l) (Et)_l §t
—E(S|Fe) E(A] | Fiet) (2071 &
= E(BiSIFi1) =S (Z) 7 6 -0

= E(ﬁt5t|ft—1) - ft = 5t—15t—1-

Hence the result.



Chapitre 3

Optimal Hedging Strategies with an Application to Hedge
Fund Replication

3.1 Introduction

Over the last couple of years, considerable attention paid within the hedge fund
industry to the development replicating strategies. Many of the large banks have laun-
ched beta replication funds that attempt to use a portfolio of liquid assets to replicate
the time-series properties of various hedge fund strategies. The tracking portfolio
generally consists in exposure to market, credit and liquidity premia. However, the re-
plicating portfolio may consist of assets that are not necessarily employed by managers

(e.g., high yield bonds may explain exposure of hedge equity to liquidity risk).

An interesting alternative replication method was proposed by |Amin and Katl (2003)

and more recently extended by [Kat and Palard (2005). Based on the Payoff Distribution

Model put forth by Dybvig (1988), the authors attempt to replicate hedge fund returns

not by identifying the return generating betas, but identifying a systematic trading

strategy that can be used to generate the distribution of the hedge fund returns. Kat

and Palaro (2005) show that for most hedge funds, their statistical properties can be

replicated by investing in an alternative dynamic strategy.

The derivation of the bivariate Payoff Distribution Model by [Kat and Palard (2005)

1. ML Factor Index, GS Absolute Return Tracker, Partners Group AB Program, JPM AB Index
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represents an interesting contribution to the performance evaluation and asset pricing
literature. The implementation proposed by Kat and Palaro is however subject to
several shortcomings and inconsistencies. In this paper we will address these problems

and propose some techniques for overcoming these issues.

3.2 The Payoff Function

In [Kat_and Palard (2005), the authors show that given two risky assets S and

S®@) it is possible to “reproduce” the statistical properties of the joint composed re-
turns R&% = log(Sg)/Sél)) and R(():?F = log(Séf’)/Sé?’)), in the sense that there exists a
function ¢ such that the joint distribution of R&% and g <R((f%, R((]z%) is the same as
the joint distribution of Ré}% and Ré?}. Note that one does not replicate the value of
Ré?f)p at period 7', but instead one wants to imitate its distribution properties like its
expectation, volatility, skewness, kurtosis, as well as dependence measures with respect
to Ré}% such as Pearson and Spearman correlations to name a few.

The payoft’s return function g is easily shown to be calculable using the marginal

distribution functions F}, F5 and F3 of Sf(pl), ST([?), 555”), and the copulas C; 5 and C; 3 as-

sociated respectively with the joints returns (Ré?p, R(()QT)F) and (R(()?p, Ré%) For details

on its derivations see [Kat and Palara (2005). The exact expression for g is given by

g(x.y) = Q{a. P (RS} <ylR(y =) | (3.1

where Q(z,a) is the order a quantile of the conditional law of R(()i)p given Ré?p =z,

i.e., for any o € (0,1), q(z, o) satisfies

PR < Q@ a)[R} =2} =

Using properties of copulas, e.g. INelsen (1999), the conditional distributions can be
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expressed in terms of the margins and the associated copulas.

0
P (R(()z% < y|Rélf)p = :)3) = %6172(%@)

u=F (z),0=Fa(y) ‘

Once the function has been calculated all that remains is to find the trading strategy
that will allow to replicate the function. In essence, we can view the function as an
option that cannot be traded, so we need to replicate the payoff of the option with the

greatest possible precision by trading the underlying securities.

3.3 Replication and the shortcomings of the Kat-
Palaro approach

There are three steps in the replication procedure.
— Modelling part :

— Estimation of the parameters of the marginal distribution functions £}, F5 and
Fy of S(T”, Srf,?), Sf(pg), and the copulas C; 2 and C; 3 associated respectively with
the joints returns (Ré%%,Ré?%) and (Ré}%,Ré?%).

— Calculate the payoff function g¢.
— Replication part :
— Choose an appropriate replication method ;
— Find the initial amount vy to be invested in the portfolio and find an hedging

strategy .
3.3.1 Modeling issues

The correct calculation of the payoff function relies therefore on the precise mode-
ling of the statistical properties of our three assets. The marginal distributions Fi, Fy
and F3 must be capable of capturing the necessary skewness and kurtosis, and a proper

empirical test must be implemented in order to select the two copulas C; » and C; 3. Any
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mis-specification of the statistical properties will induce an error in the calculation of

the payoff function ¢, which, in turn, will not capture the statistical properties of R(():j’f)p.

Kat and Palara (2005) use the Gaussian, Student and Johnson distributions to model

the monthly returns of the three assets and five copula functions (Gaussian, Student,
Frank, Gumbel and symmetrized Joe-Clayton) to model the dependence. The estima-
tion and choice of marginal distribution and copula is performed using the Inference
for Margins (IFM) method.

There are two significant shortcomings related to the modeling approach proposed

by [Kat and Palard (2005). The first issue relates to the aggregation properties of the

distributions and copula functions, and represents a fundamental flaw in the modeling
approach. The second issue is also not trivial and relates to the choice of estimation

technique.

The main flaw in the [Kat and Palard (2005) model has to do with the distribution

of the returns Ry, ..., Ry versus the distribution of Ry 7. In their paper, Kat and Palaro

2005) start by fixing the law of the monthly returns, distribution functions Fi, Fy, F3

and the copulas C; 2, Cy 3, and then solve for the corresponding daily hedging strategy for
assets S and S®. The compatibility problem between the law of the daily returns

and monthly returns is not addressed by the authors. According to Sklar’s theorem

Sklax, 1959), the law of the bivariate vector Ry r is determined by Fi, Fy and Cy .

However, the joint law of the returns (R;)L; must be compatible with the relation

T
Ror = ZRt- (3.2)
t=1

Let’s consider, for the sake of simplicity, that returns are independent and identi-
cally distributed. In the bivariate Gaussian case, it is easy to find the law of the returns
(Ry)I_, given the law of Ry 7. In fact, even if the marginal distribution of R((f% and R((f%

are Gaussian and their copula C; 5 is not Gaussian, the margins of R,gl) and Rf) are
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Gaussian. However, there is no known way to find out what the common copula of the
R,’s should be so that the copula of the sum match the copula C; 5. Although copula
provide us with much flexibility in terms of modeling the dependence, there is however
no proof to this day that the statistical properties of copula functions are divisible.
This compatibility condition is not a trivial matter. In fact, if for any 7', the relation
([32) is satisfied with independent and identically distributed returns (R;)Z,, then the

law of Ry, must be infinitely divisible. Such laws can be characterized completely (see

Barndorff-Nielsen et al. (2001) orSatd (1999)). For example, it is known that the univa-

riate Student distribution is infinitely divisible, but the common law of the associated

returns (R;)L_, satisfying (B8.2)) is not known. Note that Johnson’s law, proposed in Kat

and Palaro (2005), is not infinitely divisible. Therefore, it should not serve as a model

for the distribution of R&% or R((f% if the daily returns are assumed to be independent.
The lesser of the two problems pertains to the choice of estimation technique. IFM
is a two-stage estimation process : first the marginal distributions are estimated and

then these distributions are used in order to calculate the parameters of the copula.

Kim et al! (2007) show that an inappropriate choice of models for the margins may

have detrimental effects on the estimation of the dependence parameter per se. A
much more robust method consists of separating the estimation for the margins and
the dependence. Ideally the estimation of the dependence should rely on normalized

ranks and be independent of the marginal distributions. For a detailed description see

Genest et al) (1997).

Overcoming the aggregation problems

In order to deal with the compatibility restriction, instead of estimating the law of
the monthly returns Ry 7 for assets S and S it is preferable to take the opposite

point of view, by first determining a model for the daily returns (R;)_;, and then
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solving for the associated law for the composed bivariate return Ry p. The important
issue is select bivariate laws whose aggregation properties are known. A good candidate
for the law of the returns R; is a mixture of bivariate Gaussian distributions. It is easy to

check that the law of Ry r will then be also a Gaussian mixture. Properties of Gaussian

mixtures, as well as estimation and goodness-of-fit are treated in [Papageorgiou et al

2007). We do not need to concern ourselves with the distribution of asset S©® since it

is not used in the trading strategy.

A concern in the modeling of the daily returns can be presence of serial correlation

in the daily time series. One interesting extension of [Papageorgiou et al) (2007) would

be to be to the model joint returns of assets S and S® as a mixture of bivariate
Gaussian distribution with a Markovian dependence in the mixtures. One could also
consider mixture of bivariate GARCH processes. The aggregation properties and es-

timation of multi-variate mixtures of GARCH processes have been studied by Hafner

and Rombouts (2007).

3.3.2 Hedging issues

Having modeled the return distributions and dependence structures, we can then

calculate the payoff function g. The final step is to find a dynamic trading strategy

that allows us to best approximate this function. The hedging strategy proposedij

Kat and Palaro (2005) is quite simple. They use a trinomial approach proposed by

1990) even though the law of the (daily) returns

. = {iog (550, o (52/52,) )

is not necessarily Gaussian.

In their calculations they implemented the technique of [Boyle and Lin (1997), a

trinomial approach that incorporates transactions costs. This approach is clearly ineffi-
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cient, specially since the distributions of the traded assets S and S®, and the hedge

fund S® are clearly not Gaussian. In order to get rid of this inconsistency which is

common in option pricing, |[Papageorgiou et al. (2007) propose an alternative methodo-

logy adapted from American option pricing techniques. The authors extend the results

of ISchweizer (1995) by selecting the portfolio (v, ) such as to minimize the (square)

root mean square hedging error (RMSHE)

VE [83 Ve, 0) — Cr}).

where (7 is the discount factor and ¢ is a dynamic replication strategy. The value, at
period ¢, of the portfolio defined by the initial value vy and strategy ¢ is denoted by
Vi(vo, ¢). Note that there is no “risk-neutral” evaluation involved, all calculations are

carried out under the objective probability measure.
Optimal hedging

Suppose that (2, P, F) is a probability space with filtration F = {Fo,..., Fr},
under which the stochastic processes are defined. Assume that the price process S; is
d-dimensional, i.e. Sy = <St(1), cee St(d)>.

A dynamic replicating strategy can be described by a (deterministic) initial value vy
and a sequence of random weight vectors ¢ = (got)tTZO, where for any j =1,....d, <p§j )
denotes the number of parts of assets SU) invested during period (¢ — 1,t]. Because o,
may depend only on the values values Sy, . .., S;_1, the stochastic process ¢, is assumed
to be predictable. Initially, oo = 1, and the portfolio initial value is vg. It follows that
the amount initially invested in the non risky asset is vy — Z;l:l ng )S(()j ) = v9 — 1 Sp.

Since the hedging strategy must be self-financing, it follows that forall t = 1,..., T,

BeVi(vo, ¢) — Bi—1Vie1(vo, ) = SDtT(ﬁtSt — Bi—15¢-1). (3.3)
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Using the self-financing condition ([B.3]), it follows that

T
BrVr = BrVir(ve, @) = v + > ¢/ (BiSt — Bi-1Si-1). (3.4)

t=1

The replication strategy problem for a given payoff C' is thus equivalent to finding

the strategy (vg, @) so that the hedging error

Gr(vo, p) = BrVr(ve, @) — BrC (3.5)

is as small as possible. Here, the RMSHE measures the quality of replication. It is
therefore natural to suppose that the prices St(j ) have finite second moments. We further
assume that the hedging strategy ¢ satisfies a similar property, namely that for any

t=1,....,T, o] (B:S; — Bi-1S;_1) have finite second moments. Note that these two

technical conditions were also made by [Schweizen (1995).

For simplicity, set A, = Sy — E(S;|Fi—1), t = 1,...,T. Under the above moment

conditions, the conditional covariance matrix ¥; of A; exists and is given by

S =E{AA|F1}, 1<t <T. (3.6)

In [Schweizer (1995), the author treats the case d = 1 and assumes a restrictive

boundedness condition. Here, in contrast, we treat the general d-dimensional case and

we only suppose that > is invertible for all ¢ = 1,...,T". This was implicitly part of

the boundedness condition of [Schweizer (1995).

If 3, is not invertible for some ¢, there would exists a ¢, € F;_; such that ]S, =
o] B(S;|F,_1), that is, ¢, S; is predictable. Our assumption can be interpreted as saying

that the genuine dimension of the assets is d.

Difference between optimal hedging and hedging under Black-Scholes set-
ting

To compare the two methods, simply take 7' = 1, fr = 1, and d = 1. In this

case, the solution for optimal hedging yields ¢* = Cov{AS;, C(S1)}/Var(AS;), where
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ASl = Sl — So, and Ug = E{C(Sl)} — @*E(ASl)
For the Black-Scholes setting, v/*® = E {C (Soe"z_"z/z)} and

pPS=F {e”Z_”2/2C" (Soe”Z_”2/2) }, with o = Var {log(S,/Sp)}, where Z ~ N(0,1),

provided C' is differentiable. See, e.g., Broadie and Glasserman (1996).

In general, ¢* # P9 and v§ # 087, so
B[V, ¢7) — CS0Y] < B [{Vif®, ") - C(81)}’]

For an analysis of the (discrete) hedging error in a Black-Scholes setting, see, e.g.,

Wilmott (2006).

Hedging Error Comparison

To illustrate the advantage of the optimal hedging strategy proposed in Papageor-

giou et al. (2007), we compare the mean hedging error and the RMSHE as defined

in equation (B.5) for the optimal hedging and for the Kat-Palaro approach. For this
example, we specify assets S0, S@ and S©® as follows :
— Asset S is a proxy for the typical institutional Canadian pension fund as des-
cribed in Benefits Canada Review (May 2007)
— Asset S@ is a diversified portfolio of typical market exposures, specifically global
equity indices, credit indices and commodity indices
— Asset S® that is being replicated is chosen to be gaussian distribution with an
annual volatility of 12%.

We model bivariate daily and monthly distributions of assets S and S® over the

period from 2000 to 2007 using normal mixtures, as detailed in [Papageorgiou et al

2007). This leads to 7 regimes for the daily mixture and 2 regimes for the monthly

mixture. We do not specify the required dependence between S® and SU, instead we

run the hedging comparison for different levels of dependence between the two assets.
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More precisely, we allow Kendall’s Tau to vary from —0.9 to 0.9 for three different
copulas (Gaussian, Clayton and Frank) and measure the impact of this dependency
variable between S and S® on hedging error measures. To compare the optimal
hedging replication method and the Kat-Palaro method, 10 000 scenarios of 22 daily
returns (1 trading month) were simulated for the assets S™) and S®). For each scenario,
the terminal value V7 of the portfolio was computed and the hedging error is calculated.

The plots of the hedging errors are presented below.
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FI1GURE 3.1 — Hedging Error Measures

The results lend strong support to the hedging approach put forth in Papageorgiou

et al. (2007). Hedging Errors for the "Optimal Hedging” algorithm are centered on 0

with a low sensitivity to Kendall’s Tau as well as to the type of copula. The Kat-
Palaro algorithm is considerably more sensitive to the level of dependence (Kendall’s

tau) and copula family. This is a direct result of their approach being nested in the
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Black-Scholes setting and can lead to large hedging errors. It is also important to note

that the Optimal Hedging approach systematical produces smaller Root Mean Square

Hedging Errors (RMSHE) providing further validation of the

approach.

