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RÉSUMÉ

Cette thèse s’articule autour de quatre essais rédigés en format article. Ces articles

sont présentés en anglais ayant été soumis à publication. Les quatres articles ont été ré-

digés en collaboration avec mes directeurs de recherche, Nicolas Papageorgiou et Bruno

Rémillard.

Le premier chapitre constitue l’article clé de cette thèse Replicating the Properties

of Hedge Fund Returns. Cet article propose une extension des méthodes de couver-

ture d’options à la réplication distributionnelle, appliquée spécifiquement aux fonds de

couverture. Une nouvelle mesure de performance est proposée afin d’évaluer la valeur

ajoutée d’un fonds de couverture à un portefeuille initial en fonction de sa densité mar-

ginale des rendements, et de sa structure de dépendance avec le portefeuille considéré.

Une méthodologie de réplication est alors dérivée, permettant la construction d’un por-

tefeuille de densité bivariée de rendements ayant des propriétés identiques à celles du

fonds de couverture dans son contexte d’intégration au portefeuille de référence.

Le deuxième chapitre vise à illustrer les innovations présentées dans l’article précédent

en comparant certains résultats de tarification et de réplication à une méthodologie

plus classique dérivée des hypothèses du modèle de Black-Scholes (1973), adaptée dans

le même contexte par Kat et Palaro (2005) dans le cadre de leurs travaux de recherche.

Cet article, intitulé Optimal Hedging Strategies with an Application to Hedge Fund

Replication, est une courte documentation technique ayant pour objectif une démons-

tration de l’efficacité de la méthodologie de couverture.

Le troisième chapitre est une application des techniques proposées à l’assurance de por-
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tefeuille. L’article intitulé The Payoff Distribution Model : A Portfolio Insurance Ap-

proach met l’emphase sur la gestion dynamique d’un protocole d’assurance et compare

différentes stratégies classiques de gestion des pertes avec une approche par contrôle

de densité. Ceci représente une extension du modèle de réplication présenté dans les

deux premiers articles, et propose d’intégrer une option d’assurance en déformant la

distribution univariée des rendements du portefeuille initial non couvert.

Le quatrième chapitre propose d’intégrer une meilleure modélisation du processus du

sous-jacent à un algorithme de réplication d’options européennes cohérent. L’article

intitulé Option Pricing and Hedging for Regime-Switching Models se concentre sur la

modélisation du processus de rendements inhérent à la stratégie de réplication. Une mo-

délisation par processus à changements de régimes est proposée avec la dérivation d’une

méthodologie de couverture en temps discret appropriée. Des résultats en-échantillon

et hors-échantillon illustreront l’efficacité du modèle en terme de réactivité aux condi-

tions de marché.

Classification JEL : G10, G13, G20, G28, C15, C16, C22

Mots clés : fonds de couverture, réplication de distributions, stratégie de répli-

cation, assurance de portefeuille, portefeuille synthétique, processus à changements de

régimes, châınes de Markov cachées, couverture en temps discret
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ABSTRACT

This thesis focuses on four essays. These articles have been submitted for publica-

tion. The four articles are written in collaboration with my research directors, Nicolas

Papageorgiou and Bruno Rémillard.

The first chapter is the key section of this thesis Replicating the Properties of Hedge

Fund Returns. In this paper, we implement a multivariate extension of Dybvig (1988)

Payoff Distribution Model that can be used to replicate not only the marginal distri-

bution of most hedge fund returns but also their dependence with other asset classes.

In addition to proposing ways to overcome the hedging and compatibility inconsisten-

cies in Kat and Palaro (2005), we extend the results of Schweizer (1995) and adapt

American options pricing techniques to evaluate the model and also derive an opti-

mal dynamic trading (hedging) strategy. The proposed methodology can be used as

a benchmark for evaluating fund performance, as well as to replicate hedge funds or

generate synthetic funds.

The second section aims to illustrate the innovations proposed in the previous article

comparing some results of pricing and replication with a more conventional methodo-

logy derived from the model assumptions of Black-Scholes (1973). This article, Optimal

Hedging Strategies with an Application to Hedge Fund Replication, is a short technical

documentation that demonstrates the effectiveness of the proposed methodology.

The third chapter is an application of the proposed techniques to portfolio insurance.

We propose an innovative approach for dynamic portfolio insurance that overcomes

many of the limitations of the earlier techniques. In this paper, The Payoff Distribu-

tion Model : A Portfolio Insurance Approach, we transform the Payoff Distribution

Model, originally introduced by Dybvig (1988) as a performance measure, to a fund
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management tool. This approach allows us to generate funds with pre-specified dis-

tributional properties. Specifically, we generate funds that are characterized by a Left

Truncated Gaussian distribution and then demonstrate out-of-sample that this ap-

proach to managing market exposure results in more reliable portfolio protection at a

lower cost than more popular techniques such as the CPPI.

Chapter four proposes to integrate a better modeling of the underlying process in the

hedging algorithm. In this paper, Option Pricing and Hedging for Regime-Switching

Models, we implement optimal (mean-variance) dynamic hedging in discrete time for

a class of regime-switching models. This methodology for pricing and hedging options

is robust and flexible and overcomes the main drawbacks of the Black-Scholes-Merton

model. We compare our discrete time methodology to a continuous time model approxi-

mation using regime-switching geometric Brownian motion, for which it has recently

been shown that the optimal hedging and associated pricing can be deduced from a risk

neutral distribution. We provide both in-sample and out-of-sample results to support

our approach.

JEL Classification : G10, G13, G20, G28, C15, C16, C22

KeyWords : Hedge Funds, Distributional Replication, Hedging Strategy, Portfolio

Insurance, Synthetic Funds, Switching Regimes, Hidden Markov Chains, Discrete Time

Hedging
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Chapitre 1

Introduction

L’objectif principal de cette contribution de recherche est de répondre à un enjeu es-

sentiel en finance de marché soit la structuration du profil de risque du portefeuille d’un

investisseur. L’idée sous-jacente est de faire correspondre les besoins (rendements) et

capacité (risque) d’un investisseur privé ou institutionnel au profil de rendements de son

portefeuille de marché dont la composition en actifs est une fonction de ses préférences.

De nombreux intervenants construisent leur modèle d’affaire autour de la définition du

processus de déformation des intrants (rendements des actifs) en extrants (rendements

du portefeuille profilé). On citera de façon non exhaustive les banquiers personnels et

conseillers en épargne retraite avec un mandat de structuration d’un portefeuille de

décaissement optimal en fonction du portefeuille de l’épargnant, les banquiers d’affaire

avec un mandat de contrôle de la volatilité des revenus de placement et les courtiers avec

un mandat de gestion de pertes d’un portefeuille institutionnel. Ces concepts prennent

naissance dans la théorie des options et dans le mécanisme de transfert de risque. Afin

de caractériser notre approche, une simplification de la problématique s’impose. Nous

considérons le cas d’un investisseur ayant accès à un sous-jacent risqué S et dont la

fonction de préférence est déterminée selon des spécifications reliées à l’évolution de S.

Ceci définit une hypothèse de travail selon laquelle la valeur du portefeuille de l’inves-

tisseur sera déterminée par une fonction possiblement non-linéaire en S. Cet enjeu est
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classiquement adressé par la définition d’un ” payoff ” optionnel écrit sur le sous-jacent

S (option d’achat, option de vente, option exotique, combinaison d’options). L’investis-

seur détermine les spécificités de son profil de rendement à terme selon ses préférences,

soit des prix d’exercice, maturité, et toutes autres caractéristiques particulières à la

définition de l’option. L’option est alors caractérisée comme un instrument de transfert

de risque d’une partie de la distribution des rendements de S sur l’horizon fixé. Le

mécanisme de transfert de risque peut alors être confié au marché, en transigeant l’op-

tion avec une contrepartie, ou géré dynamiquement par l’investisseur, en transigeant

activement S selon un protocole déterminé qui déterminera le ” payoff ” à maturité.

L’équivalence théorique de ces deux approches est cruciale. La déformation du profil de

risque de S se fait selon un protocole Π d’investissement en S à un coût C0. Le coût C0

du transfert de risque est donc intimement lié au protocole de structuration du ”payoff

”. On appellera C0 le coût de l’option et Π la stratégie dynamique de réplication de

l’option. Notre approche est donc de proposer une méthodologie conforme à ce cadre

de travail, en contribuant successivement aux différentes problématiques du sujet. La

littérature a vastement couvert la théorie des options. Depuis Black-Scholes (1973) qui

ont défini la théorie des options selon leurs hypothèses de marché, de nombreux auteurs

ont proposé des extensions et améliorations dans le but de palier aux inconsistences

du modèle initial. Le modèle Black-Scholes a permis le développement de solutions

analytiques simples pour la tarification de produits dérivés standard. Cependant les

hypothèses restrictives de volatilité constante, processus gaussien en temps continu

et de rendements indépendants, ont rapidement été identifiées comme non adaptées

à la réalité des marchés (Fama (1965), Mandelbrot (1963), Schwert (1989)). De plus,

Boyle et Emanuel (1980), Gilster (1990), Mello et Neuhaus (1998) et Buraschi et Ja-

ckwerth (2001) ont caractérisé le biais d’erreur de réplication introduit par l’hypothèse
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de couverture en temps continu. De nombreux modèles en temps discret basés sur l’op-

timisation de différentes fonctions objectifs ont été proposés. On citera Owen (2002),

Potters, Bouchaud et Sestovic (2001) et Pochart et Bouchaud (2004). Notre approche

est d’identifier la stratégie de réplication en temps discret optimale auto financée telle

que définie par Cox et Ross (1976) et Harrison et Kreps (1979). A partir des travaux

de Follmer et Schweizer (1990) et Schweizer (1992, 1995), nous dériverons une straté-

gie dynamique optimale de couverture en temps discret basée sur la minimisation de

l’erreur quadratique de réplication.