3.4 Conclusion

Papageorgiou et al

2007

)

In the paper, we have discussed some of the challenges that one is confronted with

in implementing the bivariate Payoff Distribution Model proposed by

Kat and Palaro

2005). We exposed some of the flaws in the modeling and the dynamic trading strategy,

and proposed some techniques for overcoming these inconsistencies. Finally, we showed

that the hedging algorithm proposed in |[Papageorgiou et al. (2007) provides a more

precise replication of the payoff function that the Black-Scholes approach put forth by

Kat and Palarad (2005)

What remains to be seen is how well these statistical replication techniques fare in

practice. Desjardins Global Asset Management should soon be able to provide some

insight into this issue. They have been working with the authors of

investors.

Papageorgiou et al

2007) and have recently launched the first statistical replication fund that is open to
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Chapitre 4

The Payoff Distribution Model : An Application to Dynamic
Portfolio Insurance

4.1 Introduction

The recent market meltdown has put the spotlight back on the dangers of financial
leverage and the importance of careful and flexible risk management techniques. Many
financial institutions and asset management firms suffered unprecedented losses du-
ring the financial crisis, impacting their balance sheet and jeopardizing the viability of
many structured products, such as equity linked notes and guaranteed principal notes.
The vast majority of institutions employ leverage and manage their market exposures
(de-leveraging) on these products using some form of portfolio insurance strategies.
Recent events have highlighted some of the important limitations of the traditional dy-
namic portfolio insurance techniques used to manage downside risk. These approaches
include the stop-loss insurance, option based replication insurance, and constant pro-
portion portfolio insurance (CPPI). However, given the often prohibitive costs and
institutional constraints in purchasing OTC portfolio insurance, not to mention the
increasing concern about counterparty risk, these dynamic portfolio insurance metho-

dologies often present the only viable risk management option for fund managers.

The earliest portfolio insurance model, proposed by [Brennan and Schwartz (1979)
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and |[Rubinstein and Leland (1981)), consisted of overlaying a synthetic put option on

the existing portfolio, and delta managing the overall exposure using the Black and

Scholes (1973) option pricing formula. Although theoretically sound, this approach is

subject to significant error when confronted to the reality of non-continuous trading,
transaction costs and the time-varying nature of volatility. A further approach to dy-

namic risk management, specifically Constant Proportion Portfolio Insurance (CPPI),

was proposed by [Black and Joned (1987) and [Black and Perold (1992). The CPPI stra-
tegy requires that exposure to the risky asset is a linear function of a cushion, defined as
the excess wealth above a specific floor limit. The exposure is then determined by mul-
tiplying the cushion by a predetermined multiple. The initial cushion, multiple, floor

and tolerance can be chosen according to the investor’s own objectives and preferences.

The 1987 stock market crash provided a clear evidence as to the limitations and
dangers inherent in these dynamic risk management strategies. Lack of liquidity and
suspension of trading in certain markets left many orders unexecuted and the under-

lying portfolios exposed to massive gap risk. This motivated more recent research by

Cont_and Tankov (2007), who build on the work of [Liu et al! (2003) and Bertrand

and Prigent (2003) and study the impact that jumps in prices and volatility have on

investment strategies such as CPPI. [Liu et al! (2003) provide analytical solutions to the

optimal portfolio problem and prove that event risk dramatically affects the optimal

strategy. [Cont_and Tankow (2007) develop analytically tractable expressions for the

probability of hitting the floor, the expected loss and the distribution of losses but also

use a criterion for adjusting the multiplier based on the investorSs risk aversion. More

recently, [Annaert et all (2009) evaluate the performance of the stop-loss, synthetic

put and constant proportion portfolio insurance techniques based on a block-bootstrap
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simulation and compare them using the stochastic dominance criteria. The main draw-
back of their approach is the arbitrary assumption that the CPPI multiplier is time
invariant. Moreover their bootstrap methodology results in a positive expected return
for the underlying portfolio, which is not consistent with guaranteed capital program

testing.

We present a novel approach to dynamic portfolio insurance that overcomes many

of the limitations of the earlier techniques. Our approach is based on the Payoff Distri-

bution Model (PDM) proposed by [Dybvig (1988) and incorporates recent extensions

by [Papageorgiou et al) (2008). The underlying principle of the PDM is quite simple : it
aims to see whether the statistical properties of a fund or asset can be generated more
efficiently using a systematic trading strategy on a liquid assets (or portfolio of liquid

assets). This approach was at first conceived as a tool for performance evaluation, and

it was shown by [Dybvig (1988) and by [Amin and Kat (2003) that the marginal return

distributions of mutual fund and hedge fund managers could be successfully replica-

ted using the PDM. The methodology was later extended to a bi-variate setting by

Papageorgiou et al. (2008), who also propose an optimal hedging strategy. However,

beyond it’s applications as a performance measure to evaluate the ex-post distribution
of an asset/fund, the PDM offers a unique framework that can be used to generate
funds with "target” distributions that are tailored to an investor’s specific needs. In
this paper we extend this latter application of the PDM to funds with embedded risk
controls. We propose an innovative methodology to manage the downside risk of such
funds by targeting a distribution that incorporates the desired risk profile. Specifically,
we generate a fund that is characterized by a Left Truncated Gaussian distribution and

then demonstrate, using different performance and risk measures, that this approach
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to managing market exposure leads to a better risk control at a lower cost than more

popular dynamic portfolio insurance strategies.

The paper will be structured as follows. In section [1.2] we present an overview of
the Payoff Distribution model. Next, we detail our portfolio insurance methodology
by introducing the Truncated Gaussian distribution family. In section [£.4] we discuss
the benchmark models and performance measures. Section presents the empirical

results of our study and section [L.6] concludes.

4.2 The Payoff Distribution Model (PDM)

The Payoff distribution model was introduced by [Dybvig (1988) to price and eva-

luate the distribution of consumption of a given portfolio. The main idea was to propose
a new performance measure that allowed preferences to depend on all the moments of
a distribution, providing a richer framework than the traditional mean-variance ap-
proach. For example, in evaluating the performance of a US equity mutual fund, the
PDM can be used to price the payoff function that links the return distributions of the
fund and that of an equity index such as the S&P500. This allows us to evaluate, using
all the information available in the return distributions, whether the performance of

the fund is superior to that of the S&P500.

4.2.1 Tailor-made Funds

The most innovative and interesting application of the Payoff Distribution Model is
as a tool to generate funds with pre-specified monthly statistical properties. The PDM
allows us to deduce and price the payoff function that must be applied to the distri-
bution of an asset (S&P500 or other) in order to generate the desired distributional

properties. The payoffs are replicated by implementing a dynamic delta management
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strategy on the underlying asset. Typically, one seeks to generate monthly properties,

hence the maturity of the payoff function is one month. Over several months of gene-

rating the payoff, the properties of the resulting monthly returns will match those of

the specified target density. By targeting a defined monthly distribution, the aim is to

control the whole risk profile of the fund, specifically the volatility, the asymmetry, as

well as the potential monthly draw-down. These controls are embedded in a unique risk

model, hence eliminating the need for any risk management overlay. This methodology

clearly requires a liquid underlying asset to manage the exposure, or at least a liquid

proxy that should not be exposed to excessive basis risk.

The steps required to generate a fund with a target distribution are as follows :

— Define the underlying asset or fund and its tradable proxies if needed.

— Identify the desired statistical properties of the target fund (select the density

function and the necessary parameters).

— Estimate the daily process of the underlying asset and infer its monthly distri-

bution.

— Derive the monthly payoff function of the targeted distribution.

— Price the replication strategy and derive the hedging strategy over the month. In

essence, the dynamic trading strategy distorts the distribution of the underlying

asset so as to generate the desired payoff.

Details regarding the derivation of the hedging strategy are provided in appendix

4.0l

4.2.2 The Payoff Function

In [Amin and Ka;

2003

), the authors show that given an underlying asset Sy,ger

with monthly returns Rypqer and a targeted distribution to deliver Frpgget, it is possible
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to “generate” the statistical properties of the returns at time 7" (end of month). Spe-
cifically, there exists a function g such that the distribution of g (Rypger) is the same
as the distribution Frgyge;. This payoft’s return function g is easily shown to be calcu-
lable using the distribution function Fp,4.. of the underlying asset and the marginal

distribution function of the targeted distribution Frgpget.

The exact expression for g is given by
9(x) = Q{P (Runier <)} ; Vx € R (4.1)

where ()(«) is the order a quantile of the distribution Frgget-

An other notation for ¢ is :

g(x) = F bt (Fynder(7)) ; V2 €R (4.2)

Target

This payoff function g falls in the same category of more classical known payoffs
such as put and call options except than instead of being written on the underlying
price, g is written on the underlying monthly return. This implies a more adapted

payoff to integrate the whole risk profile of the underlying returns density.

4.3 Extensions of the PDM to Risk Management

The ability to generate any type of distribution (Gaussian or other) using the PDM
provides us with a very flexible setting for fund management. In order to address the
need for managing downside risk and incorporate dynamic portfolio insurance prin-
ciples, we opt to target a Left Truncated Gaussian distribution. The properties of the

Left Truncated Gaussian distribution are presented below.
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4.3.1 Truncated Distributions

A truncated distribution is a conditional distribution that is derived from a more
general probability distribution. Let X a random variable with probability density
function f(z) and cumulative distribution function F'(x) with infinite support. The idea
underlying the truncation is to identify the probability density of x after restricting

the support with two constants such that a < X <b.

Then

with

flx) a<X<b
g(z) = .
0 Otherwise.

The truncated distribution 7'r(z) is a probability density function and integrates to

one :

/ab Tr(x)de = /ab [Xla<x<p(x)dr = m /abg(:c)d:c =1 (4.5)

Left-side Truncation

A truncated distribution with only a left-side truncation is then written :

fx|xsa(z) = (4.6)

with

0 Otherwise.

g(z) = {f (#) a<X (47)
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Truncated Gaussian distribution

Let X be N(u,0?) and Y a truncated normal TrN (i, 02, a, b) random variable. Then :

)2
\/2;02 65(7])( (gUQM) )

® (%) - @ (1)

o lea

f (y7 s 027 a, b) =

Liag)(y) (4.8)

with ® the standard normal cumulative distribution function, ¢ the standard normal

probability density function and

1 a<y<bd
I, = - 49
.0 (v) {0 Otherwise. (4.9)

Left Truncated Gaussian distribution

Let X be N(u,0?) and Y a truncated normal LTr N (u, 0%, a) random variable. Then :

—(— )2

\/2;02 exp ( (32/02”)
1— (=)

o

f(y, 0% a,b) = >Ia(y) (4.10)

with ® the standard normal cumulative distribution function, ¢ the standard normal

probability density function and

1 a<y
1, = 4.11
W) {0 Otherwise. ( )

For details on these results see lJohnson and Balakrishnan (1996). The formulas for
the cumulative density functions and the probability density functions are presented
in appendix [4.6l The formulas for the first four moments are presented in appendix
1.6l Note that if we decide to left side truncate a Gaussian distribution, the resulting

distribution will have a higher mean, lower volatility and be positively skewed that the
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original distribution. All these features make the Left Truncated Gaussian distribution
an interesting choice of target distribution from an investor’s perspective. Figure 4.1l
illustrates a Left Gaussian Truncated pdf and cdf with parameters p = 0, o0 = 3% and

the left truncation point a = —4%.
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FIGURE 4.1 — Left Truncated Gaussian Distribution

4.3.2 Payoff Function g and hedging

The targeted distribution to deliver Frpgyge; is a Left Truncated Gaussian distribu-
tion, with mean pur, standard deviation o and left-side floor a. The payoff function ¢

can be expressed :

g(x) = pr + o x & {cb (“ - “T) + Fonier (@) [1 ~9 (a - “T)H (4.12)

or or

with Fppger the monthly distribution of the underlying asset and x the associated

monthly return.

When Fypger is a Gaussian distribution N(pg,or), g can be expressed :

g(x) = pp + op % & [@ (%) + P (x ;:R) {1 — P (“ ;T“T)H (4.13)

with ® the standard normal cumulative distribution function and ®~! the inverse.
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Once the target density is defined, we derive the optimal hedging strategy that

replicates the payoff function g. This can be performed in a Black-Scholes setting as

done by |Amin and Kat (2003). However, in order to resolve the Black-Scholes option
replication bias, we price and derive the replication strategy by minimizing the root
mean square hedging error using a Monte Carlo approach under the real probability
measure, as described in appendix .6l For more detail on the implementation of the

hedging methodology, and for a comparison of the Black-Scholes hedging strategy and

the Optimal hedging strategy in a Gaussian framework see [Hocquard et all (2008).

L-Truncated (T-1) Hedging Strategy

Hedging Strategy
o o o
w = o

o
N

o
e

o

-0.15 -0.1 -0.05 0 0.05 0.1
Underlying asset return

FIGURE 4.2 — Left Truncated Gaussian Hedging Strategy

Figure plots the (7" — 1) hedging strategy of the Left Truncated Gaussian with
zero mean, a target monthly volatility of 3%, a downside protection at —4% written
on an underlying asset with zero mean and 5% monthly volatility. The delta is similar
to a call option delta on returns. Since a long position in a risky asset combined with
a put option written on this asset is equivalent to a long position in a call option, the
Left Truncated Gaussian payoff respects this intuition and allows for a better control

of the risk factors of the underlying asset.
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4.4 Methodology

In order to highlight the advantages of the Left Truncated Gaussian distribution,
we contrast our methodology with three commonly used portfolio insurance strategies :
a stop loss strategy, a synthetic put strategy and a constant proportion portfolio insu-
rance (CPPI) strategy. We use several performance measure, notably the Sharpe ratio,
Omega ratio and Cornish-Fisher VaR, to evaluate the effectiveness and cost of these
different dynamic portfolio insurance strategies.

To evaluate the effectiveness of the different approaches, we assume a very simple
scenario. An investor has access to a risky asset S and a non-risky asset B paying
interest r. The investor wants his portfolio II to be exposed to S for a time horizon T,
but manages his downside risk using different methods. We denote w; the weight of the
portfolio invested in the risky asset S at time . (1 —w;) will be invested in the non-risky
asset By. If (1 —w;) < 0 the investment in the risky asset S; will be leveraged an the
investor should borrow in By. In order to illustrate the (7" — 1) hedging strategies for

each methodology, a plot is presented targeting a downside protection at —4% written

on an underlying asset with 5% monthly volatility. Section [4.1] and [£.4.2] provide a
brief review of the three benchmark models and the performance measures, respectively.

All empirical results are provided in Section L1l

4.4.1 Portfolio Insurance Strategies

Stop Loss

The stop loss strategy is the easiest way to protect a portfolio against major losses.