L’idée est alors de travailler dans un premier temps sur la définition d’une nouvelle

fonction de ” payoff ”, dont le déterminant ne sera, non pas le niveau de S mais le

rendement à terme de S. A partir des travaux de Dybvig (1988), nous caractériserons

la fonction objectif de densité de rendements périodiques de l’investisseur. Ce ” payoff

” de densité sera appliqué dans un contexte univarié, en tant que protocole d’assurance

de portefeuille, et dans un contexte bivarié, dans un cadre de réplication de densité

de rendements mensuels de fonds de couverture apparié à un portefeuille de référence.

Une seconde contribution sera apportée en définissant une nouvelle méthodologie de

réplication de ” payoff ”. Nous viendrons ici répondre à la problématique de couver-

ture en temps discret par un processus d’investissement en S d’une fonction objectif

définie sur S. Ceci sera illustré tant dans un cadre de réplication d’options d’achat et

de vente classiques que dans un cadre de réplication de densité de rendements. Une

des caractéristiques de cette méthodologie est sa définition dans un environnement non

gaussien sous probabilité physique. Nous venons alors répondre aux lacunes du modèle

Black-Scholes restreint à un environnement de réplication en temps continu sous un

processus de rendements indépendants et identiquement distribuées de loi gaussienne.

Afin d’illustrer cette caractéristique du modèle, nous définirons la stratégie optimale
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de réplication sous un processus de rendements du sous-jacent suivant dans un pre-

mier temps une mixture de lois gaussiennes et dans un second temps un processus à

changements de régimes. Cette thèse rédigée au format article sera composée de trois

essais et d’une note technique. Dans le but de soumettre ces articles aux revues scienti-

fiques spécialisées, ces articles seront rédigés en anglais et une bibliographie spécifique

à chaque article sera proposée.

La première partie sera intitulée Replicating the Properties of Hedge Fund Returns

et a fait l’office d’une publication dans la revue ” Journal of Alternative Investments ”

édition ” Fall 2008 ”. Cet article illustre la méthodologie de réplication de ” payoff ” de

densité bivariée sous processus de rendements suivant une mixture de lois gaussiennes.

L’idée est ici de permettre à l’investisseur de reproduire la densité marginale de rende-

ments de fonds de couverture ainsi que la structure de dépendance entre son portefeuille

de référence et le fonds de couverture considéré. Par cette approche l’investisseur pourra

tarifer la distribution de rendement d’un fonds de couverture conditionnellement aux

caractéristiques spécifiques de son portefeuille. Une règle de décision sera établie afin

d’évaluer l’opportunité de répliquer cette distribution par une stratégie d’investisse-

ment en temps discret dans les portefeuilles d’actifs liquides appropriés. En adressant

l’évaluation et la réplication de fonds de couverture, cette contribution trouve sa place

dans la littérature de l’investissement alternatif. De cet article, une note technique

Optimal Hedging Strategies with an Application to Hedge Fund Replication est publiée

dans l’édition de Janvier-Février 2008 de ”Wilmott Magazine ”. Cette note a pour but

d’illustrer l’avantage de la méthodologie proposée en comparaison avec une approche

Black-Scholes, spécifiquement dans la minimisation de l’erreur de couverture et de sa

variance, dans un contexte où la structure de dépendance discutée est définie par une

fonction de Copules.
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Le deuxième article est intitulé The Payoff Distribution Model : An Application to

Dynamic Portfolio Insurance. L’idée est ici d’appliquer le modèle décrit précédemment

dans un contexte d’assurance de portefeuille. La stratégie de réplication est appliquée

à un portefeuille composé d’une combinaison d’actif risqué S et d’actif sans risque dont

l’objectif est la protection d’un rendement minimum périodique tout en contrôlant la

volatilité des rendements résultants. La fonction de ” payoff ” sera définie comme une

densité de rendements de loi gaussienne tronquée. Le niveau de troncature déterminera

le seuil de garantie. La méthodologie sera comparée aux approches plus classiques

de gestion d’assurance, soit un modèle de ” stop-loss ”, un modèle de ” CPPI ” et

une réplication d’option de vente écrite sur S sous un environnement Black-Scholes.

Ces approches avaient été précédemment étudiées par Brennan et Schwartz (1979),

Rubinstein et Leland (1981), Black et Jones (1987) et Black et Perold (1992).

Le troisième article est intitulé Option Pricing and Dynamic Hedging for Regime-

Switching Geometric Random Walks Models. La contribution est de proposer un al-

gorithme de réplication d’option d’achat et de vente consistant avec un processus de

rendements à changements de régimes. Chaque état est caractérisé par une loi gaus-

sienne spécifique. Des études en échantillons et hors échantillons seront proposées, ainsi

qu’une analyse de robustesse de la méthodologie. L’approche sera comparée à une ap-

proche Black-Scholes classique ainsi qu’à une modélisation par une mixture de lois

gaussiennes. Les processus à changements de régime popularisés par Hamilton (1990)

et Kim, Piger et Startz (2008) permettent une caractérisation intuitive des états per-

turbateurs des rendements du portefeuille, en associant une fonction de passage d’un

état à un autre, assurant alors la conditionnalité des états.



Chapitre 2

Replicating the Properties of Hedge Fund Returns

2.1 Introduction

The impressive growth of the hedge fund industry has naturally led to an increa-

sed scrutiny of the fund managers and of their investment strategies. Given the often

exorbitant management and performance fees charged by hedge fund managers, it is

not surprising that investors are starting to question what they are actually getting for

their money. Shrewd investors and institutional fund of funds are becoming increasin-

gly careful about paying alpha fees for beta returns. The challenge that investors and

researchers are therefore confronted with is how to reliably separate the funds that are

generating alpha returns from the ones that are simply repackaging beta.

The approach that has generally been favored by academics and practitioners in

order to extract information about hedge fund returns is the factor model approach. The

underlying idea is to try and separate the returns that are due to systematic exposure to

risk factors (beta returns) from those that are due to managerial skill (alpha returns).

Once the relevant risk factors have been identified, one can evaluate whether the funds

exhibit abnormal returns based on the intercept of a linear regression of the fund returns

against the factor returns. A further advantage of this methodology is that if the linear

model is well-specified, one can attempt to replicate the returns of the hedge fund by
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investing in the appropriate portfolio of factors. A recent paper by Hasanhodzic and

Lo (2007) provides some evidence that linear replication can be successful for certain

strategies whilst offering certain advantages to hedge fund investing. These include

more transparency, increased liquidity and fewer capacity constraints. However the

authors warn that the heterogeneous risk profile of hedge funds and the non-linear

risk exposures greatly reduce the ability of these models to consistently replicate hedge

fund returns. Over the last few months, several banks including Goldman Sachs, JP

Morgan and Merril Lynch have launched linear replication funds.

Certain generic hedge fund characteristics help explain some of the difficulty in

identifying a well specified linear model. The use of financial derivatives, the use of

dynamic leverage, the use of dynamic trading strategies and the asymmetric perfor-

mance fee structures are some of the most obvious sources of non-linearities in hedge

fund returns. Several recent papers, such as Mitchell and Pulvino (2001), Fung and

Hsieh (2001), Agarwal and Naik (2004), Chen and Liang (2006), Kazemi and Schnee-

weis (2003) have dealt with the inclusion of risk premia and conditional betas that

attempt to account for these non-linearities. The inclusion of the above option-based

factors significantly improves the explanatory power of factor models, however, most of

these factors are not tradable and therefore cannot be used to construct a replicating

portfolio.

In order to circumvent the issue of identifying tradable risk factors, an interesting

alternative approach was proposed by Amin and Kat (2003) and more recently exten-

ded by Kat and Palaro (2005). Based on earlier work by Dybvig (1988), the authors

evaluate hedge fund performance not by identifying the return generating betas, but

rather by attempting to replicate the distribution of the hedge fund returns. The under-

lying idea is based on the hypothesis that much of the trading activity undertaken by
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hedge funds is not creating value, just altering the timing of the returns available from

traditional assets. In effect, many hedge funds are simply distorting readily available

asset distributions. So the real challenge is whether or not we can find a more efficient

method to distort these distributions than by investing in hedge funds. Armed with

their new efficiency measure, Kat and Palaro (2005) show that hedge fund returns are

by no means exceptional and that for the majority of funds an alternative dynamic

strategy would have provided investors with superior returns. This methodology not

only provides a model free benchmark for evaluating hedge funds, it can also be used

to create synthetic funds with predetermined distributional properties.

The efficiency measure as presented by Kat and Palaro (2005) is however subject

to several shortcomings and inconsistencies. The most significant of these relates to

the way that the daily trading strategies are derived from the distribution of monthly

returns. The properties of the estimated monthly distributions and copula functions

proposed by the authors are not infinitely divisible and therefore the true properties

of the daily returns are not known. As a result, the replicating strategy will not be

precise. A further weakness pertains to the fact that although the hedge fund returns

and traded assets are clearly non-normal, the efficiency measure is calculated within

the confines of the Black-Scholes-Merton world, hence ignoring the higher moments of

the distributions.

In this paper, we will implement a multivariate extension of Dybvig (1988) Payoff

Distribution Model that can be used to replicate not only the marginal distribution

of most hedge fund returns but also their dependence with other asset classes. In

addition to proposing ways to overcome the hedging and compatibility inconsistencies

in previous papers, we extend the results of Schweizer (1995) and adapt American

options pricing techniques to evaluate the model and also derive an optimal dynamic



9

trading (hedging) strategy. The proposed methodology can be used as a benchmark for

evaluating fund performance, as well as to replicate hedge funds or generate synthetic

funds.