The portfolio II is fully invested in S at time ¢ = 0, and the investor selects a floor F
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to be the stop loss level. This strategy consists, at any time ¢ (¢t =0,...,7 — 1) :
[l =Sy — wp =1
while IT, > e 7T F
;=5 —w=1 (4.14)
if I, <e " PFfork=1,.,T—1
I, =B w,=0fort =k,...T
Then :

Ht = tht -+ (1 - wt)Bt (415)

If the portfolio value is higher that the discounted floor, the investor remains fully
invested in the risky asset, otherwise the risky asset is sold and the portfolio is fully

invested in the non-risky asset until the end of the investment horizon 7.
Advantages

- The portfolio is totally unexposed to the risky asset once the floor is reached, preser-
ving the portfolio against a larger drop in S.
- No dynamic trading in involved, which minimizes the transaction costs during the

investment horizon.
Disadvantages

- The investor cannot profit from any upward move in the risky asset after w; = 0.

- The investor is exposed to substantial losses since the portfolio is fully exposed
(w; = 1) until the floor is reached.

- The investor will have to liquidate all the positions in the risky asset at once, exposing
himself to large transaction costs and liquidity constraints.

In fact the stop loss strategy could be viewed as an “asset-or-nothing call”; typical

binary option, paying one unit of asset if above the strike at maturity.
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Stop Loss (T-1) Hedging Strategy
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FIGURE 4.3 — Stop Loss Hedging Strategy
BS Synthetic Put

The synthetic put strategy is a dynamic trading strategy that attempts to replicate
a long put position @) with strike level K. The hedge ratios AP can be computed
at every time t according to the portfolio value Sy, portfolio volatility o, interest rate
level and time to horizon. In a Black Scholes framework, the formula for the put is

(non-dividend underlying assumed) :

Qt = —St(b(—st) + Ke_T(T_t)(b(—dQ,t)
J In(Sy/K) + (r +0.50%) (T —t)
1t =
ovT —t (4.16)
d27t :st—O’\/T—t

AiPUt — @(st) - 1

Then a protective put investment is :
Si+ Qi = S ®(dy ) + Ke " T Dd(~dy,) (4.17)

such as at any time ¢ in 0, ...,7" — 1, the proportion invested in the risky asset S is :

Se(1+ A

) (4.18)

Wt =
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and (1 — w;) will be invested in the non-risky asset B, and ); the price of the put
option at time t.
Then :

Ht = tht + (]_ — wt)Bt (419)

As the value of the portfolio approaches the strike price, the impact of the put increases
on the overall strategy and the investor transfers an increasing proportion of his portfo-
lio from the risky asset to risk-free asset. If the portfolio put is deep out-of-the money,
the portfolio is then fully invested in the risky asset. At the other end of the scale, if

the put is deep in-the-money, the investor will be fully invested in the risk-free asset.
Advantages

- There is no binary decisions in contrast to the stop loss strategy. Except deep-in-the
money put scenario, the portfolio is always at least partially invested in the risky asset
and could benefit from upward movements in S.

- The dynamic trading strategy allows the investor to react frequently according to the

evolution of S.
Disadvantages

- The strategy requires a good approximation of the volatility in the BS framework.
- Depending of the volatility level, the put convexity can be very high, meaning high

gamma, implying large adjustments and potentially large transaction costs.
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Synthetic BS Put (T-1) Hedging Strategy

0.8

o
)
T

Hedging Strategy

o
I
T

0.2

0

-0.15 -0.1 -0.05 0 0.05 0.1
Underlying asset return

FIGURE 4.4 — Synthetic BS Put Hedging Strategy

Constant Proportion Portfolio Insurance

This strategy provides a cushion to the risky asset, adjusted by a multiplier. The
cushion is computed by subtracting a floor value F; from the portfolio value II;. The
multiplier represents the sensitivity of the CPPI strategy to the risky asset movements,
and can be interpreted as the risk aversion sensitivity factor. To stay consistent with the
different methodologies, we impose a no-short sale constraint and a leverage constraint
on the CPPI strategy. The exposure at time ¢ in the risky asset S; according to the

CPPI is :

S, — F —r(T—t)
Wy = max [mm [m( ! Se ),C'ap] ,0] (4.20)
t

and (1 —w;) will be invested in the non-risky asset B, with m the multiplier and Cap a
cap factor on leverage. We impose a long position in S; with the max(.,0) constraint.
m(St—Fe*"(T’t))

The cushion is the value(St - F e""(T_t)) with the associated weight 5

Then :

Ht = tht + (]_ — wt)Bt (421)
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When the portfolio value decreases, the cushion decreases and the investor transfers

part of his portfolio from the risky asset to the non-risky asset at the "speed” m.

Advantages

- The CPPI strategy is simple and does not require estimation of volatility or price

process.
Disadvantages

- The CPPI strategy is very sensitive to the multiplier m value, and there is no rule of

selection for m.

- This strategy can lead to large adjustments in the portfolio, and hence large transac-
tion costs and market impact.

CPPI (T-1) Hedging Strategy
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F1GURE 4.5 — CPPI Hedging Strategy for different multiplier values
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4.4.2 Performance and Risk Measures

In order to compare the different portfolio insurance strategies, we compute a num-

ber of performance measures and risk measures.

We define R; = In <1;[Z:g> the i-th portfolio monthly return of a time series of length N

and Ry the monthly risk free rate.

To compare the performance of each portfolio insurance strategy, we use :

— Sharpe Ratio

— Omega Ratio

To compare the risk management of each portfolio insurance strategy, we use :

— 5% - Cornish Fisher Value at Risk

— Maximum drawdown

Zf\};l IR,L-<Floor(Ri)
N

— Floor Shortfall : E'[R;|R; < Floor]

— Floor Ratio :

— Floor Maximum breakdown : min (R;|R; < Floor)

1 if R; < Floor

) (4.22)
0 Otherwise.

[R¢<Floor(Ri) - {

The Sharpe Ratio (SR)

The Sharpe ratio introduced by [Sharpe (1966) is the most commonly used ratio in

the industry. The main advantage of this measure is that it is easy to compute and
interpret. The underlying assumption is that any asset class can be fully described in
terms of risk-return relationship by the expected excess return and the variance of the
asset class. All assets evolve in a Gaussian world in which risk is fully characterized by

the volatility (no asymmetry and kurtosis).



96

The Sharpe ratio (SR) can be expressed as :

ER,] - Ry)

sp =t (4.23)

on
where oy is the standard deviation of the portfolio returns.

The Omega Ratio ()

The Omega ratio introduced by [Keating and Shadwick (2002) relaxes the hypothe-
sis that returns follow a Gaussian distribution. In fact, it is a well accepted fact that
returns are not normally distributed. This measure leads to a full characterization of
the risk reward properties of the distribution by measuring the overall impact of all

moments.

Omega ratio (£2) can be expressed as :

(L) = fLJFOO [1— F(x)]dx
f_LOO F(z)dx

(4.24)

where F' the portfolio’s return distribution and L a threshold selected by the investor

(could be Ry).

Omega could also be written in terms of returns R; :

Q(L) = — (4.25)

Cornish Fisher Value at Risk

We use the modified Cornish-Fisher VaR through the use of a Cornish Fisher ex-

pansion to come up with a risk measure that takes the higher moments of non-normal
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distributions. The Cornish Fisher expansion approximates quantiles of a random va-

riable based on its first five cumulants.

Cumulants k, of a random variable X can be expressed in terms of its mean pu =

E(X) and central moments yu, = E[(X — u)"] such as :

R = W
Ko = U2
k3 = H3

Fa = jua— 3y

ks = ps — 10psp0

Suppose that X has mean 0 and standard deviation 1. The g-quantile <I>)_(1 (q) of X

based upon its cumulants is :

3! (q)

®,'(q)* =39, (q)

24

L 951" = 605 (0 +3

R4

®,'(q)* — 50, (q)? + 2

K3ky4 +

24

120

120, (g)" — 53®7'(9)* +17

Rs

324 3

Then one can easily express the g-quantile x* of X* = % where p and o are respecti-

vely the mean and the standard deviation of X. For more details on the calculation one

can refer to

Zangari

1996

) and

Favre and Galeano

200

). The Cornish-Fisher expan-

sion also avoids computationally intensive techniques such as re-sampling or Monte-

Carlo simulation to compute the Value at Risk.
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4.5 Empirical Results

In order to evaluate the performance of the Left Truncated Gaussian distribution
we run several out-of-sample tests, adjusting both the level and maturity of the desi-
red insurance. Specifically, we will consider insurance horizons of both 1 month and
6 months, and provide portfolio insurance at the 5% and 10% levels. Hedging will be
applied on a daily basis for the Left Truncated Gaussian as well as the benchmark
strategies. We also present results for the CPPI using a monthly re-balancing which is
more consistent with the industry standard (daily re-balancing is prohibitively expen-
sive given the relative size of the trades).

The risky asset will be the front-month S& P500 futures contract from January
1988 and December 2008. We use the 1 —month BBA Libor as the non-risky asset. All
prices are close prices extracted from the Bloomberg database. The experiments will be
applied out of sample, using a rolling 251 days window for underlying return’s process
modeling. To illustrate the embedded cost of such strategies in a “bull” market versus
the effectiveness in a “bear” market, we split the data in two samples : 1988 — 1998 and

1998 — 2008.

To implement a realistic environment, we propose two layers of hedging costs :
— Transaction costs : 10bps applied on portfolio adjustment size.
— Financing Spread : the spread between lending and borrowing a dollar amount
for a hedging strategy is 50bps per annum.

The cost C' function can therefore be expressed as :

Cy = |Wy — Wisi] % Sy % 0.001 + Iyysq  [W, — 1] % (e%05/360 — 1) (4.26)
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Payoff Distribution Model

The target monthly distribution is a Left Truncated Gaussian distribution, which al-
lows for volatility, asymmetry and downside risk control. We test for two different
target volatility : 8% and 12% monthly annualized volatility. The underlying process of
the daily returns of the S&P500 is modeled as a Gaussian distribution and simulated
100, 000 times for each day step. The monthly law is then inferred from the daily pro-
cess. For the sake of simplicity and comparability across the methodologies, we make
the assumption that the the return distribution of the S&P500 is Gaussian, however
the PDM can accommodate any form of underlying distribution. Using a less restrictive

assumption about the returns would only strengthen the results.

BS Synthetic Put

The classical put option will be evaluated under a Black-Scholes framework, as an in-
dustry standard for option valuation. We use the daily standard deviation on the past

251 days (rolling window) as the volatility input for the Black-Scholes formula.

CPPI

The CPPI approach needs to fix a value for the multiplier m. Since there is no metho-
dology to evaluate this parameter, instead of fixing the multiplier constant arbitrarily,

the value for m is computed each month by fitting the CCPI;—, exposure to the BS

delta value (wP®), such as :

BS

(0]
=100 0 4.27
" * 1100 = FerT) (4:27)

with 100 the standardized initial monthly value for the hedged portfolio, F' the selected

floor value and r the risk free rate.
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4.5.1 Numerical Results

All the results presented in the following section are out-of-sample.

Experiment 1

The downside protection is set at —5% per month. Results are presented for the

two sub-periods, 1988-1998 and 1998-2008.

TABLE 4.1 — Monthly downside protection at —5% 1988 — 1998

Measure S&P500 | Stop-Loss | BS Put | CPPID | CPPIM | Tr. 8% | Tr. 12%
Mean 0.0123 0.0095 0.0095 | 0.0059 0.0108 | 0.0059 | 0.0072
Std. dev. 0.0382 0.0383 0.0357 | 0.0395 0.0329 | 0.0205 | 0.0277
Skewness -0.8925 -0.3642 | -0.4406 | 0.5858 -0.7972 | -0.5481 | -0.3551
Kurtosis 5.7848 2.8542 3.4131 4.5841 5.2215 | 3.5761 | 3.2019
Minimum -0.1631 -0.0891 | -0.1027 | -0.1086 | -0.1327 | -0.0593 | -0.0659
Maximum 0.1072 0.1072 0.1052 | 0.1586 0.0960 | 0.0609 | 0.0844
Sharpe Ratio 1.1106 0.8626 0.9170 | 0.5163 1.1321 0.9975 | 0.8958
Omega Ratio 2.2838 1.8471 1.9439 1.4831 2.2979 2.0666 | 1.9217
VaR @95% -0.0642 -0.0593 | -0.0554 | -0.0521 | -0.0526 | -0.0319 | -0.0428
Max DD 0.1654 0.1514 0.1585 | 0.2057 0.1368 | 0.0929 | 0.1306
F1. Ratio (%) 4.5455 10.6061 6.0606 | 4.5455 3.0303 1.5152 | 3.0303
Floor Shortfall -0.0843 -0.0638 | -0.0719 | -0.0695 | -0.0848 | -0.0549 | -0.0600
Fl. Max breakdown | -0.1631 -0.0891 | -0.1027 | -0.1086 | -0.1327 | -0.0593 | -0.0659
Trans. Costs (bps) 0 2.1798 5.9741 | 25.3541 | 0.1592 2.0639 | 6.1538
Lev. Costs (bps) 0 0 0 0.4296 0 0 0.0996
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TABLE 4.11 — Monthly downside protection at —5% 1998 — 2008

Measure S&P500 | Stop-Loss | BS Put | CPPID | CPPIM | Tr. 8% | Tr. 12%
Mean -0.0027 -0.0040 | -0.0060 | -0.0104 | -0.0017 | -0.0013 | -0.0031
Std. dev. 0.0449 0.0412 0.0395 | 0.0367 0.0362 | 0.0203 | 0.0278
Skewness -0.8266 -0.1168 | -0.3043 | 0.5649 | -0.6967 | -1.0374 | -0.6589
Kurtosis 4.7925 2.5548 29135 | 3.0267 4.0719 | 5.5761 | 3.7602
Minimum -0.1894 -0.1036 | -0.1280 | -0.0987 | -0.1411 | -0.0956 | -0.1100
Maximum 0.0993 0.0993 0.0887 | 0.1052 0.0823 | 0.0397 | 0.0577
Sharpe Ratio -0.2089 -0.3385 | -0.5233 | -0.9861 | -0.1654 | -0.2241 | -0.3829
Omega Ratio 0.8510 0.7852 0.6845 | 0.5067 0.8832 | 0.8447 | 0.7531
VaR @95% -0.0882 -0.0747 | -0.0744 | -0.0618 | -0.0684 | -0.0408 | -0.0529
Max DD 0.4642 0.5559 0.5573 | 0.7142 0.3916 | 0.2436 | 0.3626
F1. Ratio (%) 13.3333 21.6667 | 15.0000 | 10.0000 | 10.8333 | 0.8333 | 5.8333
Floor Shortfall -0.0860 -0.0635 | -0.0712 | -0.0621 | -0.0724 | -0.0956 | -0.0634
Fl. Max breakdown | -0.1894 -0.1036 | -0.1280 | -0.0987 | -0.1411 | -0.0956 | -0.1100
Trans. Costs (bps) 0 4.2618 10.1051 | 28.4649 | 0.1792 1.9053 | 5.4877
Lev. Costs (bps) 0 0 0 0.3377 0 0 0.0417

Overall, the Payoff Distribution Model delivers a portfolio with a better risk profile.
The PDM funds exhibit lower volatilities than the other portfolio insurance strategies,
because of the 8% and 12% volatility targets. Note that the realized volatilities (out-
of-sample) are very close to the targeted volatilities. The Payoff Distribution approach
tends to adjust the leverage for the prevailing market conditions, as illustrated in
figure [4.8 All of the portfolio insurance methodologies deliver a lower return than the
S&P500 in the 88 — 98 period. This is not surprising as there is an implicit cost to
any insurance program. In the case of dynamic hedging, that cost will be reflected
in the performance during upward trending markets. The cost is comparable across
the different approaches, with the exception of the CPPI with daily hedging, which
underperforms significantly due to the important transaction costs (over 40 bps per
month).

During the bear market period, the Omega ratio is highest for the two PDM strate-
gies and the CPPI with monthly re-balancing, and are comparable to the performance

of the market. The value-at-risk estimates are however lower for the PDM strategies.
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The two PDM models also outperform the monthly CPPI in terms of respecting the
maximum drawdown and the other risk parameters.

For illustration purpose we present the evolution of the different strategies over the
1998 — 2008 period, as well as the monthly return densities and fund exposures. We

also plot in appendix figure .15 the evolution of the CPPI multiplier over the 98 — 08

period.
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FI1GURE 4.6 — Hedged Portfolios versus S& P500
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Experiment 2
The downside protection is now set at —10% with a 6-months horizon.

TABLE 4.1I1 — Monthly properties for Hedged Campaigns 1988 — 1998

Measure S&P500 | Stop-Loss | BS Put | CPPID | CPPIM | Tr. 8% | Tr. 12%
Mean 0.0123 0.0101 0.0096 | 0.0068 0.0090 0.0061 | 0.0086
Std. dev. 0.0382 0.0364 0.0350 | 0.0364 0.0349 0.0198 | 0.0301
Skewness -0.8925 -0.9271 -0.6396 | 0.3710 -0.8783 | -0.5413 | -0.5437
Kurtosis 5.7848 6.4913 4.8138 | 4.0835 6.2274 | 4.1804 | 4.1497
Minimum -0.1631 -0.1631 -0.1272 | -0.0787 | -0.1525 | -0.0695 | -0.1012
Maximum 0.1072 0.1072 0.1071 0.1451 0.1069 0.0599 | 0.0919
Sharpe Ratio 1.1106 0.9566 0.9541 0.6486 0.8943 1.0742 | 0.9839
Omega Ratio 2.2838 2.0968 2.0452 1.6507 1.9957 2.2223 | 2.0794
VaR @95% -0.0642 -0.0672 | -0.0572 | -0.0536 | -0.0637 | -0.0301 | -0.0473
Max DD 0.1654 0.1661 0.1611 0.2569 0.1872 0.0743 | 0.1193
F1. Ratio (%) 0 9.0909 9.0909 | 13.6364 | 9.0909 0 0

Floor Shortfall 0 -0.1478 | -0.1347 | -0.1288 | -0.1511 0 0

Fl. Max breakdown 0 -0.1816 | -0.1548 | -0.1690 | -0.1704 0 0

Trans. Costs (bps) 0 0.3006 2.5213 | 12.1335 | 0.5397 1.4000 | 2.5252
Lev. Costs (bps) 0 0 0 0.2290 0.0000 0 0.2316

TABLE 4.1V — Monthly properties for Hedged Campaigns 1998 — 2008

Measure S&P500 | Stop-Loss | BS Put | CPPID | CPPIM | Tr. 8% | Tr. 12%
Mean -0.0027 -0.0019 | -0.0047 | -0.0092 | -0.0025 | -0.0005 | -0.0014
Std. dev. 0.0449 0.0357 0.0367 | 0.0335 0.0290 | 0.0173 | 0.0260
Skewness -0.8266 -1.0806 -0.8827 | -0.4072 -0.8042 | -0.3001 | -0.3546
Kurtosis 4.7925 5.6058 5.3579 3.3629 4.1911 2.2972 2.3912
Minimum -0.1894 -0.1376 -0.1631 | -0.1041 -0.0986 | -0.0422 | -0.0626
Maximum 0.0993 0.0784 0.0670 | 0.0713 0.0618 | 0.0351 | 0.0473
Sharpe Ratio -0.2089 -0.1865 -0.4451 | -0.9493 -0.2940 | -0.0964 | -0.1859
Omega Ratio 0.8510 0.8530 0.7111 0.4627 0.7842 0.9348 0.8766
VaR @95% -0.0882 -0.0754 | -0.0775 | -0.0698 | -0.0585 | -0.0310 | -0.0477
Max DD 0.4642 0.5140 0.5770 0.6837 0.4647 0.2358 0.3438
F1. Ratio (%) 20.0000 40.0000 | 40.0000 | 50.0000 | 5.0000 0 10.0000
Floor Shortfall -0.1909 -0.1154 -0.1473 | -0.1384 | -0.1121 0 -0.1282
Fl. Max breakdown | -0.3530 -0.1374 -0.2193 | -0.1940 | -0.1121 0 -0.1561
Trans. Costs (bps) 0 1.3111 6.6194 | 17.5245 1.5319 1.6464 2.8916
Lev. Costs (bps) 0 0 0 0.2681 0 0 0.1204

For a rolling 6 months campaign, findings are similar to the previous experiments.

The 6 months downside protection is breached 10% of the time for the 12% Truncation
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in the 98 — 08 period, in comparison to 50% of the time for the CPPI and 40% for the

Stop Loss methodology. The Stop Loss model is unadapted for long horizon downside

hedging, since it cannot recover losses that occur at the beginning of the period.
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F1GURE 4.10 — Hedged Portfolios Monthly Returns Kernel Densities

One could argue that these results are highly dependent on the starting point of
the experiment, so the next table presents the average results for all possible 6 months
campaigns. That is, we run overlapping windows so each calendar month represents a

start date. Results are presented as 6 months cumulative returns.

TABLE 4.V — 6 Months cumulative return properties for Hedged Campaigns 1988 —1998

Measure S&P500 | Stop-Loss | BS Put | CPPID | CPPIM | Tr. 8% | Tr. 12%
Mean 0.0683 0.0624 0.0582 | 0.0498 0.0609 0.0384 | 0.0539
Std. dev. 0.0753 0.0841 0.0872 | 0.0854 0.0818 0.0479 | 0.0729
Skewness -0.1994 -0.4906 | -0.5630 | -0.2872 | -0.3152 | -0.0449 | -0.0657
Kurtosis 2.5583 2.9263 3.0954 | 2.6621 2.6318 2.4465 | 2.4553
Minimum -0.1101 -0.1606 | -0.1763 | -0.2019 | -0.1374 | -0.0630 | -0.0993
Maximum 0.2305 0.2305 0.2302 | 0.2268 0.2301 0.1416 | 0.2094
Sharpe Ratio 3.1400 2.5706 2.3102 2.0182 2.5778 2.7750 | 2.5600
Omega Ratio 9.0352 5.7622 4.8360 | 4.1591 5.9528 7.1995 | 6.1147
F1. Ratio (%) 1.5748 7.0866 5.5118 | 3.9370 3.9370 0 0

Floor Shortfall -0.1086 -0.1226 | -0.1490 | -0.1386 | -0.1236 0 0

Fl. Max breakdown | -0.1101 -0.1606 | -0.1763 | -0.2019 | -0.1374 0 0
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TABLE 4.VI — 6 Months cumulative returns properties for Hedged Campaigns 1998 —

2008
Measure S&P500 | Stop-Loss | BS Put | CPPID | CPPIM | Tr. 8% | Tr. 12%
Mean -0.0095 -0.0032 -0.0150 | -0.0323 | -0.0011 | 0.0005 | -0.0027
Std. dev. 0.1136 0.0884 0.1004 0.1020 0.0843 0.0466 | 0.0705
Skewness -1.2768 -0.0311 -0.2478 | -0.5099 | -0.1352 | -0.4793 | -0.4498
Kurtosis 5.1231 1.6937 1.7787 2.5827 1.9440 2.3755 | 2.4114
Minimum -0.4475 -0.1373 -0.2187 | -0.2929 | -0.1718 | -0.1118 | -0.1862
Maximum 0.1810 0.1800 0.1729 0.1515 0.1720 0.0897 | 0.1364
Sharpe Ratio -0.2901 -0.1254 | -0.5189 | -1.0989 | -0.0448 | 0.0389 | -0.1318
Omega Ratio 0.7999 0.9211 0.7026 0.4310 0.9705 1.0270 | 0.9134
F1. Ratio (%) 18.2609 33.9130 | 31.3043 | 23.4783 | 17.3913 | 1.7391 | 10.4348
Floor Shortfall -0.1953 -0.1110 -0.1442 | -0.1801 | -0.1233 | -0.1114 | -0.1322
Fl. Max breakdown | -0.4475 -0.1373 -0.2187 | -0.2929 | -0.1718 | -0.1118 | -0.1862

The Left Truncated strategy outperform the underlying S&P500 buy and hold

strategy. The downside protection for the was breached only 2% and 10% for the 8%

and 12% PDM campaigns respectively, in comparison to almost 20% — 30% for the

other hedge programs in the period 98 — 08.
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FIGURE 4.11 — Hedged Portfolios Campaigns Returns Kernel Densities

The complete out-of-sample test scenarios are presented in appendix 4.6l The Left
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Truncated PDM strategy is the less exposed to liquidity constraints. In the case of a
severe corrections, investors trying to cover his losses by liquidating his positions could
be confronted with a serious liquidity crunch, due to a lack of buyers or market depth
provided by market makers. In this context, the PDM with Left Truncation is more
dynamic and less exposed to liquidity risk. The Payoff Distribution also allows for a
volatility control of the hedged portfolio, even in a high volatile market condition such

as in recent past months.

4.6 Conclusion

In this paper, we propose a new approach to dynamic portfolio insurance. We ex-

tend [Dybvig (1988) Payoff Distribution Model to include downside risk protection.

By targeting a Left Truncated Gaussian distribution using the PDM, an investor can
customize his return distribution and prevent significant drawdowns. This embedded
portfolio insurance technique does not require the fund manager to overlay any further
risk management structures. We demonstrate the effectiveness of the approach by com-
paring it to the more traditional dynamic portfolio insurance approaches, specifically
Constant Proportion Portfolio Insurance, a Stop loss strategy or a synthetic put. The
results clearly indicate that the PDM provides a more reliable framework for portfolio

insurance, without sacrificing the performance of the fund.
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Appendix A : Experiments Results

TABLE 4.VII — Monthly downside protection at —10% : Monthly Properties 1988 —1998

S&P500 | Stop-Loss | BS Put | CPPID | CPPIM | Tr. 8% | Tr. 12%
Mean 0.0123 0.0121 0.0115 | 0.0091 0.0119 | 0.0070 | 0.0098
Std. dev. 0.0382 0.0387 0.0384 | 0.0393 0.0373 | 0.0203 | 0.0308
Skewness -0.8925 -0.9653 | -0.9594 | 0.1455 | -0.8803 | -0.5659 | -0.6017
Kurtosis 5.7848 6.0069 5.9800 | 3.6867 5.7927 | 3.8596 | 3.7102
Minimum -0.1631 -0.1631 | -0.1623 | -0.0952 | -0.1583 | -0.0673 | -0.0959
Maximum 0.1072 0.1072 0.1071 | 0.1434 0.1066 | 0.0604 | 0.0858
Sharpe Ratio 1.1106 1.0842 1.0391 | 0.7995 1.1068 1.1968 | 1.0967
Omega Ratio 2.2838 2.2496 2.1793 | 1.8191 2.2804 | 2.3785 | 2.2138
VaR @95% -0.0642 -0.0679 | -0.0676 | -0.0569 | -0.0628 | -0.0300 | -0.0471
Max DD 0.1654 0.1692 0.1690 | 0.1815 0.1608 | 0.0719 | 0.1204
Fl. Ratio (%) 1.5152 1.5152 1.5152 0 1.5152 0 0
Floor Shortfall -0.1345 -0.1434 | -0.1419 0 -0.1311 0 0
Fl. Max breakdown | -0.1631 -0.1631 | -0.1623 0 -0.1583 0 0
Trans. Costs (bps) 0 0.2255 1.2642 | 14.0707 | 0.1011 1.1229 | 1.9060
Lev. Costs (bps) 0 0 0 0.2870 0 0.0000 | 0.2338

TABLE 4.VIII — Monthly downside protection at —10% : Monthly Properties 1998 —2008

Measure S&P500 | Stop-Loss | BS Put | CPPID | CPPIM | Tr. 8% | Tr. 12%
Mean -0.0027 -0.0041 | -0.0053 | -0.0087 | -0.0025 | -0.0002 | -0.0013
Std. dev. 0.0449 0.0474 0.0472 | 0.0428 0.0428 | 0.0192 | 0.0312
Skewness -0.8266 -0.8487 | -0.8727 | -0.0543 | -0.7740 | -0.6994 | -1.3309
Kurtosis 4.7925 3.9754 4.1258 | 3.0051 4.4888 | 3.9789 | 7.6132
Minimum -0.1894 -0.1525 | -0.1605 | -0.1376 | -0.1746 | -0.0767 | -0.1632
Maximum 0.0993 0.0993 0.0980 | 0.1055 0.0965 | 0.0431 | 0.0606
Sharpe Ratio -0.2089 -0.3019 | -0.3874 | -0.7073 | -0.2003 | -0.0317 | -0.1401
Omega Ratio 0.8510 0.7888 0.7383 | 0.5981 0.8579 | 0.9773 | 0.8982
VaR @95% -0.0882 -0.0953 | -0.0962 | -0.0789 | -0.0828 | -0.0347 | -0.0719
Max DD 0.4642 0.5027 0.5543 | 0.6775 0.4502 | 0.2058 | 0.3322
F1. Ratio (%) 2.5000 6.6667 4.1667 | 1.6667 1.6667 0 0.8333
Floor Shortfall -0.1355 -0.1220 | -0.1344 | -0.1242 | -0.1420 0 -0.1632
Fl. Max breakdown | -0.1894 -0.1525 | -0.1605 | -0.1376 | -0.1746 0 -0.1632
Trans. Costs (bps) 0 1.2292 3.3663 | 17.6007 | 0.1353 1.1886 | 1.8275
Lev. Costs (bps) 0 0 0 0.2452 0 0 0.1154
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TABLE 4.IX — 6—Months downside protection at —5% : Monthly Properties 1988—1998