The rest of the paper will be structured as follows. Section 2 will explain the intui-

tion behind the multivariate extension of Dybvig’s Payoff Distribution model. Section

3 presents the technical details relating to the modeling and estimation of the distribu-

tions. Section 4 presents the payoff function. Section 5 presents the replication issues

and presents the optimal dynamic trading strategy. Section 6 presents some numerical

results. Section 7 concludes.

2.2 The Multivariate Payoff Distribution Model

In Kat and Palaro (2005), the authors show that given two risky assets S(1) and S(2),

it is possible to “reproduce” the statistical properties of the joint return distribution of

asset S(1) and a third asset S(3). Let’s assume asset S(1) is the investor portfolio, asset

S(2) is a tradable security and asset S(3) is a hedge fund, this result implies that we

can generate the distribution of the hedge fund and its dependence with the investor

portfolio, by only investing in the tradable security S(2) and the investor portfolio S(1).

Note that we do not replicate the month by month returns of the hedge fund, but

instead we replicate its distributional properties (i.e. expectation, volatility, skewness

and kurtosis) as well as dependence measures with respect to the returns of the investor

portfolio (i.e. Pearson, Spearman correlations...).

Essentially, there exist a payoff function that will allow us to transform the joint

distribution of assets S(1) and S(2) into the bivariate distributions of S(1) and S(3). This

payoff function is easily shown to be calculable using the marginal distribution functions

F1, F2 and F3 of S
(1)
T , S

(2)
T , S

(3)
T , and the copulas C1,2 and C1,3 associated respectively
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with the joints returns
(

R
(1)
0,T , R

(2)
0,T

)

and
(

R
(1)
0,T , R

(3)
0,T

)

. The exact expression for the

payoff function is given in section 2.4.

The challenge that we are confronted with is how to best evaluate this function,

and this is by no means a trivial problem. The problem can however be broken down

into three separate components. The first part relates to the proper modeling of the

distributions and copula functions. The second part consists in calculating the payoff

function. The third part consists in selecting an approach that will allow us to generate

a dynamic trading strategy that provides us with the best possible approximation of

the payoff function.

2.3 Modeling the returns

In order to provide a robust solution in this framework, we propose the following

steps. First, we will model the joint daily distribution of S(1) and S(2) using bivariate

Gaussian mixtures. Since we will be trading these assets on a daily basis, it is impe-

rative that the distribution of the monthly returns for both the investor portfolio and

the reserve asset are consistent with the distribution of the daily returns. We need to

be sure that by dynamically trading the assets based on the joint daily distributions

we will be able to generate the desired monthly properties. We will therefore estimate

the parameters of the bivariate Gaussian mixtures of Rt, (investor portfolio and reserve

asset) using the historical daily returns of S(1) and S(2). We can then solve for the law

of the monthly returns that is compatible with the law of daily returns. Furthermore,

the daily dependence which is modeled with the bivariate mixtures will allow us to

obtain the desired monthly dependence. This would not have been possible if we used

univariate laws to model the marginal distributions and a copula to model the depen-

dence structure. Although copula provide us with much flexibility in terms of modeling
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the dependence, there is however no proof to this day that the statistical properties

of copula functions are divisible. Finally, we need to estimate the monthly distribu-

tion of the hedge fund returns as well as the dependence between the hedge fund and

the investor portfolio. There are no particular restrictions regarding the choice of the

distribution of S(3) and the copula C1,3. We have developed statistical tests that allow

us to select the most appropriate marginal distribution and copula function. We now

consider each of these steps in detail.

2.3.1 Mixtures of Gaussian distributions

The choice of Gaussian mixtures to model the bivariate distribution of investor

portfolio and the reserve asset is due to both the flexibility of the mixtures in capturing

high levels of skewness as well as the fact that the bivariate distribution is infinitely

divisible. In this section, we will first provide a brief description of bivariate Gaussian

mixtures and discuss the goodness-of-fit test that we developed in order to estimate

the mixtures and select the optimal number of regimes.

Definition of mixtures of Gaussian bivariate vectors

A bivariate random vector X is a Gaussian mixture with m regimes and parameters

(πk)
m
k=1, (µk)

m
k=1 and (Ak)

m
k=1, if its density is given by

f(x) =

m
∑

k=1

πkφ2(x;µk, Ak)

where φ2(x;µ,A) =
e−

1
2 (x−µ)⊤A−1(x−µ)

2πσ1σ2(1−ρ2)1/2
is the density of a bivariate Gaussian vector with

mean vector µ = (µ1, µ2)
⊤ and covariance matrix A =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

. Its distri-

bution function is

F (x1, x2) =
m
∑

k=1

πkΦ2

(

x1 − µk1

σk1
,
x2 − µk2

σk2
; ρk

)

,
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where Φ2(·, ·; ρ) is the bivariate standard Gaussian distribution function with correla-

tion ρ. Some of the important properties of mixtures of bivariate Gaussian variables

are discussed in Appendix 2.7.

Estimation and goodness-of-fit

In order to choose the optimal number of regimes, we need to first estimate the

parameters of the model, and then provide a goodness-of-fit test to evaluate whether

a greater number of regimes is required. The estimation method is based on the EM

algorithm of (Dempster et al., 1977).

A new goodness-of-fit test is proposed to assess the suitability as well as to select

the number of mixture regimes m. The proposed test, based on the work in Genest

et al. (2009), uses the Rosenblatt’s transform 1.

For the selection of the number m of regimes, the following two steps procedure is

suggested :

(a) Find the first m0 for which the P -value of the test is larger than 5%.

(b) Estimate parameters for m0 + 1 regimes and apply the likelihood ratio test to

check if the null hypothesis H0 : m = m0 vs H1 : m = m0 + 1. If H0 is rejected

at the 5% level, repeat steps (a) and (b) starting at m = m0 + 1. However, if

the parameters under H1 yield a degenerate density (e.g., |ρk| = 1), stop and set

m = m0.

2.3.2 Choice/estimation of the marginal distribution F3

There are no restrictions on the choice of F3, which is the distribution of the hedge

fund that we seek to replicate (or the desired distribution in the case of a synthetic

fund). Unlike the reserve asset and investor portfolio that require divisible laws, we are

1. The derivation of the goodness-of-fit test for Gaussian mixtures is available on request from the
authors.



13

only interested in monthly return distribution and hence can introduce any distribution.

In the case of the replication of an existing hedge fund, goodness-of-fit is important

and therefore we test using a Durbin type test 2.

2.3.3 Choice/estimation of the copula C1,3

Again, there are no restrictions on the choice of copula function C1,3, between the

monthly returns of the hedge fund and the investor portfolio. Suppose that we have

historical monthly returns (Y1, Z1), . . . , (Yn, Zn) belong to a copula family Cθ. To esti-

mate θ, one often uses the so-called IFM method. However, we do not recommend it

as the parameters of the copula function rely on the estimated marginal distributions.

Any mis-specification of the marginal distributions will bias the choice of copula. For

reasons of robustness, it is therefore preferable to use normalized ranks, i.e. if Ri1 re-

presents the rank of Yi among Y1, . . . , Yn and if Ri2 represents the rank of Zi among

Z1, . . . , Zn, with Rij = 1 for the smallest observations, then set

Ui =
Ri1

n+ 1
, Vi =

Ri2

n + 1
, i = 1, . . . , n.

To estimate θ one could try to maximize the pseudo-log-likelihood

∑

i=1

log cθ(Ui, Vi),

as suggested in Genest et al. (1995). For example, if the copula is the Gaussian copula

with correlation ρ, the pseudo-likelihood estimator for ρ yields the famous van der Waer-

den coefficient defined to be the correlation between the pairs {Φ−1(Ui),Φ
−1(Vi); i =

1, . . . , n}. For other families that can be indexed by Kentall’s tau, e.g., Clayton, Frank

and Gumbel families, one could estimate the parameter by inversion of the sample

Kendall’s tau. See, e.g., Genest et al. (2006).

2. The derivation of the goodness-of-fit test for the choice of copula is available on request from
the authors.
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Finally, to test for goodness-of-fit, one can use Cramér-von Mises type statistics for

the empirical copula or for the Rosenblatt’s transform. The latter could be the best

choice given that ∂
∂u
C1,3(u, v) needed to be calculated for the evaluation of the payoff

function. These tests are described in Genest et al. (2009) and in view of their results,

we recommend to use the test statistic S
(B)
n .

2.4 The payoff function

Having estimated the necessary distribution and copula functions, one must now

calculate the payoff’s return function g. As deduced by Kat and Palaro (2005), its

formula is given by

g(x, y) = Q
{

x, P
(

R
(2)
0,T ≤ y|R(1)

0,T = x
)}

,

where Q(x, α) is the order α quantile of the conditional law of R
(3)
0,T given R

(1)
0,T = x,

i.e., for any α ∈ (0, 1), q(x, α) satisfies

P
{

R
(3)
0,T ≤ Q(x, α)|R(1)

0,T = x
}

= α.

Using properties of copulas, e.g. Nelsen (1999), the conditional distributions can be

expressed in terms of the margins and the associated copulas.

P
(

R
(2)
0,T ≤ y|R(1)

0,T = x
)

=
∂

∂u
C1,2(u, v)

∣

∣

∣

∣

u=F1(x),v=F2(y)

.

Note that
∂

∂u
C1,2(u, v) = P

{

F2

(

R
(2)
0,T

)

≤ v|F1

(

R
(1)
0,T

)

= u
}

.