Measure S&P500 | Stop-Loss | BS Put | CPPID | CPPIM | Tr. 8% | Tr. 12%
Mean 0.0123 0.0053 0.0092 | 0.0051 0.0074 | 0.0055 | 0.0076
Std. dev. 0.0382 0.0303 0.0313 | 0.0356 0.0304 | 0.0187 | 0.0263
Skewness -0.8925 -0.0240 | -0.0605 | 0.9252 | -0.4994 | -0.3373 | -0.1685
Kurtosis 5.7848 3.9585 3.0656 | 6.0834 4.6639 | 3.3706 | 3.0737
Minimum -0.1631 -0.0736 | -0.0659 | -0.0768 | -0.1107 | -0.0458 | -0.0518
Maximum 0.1072 0.1072 0.1055 | 0.1697 0.0977 | 0.0575 | 0.0840
Sharpe Ratio 1.1106 0.6083 1.0161 0.4938 0.8466 1.0266 | 1.0074
Omega Ratio 2.2838 1.6602 2.0875 1.5088 1.9654 | 2.1421 | 2.0975
VaR @95% -0.0642 -0.0490 | -0.0444 | -0.0542 | -0.0496 | -0.0281 | -0.0385
Max DD 0.1654 0.1920 0.1390 | 0.1765 0.1592 | 0.0831 | 0.1174
F1. Ratio (%) 4.5455 40.9091 | 13.6364 | 31.8182 | 13.6364 | 9.0909 | 9.0909
Floor Shortfall -0.0916 -0.0648 | -0.0741 | -0.0718 | -0.0997 | -0.0549 | -0.0758
Fl. Max breakdown | -0.0916 -0.0819 | -0.1036 | -0.1177 | -0.1258 | -0.0583 | -0.0869
Trans. Costs (bps) 0 1.3530 5.5710 | 17.6921 1.1879 | 2.3624 | 4.5218
Lev. Costs (bps) 0 0 0 0.3269 0 0.0000 | 0.1634

TABLE 4.X — 6—Months downside protection at

—5% : Monthly Properties 1998 —2008

Measure S&P500 | Stop-Loss | BS Put | CPPID | CPPIM | Tr. 8% | Tr. 12%
Mean -0.0027 -0.0022 | -0.0057 | -0.0075 | -0.0020 | -0.0018 | -0.0032
Std. dev. 0.0449 0.0251 0.0268 0.0265 0.0203 0.0177 | 0.0248
Skewness -0.8266 -0.5174 | -0.2082 | -0.1616 | -0.9624 | -1.2079 | -0.7779
Kurtosis 4.7925 4.5080 3.1787 | 5.5907 6.0186 6.7151 4.1377
Minimum -0.1894 -0.0896 | -0.0788 | -0.1093 | -0.0861 | -0.0889 | -0.0991
Maximum 0.0993 0.0631 0.0576 0.0731 0.0484 0.0280 | 0.0408
Sharpe Ratio -0.2089 -0.3082 | -0.7376 | -0.9765 | -0.3388 | -0.3470 | -0.4459
Omega Ratio 0.8510 0.7532 0.5884 | 0.3807 0.7209 0.7668 | 0.7173
VaR @95% -0.0882 -0.0509 | -0.0513 | -0.0621 | -0.0452 | -0.0395 | -0.0497
Max DD 0.4642 0.3803 0.5255 0.5925 0.3610 0.2401 0.3535
F1. Ratio (%) 35.0000 65.0000 | 55.0000 | 75.0000 | 30.0000 | 20.0000 | 35.0000
Floor Shortfall -0.1441 -0.0588 | -0.0985 | -0.0747 | -0.0673 | -0.0816 | -0.0934
F1. Max breakdown | -0.3530 -0.0765 | -0.1638 | -0.1587 | -0.0925 | -0.1545 | -0.2198
Trans. Costs (bps) 0 2.1307 11.9065 | 17.1488 | 2.1788 3.0330 | 5.6543
Lev. Costs (bps) 0 0 0 0.2427 0 0 0.0651
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TABLE 4.XI — 6 — Months downside protection at —5% : 6 Months cumulative returns
properties 1988 — 1998

Measure S&P500 | Stop-Loss | BS Put | CPPID | CPPIM | Tr. 8% | Tr. 12%
Mean 0.0683 0.0409 0.0487 | 0.0328 0.0525 | 0.0334 | 0.0440
Std. dev. 0.0753 0.0876 0.0823 | 0.0947 0.0760 | 0.0493 | 0.0717
Skewness -0.1994 0.1599 -0.0984 | -0.3353 0.0492 | 0.0324 | 0.1491
Kurtosis 2.5583 1.8626 2.2420 | 3.1732 2.3351 2.3693 | 2.4312
Minimum -0.1101 -0.0964 | -0.1081 | -0.3145 | -0.1060 | -0.0614 | -0.0919
Maximum 0.2305 0.2305 0.2243 | 0.2175 0.2239 | 0.1409 | 0.2089
Sharpe Ratio 3.1400 1.6176 2.0484 | 1.1991 2.3941 2.3485 | 2.1260
Omega Ratio 9.0352 2.9634 4.1658 | 2.3495 5.8709 | 5.4006 | 4.7330
Fl. Ratio (%) 6.2992 32.2835 | 16.5354 | 20.4724 | 7.0866 | 3.9370 | 11.0236
Floor Shortfall -0.0839 -0.0628 | -0.0806 | -0.0965 | -0.0860 | -0.0579 | -0.0727
Fl. Max breakdown | -0.1101 -0.0964 | -0.1081 | -0.3145 | -0.1060 | -0.0614 | -0.0919

TABLE 4.XII — 6 — Months downside protection at —5% : 6 Months cumulative returns
properties 1998 — 2008

Measure S&P500 | Stop-Loss | BS Put | CPPID | CPPIM | Tr. 8% | Tr. 12%
Mean -0.0095 0.0014 -0.0181 | -0.0358 0.0007 | -0.0026 | -0.0093
Std. dev. 0.1136 0.0691 0.0804 0.0870 0.0678 0.0433 | 0.0620
Skewness -1.2768 0.6492 0.2816 | -0.2058 0.1480 | -0.0926 | -0.0708
Kurtosis 5.1231 2.1774 1.8710 2.8864 2.2040 1.9047 | 2.1711
Minimum -0.4475 -0.1033 -0.1616 | -0.2756 | -0.1499 | -0.0890 | -0.1452
Maximum 0.1810 0.1800 0.1523 0.1647 0.1519 0.0893 | 0.1310
Sharpe Ratio -0.2901 0.0681 -0.7814 | -1.4270 0.0354 | -0.2117 | -0.5175
Omega Ratio 0.7999 1.0450 0.5985 0.3498 1.0246 0.8675 | 0.6989
F1. Ratio (%) 29.5652 52.1739 | 45.2174 | 42.6087 | 28.6957 | 20.0000 | 29.5652
Floor Shortfall -0.1499 -0.0574 | -0.0947 | -0.1153 | -0.0793 | -0.0635 | -0.0837
FL. Max breakdown | -0.4475 -0.1033 -0.1616 | -0.2756 | -0.1499 | -0.0890 | -0.1452
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Appendix B : Optimal hedging Strategy

In this section we describe the methodology used to derive the optimal hedging
strategy. Having solved for the payoff function g(Rr), we need to find an optimal
dynamic trading strategy that will replicate the payoff function. We do so by selecting

the portfolio (4, ¢) such as to minimize the expected square hedging error

E[B2{Vir(Vo,¢) — Cr}?],

where 7 is the discount factor and Cp = 100 exp?#7) is the payoff at maturity.

In order to achieve this, we develop extensions of the results of |Schweizen (1997).

Suppose that (€2, P, F) is a probability space with filtration F = {Fy, ..., Fr}, under
which the stochastic processes are defined. Assume that the price process S; is d-
dimensional, i.e. S; = (St(l), cee Sfd))

A dynamic replicating strategy can be described by a initial value V, and a se-
quence of random weight vectors ¢ = (‘Pt)f:()a where for any 7 =1,...,d, gpgj ) denotes
the number of parts of assets SU) invested during period (¢ — 1,t]. Because ¢; may
depend only on the values values Sy, ..., S;_1, the stochastic process ¢, is assumed to
be predictable. Initially, ¢y = 1, and the portfolio initial value is V4. It follows that
the amount initially invested in the non risky asset is Vj — 2?21 gogj )S(()j ) = Vo — 1 So.

Since the hedging strategy must be self-financing, it follows that forall t = 1,..., T,

ﬁt%(%a <P) - 5t—1vt—1(v07 <P) = %T(ﬁtst - Bt—lSt—l)- (4-28)

Using the self-financing condition ([{28)), it follows that

T
BV = BrVr(Vo, ) = Vo+ > ¢) (BiSt — BraSica).- (4.29)

t=1
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The replication strategy problem for a given payoff C' is thus equivalent to finding

the strategy (Vp, ) so that the hedging error

Gr(Vo, ) = BrVr(Vo, p) — BrC (4.30)

is as small as possible. Here, the RMSHE (root mean square hedging error) measures
the quality of replication. It is therefore natural to suppose that the prices St(j ) have
finite second moments. We further assume that the hedging strategy ¢ satisfies a similar

property, namely that for any ¢t = 1,...,T, ¢ (8:S; — Bi_1S:_1) have finite second

moments. Note that these two technical conditions were also made by [Schweizen (1995).

For simplicity, set A, = Sy — E(S)|Fi—1), t = 1,...,T. Under the above moment

conditions, the conditional covariance matrix ¥; of A; exists and is given by

Y= E{AA|Fa}, 1<t <T. (4.31)

In [Schweizer (1995), the author treats the case d = 1 and assumes a restrictive
boundedness condition. Here, in contrast, we treat the general d-dimensional case and

we only suppose that > is invertible for all ¢ = 1,...,T". This was implicitly part of

the boundedness condition of [Schweizer (1995).
If 32, is not invertible for some ¢, there would exists a ¢, € F;_; such that gptT Sy =
o] E(Sy|Fi_1), that is, ¢ S; is predictable. Our assumption can be interpreted as saying

that the genuine dimension of the assets is d.

Theorem 3 Suppose that 3; is invertible for allt =1,...,T.
Then the risk E{G*(vo, @)} is minimized by choosing recursively o, . .., o1 satis-
fying
er=(Z0) " E({S — E(Si|F)}Ci| Foor), t =T, ..., 1, (4.32)
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where Cp, ..., Cy are defined recursively by setting Cr = C' and

6t—10t—1 = ﬁtE(Ctu:t—l) - SOtTE(ﬁtSt - 5t—15t—1|ﬁ—1)> (4-33)

fort="1T,... 1.

Moreover the optimal value of vy is Cy, and
T
E(G*) =) E(5G}),
t=1
where Gy = @, " 1S = E(Si|Fi1)} —{C — E(Cy| Fia)}, 1 <t <T.

Remark 4.6.1 Because of the relation (£33) and the fact that vy = Cy, one can
interpret Cy as the value to be invested at time t to replicate the payoff C' at period T .

In an option context, Cy would be the “value” of the option at time t.

Example 4.6.1 (The Markovian case) If the price process S is Markovian, i.e., the
law of Sy given Fy_y is v,(S;_1,dx), and if the terminal payoff Cr = C only depends
on the terminal prices, that is C' = fr(St), then the Markov property, together with

Theorem[3, yield that C, = fi(Sy) and ¢, = (S;_1), where

Lu(s) = E(SiSi1=s) = / (s, d),
Ly(s) = E(S,S,|Si—1=s)= /I:ETl/t(S,dllf),
Ay(s) = Lgy(s) — Ly(s)Ly(s) ",

Ui(s) = A(s) 'E[{Sr — L1e(s)} fi(S1)]Se1 = 5]

— (s / (2 — Lus(s)) fulw)als, do),

U(s,z) = 1— (Lu(s) — Bim1/B) T Au(s) " (z — Lu(s)),

fials) = %E{st, 515|511 = 5}

_ﬂ S, T T )V S, ax
= o [ s s, da).
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Note that E(S;|Fi—1) = L14(Si—1) and Xy = Ai(S;—1). Explicit calculations can be done
when the returns are assumed to be a finite Markov chain. In most models, one can
write Sy = wy(Si—1, &) where & is independent of F;_1 and has law P,. When u; has an

infinite support, there are ways to approximate 1, and f;. In the Markovian case, one

can use the methodology developed by|Del Moral et al) (2006) to calculate both the p;’s
and the Cy’s. The algorithm for implementing the dynamic trading strategy is based on

Monte Carlo simulations and linear interpolation.
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Appendix C : Truncated Gaussian Distribution

C.1 : Cdf and Pdf

Two sides Truncation

Let X be N(u,0?%) and Y a truncated normal TrN(u,c?, a,b) random variable.

With ¢ the standard normal probability density function, we can write :

The truncated normal pdf :

f(y7 s 027 a, b) = I[a,b] (y> (434)

The truncated normal cdf :

d
F(yv Hy 027 a, b) = P ) ][a,b}(y) (435)

Left-side Truncation

A truncated normal distribution with only a left-side truncation is then written :

(1

f(ynuv 027 a) = > a— I( >a) (y) (436)
o[l—a(=#)] "
The truncated normal cdf :
o (=2 — a—p
F(y7 M, 027 a) = ( z ) 5 z )I(y>a) (y) (437)
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C.2 : Four moments

Two sides Truncation

The expressions for the mean and variance respectively are :

The skewness and kurtosis of a truncated normal distribution with arbitrary mean

and variance can be obtained from cumulants based on the moment generating func-

tion, detailed in [Shah and Jaiswal (1966).

Skewness is defined by Sk = s/ ug/ ? with 1; central moments.

1

(2(2p — 2a) + (3bz — 3az, — 1) (2 — 2a) + b2 — a°2,) (4.40)
Kurtosis is defined by Ku = u4/p3 with p; central moments.

Ku = 5 (=3(2 — 2a)* — 6(bz — aza) (25 — 24)* — 2(2p — 2a)?

—4(b%2y — a®2,) (2 — 2a) — 3(b2y — az,) — (VP2 — a32,) + 3)

Where :

Vzl—(bzb—aza)—(zb—za)2;za:%;zb:% (4.41)

With ¢ denotes the standard normal distribution function and ® denotes the density.
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Left-side Truncation

EY)=p+o [lfé%a;)]] (4.42)
Y A = R =0 | B I =D I
VARY)=0" |1+ 1_@(%)]—0 [[1_(1)(%)}] (4.43)
S]{J _ 1 3 2 2
= W@za—?)aza—l—(a —1)z,)
Ku = % (=322 4 6az; — 2(2a> — 1)22 + (a® + 3a)z, + 3)

a

Where :

Vo=14az, —22; 2z, =

a?

(4.44)



Chapitre 5

Option Pricing and Dynamic Hedging for Regime-Switching
Geometric Random Walks Models

5.1 Introduction

In complete, frictionless capital markets with no transaction costs and where the

underlying securities follow geometric Brownian motions, the Black-Scholes formula

Black and Scholes, 1973) provides an elegant and tractable solution for pricing deri-

vative securities. Unfortunately the actual financial markets are far more complex and

empirical testing of the Black-Scholes model have hi

It is well documented (Fama, 1965, Mandelbrot, 11963, [Schwert,

ehlighted its” many shortcomings.

1989) that the observed

properties of financial time series are not consistent with the underlying assumptions of

the Black-Scholes framework. Time-varying volatility, the presence of higher-order mo-

ments and serial correlation are now well established characteristics of asset returns.