In our methodology, since the monthly returns
(

R
(1)
0,T , R

(2)
0,T

)

are modeled by a Gaus-

sian mixtures with parameters (πk)
m
k=1, (µk)

m
k=1 and (Ak)

m
k=1, the conditional distribu-

tions can be expressed as follows

P
(

R
(2)
0,T ≤ y|R(1)

0,T = x
)

=

m
∑

k=1

π̃k(x)φ{y; µ̃k(x), σ̃
2}

where π̃k(x), µ̃k(x) and σ̃
2 are given by formulas (2.7) and (2.8) in Appendix 2.7
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2.5 Dynamic replication

Having solved for the payoff function, we need to find an optimal dynamic trading

strategy that will replicate the payoff function. We do so by selecting the portfolio

(V0, ϕ) such as to minimize the expected square hedging error

E
[

β2
T {VT (V0, ϕ)− CT}2

]

,

where βT is the discount factor and CT = 100 exp
{

g
(

R
(1)
0,T , R

(2)
0,T

)}

is the payoff at

maturity.

In order to achieve this, we develop extensions of the results of Schweizer (1995).

Note that there is no “risk-neutral” evaluation involved in our approach and that all

calculations are carried out under the objective probability measure.

If the dynamic replication is successful, i.e., VT = CT , then return of the investment

can be decomposed as

log(VT/V0) = log(100/V0) + g
(

R
(1)
0,T , R

(2)
0,T

)

.

Therefore, as proposed in Kat and Palaro (2005), one can view α = log(100/V0) as a

measure of performance. For, if α = 0, we generate exactly the target distribution, while

if α > 0, we outperform the target distribution ; if α < 0, then the fund outperforms

the replication strategy. However, whatever the value of α, statistics based on centered

moments are not affected ; only the value of the expectation depends on α.

2.5.1 Optimal hedging

Suppose that (Ω, P,F) is a probability space with filtration F = {F0, . . . ,FT},

under which the stochastic processes are defined. For the moment, assume that the

price process St is d-dimensional, i.e. St =
(

S
(1)
t , . . . , S

(d)
t

)

. In the next section, one

will come back with the case d = 2.
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Before defining what is meant by a dynamic replicating strategy, let βt denote the

discount factor, i.e. βt is the value at period 0 to be invested in the non risky asset

so that it has a value of 1$ at period t. By definition, β0 = 1. It is assumed that the

process β is predictable, i.e. βt is Ft−1-measurable for all t = 1, . . . , T .

A dynamic replicating strategy can be described by a (deterministic) initial value V0

and a sequence of random weight vectors ϕ = (ϕt)
T
t=0, where for any j = 1, . . . , d, ϕ

(j)
t

denotes the number of parts of assets S(j) invested during period (t− 1, t]. Because ϕt

may depend only on the values values S0, . . . , St−1, the stochastic process ϕt is assumed

to be predictable. Initially, ϕ0 = ϕ1, and the portfolio initial value is V0. It follows that

the amount initially invested in the non risky asset is

V0 −
d

∑

j=1

ϕ
(j)
1 S

(j)
0 = V0 − ϕ⊤

1 S0.

Since the hedging strategy must be self-financing, it follows that for all t = 1, . . . , T ,

βtVt(V0, ϕ)− βt−1Vt−1(V0, ϕ) = ϕ⊤
t (βtSt − βt−1St−1). (2.1)

Using the self-financing condition (2.1), it follows that

βTVT = βTVT (V0, ϕ) = V0 +

T
∑

t=1

ϕ⊤
t (βtSt − βt−1St−1). (2.2)

The replication strategy problem for a given payoff C is thus equivalent to finding the

strategy (V0, ϕ) so that the hedging error

GT (V0, ϕ) = βTVT (V0, ϕ)− βTC (2.3)

is as small as possible. In this paper, we choose the expected square hedging error as a

measure of quality of replication. It is therefore natural to suppose that the prices S
(j)
t

have finite second moments. We further assume that the hedging strategy ϕ satisfies

a similar property, namely that for any t = 1, . . . , T , ϕ⊤
t (βtSt − βt−1St−1) have finite
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second moments. Note that these two technical conditions were also made by Schweizer

(1995).

For simplicity, set

∆t = St − E(St|Ft−1), t = 1, . . . , T.

Under the above moment conditions, the conditional covariance matrix Σt of ∆t

exists and is given by

Σt = E
{

∆t∆
⊤
t |Ft−1

}

, 1 ≤ t ≤ T.

In Schweizer (1995), the author treats the case d = 1 and assumes a restrictive

boundedness condition. Here, in contrast, we treat the general d-dimensional case and

we only suppose that Σt is invertible for all t = 1, . . . , T . This was implicitly part of

the boundedness condition of Schweizer (1995).

If Σt is not invertible for some t, there would exists a ϕt ∈ Ft−1 such that ϕ⊤
t St =

ϕ⊤
t E(St|Ft−1), that is, ϕ

⊤
t St is predictable. Our assumption can be interpreted as saying

that the genuine dimension of the assets is d. One may now state the main result whose

proof is given in Appendix 2.7.

Theorem 1 Suppose that Σt is invertible for all t = 1, . . . , T .

Then the risk E{G2(V0, ϕ)} is minimized by choosing recursively ϕT , . . . , ϕ1 satis-

fying

ϕt = (Σt)
−1E ({St − E(St|Ft−1)}Ct| Ft−1) , t = T, . . . , 1, (2.4)

where CT , . . . , C0 are defined recursively by setting CT = C and

βt−1Ct−1 = βtE(Ct|Ft−1)− ϕt
⊤E(βtSt − βt−1St−1|Ft−1), (2.5)

for t = T, . . . , 1.
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Moreover the optimal value of V0 is C0, and

E(G2) =

T
∑

t=1

E
(

β2
tG

2
t

)

,

where Gt = ϕt
⊤ {St −E(St|Ft−1)} − {Ct − E(Ct|Ft−1)}, 1 ≤ t ≤ T .

Having found the optimal hedging strategy, according to the mean square error

criterion, one might ask what the link is between the price given by C0, as in Theorem

1, and the price suggested by the martingale measure method. The answer is given by

the following result proven in Appendix 2.7.

Corollary 1 For any t = 1 . . . , T , set

Ut = 1−∆⊤
t (Σt)

−1E (St − βt−1St−1/βt|Ft−1) . (2.6)

Further set M0 = 1 and Mt = UtMt−1, 1 ≤ k ≤ n. Then (Mt,Ft)
T
t=0 is a (not

necessarily positive) martingale and

βt−1Ct−1 = E(βtCtUt|Ft−1).

In particular βCtMt is a martingale and C0 = E(βTCTMT |F0).

Moreover E(βtStUt|Ft−1) = βt−1St−1, so βtStMt is a martingale. 3

The Markovian case

If the price process S is Markovian, i.e., the law of St given Ft−1 is νt(St−1, dx), and

if the terminal payoff CT = C only depends on the terminal prices, that is C = fT (ST ),

then the Markov property, together with Theorem 1, yield that Ct = ft(St) and ϕt =

3. When the market is complete, there is a unique martingale measure Q and every claim is attai-
nable, so the risk associated with the optimal strategy is zero. Therefore Mt, as defined in Corollary
1 is positive, and as a by-product of our method, we have an explicit representation of the density of
Q with respect to P .
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ψt(St−1), where

L1t(s) = E(St|St−1 = s) =

∫

xνt(s, dx),

L2t(s) = E(StS
⊤
t |St−1 = s) =

∫

xx⊤νt(s, dx),

At(s) = L2t(s)− L1t(s)L1t(s)
⊤,

ψt(s) = At(s)
−1E [{St − L1t(s)}ft(St)|St−1 = s]

= At(s)
−1

∫

(x− L1t(s))ft(x)νt(s, dx),

Ut(s, x) = 1− (L1t(s)− βt−1s/βt)
⊤At(s)

−1(x− L1t(s)),

ft−1(s) =
βt
βt−1

E{Ut(s, St)ft(St)|St−1 = s}

=
βt
βt−1

∫

Ut(s, x)ft(x)νt(s, dx).

Note that E(St|Ft−1) = L1t(St−1) and Σt = At(St−1). Explicit calculations can be done

when the returns are assumed to be a finite Markov chain. In most models, one can

write St = ωt(St−1, ξt) where ξt is independent of Ft−1 and has law Pt. When µt has an

infinite support, there are ways to approximate ψt and ft.

The importance of Theorem 1 to the replication problem of hedge funds is obvious,

particularly under the Markovian setting. All that is needed is a way to calculate or

approximate the value of f0 and of the deterministic functions ψt(s), ft(s), t = 1, . . .. In

particular V0 = f0 and ϕt = ψt(s) gives the optimal hedging strategy when St−1 = s.

In the Markovian case, one can use the methodology developed by Del Moral et al.

(2006) to calculate both the ϕt’s and the Ct’s. The algorithm for implementing the

dynamic trading strategy is based on Monte Carlo simulations and linear interpolation

and is detailed in Appendix 2.7.
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2.5.2 A comparison between optimal hedging and hedging un-

der Black-Scholes setting

To compare the two methods, simply take T = 1 and r = 0 and d = 1. In this

case, the solution for optimal hedging yields ϕ⋆ = Cov{∆S1, C(S1)}/Var(∆S1), where

∆S1 = S1 − S0, and V
⋆
0 = E{C(S1)} − ϕ⋆E(∆S1).

For the Black-Scholes setting, we have

V BS
0 = E

{

C
(

S0e
σZ−σ2/2

)}

and ϕBS = E
{

eσZ−σ2/2C ′
(

S0e
σZ−σ2/2

)}

,

with σ2 = Var {log(S1/S0)}, where Z ∼ N(0, 1), provided C is differentiable. See, e.g.,

Broadie and Glasserman (1996). In general, ϕ⋆ 6= ϕBS and V ⋆
0 6= V BS

0 , so

E
[

{V1(V ⋆
0 , ϕ

⋆)− C(S1)}2
]

< E
[

{

V1(V
BS
0 , ϕBS)− C(S1)

}2
]

.

For an analysis of the (discrete) hedging error in a Black-Scholes setting, see, e.g.,

Wilmott (2006). To illustrate the difference in an hedge funds context, we performed a

numerical experiment in which we tried (10 000 times) to reproduce a synthetic fund

with centered Gaussian distribution with annual volatility 12% and correlation 30%

with the portfolio. The distribution of the daily returns of the (portfolio, reserve) pair

are modeled by a mixture of 4 regimes for the daily returns distribution with parameters

given in Exhibit 2.I. With this choice of parameters, it turns out that the associated

monthly returns are best modeled by a bivariate Gaussian with parameters given in

Exhibit 2.II.

As said previously, we simulated 10 000 values of g
(

R
(1)
0,T , R

(2)
0,T

)

, log(V ⋆
T /100) (under

optimal hedging) and log(V BS
T /100) (under delta hedging). Some sample characteristics

of these three variables are given in Exhibit 2.III, together with the corresponding true

values, while for each dynamic trading method, the estimated mean hedging error and

square root mean square error are given in Exhibit 2.IV.
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Table 2.I – Parameters for the Gaussian mixture with 4 regimes used for modeling
daily returns

πk µk1 µk2 σ1k σ2k ρk

0.0956 0.0016 0.0008 0.0039 0.0016 0.9754
0.4673 0.0000 0.0002 0.0069 0.0032 0.7981
0.0763 -0.0003 -0.0005 0.0115 0.0054 0.6964
0.3607 0.0006 0.0005 0.0037 0.0027 0.4613

Table 2.II – Estimation of the parameters of the Gaussian model compatible with the
daily returns

µ1 µ2 σ1 σ2 ρ

0.007892797 0.0068086 0.029334999 0.014646356 0.700295314

By construction, optimal hedging always produces an hedging error with zero mean.

However, this is not the case in general for delta hedging. Note how far the delta hedging

method is off the goal of a zero mean of the replicating portfolio, while the optimal

hedging error is much smaller.

As our proposed method is optimal for minimizing the square hedging error, it is

not surprising that it dominates delta hedging. However, since the theoretical setting is

very close to the Black-Scholes setting, all monthly returns being Gaussian, it is worth

noting that the square root Mean Square Error of the optimal hedging is 150% less

than the one of the delta hedging.

Finally, the distribution of the respective hedging errors is illustrated in Exhibit

2.5. From that graph, it appears that the values of the replication portfolio with the

methodology proposed in Kat and Palaro (2005) are almost always smaller than the

target values.
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Table 2.III – Replication results based on 10 000 trajectories for g
(

R
(1)
0,T , R

(2)
0,T

)

=

log(CT/100) and log(VT/100) under optimal hedging and delta hedging.

Parameter True value g Optimal hedging Delta hedging

Mean 0 3.957E-07 3.574E-07 -0.000422735
Std. dev. 0.034641016 0.034957842 0.034961135 0.034985553
Skewness 0 -0.058910418 -0.064053039 -0.063978046
Kurtosis 0 0.029916203 0.032479236 0.032374552
ρ 0.3 0.30283895 0.30279462 0.30288552

Table 2.IV – Replication results based on 10 000 trajectories for the payoff g̃ and
log(VT/100) under optimal hedging and delta hedging.

Parameter Optimal hedging Delta hedging |OH/DH|

Mean hedging error 0.000004009 -0.042061101 10491.66889
Square root MSE 0.017861376 0.045665732 2.556674977

Figure 2.5 – Kernel density estimation of hedging errors for optimal hedging and delta
hedging.
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2.6 Replication of hedge fund indices

In this section we will provide some empirical evidence regarding the ability of the

model to replicate hedge fund returns. For the sake of parsimony, we will present results

for the (in-sample) replication of the EDHEC indices and HFR indices. We will look at

the models ability to replicate the statistical properties of the monthly returns of the

different indices over the ten year period from 01/30/1997 to 12/29/2006 (120 months),

as well as for 2 subperiods ranging respectively from 01/30/1997 to 12/29/2001 (59

months) and from 12/30/2001 - 12/29/2006 (61 months).

2.6.1 Portfolio and Reserve assets

The first step is to select the assets that will make up the investor portfolio S(1),

and the reserve asset S(2). Because these two portfolios are dynamically traded on a

daily basis, we seek very liquid instruments with low transaction costs. We therefore

restrict the components of these two assets to be either Futures contracts or Exchange

Traded Funds (ETF).

All futures data comes from CRB Trader database. The cash rate is the BBA Libor

1 month rate. Log-returns on futures are calculated from the reinvestment of a rolling

strategy in the front contract. The front contract is the nearest to maturity, on the

March/June/September/December schedule and is rolled on the first business day of

the maturity month at previous close prices. Each future contract is fully collateralized,

so that, the total return is the sum the rolling strategy’s return and the cash rate. The

ETF data is obtained from Bloomberg.

The investor portfolio, which is meant to be a proxy for a typical institutional port-

folio, will be an equal-weighted portfolio of S&P500 futures contracts and 30 year US

Treasury Bond futures contracts. In order to illustrate the sensitivity of the methodo-
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logy to the choice of reserve asset, we will perform the study using two very different

reserve assets. The first asset (Reserve 1) is made up of 50% PowerShares Dynamic

Small Cap Value Portfolio, 25% iShares Lehman 20 Year Treasury Bond Fund and 25%

Citigroup Treasury 10 Year Bond Fund. The second asset (Reserve 2) is an equally

weighted portfolio Two Year Treasury Notes, Ten Year Treasury Notes, S&P500, and

Goldman Sachs Commodity Index future contracts.

Exhibit 2.VI presents some of the statistical properties of our investor portfolio and

the two reserve assets for the entire ten year period and the two sub-periods. We report

the mean, standard deviation, skewness, robust skewness 4, kurtosis, robust kurtosis 5

Table 2.VI – Summary statistics for the portfolio and the reserve assets over the three
time periods.

Asset Statistics Period 1 (97–06) Period 2 (97–01) Period 3 (02–06)

Mean 0.0035 0.0047 0.0024
S.Dev 0.0244 0.0289 0.0192

Portfolio Skew -0.2150 -0.2697 -0.2482
R. Sk -0.0813 -0.2665 -0.1097
Kurt 3.2109 2.6942 3.6637

R. Kurt 3.2467 2.7483 3.6386

Mean 0.0094 0.0095 0.0093
S.Dev 0.0225 0.0260 0.0187
Skew 0.3006 0.5346 -0.3480

Reserve 1 R. Sk 0.0362 0.0552 0.0159
Kurt 5.0025 5.0399 3.2161

R. Kurt 3.2419 4.0561 2.9244
Corr. with Port. 0.6749 0.7054 0.6206

Mean 0.0031 0.0016 0.0047
S.Dev 0.0195 0.0219 0.0168
Skew 0.0338 0.3193 -0.3886

Reserve 2 R. Sk -0.0891 -0.0161 -0.2345
Kurt 3.4509 3.3083 3.7213

R. Kurt 3.3207 3.3894 3.4959
Corr. with Port. 0.6040 0.7231 0.3989

4. Defined by {E(X)−Q(1/2)}
/

E{|X −Q(1/2)|}, where Qα is the α-quantile.

5. Defined by 0.09 + {Q(.975)−Q(.025)}
/

{Q(.75)−Q(.25)}.



25

As explained in Section 2.3.1, we have chosen to model the daily returns of the

pairs (portfolio, reserve) by bivariate Gaussian mixtures with m regimes, denoted by

BGM(m).

In Exhibit 2.VII, the distributions of the daily and monthly returns for the (port-

folio, reserve) pairs are given, over the three time periods. These results were obtained

by using the estimation and goodness-of-it procedures described in Section 2.3.1.

Table 2.VII – Distribution of the daily and monthly returns for the two pairs (portfolio,
reserve), over the three time periods.

Returns Period 1 (97–06) Period 2 (97–01) Period 3 (02–06)
Reserve 1 Reserve 2 Reserve 1 Reserve 2 Reserve 1 Reserve 2

Daily BGM(5) BGM(5) BGM(5) BGM(5) BGM(3) BGM(4)
Monthly BGM(2) BGM(2) BGM(4) BGM(2) BGM(2) BGM(3)

It may seems odd at first that the model for the joint monthly returns is a (bivariate)

Gaussian mixture with fewer regimes than for the daily returns. However, as explained

in Remark 2.7.1, it is quite normal. In fact, in view of the central limit theorem, the

number of regimes would possibly be 1 if we were to consider returns over a two months

period.

2.6.2 Hedge fund indices

For the sake of comparison, we chose to replicate the 13 EDHEC indices and the

22 HFRI indices. According to the procedures described in Sections 2.3.2 and 2.3.3,

the marginal distribution F3 and the copula C1,3 were estimated for each hedge fund

index.

For the marginal distributions, we considered (univariate) Gaussian mixtures with

m regimes, denoted GM(m) and Johnson distribution. For the copula families, we

selected the Gaussian, Student, Clayton, Frank and Gumbel. In each case, we estimated
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Kendall’s tau, which measures the dependence between the hedge fund returns and the

portfolio returns. Except for the Student copula, which is dependent on two parameters,

the other families only depend on one parameter.

The best fitting models are displayed in Exhibits 2.VIII–2.X.

2.6.3 Performance of the replication

There are two important issues that need to be addressed when analyzing the models

ability to replicate hedge fund returns. The first issue concerns the models ability to

effectively replicate hedge fund indices. The second issue pertains to the choice of the

reserve asset and it’s impact on the models performance.

To study the effectiveness of the replication strategies, there are two main factors

to consider : the initial investment V0 that is required to replicate each index as well as

the actual quality of the replication. In order to obtain the payoff distribution of the

hedge fund indices, we follow the approach used by Kat and Palaro (2005)- we calculate

the monthly returns assuming an investment of 100 at the beginning of each month.