Moreover, liquidity constraints, market frictions, transaction costs and discrete-time

hedging lead to sub-optimal replication of the option’s pavoff functi

n (Duffie and

Huang, [1985, [Huang, [1985). Furthermore,

Bovle and Emanue

1980)

Gilster (1990),

Mello and Neuhaus (1998) and

Buraschi and Jackwert

200

) demonstrate that un-

realistic assumptions about continuous-time hedging can lead to large hedging errors

and residual hedging risk.
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Over the past decade, several studies have proposed discrete time hedging models

based on different objective functions, see for example |(Owe

2001) and

Pochart and Bouchau

200

), [Potters et al

2004). The idea of dynamic hedging, as detailed in

Cox and Ross (19

76) and [Harrison and Kreps

1979), is to find a self-financing optimal

investment strategy that replicates a terminal payoff of the option. In this paper we

build on the previous work of

Follmer and Schweizer

1990),

Schweizer

1992, 11995

Papageorgiou et all (2008) and [Rémillard and Rubenthaler

2009

)?

) to derive an optimal

discrete time hedging strategy based on the mean-square hedging error function for

asset returns that follow a regime-switching random walk. Our hedging methodology is

therefore robust to serially-correlated and non-Gaussian returns. Previous attempts to

incorporate conditional returns in option pricing include GARCH models (see Chris-

toffersen and Jacobs (‘200

and White

981

Wigeind, 11987, [Heston. (1993

) and jump models (Ko

200

) for a complete review). stochastic volatility models (Hull

) and Kou

and Wang

2004) to cite a few). These approaches have generally been successful at

reproducing market prices, however none of them offer an effective, let alone optimal,

hedging strategy.

Regime-switching models, popularized by

Hamilto

1990) and

Kim et al) (2008

)?

have many characteristics that lend themselves nicely to financial time-series modeling.

These models are easy to interpret, allow for time-dependent parameters and the ag-

gregate returns conserve their non-Gaussian properties. Regime-switching models have

previously been used by [Bansal and

by

Zhou (200

So et al

1998

) and [Fong and Se

) to capture interest rate dynamics and

2001) to model volatility. However, very few pa-

pers have attempted to apply regime-switching models to option pricing and hedging.

In the case of American options,

Buffington and Elliottl (200

) and

Guo and Zhan
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2004) develop pricing models and |Garcia et al. (2003) and |Chabi-Yo et al! (2008)

propose a deep analysis of HMM processes applied to options characteristics, but none
of these studies are extended to the hedging properties. The aim of this paper is to
demonstrate how to implement optimal hedging strategies and obtain derivatives prices
when the underlying assets returns are modeled as regime-switching random walks. The
model that we propose is a discretized version of the continuous time regime-switching

model. and is sometimes referred to as a transmutation-diffusion model (Freidlin and

Lee, [1996) in the probability literature. The Baum-Welch algorithm (Baum et al., [1970)

and the EM algorithm (Dempster et all, [1977) both provide efficient estimation proce-

dures. For more details and results on estimation and convergence of estimators, see,

e.g.,/Cappé et al. (2005). We also propose a new goodness-of-fit test, based on the work

of (Genest_and Rémillard (2008), for selecting the optimal number of regimes.

The rest of the paper is structured as follows. Section presents the models and
its properties and describes the goodness-of-fit test. To simplify the presentation, the
model estimation is deferred to Appendix and the testing is presented in Appen-
dix In Section B.3], we describe the optimal dynamic discrete time hedging model
adapted to regime-switching processes. We show how to implement the proposed dyna-
mic hedging algorithm for European option payoffs when the underlying asset returns
are modeled by Gaussian regime-switching random walks. We illustrate the benefits of
such processes in Section [5.4] and propose numerical applications to option pricing and

hedging in Section
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5.2 Regime-switching geometric random walk mo-
dels

A regime-switching geometric random walk model S is a process such that the asso-

ciated (d-dimensional) log-returns R; = log(S;/S;—1) form a regime-switching random

walk.
The non-observable regimes 7;, with values in {1,...,l}, form a Markov chain
with transition matrix (), stationary distribution v, and given 7, = iy,...,7, = iy,

Ry, ..., R, are independent, with densities f; ,..., fi,. As a result, the law of R, is a

mixture with densities
l

flz) = Z v fi(x).

i=1

In general, (S;)k>0 is not a Markov process. Nonetheless, the process (S, 7¢)i>0 is Mar-

kovian. Note that these models are particular cases of Hidden Markov Models (HMM).

Several reasons justify this choice of model. First, even in the case of Gaussian
densities, the law of the returns can be modeled adequately, provided the number of
regimes is large enough. Note that we do not restrict ourselves to only 2 or 3 regimes
as is often the case in the economic and financial literature. As a result of the serial
dependence in the regimes, the returns of the assets also exhibit serial dependence,
which is consistent with what is observed in financial time series. Finally, the conditional
distribution is not constant, leading to conditional volatility as well as conditional
asymmetry and kurtosis. The Black-Scholes-Merton model is a particular case when

there is only one regime and that the density is Gaussian.
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5.2.1 Properties of regime-switching random walks models

Regime prediction

In this section, we show how to find n,(i) = P(r, = i|Ry = vy1,..., Ry = y;). For

more details, see, e.g., Baum et al

1970).

— Choose an a priori distribution ¢ for the regimes; for example, one could take a

uniform distribution on {1, ..

LI

— For any t > 1, once R; = y; is observed, compute, for every i = 1,...,1[,

q(i) = fi(yt)ZQt—l(j)jSa (5.1)

and

where 7, = Z;Zl a(7).

i) = 20 (5.2)

Remark 5.2.1 The choice of qq is not so important in long term, as long as all regimes

have positive probability. Next, note that q,(i) = E {I(r, = i) [Tiey fre (yr)}, so Zy is the

joint density of (Ry,...,Ry) at (y1,. ..

Moments

7yt)'

One easy way to measure serial dependence is to look at the auto-covariance. The

following result provides the necessary formulas for the first and second moments of

the distribution.
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Proposition 3 Suppose that the mean and covariance matriz of each density f; is

given by p; and A; respectively, for all i € {1,...,l}. Then, for all k,t > 1, one has

l
E(Rt) = p= Z%’Mz’,
i=1

! !
Cov(Ry, Ry) = A= Z v A; + Z Villifh; — I
i—1 i—1

I
Cov(Ry, Ryyr) = Z Z Vz'(Qk)z’jMi,U;r — g

i=1 j=1

1 l
= > > vy {(@)i — v}

i=1 j=1

(5.3)

pwh (5.4)

(5.5)

(5.6)

If @ is ergodic, then there exist a positive constant C' and a € (0,1) so that for

all & > 1, max;<; ;< }(Qk)ij — I/j} < CdF. Tt follows from (5.6) that Cov(R;, Riiy)

converges exponentially fast to 0 as k — oc.

Conditional distributions

Recall from Remark B.2.1] that the joint density fi., of Ry, ..., R; can be expressed

as Z;.

Next, for any k£ > 2, the conditional density of R; given Ry, ..

fi:1, can be expressed as a mixture, viz.

ft:1($t|$1,---,1’t—1) = flzk(ﬂfl,---,!L”t)/fl:k—l(fl,--

Sy Y @ (D) Qi fi ()

i i1 (0)
I
= Z Wik—1fi(xe),
=1

where

Sy @1 (1)@
S @ (i)

Since qo(j) = v;, then W, o =v;, for all j € {1,...,1}.

Wj,k—l = J € {1, .. ,l}

., R;_1, denoted by

. >$t—1)

(5.9)
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Forecasting properties

First, for any nice function g, it is easy to check that

l

l
B{g(Run)|Fi} = ZE{g (Fusn)|Bom = i) = 32 3" Qs [ 9la)fy(a)d

(5.10)

Formula (5.10) entails that the conditional law of Ry given Ry, ..., R; has density

l l
fron(@) =D mli)Qi; fi(x (5.11)

i=1 j=1
Similarly, using the Markov property, it is easy to check that all £ > 1,
I
B{g(Ru)|7} = 32 3 ) (@), [ ota)ss(a)da (5.12)
i=1 j=1
That is, the conditional law of R, given Ry,..., R; has density
[
frrer(@) =Y > m(i) (@), f(x), (5.13)
i=1 j=1
which is a mixture with the same densities (f;)}_, and weights 22:1 n¢(7) (QZ) for
regime j, j € {1,...r}. In particular, the prediction for R;., is
ol
> m) (@
i=1 j=1
Confidence intervals for the prediction can be constructed using the quantiles of the

density fii1.1 given by (B.I3).

Next, if the Markov chain (73)¢>1, with transition matrix @, is ergodic, then the

conditional law of Ry, given Ry, ..., R;, converges to the stationary distribution

l
fa) = Y wifio)

That is, for long time predictions, the behavior of the variable becomes independent of

its past.
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5.2.2 Goodness-of-fit

Having selected a model and estimated its parameters (see Appendix [5.0)), one must

next test the adequacy of the fitted model. This is generally done by using a test based

on the likelihood, however, as expresed in [Hamilton (1990), hypothesis testing using

MLE methods can be problematic due to singularities and unidentifiable parameters.

Cappé et _al) (2005) show that goodness-of-fit tests based on likelihood ratio are not

recommended for regime-switching models. Using score functions, Hamilton (1996) sug-
gests some tests of goodness-of-fit which are not necessarily consistent because they

are not based on distribution functions. Building on the famous Rosenblatt’s transform

Rosenblattl, [1952) and the idea of [Durbin (1973), [Diebold et al. (1998) proposed to
apply the conditional distribution functions to data. However, because parameters are

estimated and the limiting distribution depends in general on these unknown para-

meters, the methodology proposed by [Diebold et al. (1998) is useless. When testing

goodness-of-fit for parametric families, one can use a parametric bootstrap for esti-

mating P-values, even when the limiting distribution of the test statistics depends on

unknown parameters. That was extended recently in |Genest and Rémillard (2008) for

semi-parametric models. Furthermore, in |Genest et all (2009), it was shown that tests

based on the Rosenblatt’s transform were quite powerful for testing goodness-of-fit for
copulas, a class of semi-parametric models. The new goodness-of-fit test is described

in Appendix 5.0

5.3 Optimal discrete time hedging

We recall the main properties of the optimal hedging methodology then we detail the
implementation issues when adapted to regime-switching models. See also Appendix

for additional details.
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5.3.1 Optimal hedging

For any d-dimensional vector x, let D(z) be the diagonal matrix with diagonal
elements z1,...,z4, and further let e(x) denote the vector with components €%, j =

.,d. Next, for every i € {1,...,d}, set

<) = [ (@) sty BO= [ () ) fildy)

Assume that B(i) is invertible!. If ¢; denotes the number of shares of the d risky assets
in the portfolio at the beginning of period ¢ — 1, and V; is the value of the portfolio at
period t, then the optimal choice of V and ¢1, ..., ¢r that minimize the mean square

hedging error for a payoff ®(Sr) at maturity 7" is Vy = Cy(Sp, 70) and
¢ = (S-1,Ti-1) — W—lD_l(St—l),OtJrl (Te-1), (5.14)

-1
where pryq(i) = {22:1 QijB(j)} {23:1 Qijm(j)}, and forallt =T,..., 1 and every
ied{l,...,1},

MN

(i) = QijYer1(7) {1 = prr (1) Tk(5) } (5.15)

1

l
p(i) = {ZQU% } {ZQ”% } (5.16)

]:

<.
Il

Ci1(s,1) = 761&;(;) Z; Qijve(J)
< [ QDO L= pea@) (7~ 1)} ), (517
a(s,i) = e"D? {Z QijYe+1(7) (j)} Z Qijver1(f)

X /Ot {D(s)e", 5} (V" = 1) fi(dy). (5.18)

Note that (5.I5) and (G.I6]) can be evaluated explicitly off-line in general. Howe-

ver, this is not the case for (.I7) and (5.I8)), even if they are expressed in terms of

1. That is equivalent to supposing that the genuine dimension of R; is d.
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expectations. Therefore, one has to rely on approximations for their evaluation. This

can be achieved in several ways, one of which is the Simulation/Interpolation method

proposed in [Papageorgiou et all (2008). This approach is described briefly in Appendix
5.6l Another approach is the linear approximation methods used in most dynamical
programming problems. One major problem with these kinds of approximations using
interpolations is the dimension. As d increases it becomes much more difficult to get
good approximations as the number of points required for interpolation increases ex-
ponentially. Finally, in order to implement the optimal strategy, it follows from (£.14])
that we must be able to predict the non-observable regimes. Section [5.2.1] describes the

methodology for predicting these regimes.

Remark 5.3.1 Note that V, is chosen so that the expected hedqing error is zero. Ré-

millard and Rubenthaler (2009) also show that Cy(Si, 7¢) is the optimal investment at

period k so that the value of the portfolio at period n is as close as possible to P(S,,),
in terms of mean square hedging error, so C; can be interpreted as the option price
at period k. That interpretation is justified since by increasing the number of hedging

periods, they showed that Cy tends to the price under a risk neutral measure.
5.3.2 Optimal hedging strategy implementation issues

There are two main problems related to the implementation of the hedging strategy :
Cy and oy defined by expressions (5.17) and (B.I8) must be approximated and regimes
must be predicted. Here we chose to approximate C; and «; by using the Stratified
Monte Carlo sampling procedure (N = 10,000) described in Appendix with a grid
G defined by 1000 equidistant points covering 99.9999% of each regime daily return

Gaussian density. Next, we need to predict 7y, then 71 based on R;, and so on. To do
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so, consider ng past values of S, up to present time t = 0 and estimate 7; by
Ty = argmax Np,44(1), t=0,...,7 —1. (5.19)

The last equation indicates that the predicted regime is the regime having the largest
probability given the information on the prices up to time ny + ¢. Then, according to

(E14)), the optimal weights ¢; for period [t — 1,t), are approximated by
¢r = r(Si_1,7-1) — Via DS ) pra(Fea), t=1,...,T, (5.20)

and Vj is approximated by Cy(Sp, 7o). In particular the initial number of shares of the
risky assets ¢ is

¢1 = a1(So1,70) — VoD (So) pa(Fo), (5.21)

while one invests an amount V; — ¢{ Sy in the non risky asset. Next, as S; is observed,

one can compute Vi, then predict 7 and evaluate ¢, and so on.

5.4 Implementation of regime-switching models

To illustrate the methodology, we examine the daily log-returns of the S&P 500 from
January 1st 1989 to December 31st 2009 (5086 observations). This time series includes
periods of high and low volatility, as shown in Figure BE.]] and its some descriptive
statistics are given in Table 5.l Therefore, it is natural to try to model these data using
a regime-switching model. For the sake of simplicity, we choose the regime densities to
be Gaussian, which facilitates estimation of parameters. In this paper, we refer to the
Gaussian mixture model as GM, to Gaussian regime-switching model as GRS and to

Black-Scholes model as B&S.
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TABLE 5.1 — Descriptive statistics for the S&P 500 daily returns.

Mean ‘ Volatility ‘ Skewness ‘ Kurtosis
0.0002 | 0.0116 | -0.1985 | 12.2536

1500

1000

500

0%

E I I I 1-10%
Jan90 Jan95 Jan00 Jan05 Janl0

FIGURE 5.1 — S&P 500 over the period 12/31/1989 to 12/31/20009.

The time series is modeled using a GRS model. For more details on the estimation
using the EM algorithm, see Appendix According to Table 5.1 one should choose
a regime-switching model with 3 regimes, since it is the smallest number of regimes for

which the P-value of the goodness-of-fit test is larger than 5%.

TABLE 5.1 — P-value and LLH for the goodness-of-fit tests using 1000 replications.

Number of regimes 1 2 3 4
P-value 0 0 9% 3%
Log-likelihood 10129.56 | 10274.14 | 10295.22 | 10291.37

We also provide the log-likelihood values for each number of regimes. The estimated
parameters for the Gaussian densities appear in Table B.III : Mean and covariance

matrix of each density f; are noted p; and A;. The table also contains the long term
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regime probability v; of each regime, together with the conditional probability 7,(7)
for the current regime, given all past information. The estimated transition matrix is

given in Table £.IV]

TABLE 5.1II1 — Parameter estimations for 3 regimes.

Regime i ‘ L ‘ A; ‘ v; ‘ M (7)
1 -0.00164 | 0.000810 | 0.0737 | 0.0003
2 0.00010 | 0.000131 | 0.4624 | 0.0869
3 0.00064 | 0.000034 | 0.4639 | 0.9128

TABLE 5.1V — Transition matrix () for 3 regimes.

Regime ‘ 1 ‘ 2 ‘ 3
1 0.9673 | 0.0327 0
2 0.0053 | 0.9834 | 0.0113
3 0 0.0110 | 0.9890

Looking at the estimated transition matrix, if the process enters the high-volatility
regime, it has a probability of 96.73% of remaining in this regime and a 3.27% pro-
bability of moving to the mid-volatility regime. The n’s provides information on the
current state. The results indicate that there is 98.9% probability of being in the third
regime (lowest volatility and highest mean) by end of December 2009. v describes the
stationary distribution of the S&P500. The model captures the recent the stock mar-
ket behavior, which has been characterized by positive returns and low volatility on
average interrupted by periods of sustained volatility and poor returns. By the end of
2009 the market enters a period of very low volatility and strong recovery, as illustrated
by the third regime.

Using the density forecast formula (B.13]), one can plot the daily log-return density

of the forecast for several periods after December 31st 2009. This is illustrated in Figure
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for 1 day ahead, 5 days ahead and 21 days ahead (1 month). The weights of the

corresponding Gaussian densities are given in Table 5. V]

TABLE 5.V — Daily forecasts for the S&P 500 returns.

(=1 (=5 | (=21 | =
Regime 1 weight 0.0007 | 0.0028 | 0.0136 | 0.0737
Regime 2 weight 0.0954 | 0.1276 | 0.2274 | 0.4624
Regime 3 weight 0.9039 | 0.8696 | 0.7590 | 0.4639
Forecasted mean 0.0006 | 0.0005 | 0.0004 | 0.0002
Forecasted volatility | 0.0066 | 0.0069 | 0.0081 | 0.0116
Forecasted skewness | -0.0616 | -0.0888 | -0.1690 | -0.2037
Forecasted kurtosis | 5.0050 | 6.4941 | 9.5507 | 9.2478

60 -

50

a0}
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T
1-day ahead
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FIGURE 5.2 — Forecasted densities for the log-returns of the S&P 500
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These results demonstrate how the regime-switching model converges to the sta-

tionary distribution from the current state. Because the current state is defined by a

low volatility and a strong drift, the daily density exhibits little asymmetry and low

kurtosis. As the state distribution converges to the stationary distribution, the daily

density is characterized by a higher volatility, lower mean, and more asymmetry and
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kurtosis, taking into account more tail risk.

Finally, to illustrate these dynamic properties out-of-sample, we estimated both
a Gaussian regime-switching process and a Gaussian mixtures process on the daily
log-returns of the S&P 500 from December 1999 to December 2009. We performed
each month a goodness-of-fit test on the past daily returns considering the 1989-1999
sample as the initial data set. The selected number of regimes are presented in Figure
B3 We then forecasted the intra-month moments (Figure [5.4]) using formula (G.13))
and plotted the 95% confidence interval of the forecasted daily volatility on the S&P

500 daily returns (Figure [B.5]).

GRS Regimes
GM Regimes

LT T |

1 1 1 1
Jan00 Jan02 Jan04 Jan06 Jan08 Jan10

FIGURE 5.3 — Optimal number of regimes (goodness-of-fit)
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Mean Volatility
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FI1GURE 5.4 — Forecasted daily moments
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FIGURE 5.5 — Forecasted daily volatility on the S&P 500 daily log-returns

From Figure 0.0, we see that the Gaussian regime-switching model allows for a
good prediction of volatility, specifically in 2008 during the stock market crashed. It

captured both low volatility levels in 2004 and high volatility levels since 2007. That
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model performs better than the Gaussian mixture model due to its conditional proper-
ties. Skewness and kurtosis are also forecasted and reveal the higher asymmetry and
fat tails in 2008. Both the GRS and the GM models need between 3 to 5 regimes to
be well specified. Since volatility levels is an key driver for option pricing and hed-
ging, the dynamic hedging strategy as defined by equations (5.I4])-(5.I8]) seems quite

appropriate. This will be further discussed in the next section.

5.5 Implementation of the optimal hedging stra-
tegy

To illustrate the dynamic hedging algorithm based on Gaussian regime-switching
models, we price and hedge a European call and a put option for a range of matu-
rities and moneyness. We compare the Gaussian regime-switching process (GRS) to
a Gaussian mixture process (GM) and a standard Black-Scholes hedging (B&S). The
return process is modeled as a 3-regimes for the GRS with parameters estimated in
section .4l and a 4-regimes for the GM (best goodness-of-fit P-value). The stationary
volatility given by the GRS is set as the Black-Scholes constant volatility. We also
compute the average hedging error (MHE) and the average root mean square hedging
error (RMSHE) from equation (£.25]) on a sample of 100000 replications. To do so we
generate 100000 series of n daily returns following a 3-regimes GRS and we compute
the hedging strategy for each n-days sequence. The risk free rate is set at 3% per year
and the initial stock value is standardized such as Sy = 100. Because of the optimal
hedging algorithm characteristics, both pricing models are done in the real probability

measure, in contrast with the Black-Scholes option pricing framework.
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5.5.1 Hedging error validation by Monte Carlo simulations

At-the-money pricing

Using a Gaussian regime-switching process with 3 regimes, one gets 3 option values,
each specific to each particular regime. By choosing the most probable regime, as
described in Section [£.3.2] one obtains the most probable price. We evaluate a call
and a put option at-the-money with 21 days maturity. We provide 95% confidence
intervals based on 10,000 generated pricing (except for the B&S evaluation done in
closed form). The most probable regime is regime 3 with associated option prices and
hedge ratios appearing in bold in table B.VIl GRS option price is lower than the GM
and B&S option price since the current state exhibits a very low volatility. The GM
model can still consider the non-normality of the daily return density but the option
price is computed according to the stationary density, meaning the long run volatility,
so that the GM option values are close to the B&S option values. The confidence
intervals quickly converge to the estimated values even with only 10,000 pricing. The

hedge ratios are computed using formula (B.21]).

TABLE 5.VI — ATM option prices and initial hedge ratios for GRS, GM and B&S
models

Call Put
Price V 01 Price V 01
GRS Reg. 1 4.4988 + 0.0050 0.5257 + 0.0002 4.3156 + 0.0047 —0.4750 + 0.0002
GRS Reg. 2 2.2497 + 0.0031 0.5229 + 0.0001 2.0613 + 0.0029 —0.4757 + 0.0002
GRS Reg. 3 | 1.2834 +0.0017 | 0.5389 + 0.0001 || 1.1035 + 0.0019 | -0.4579 + 0.0001
GM 2.1699 + 0.0054 0.5332 + 0.0003 2.0133 + 0.0044 —0.4468 £ 0.0002
B&S 2.2161 0.5237 2.0412 —0.4763

Pricing over moneyness and maturities

To compare the three methodologies, we compute the B&S implied volatility on the

option prices with respect to their days-to-maturity (DTM) and strike price level. We
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test for a range of 20% out-of-the money to 20% in-the-money options with 21, 63, 126
and 252 days to maturity. Results are presented in Figure and Figure 5.7

GRS GM

5 12% < 1.2%
> >
8 3
3 1% 3 1%
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s s
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100 100
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Strike 80 50 o pas  Stike 80 50 o

1.2%

1%

0.8%
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Strike 80 50 DTM

FIGURE 5.6 — Call option implied volatility
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FI1GURE 5.7 — Put option implied volatility

The GRS implied volatility exhibits the well studied “smile” effect on option prices
across moneyness and the volatility term structure impact on prices over maturity.
According to recent market behavior, the smile is asymmetric with higher effect on
negative S&P 500 returns. The GM model capture some of the smile because of its
non-Gaussian properties but cannot capture the term structure effect. As expected,

B&S implied volatility remain constant across moneyness and maturities.

In-sample hedging error

We computed hedging errors for 21 days ATM options. GRS option prices lead to a
lower hedging error and RMSHE, as illustrated in Table [E.VIIl Then we evaluated the
errors for a range of 20% out-of-the-money to 20% in-the-money options with 21 days

to maturity. As shown in Figures 5.8 (.9 the hedging error is always closer to 0 for
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the GRS. Pricing and hedging at-the-money options in a constant volatility Gaussian
framework could lead to very large hedging errors due to the V{ mispricing in the GM
and B&S setting. The forecasting properties of the GRS model allow the option pricing

and hedging to be more dynamic to volatility shifts than a constant volatility.

TABLE 5.VII — ATM option hedging error and RMSHE

Call Put

Model | MHE | RMSHE | MHE | RMSHE
GRS | 0.0076 | 0.5440 | 0.0097 | 0.5435
GM 0.7844 | 0.9855 | 0.7896 | 0.9892
B&S | 0.8176 | 1.0062 | 0.8175| 1.0062

mean HE mean RMSHE
0.9%
GRS GRS
0.8% GM 1% oM
B&S B&S
0.7%
0.8%
0.6%
0.5% 0.6%
0.4%
0.3% 0.4%
0.2%
0.2%
0.1%
0% 0%
80 90 100 110 120 80 90 100 110 120
Strike Strike

FIGURE 5.8 — Call option hedging error (HE) and RMSHE over moneyness
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FIGURE 5.9 — Put option hedging error (HE) and RMSHE over moneyness

5.5.2 Approximation by regime-switching geometric Brownian
motion

One interesting feature of the GRS model in a option pricing and hedging framework

is that it can be well approximated under some conditions by a continuous time process,

the so-called regime-switching seometric Brownian motion, as detailed in Rémillard and

Rubenthaler (2009). Such a process is determined by a continuous time Markov chain

7, with generator A, representing the regime at time ¢, and between the jumps of
7;, the process S; follows a geometric Brownian motion with drift ¢ (i) and covariance
matrix a(i), when 7, = 4. If the discrete data corresponds to daily returns and if
the densities f; are Gaussian with mean (i) and covariance matrix A(i), then the
relation with the parameters A, ¢ and a is the following : A = n(Q — I), ¥(i) =

n(u(i) — diag(A(7))), a(i) = nA() with n = 252. One could refer to Rémillard and

Rubenthaler (2009) for details on the pricing and hedging algorithm. To illustrate the

approximation effectiveness, we priced ATM European call and put options with 21
days maturity (dicretized in 10,000 steps) given the GRS estimations in Section [5.4]

We provided 95% confidence intervals for the results based on 10° simulations (Table

2. A is defined by the relation A;; = limy o P(1y = jlmo = @)/t if j # 4, and Ay = — Z#i Aij.
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B.VIT) and hedging errors based on 10° simulated path of 21 daily returns (Table E.IX]).

TABLE 5.VIII — ATM option prices and initial hedge ratios

Call Put
Regime Price Vj D1 Price Vj 03]
1 4.5406 £ 0.0079 0.5288 £ 0.0002 4.3674 £+ 0.0061 —0.4712 £ 0.0001
2 2.2392 £+ 0.0037 0.5243 + 0.0001 2.0644 + 0.0033 —0.4756 £ 0.0001
3 1.2882 £ 0.0020 | 0.5300 + 0.0001 || 1.1132 + 0.0018 | -0.4699 + 0.0001

TABLE 5.IX — ATM option hedging error and RMSHE

Call Put
MHE | RMSHE | MHE | RMSHE
-0.0704 | 0.5803 | -0.0701 | 0.5789

The continuous time approximation leads to call and put option values (prices and
¢1’s) that are very close to the values given by the discrete time hedging algorithm.
The difference is still significant in term of confidence intervals. It is the result of
the continuous time approximation and appears to be significant in term of hedging
error. The GRS forecasting properties remain valid when approximated by a regime-
switching geometric Brownian motion. That approximation could be very useful when
the dimension d of the pricing problem grows (options on d underlying assets) because
it does not require any interpolation or polynomial approximation by contrast with the

discrete time hedging algorithm.
5.5.3 Out-of-sample validation

To complete our validation of the Gaussian regime-switching hedging model, we
propose an out-of-sample test of the pricing and hedging efficiency for both the GRS,
the GM and the B&S model. From December 31st 1999 to December 31st 2009 we

priced and hedged at the first trading day of each month a European call a put option
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expiring the last trading day of the respective month (1-month maturity). We estimated
the GRS model and GM model as described in section (.41 We present the average
hedging error and RMSHE on the 120 hedged options for different moneyness across
the 3 models. These results are illustrated in Figures 5. 10H5. 11T In particular they show
that the GRS model has lower mean error and root mean square measures that for the

other models in an out-of-sample experiment, for both call and put options.

Hedging Error
T T T T T
I GSR |
EEE v |
[__IBa&s| |
L L L L L L L L L
80 85 90 95 100 105 110 115 120
RMSHE
15 T T T
— - I GSR
N GMm
n C__JBss |
0.5 b
0 L
80 85 90 95 100 105 110 115 120

FI1GURE 5.10 — Call hedging errors across moneyness
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FIGURE 5.11 — Put hedging errors across moneyness

5.6 Conclusion
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In this paper, we propose a discretized version of the continuous time regime-

switching model, and demonstrate how to implement an optimal hedging strategies

to obtain derivatives prices when the underlying assets returns are modeled as regime-

switching random walks. Building mainly on the work of [Hamilto

1990), we also

propose a test of goodness-of-fit for Markovian regime-switching models for univariate

and multivariate time series that uses the Rosenblatt’s transforms. To illustrate the

effectiveness of the test, we model the daily return series of the S&P 500. The re-

sults obtained from the goodness-of-fit test are consistent with the characteristics of

the market evolution during high and low volatility periods. Furthermore, we deve-

lop a pricing and hedging algorithm based on the previous work of

2000), [Papageorgiou et all (2008

) and

Del

Moral et al

Rémillard and Rubenthaler

2009

) specifically

adapted to regime-switching models. We compare our hedging results to a Gaussian
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framework and a Gaussian mixture model and prove that Gaussian regime-switching
models generate lower hedging errors than constant volatility models, both in-sample
and out-of-sample test. This hedging algorithm could easily be extended to American

option payoffs, and adapted to conditional volatility models such as GARCH models.
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Appendix A : Estimation of regime-switching mo-
dels

In order to apply the EM algorithm for estimating parameters, see e.g., |(Cappé et al

2005), it is necessary to :
(E-Step) Compute the conditional probabilities
At(l):P(Tt:Z‘Rl,,Rn) and At(’i,j):P(Tt:’i,Tt+1 :j|R1,...,Rn),

forall 1 <k <mnandanyije{l,... .1}
(M-Step) Estimate the new parameters.