Therefore, if the value V0 of the replicating strategy is below 100, this would lead

us to conclude that the replicating strategy offers a cheaper alternative to the hedge

fund index, and therefore is the better investment choice. This analysis can however be

misleading if we do not also examine the precision of the replication strategy. Before

dismissing the hedge fund indices as poor-performers, we need to properly evaluate

whether the properties of the replication strategies and hedge fund indices are truly

the same. A proper examination of both the cost and the precision of the replication

strategy is fundamental before any strong conclusion can be drawn about the model’s

ability to replicate hedge fund indices.

Then arises the question of the reserve asset. Does the reserve asset impact the
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performance of the model, and if so does it affect only V0 or also the ability of the

model to replicate the statistical properties of the hedge fund indices ? In other words,

does the choice of reserve asset impact the performance measure and/or for the quality

of the replication ?

Exhibits 2.XI–2.XIII present the values of V0 for the HFRI and EDHEC hedge fund

indices. It is quite clear that even without correcting for the well documented biases

in hedge fund indices, the replicating strategies still out-perform a large number of the

hedge fund indices over the entire period as well as over the two sub-periods. In order

to show that the replication strategies are effectively reproducing the statistical pro-

perties of the hedge fund indices, Exhibits 2.15–2.19 present the target mean, volatility,

Kendall’s tau, skewness and kurtosis of the indices as well as those for the replication

strategies. It is quite clear that independently of the period that is considered, the vo-

latility and Kendall’s tau are reproduced with great precision. It is important to note

that the only moment that is sensitive to the choice of reserve asset is the return of the

replication strategy - the other moments as well as the dependence coefficient appear

to be insensitive to the choice of reserve asset. Our results clearly indicate that the

reserve asset plays a role in the measure of performance, V0, but it has almost no effect

on the quality of the replication.

In order to further examine the model’s ability to replicate the statistical properties

of the hedge fund indices, Exhibit 2.XIV presents the results obtained by regressing

the statistical properties of the replication portfolios against the estimated parameters

of both EDHEC and HFRI indices for the three samples periods. If the replications

were perfect, the slope would then be 1 and the intercept would be 0. As one can see,

the fit is very impressive for both reserve assets. The volatility and dependence mea-

sures (Kendal’s tau and Spearman’s Rho) are perfectly replicated, and the regression
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coefficients for the higher moments, although not perfect, support the model’s ability

to replicate the statistical properties of hedge fund returns.

The final stage of the analysis consists of breaking down the costs and other po-

tential sources of error associated with the dynamic replicating strategy. We quantify

three potential costs/errors associated with our methodology. The first is the tran-

saction costs related to the dynamic trading ; the second is the rounding error that

results from not being able to trade fractions of futures contracts ; the third, and most

significant, is the profit/loss that is due to the hedging error of the discrete hedging

strategy.

The transaction costs are assumed to be 1 basis point for the sale/purchase of all

futures contracts. Obviously, the amount of trading required to replicate the different

indices can vary substantially. In Exhibit 2.XX we present the average monthly tran-

saction costs (in terms of basis points) incurred for each replicating portfolio over the

whole sample period. Note that the average monthly transaction costs for the replica-

tion strategies is approximately 5 basis points.

The rounding error that results from the inability to buy or sell fractions of futures

contracts depends very much on the size of the replication portfolio and this error tends

to zero as the portfolio increases in size. For a replicating strategy with $100 Million

invested, the average monthly rounding error is approximately 1 basis point.

Finally, we calculate replicating errors, that is the average difference between the

value of the replicating strategy and the value of the hedge fund index. The results are

presented in Exhibits 2.XXI–2.XXIII. Note that the average monthly hedging error on

all replications as defined in Equation 2.3 is around 3 basis points.
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2.7 Conclusion

In this paper, we implement a multivariate extension of Dybvig (1988) Payoff Dis-

tribution Model that can be used to replicate not only the marginal distribution of

hedge fund returns but also their dependence with other asset classes. In addition to

proposing ways to overcome the hedging and compatibility inconsistencies in Kat and

Palaro (2005) we extend the results of Schweizer (1995) and adapt American options

pricing techniques to evaluate the model and also derive an optimal dynamic trading

(hedging) strategy. In section 2.5.2 we demonstrate the superiority of the hedging al-

gorithm that is used to generate the dynamic replicating strategy. We successfully

replicate the statistical properties of the HFRI and EDHEC indices over the period

from 1997-2006, as well as for two 60 month sub-periods. Even without correcting for

the well-documented biases in hedge fund index returns, the indices can be readily

replicated using this methodology. The volatility and the dependence coefficients are

replicated with great precision ; the skewness and kurtosis are also captured by the

model, however with slightly less accuracy.

Contrary to the conclusions put forth by recent studies at EDHEC (Amenc et al.,

2007) and Northwater (Simons and Hussey, 2007), the choice of reserve asset does not

impact the model’s ability to replicate the statistical properties of the indices. The

choice of reserve asset only impacts the initial cost of investing in the replicating port-

folio (and hence only impacts the return of the replicating strategy). This is not to say

that the return generated by the model is not important, however it is not a measure of

the model’s success. One must dissociate the technical issues of the replicating metho-

dology (i.e how to best model the returns and solve for the optimal trading strategy)

from the choice of the reserve asset. Our contribution is to provide a robust framework

for the replication methodology, and address the technical shortcomings of the much
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publicized research of Kat and Palaro.

As is the case with any investment strategy, the returns depend on the choice of

assets. The results in this paper indicate, however, that it is not necessary to select

the best performing assets over the sample period in order to replicate and outperform

the hedge fund indices. In fact, we show that by using run-of-the-mill exposures in

our reserve asset we can nonetheless outperform the majority of hedge fund indices.

We purposely selected two reserve assets that have exposures to different yet common

market premia over the sample period, and we find that both reserve assets outperform

a large percentage of the indices. (reserve 1 being the better of the two). We also find

that the EDHEC indices, which are subject to less significant biases, are more easy to

replicate that the HFRI indices. It is important to remember that we are comparing

an investable trading strategy to non-investable indices- the actual return we would

anticipate from investing in a hedge fund index would be considerably lower than the

”non-investable” index returns used in this study. Our results reinforce the notion that

on aggregate, hedge funds are on aggregate simply repackaging beta returns.
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Appendix A : Replication Tables

Table 2.VIII – Marginal distribution, copula and Kendall’s tau for entire period (1997–
2006).

Fund Marginal Copula Kendall’s tau

EDHEC-Convertible Arbitrage GM(3) Frank 0.0927
EDHEC-CTA Global GM(2) Gumbel 0.0552
EDHEC-Distressed Securities GM(2) Clayton 0.2311
EDHEC-Emerging Markets Johnson Frank 0.3394
EDHEC-Equity Market Neutral GM(2) Frank 0.2302
EDHEC-Event Driven GM(3) Frank 0.3724
EDHEC-Fixed Income Arbitrage GM(3) Frank 0.0997
EDHEC-Global Macro GM(3) Frank 0.3316
EDHEC-Long/Short Equity GM(2) Student 0.4529
EDHEC-Merger Arbitrage GM(2) Frank 0.2956
EDHEC-Relative Value GM(3) Gaussian 0.3324
EDHEC-Short Selling GM(2) Frank -0.4636
EDHEC-Funds of Funds GM(4) Gaussian 0.3536
HFRI Convertible Arbitrage Index GM(3) Frank 0.1048
HFRI Distressed Securities Index GM(3) Clayton 0.2160
HFRI Emerging Markets (Total) Johnson Student 0.3269
HFRI Equity Hedge Index GM(2) Clayton 0.4530
HFRI Equity Market Neutral Index GM(3) Frank 0.1345
HFRI Equity Non-Hedge Index GM(3) Student 0.4770
HFRI Event-Driven Index GM(3) Clayton 0.3700
HFRI Fixed Income (Total) GM(3) Frank 0.3168
HFRI Fixed Income : Arbitrage Index GM(3) Ind. 0
HFRI Fixed Income : High Yield Index GM(2) Student 0.2036
HFRI FOF : Conservative Index Johnson Frank 0.3021
HFRI FOF : Diversified Index GM(3) Frank 0.2945
HFRI FOF : Market Defensive Index GM(2) Frank 0.1020
HFRI FOF : Strategic Index GM(3) Frank 0.3555
HFRI FOF Composite Index GM(3) Frank 0.3327
HFRI FOF Composite Index (Off.) GM(3) Frank 0.3180
HFRI Fund Weighted Composite Index GM(3) Clayton 0.4403
HFRI Macro Index GM(2) Clayton 0.2364
HFRI Merger Arbitrage Index GM(3) Frank 0.2568
HFRI Regulation D Index GM(3) Gaussian 0.2210
HFRI Relative Value Arbitrage Index GM(3) Gaussian 0.2567
HFRI Short Selling Index GM(3) Frank -0.4520



35

Table 2.IX – Marginal distribution, copula and Kendall’s tau for first sub-period
(1997–2001).