The E-Step is described next for any densities. The M-Step will be stated only for

Gaussian densities. For more details of the EM algorithm, see, e.g.,|Cappé et al) (2005).

A.1 : Conditional distributions of the regimes (E-Step)

First, define, for all i € {1,...,1},

CIn(Z) = 1,

!
(i) = > G1(B)Qisgi1(8), 1<k<n—1
=1

Then, for all 7,j € {1,...,l}, one can check that

M) = 2Wal) 5.2

V=S @@ 022

Ailiyj) = =5 Q"{Qt(i)%l(j)f_j(Rt“) , k=1,...n-1, (5.23)
Dt Zﬁ:l Qap@t()Gr+1(8)ge+1(8)

and A, (7, ) = A (1) Q5

To see that (5.22) and (5.23)) are consistent, note that for all 1 <k <n—1,

l

S i) = Y o LD R a8

=1 >t Zlgzl Quptr(@)@s1(B)gen1(B) Yoy ar(@)@()
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using the definition of G, > Au(i,5) = 30 M(§)Qi; = An(i). Similarly, for all
1<k<n-1,

ZAt (i) Z Qijqt(1)qr11(7) f (Riv1) @1 (D)@ () (i),

) S 215:1 Qupat(@)@+1(B)g41(8)  Sh_y a1 ()G (@)

using the definition of ¢;.1.

A.2 : Estimation for Gaussian regime-switching models (M-Step)

When the densities fi, ..., f; are those of Gaussian distributions with means (y;)!_;,
and covariance matrices (4;)._;, then the model is called a Gaussian HMM.
The M step consists in upgrading parameters (;)l_,, (u;)!_;, (A;)!_, and Q by

setting, for all i,7 € {1,...,1},

Hi = thwt(z),
A = Z(fv i) (e — 1) T (3),

where w; (1) = N\ (7) / Yo A

Note that ¢/ is not a stationary distribution for @)’ since for any 5 € {1,...,1},

! R 1~ A1 () = M ()
Dl = DY M) = SN = R
i=1 t=2

t=1 =1

However,

max
1<5<1

<1/n.

ZI/Q”—I/

Hence, when n is large, v/ is close to the stationary distribution of @’
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Remark 5.6.1 In|Cappé et al) (2005), it is shown that the EM estimator of v, when

v is not the stationary distribution, is V' = \.

It is interesting to note that the first two sample moments are preserved in the
Gaussian case, i.e., the sample mean and covariance matrix are equal to the theoretical

ones when applied to the estimated parameters.

A.3 : Fitting of sample moments

The sample mean and covariance matrix are defined by

th and S——Z( — )z, — 7).

t=1

Using formula (5.3]), one gets

l l n
po= Z Vi = % ; > M)z

t=1

Next,

1
ZVZ{A; = —ZZ& i) (g — i)’
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Therefore, using formula (5.4]), one obtains

l
A= ) VA Zvuz (i)' " = ()"
i=1
!

1 n
= 5;%%3— Vi (5) +Zvuzuz zz'

i=1

_ %Z(:ct D) —7)" = 8.
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Appendix B : Test of goodness-of-fit and Rosen-
blatt’s transform

We define the goodness-of-fit test, which can be performed to assess the suitability

as well as to select the number [ of Markov states (regimes). The proposed test, based

on the work of [Diebold et all (1998), (Genest and Rémillard (2008) and |Genest et al

2009), uses the Rosenblatt’s transform. It will be stated in full generality, not just for

Markovian regime-switching models.

B.1 : Conditional distribution functions and Rosenblatt’s transform

Let i € {1,...,1} be fixed and Y; be a random vector with density f;. For any j €
{1,...,d}, denote by f; .; the density of <Y;(1), o ,Y;(j)), and by f; ; the density of Yi(j)

given (Y-(l), e ,Y.(j _1)). Further denote by F;; the distribution function associated

7 K3

with density f; ;, where Fj; denotes the distribution function of Yi(l).

In order words, the Rosenblatt’s transform

y—=Ti(y) = (Fia(v), Fiayi,v2)s - -, Fialyr, - - . Ya))

is such that 7;(Y;) is uniformly distributed in [0, 1]%.

For example, in a bivariate Gaussian case where f; is the density of a bivariate Gaus-

Y MONE
sian distribution with mean p; and covariance matrix ¥; = L ‘ (’2) E
pir/ v v,

then f; o is the density of a Gaussian distribution with mean ,u(2) + 5; (yi(l) — ,u(-l)) and

(

variance viz) (1= p?), where 3; = p; Ui(2)/vi(1)‘
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The aim now is to find the Rosenblatt’s transform W, corresponding to the density
(5.8). Using the notations introduced above, one obtains that for any z;,...,z4 € R,

l
\Dgl)(zl) = \Ilgl)(xl, N (s I Zl) = Z Wa,k—lFa,l(zl) (524)

a=1

and for j € {2,...,d},

_ Sty Wak—tfatj1(21, - - 2zj-1)Fa j(2))
22:1 Weak—1fa1:5-1(21, -, 2j—1)

U (2, 2) = U (@, e, 2 )

It then follows that the Uy = Wy(Ry),...,U, = V¥, (Ry,..., R,) are independent and
uniformly distributed over [0, 1]%.
Suppose that Ry,..., R, be a sample of size n d-dimensional vectors from a joint

(continuous) distribution P. Suppose that the hypotheses to be tested are
Ho: PeP ={FP;0c0O} Vs H,:P&P

For example, the parametric family F could be the family of univariate Gaussian
regime-switching models with r regimes. Suppose also that Uy (+,8),...,V,(-,0) are the
associated Rosenblatt’s transforms, that is, the d-dimensional vectors U; = Wy (Ry,0),
Uy = Uy(Ry, Ry, 0), ..., Uy, = U, (Ry,...,R,,0) are uniformly distributed over [0, 1]
and independent. Suppose also that 6 is estimated by 6,, = T,,(Ry, ..., R,).

Since # is unknown, it must be estimated by 6,, so the pseudo-observations U, =
Uy (X1,0,),..., U, = U, (Ry,..., R, 0,) are approximately uniformly distributed over

[0, 1]d and are approximately independent. However, it is well-known, contrary to what

is stated in [Diebold et all (1998) for example, that it does not matter if  is replaced

by 6,,. There is a huge literature on empirical processes based on pseudo-observations,

and the main result is that there is always a price to pay for estimating parameters,

whenever empirical processes are concerned. See, e.g., |(Ghoudi and Rémillard (1998,

2004).
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B.2 : Goodness-of-fit test

The proposed test statistic is based on the empirical process

n d

1< 1
Dn(u):EE I(U; < u) nE [Tk <w), w=(u....,uq) €0, 1"
i=1

=1 t=1

To test Hy against H;, we propose to use the Cramér-von Mises type statistic

Sn = Bn 17”’7Un)

d

T {1 e ()} - ST (1 2) + 5

i=1 t=1

3

-
Il
—
.
Il
—
-
Il
—

Since the U;’s are “almost” uniformly distributed on [0, 1]¢ under the null hypothesis,
large values of S,, should lead to rejection of the null hypothesis. However, in general
the limiting distribution of S,, depend on the unknown parameter 6. To estimate the
P-value of S,,, one can use a parametric bootstrap approach as described below. The

validity of the parametric bootstrap approach has been shown for a large range of

contexts in |Genest and Rémillard (2008). Its validity for dynamic models is proven in

Rémillard (2010).

B.3 : Description of the parametric bootstrap

a) Calculate 0, =T, (Ry,...,R,) and S, = Bn(f]l, e Un)
b) For some large integer N (say 1000), repeat the following steps for every k €
{1,...,N}:

(i) Generate a random sample R%k), ..., R from distribution Py,.
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(ii) Calculate

y 2l 9y Yn

S0 = B, (00, 00)

09 = wi(RP,. R 0P), =1,

An approximate P-value for the test based on the Cramér—von Mises statistic S, is

then given by
N
~ > I(SH > S,).
t=1

Based on the results of Section 5.6l the Rosenblatt’s transform for a general Marko-
vian regime-switching model are also easy to calculate, so the goodness-of-fit test can
be applied to that type of model. For the selection of the number [ of regimes, it makes
sense to choose the first [y for which the P-value of the test of goodness-of-fit is larger

than 5%.
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Appendix C : Optimal hedging in discrete time

Denote the price process by S, i.e., S; is the value of d underlying assets at period
k and let F = {F;,k = 0,...,n} be a filtration under which S is adapted. Assume
that S is square integrable. Set A, = 5,5y — B;_15;_1, where the discounting factors
B are predictable, i.e. §; is F;_;-measurable for k = 1,...,n. The aim is to find the

optimal initial investment amount V[ and the optimal predictable investment strategy

%
¢ = (¢¢)7, that minimize the expected quadratic hedging error

E {{G <V0, 3) }2} , (5.25)

where G = G (Vh, 3) — B(C = V), and BVi = Vo+ 3 6T A; k=0,...,m
To that end, set P,,1 =1, and for k =n,..., 1, define
Ay = E(AA] Pyl Foy),
bt = At_lE (Atf)t—i-l‘-a—l) )

Qy = _1E (6nCAtPt+1|]:t—1) ’
P = H (1-b/A

We can now state Theorem 2.0.1 of [Rémillard and Rubenthaler (2009), which is an

extension of a result of [Schweizer (1995).

Theorem 4 Suppose that E(P|Fi_1) # 0 P-a.s., for k =1,...,n. Then the solution

<V0, ) of the minimization problem is Vo = E(8,CP,)/E(Py), and

Or =0y — BeaVieiby, k=1,...,n.

Note that Vj is chosen so that F(G) = 0. [Rémillard and Rubenthaler (2009) also

show that if C; is the optimal investment at period k so that the value of the portfolio
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at period n is as close as possible to (', in terms of mean square hedging error, then C}

is given by the following equation :

E(ﬁnCRt+1|ft)

C, = ,
P E(Pri|F1)

t=0,...,n (5.26)
C}; can be interpreted as the option price at period t.

C.1 : Monte Carlo evaluations

Expression (0.17) is of the form

l
9:(s,1) = ZQij/gm{ﬂ(s,y),j}wt(y,i,j)fj(y)dy, t=n-1,...,0, (5.27)

where wy, . .., w, and g, are known functions, and 7 (s,y) = sge¥* " k =1,...,d. The

methodology proposed in [Del Moral et _al. (2006) for American options and in Papa-

georgiou et al. (2008) for hedging, is basically to use at each time step a Monte Carlo

method to approximate g,(s,7) for all points s in some finite grid G. Since the values
of g;+1 are also approximated at these points, an interpolation method is necessary to

evaluate it any possible point.

Algorithm 1 (Simple Monte Carlo sampling) 7o estimate g(s,1) for every s €
G, one can proceed as follows.
- Fizie{l,... I}
— Fork=1,...,N, repeat the following steps :
— Generate v, ~ Q;., i.e., vy = J with probability Q;;.
~ If v, = j, generate Xj ~ f;.
— For every s € G, set

N
L 1 . .
gt(57 7’) = N Z gt-i—l{ﬂ-(S’ Xk)7 Uk}wt(Xk7 2, Uk)'
k=1
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Note that the random sequence (Xj,v;)_, is the same for every value of s € G. In
fact, it can also be the same for every time period ¢, by looking at expression (5.27)). In
algorithm [I], the proportion of regimes with value j would be approximately @);;. As it
is well-known in Sampling theory, usually a stratified sampling should perform better
(in term of variability). Therefore, one could replace the preceding algorithm by the

following one.

Algorithm 2 (Stratified Monte Carlo sampling) 7o estimate g,(s, ) for every s €
G, one can :
- Fizie{l,...,1}.
— Fork=1,..., N, repeat the following steps :
— For every j € {1,...,1}, generate Xy; ~ f;.

— For every s € G, set

l N

1

NZZ zygt-l-l{ﬂ- S Xk]) ]}wt(Xk]aZ ])
: k=1



Chapitre 6

Conclusion

Dans cette these, nous avons tenté d’apporter notre contribution a une littérature
vaste et compétitive. La structuration du profil de risque du portefeuille d'un investis-
seur suscite un vif intérét tant dans la sphere académique que dans le milieu privé. Par
les résultats prometteurs énoncés au cours de ce travail, nous espérons avoir alimenté
une perspective de recherche établie autour de la définition de protocoles optimaux de
couverture en temps discret. Les pistes de travail restent conséquentes. L’intégration
des frais de transaction a la stratégie de réplication ainsi que la caractérisation d’une
stratégie optimale de couverture adaptée aux processus de type GARCH seront des
avenues de recherche que nous tenteront d’exploiter a l’avenir. A partir des premiers
résultats de Black-Scholes (1973) et de Schweizer (1992, 1995) nous proposons un al-
gorithme optimal de réplication en temps discret d’'un ” payoff ” écrit sur le niveau du
sous-jacent (option classique) ou sur le rendement périodique du sous-jacent (option de
densité). Cette méthodologie améliore les résultats précédents en minimisant 1’erreur
quadratique de couverture tout en conservant les caractéristiques de la fonction de ”
payoff 7 désirée. Ceci a été caractérisé dans un contexte univarié et multivarié. Une mo-
délisation appropriée du processus des rendements du sous-jacent est essentielle dans la
minimisation I'erreur de réplication, particulierement lors de tests hors échantillon. Une

premiere approche par mixture de lois gaussiennes a permis d’illustrer la nécessité de



169

considérer les moments d’ordre supérieur dans la définition de la loi du sous-jacent, en
comparaison avec le modele Black-Scholes. Nous avons ensuite poursuivi la démarche en
proposant une caractérisation de la loi des rendements par un processus a changements
de régimes de lois gaussiennes, respectant du meéme coup la non-normalité de la loi
empirique et la structure conditionnelle des rendements discrets. Ce faisant, une étude
comparative a permis d’illustrer les avantages d’une telle modélisation sur la couverture
d’option d’achat et de vente dans différents scénarios de volatilité. La définition d’un ”
payoff ” de densité d’apres les résultats de Dybvig (1988) nous a également permis de
proposer une méthodologie d’assurance de portefeuille alliant la protection périodique
d’un niveau de pertes admissibles a un controle de la volatilité du portefeuille d’actifs

risqués. Cette innovation permet de limiter les erreurs de couverture tout en assurant

un investissement approprié conditionnel a la volatilité du sous-jacent.
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