Fund Marginal Copula Kendall’s tau

EDHEC-Convertible Arbitrage GM(3) Gumbel 0.0777
EDHEC-CTA Global GM(2) Ind. 0
EDHEC-Distressed Securities GM(3) Clayton 0.2309
EDHEC-Emerging Markets GM(3) Frank 0.3241
EDHEC-Equity Market Neutral GM(2) Gaussian 0.3691
EDHEC-Event Driven Johnson Clayton 0.3793
EDHEC-Fixed Income Arbitrage GM(3) Frank 0.1268
EDHEC-Global Macro GM(3) Frank 0.4198
EDHEC-Long/Short Equity GM(2) Frank 0.4868
EDHEC-Merger Arbitrage GM(4) Gumbel 0.2951
EDHEC-Relative Value GM(3) Clayton 0.3454
EDHEC-Short Selling GM(2) Frank -0.4695
EDHEC-Funds of Funds GM(2) Frank 0.3934
HFRI Convertible Arbitrage Index GM(3) Frank 0.1011
HFRI Distressed Securities Index GM(3) Gaussian 0.1939
HFRI Emerging Markets (Total) GM(3) Frank 0.3148
HFRI Equity Hedge Index GM(2) Frank 0.4880
HFRI Equity Market Neutral Index GM(2) Frank 0.1607
HFRI Equity Non-Hedge Index Johnson Frank 0.4962
HFRI Event-Driven Index GM(3) Frank 0.3461
HFRI Fixed Income (Total) GM(3) Frank 0.3078
HFRI Fixed Income : Arbitrage Index GM(3) Ind. 0
HFRI Fixed Income : High Yield Index GM(3) Frank 0.2367
HFRI FOF : Conservative Index GM(3) Frank 0.3310
HFRI FOF : Diversified Index Johnson Frank 0.2915
HFRI FOF : Market Defensive Index GM(3) Frank 0.1257
HFRI FOF : Strategic Index GM(3) Frank 0.3600
HFRI FOF Composite Index GM(2) Frank 0.3427
HFRI FOF Composite Index (Off.) GM(2) Frank 0.3276
HFRI Fund Weighted Composite Index GM(3) Frank 0.4567
HFRI Macro Index GM(2) Clayton 0.2975
HFRI Merger Arbitrage Index Johnson Gumbel 0.2285
HFRI Regulation D Index GM(3) Gaussian 0.2736
HFRI Relative Value Arbitrage Index GM(3) Frank 0.2705
HFRI Short Selling Index GM(2) Frank -0.4402
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Table 2.X – Marginal distribution, copula and Kendall’s tau for second sub-period
(2002–2006).

Fund Marginal Copula Kendall’s tau

EDHEC-Convertible Arbitrage GM(3) Gaussian 0.0885
EDHEC-CTA Global GM(2) Frank 0.0743
EDHEC-Distressed Securities GM(2) Gaussian 0.2224
EDHEC-Emerging Markets GM(3) Frank 0.2710
EDHEC-Equity Market Neutral Johnson Frank 0.0896
EDHEC-Event Driven Johnson Gaussian 0.3052
EDHEC-Fixed Income Arbitrage GM(3) Ind. 0
EDHEC-Global Macro GM(2) Gaussian 0.1987
EDHEC-Long/Short Equity GM(2) Clayton 0.3377
EDHEC-Merger Arbitrage GM(3) Clayton 0.3126
EDHEC-Relative Value GM(2) Clayton 0.2973
EDHEC-Short Selling GM(2) Frank -0.4266
EDHEC-Funds of Funds Johnson Clayton 0.2470
HFRI Convertible Arbitrage Index GM(3) Gumbel 0.0743
HFRI Distressed Securities Index GM(2) Clayton 0.2109
HFRI Emerging Markets (Total) GM(3) Frank 0.2797
HFRI Equity Hedge Index GM(3) Frank 0.2993
HFRI Equity Market Neutral Index GM(2) Frank 0.0874
HFRI Equity Non-Hedge Index GM(2) Frank 0.3687
HFRI Event-Driven Index GM(3) Gaussian 0.3377
HFRI Fixed Income (Total) GM(3) Gaussian 0.2303
HFRI Fixed Income : Arbitrage Index GM(3) Ind. 0
HFRI Fixed Income : High Yield Index GM(2) Gumbel 0.1311
HFRI FOF : Conservative Index GM(2) Frank 0.2164
HFRI FOF : Diversified Index GM(2) Clayton 0.2437
HFRI FOF : Market Defensive Index GM(2) Frank 0.0831
HFRI FOF : Strategic Index GM(3) Clayton 0.2885
HFRI FOF Composite Index GM(2) Clayton 0.2383
HFRI FOF Composite Index (Off.) GM(2) Clayton 0.2164
HFRI Fund Weighted Composite Index GM(2) Frank 0.3243
HFRI Macro Index GM(2) Gumbel 0.0787
HFRI Merger Arbitrage Index GM(2) Clayton 0.2984
HFRI Regulation D Index Johnson Clayton 0.1552
HFRI Relative Value Arbitrage Index GM(2) Clayton 0.2328
HFRI Short Selling Index GM(2) Frank -0.4319
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Table 2.XI – Initial investment V0 in the replication of EDHEC and HFRI indices for
both reserve assets over the entire period (1997–2006).

Fund V0

Reserve 1 Reserve 2
EDHEC-Convertible Arbitrage 99.88746927 100.3546058
EDHEC-CTA Global 99.22395238 100.2822217
EDHEC-Distressed Securities 100.0433158 100.5343205
EDHEC-Emerging Markets 99.20994993 100.5118262
EDHEC-Equity Market Neutral 100.0923959 100.3305248
EDHEC-Event Driven 99.99904541 100.5027729
EDHEC-Fixed Income Arbitrage 99.68524183 100.0620038
EDHEC-Global Macro 99.83012861 100.4453958
EDHEC-Long/Short Equity 99.91948345 100.5253251
EDHEC-Merger Arbitrage 99.94738788 100.3347095
EDHEC-Relative Value 100.044295 100.3582369
EDHEC-Short Selling 97.91881695 99.96879961
EDHEC-Funds of Funds 99.88679097 100.4167799
Percentage of V0 under 100$ 76.92% 7.69%

HFRI Convertible Arbitrage Index 99.9104685 100.321649
HFRI Distressed Securities Index 99.9100765 100.446987
HFRI Emerging Markets (Total) 99.1617091 100.497154
HFRI Equity Hedge Index 99.760536 100.537810
HFRI Equity Market Neutral Index 99.8160615 100.178244
HFRI Equity Non-Hedge Index 99.2694693 100.529065
HFRI Event-Driven Index 99.8678282 100.443743
HFRI Fixed Income (Total) 99.8533463 100.180401
HFRI Fixed Income : Arbitrage Index 99.4744962 99.9612590
HFRI Fixed Income : High Yield Index 99.4606113 100.118320
HFRI FOF : Conservative Index 99.8019766 100.171418
HFRI FOF : Diversified Index 99.5428340 100.224120
HFRI FOF : Market Defensive Index 99.6295097 100.290348
HFRI FOF : Strategic Index 99.3496291 100.310468
HFRI FOF Composite Index 99.6186407 100.240115
HFRI FOF Composite Index (Off.) 99.4353982 100.150926
HFRI Fund Weighted Composite Index 99.7328707 100.309632
HFRI Macro Index 99.6917718 100.369990
HFRI Merger Arbitrage Index 99.8584340 100.285088
HFRI Regulation D Index 99.9386375 100.681884
HFRI Relative Value Arbitrage Index 100.055301 100.346992
HFRI Short Selling Index 97.5229297 99.8979799
Percentage of V0 under 100$ 95.45% 9.09%
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Table 2.XII – Initial investment V0 in the replication of EDHEC and HFRI indices
for both reserve assets for first sub-period (1997–2001).

Fund V0

Reserve 1 Reserve 2
EDHEC-Convertible Arbitrage 100.2944853 100.8987467
EDHEC-CTA Global 99.46788172 100.9472588
EDHEC-Distressed Securities 99.90059626 100.720508
EDHEC-Emerging Markets 98.69192451 100.9835661
EDHEC-Equity Market Neutral 100.3954179 100.7210641
EDHEC-Event Driven 100.0609365 100.868357
EDHEC-Fixed Income Arbitrage 99.59077798 100.2017969
EDHEC-Global Macro 99.97142407 100.979203
EDHEC-Long/Short Equity 100.1375749 101.127196
EDHEC-Merger Arbitrage 100.2331299 100.7861365
EDHEC-Relative Value 100.2203665 100.6965085
EDHEC-Short Selling 99.03421453 102.1095181
EDHEC-Funds of Funds 99.96160577 100.9516279
Percentage of V0 under 100$ 53.84% 0.00%

HFRI Convertible Arbitrage Index 100.2829484 100.8055676
HFRI Distressed Securities Index 99.72936197 100.6646377
HFRI Emerging Markets (Total) 98.09524276 100.9525596
HFRI Equity Hedge Index 100.056951 101.5042088
HFRI Equity Market Neutral Index 100.038409 100.6734399
HFRI Equity Non-Hedge Index 99.05531596 101.2392224
HFRI Event-Driven Index 99.97242706 100.980233
HFRI Fixed Income (Total) 99.75412401 100.3504572
HFRI Fixed Income : Arbitrage Index 99.3254573 100.0324407
HFRI Fixed Income : High Yield Index 99.31890751 100.1544936
HFRI FOF : Conservative Index 99.86644524 100.4768867
HFRI FOF : Diversified Index 99.52279888 100.9361689
HFRI FOF : Market Defensive Index 99.80508973 100.7630553
HFRI FOF : Strategic Index 99.28992499 100.9862717
HFRI FOF Composite Index 99.60846434 100.7634087
HFRI FOF Composite Index (Off.) 99.36188049 100.7094413
HFRI Fund Weighted Composite Index 99.75155852 100.9238131
HFRI Macro Index 99.76812518 100.8842713
HFRI Merger Arbitrage Index 100.1469401 100.7111258
HFRI Regulation D Index 100.5815208 101.5412257
HFRI Relative Value Arbitrage Index 100.1412334 100.6153432
HFRI Short Selling Index 98.51962283 100.8070637
Percentage of V0 under 100$ 72.72% 0.00%
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Table 2.XIII – Initial investment V0 in the replication of EDHEC and HFRI indices
for both reserve assets for second sub-period (2002–2006).

Fund V0

Reserve 1 Reserve 2
EDHEC-Convertible Arbitrage 99.54307232 99.91754606
EDHEC-CTA Global 99.00591261 99.85286557
EDHEC-Distressed Securities 100.2752537 100.645535
EDHEC-Emerging Markets 100.0757102 100.4515871
EDHEC-Equity Market Neutral 99.85680498 99.99383759
EDHEC-Event Driven 99.87363087 100.3162115
EDHEC-Fixed Income Arbitrage 99.88868645 100.0907229
EDHEC-Global Macro 99.84474995 100.2384539
EDHEC-Long/Short Equity 99.60337666 100.1087833
EDHEC-Merger Arbitrage 99.70200103 99.99705359
EDHEC-Relative Value 99.81967336 100.109444
EDHEC-Short Selling 98.05685558 99.04396197
EDHEC-Funds of Funds 99.74332198 100.0559835
Percentage of V0 under 100$ 84.62% 38.46%

HFRI Convertible Arbitrage Index 99.60821174 99.93483497
HFRI Distressed Securities Index 100.2391759 100.6380069
HFRI Emerging Markets (Total) 100.0572944 100.8595669
HFRI Equity Hedge Index 99.58364075 100.014334
HFRI Equity Market Neutral Index 99.66759956 99.85722405
HFRI Equity Non-Hedge Index 99.37314042 100.2792862
HFRI Event-Driven Index 99.80612072 100.3402519
HFRI Fixed Income (Total) 99.95688427 100.1391919
HFRI Fixed Income : Arbitrage Index 100.0072767 100.1695353
HFRI Fixed Income : High Yield Index 100.0771647 100.3417642
HFRI FOF : Conservative Index 99.82149692 100.0377755
HFRI FOF : Diversified Index 99.7547993 100.0216789
HFRI FOF : Market Defensive Index 99.56207483 99.97381601
HFRI FOF : Strategic Index 99.62610152 99.96801828
HFRI FOF Composite Index 99.73892366 100.0563079
HFRI FOF Composite Index (Off.) 99.68519975 100.0475484
HFRI Fund Weighted Composite Index 99.78329249 100.2000232
HFRI Macro Index 99.73199639 100.3030235
HFRI Merger Arbitrage Index 99.66510204 100.0050475
HFRI Regulation D Index 99.47794411 100.3049513
HFRI Relative Value Arbitrage Index 99.94588108 100.1510614
HFRI Short Selling Index 98.37750341 99.15058551
Percentage of V0 under 100$ 81.81% 22.73%
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Table 2.XIV – Regression of EDHEC and HFRI indices returns with the replication
returns (for reserve assets 1–2) for the following target parameters : volatility, skewness,
robust skewness, kurtosis, robust kurtosis, Kendall’s tau and Pearson’s rho.

Period : (1997–2006) Reserve 1 Reserve 2
Target Intercept Slope R2(%) Intercept Slope R2(%)

Volatility 0.000624738 0.997485421 99.38 0.000132117 1.034882095 99.38
Skewness -1.21833672 1.135438624 63.48 -0.660897414 1.017065756 78.82

Robust Skew 0.005285212 0.591422785 38.74 0.049971694 0.845539485 68.79
Kurtosis 1.427089662 1.320048662 26.05 1.738641971 1.116543294 79.34

Robust Kurt 2.057766094 0.48321167 36.19 1.800169291 0.491547026 34.31
Kendall’s Tau 0.040820382 1.009779392 98.80 0.034979443 1.024409652 99.36
Pearson’s Rho 0.031939885 1.046644073 95.80 0.030103056 1.064383569 96.32

Period : (1997–2001) Reserve 1 Reserve 2
Target Intercept Slope R2(%) Intercept Slope R2(%)

Volatility 0.000246245 0.999597258 98.15 0.000303651 1.026011825 98.27
Skewness -0.58025733 0.917232282 32.10 -0.86585092 1.542889847 65.17

Robust Skew 0.044192227 0.916761936 56.14 -0.00965482 0.729453739 54.08
Kurtosis 5.581125649 0.675401646 15.27 2.081736175 1.733323643 20.62

Robust Kurt -0.85346256 1.451214328 67.35 -0.58104505 1.267471264 63.20
Kendall’s Tau 0.0254162 1.019450292 98.52 0.020171502 1.016297547 99.18
Pearson’s Rho 0.056163582 1.022429795 91.53 0.021180004 1.06516375 94.76

Period : (2002–2006) Reserve 1 Reserve 2
Target Intercept Slope R2(%) Intercept Slope R2(%)

Volatility -0.00015482 0.987878677 99.84 0.000145601 0.984626992 99.59
Skewness -0.07264573 1.035201227 83.03 0.045240922 1.104989802 80.44

Robust Skew 0.004977508 0.816341527 53.79 0.068954198 1.033664472 61.45
Kurtosis 1.26397635 0.768109088 35.44 0.536774019 0.93664374 67.14

Robust Kurt 1.471815049 0.540835024 45.90 1.421018259 0.566191474 26.63
Kendall’s Tau -0.00043248 1.069855948 98.96 0.019777659 1.034958883 98.97
Pearson’s Rho 0.059853575 1.027479829 91.93 0.119157269 1.054127939 91.77
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Figure 2.15 – Mean return of replication for both reserve assets vs mean return for
EDHEC (top) and HFRI (bottom) indices (2002–2006)
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Figure 2.16 – Volatility of the replication with each reserve asset vs target volatility
for EDHEC (top) and HFRI (bottom) indices (2002–2006)
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Figure 2.17 – Kendall’s tau of the replication with each reserve asset vs target Ken-
dall’s tau for EDHEC (top) and HFRI (bottom) indices (2002–2006)
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Figure 2.18 – Skewness of the replication with each reserve asset vs target skewness
for EDHEC (top) and HFRI (bottom) indices (2002–2006)
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Figure 2.19 – Kurtosis of the replication with each reserve asset vs target kurtosis for
EDHEC (top) and HFRI (bottom) indices (2002–2006)
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Table 2.XX – Transaction costs (basis points) of the EDHEC and HFRI indices for
each of two reserve assets over the entire period (1997–2006).

Fund Transaction costs
Reserve 1 Reserve 2

EDHEC-Convertible Arbitrage -3.5760 -2.6937
EDHEC-CTA Global -5.1209 -3.6392
EDHEC-Distressed Securities -3.1461 -2.9916
EDHEC-Emerging Markets -10.436 -8.5692
EDHEC-Equity Market Neutral -1.1785 -1.2782
EDHEC-Event Driven -4.9894 -3.7833
EDHEC-Fixed Income Arbitrage -5.6955 -3.5177
EDHEC-Global Macro -3.1539 -3.5487
EDHEC-Long/Short Equity -3.5405 -3.5815
EDHEC-Merger Arbitrage -3.5994 -2.7794
EDHEC-Relative Value -2.1994 -1.8390
EDHEC-Short Selling -14.472 -12.690
EDHEC-Funds of Funds -2.5685 -2.7680
Average of the transaction costs over the indices -4.8982 -4.1292

HFRI Convertible Arbitrage Index -2.9748 -2.3503
HFRI Distressed Securities Index -3.7409 -3.1175
HFRI Emerging Markets (Total) -10.409 -11.231
HFRI Equity Hedge Index -5.2928 -5.5529
HFRI Equity Market Neutral Index -1.9814 -1.8804
HFRI Equity Non-Hedge Index -7.6039 -7.7172
HFRI Event-Driven Index -3.7228 -3.3989
HFRI Fixed Income (Total) -2.8376 -2.2500
HFRI Fixed Income : Arbitrage Index -6.1764 -4.3318
HFRI Fixed Income : High Yield Index -6.4438 -3.6841
HFRI FOF : Conservative Index -2.4110 -2.1042
HFRI FOF : Diversified Index -4.7314 -4.0279
HFRI FOF : Market Defensive Index -3.6750 -2.8050
HFRI FOF : Strategic Index -6.2475 -6.1420
HFRI FOF Composite Index -3.7260 -3.9430
HFRI FOF Composite Index (Off.) -4.6198 -4.6972
HFRI Fund Weighted Composite Index -4.2733 -4.2082
HFRI Macro Index -3.3393 -3.5459
HFRI Merger Arbitrage Index -3.9681 -2.8237
HFRI Regulation D Index -3.5011 -3.7099
HFRI Relative Value Arbitrage Index -2.4469 -1.7284
HFRI Short Selling Index -19.302 -17.595
Average of the transaction costs over the indices -5.1557 -4.6747



47

Table 2.XXI – Hedging errors (basis per points) of the EDHEC and HFRI indices for
each of two reserve assets over the entire period (1997–2006).

Fund Hedging error
Reserve 1 Reserve 2

EDHEC-Convertible Arbitrage -5.022966343 2.689724779
EDHEC-CTA Global -8.058744042 5.645421806
EDHEC-Distressed Securities 4.124754378 19.47155871
EDHEC-Emerging Markets -11.21163859 13.259774
EDHEC-Equity Market Neutral -1.471590683 1.56198415
EDHEC-Event Driven -3.020763751 6.22406221
EDHEC-Fixed Income Arbitrage -5.177575949 3.189905767
EDHEC-Global Macro -4.053867497 4.395207
EDHEC-Long/Short Equity 4.47809413 3.734220311
EDHEC-Merger Arbitrage -3.442046302 2.242736202
EDHEC-Relative Value -1.10554998 2.836227619
EDHEC-Short Selling -24.29013217 18.8506452
EDHEC-Funds of Funds 2.033494462 8.749446216
Average of the hedging errors over the indices -4.324502488 7.142377997

HFRI Convertible Arbitrage Index -4.675913708 2.609102503
HFRI Distressed Securities Index 3.722398591 16.58984332
HFRI Emerging Markets (Total) 7.097564556 12.66959323
HFRI Equity Hedge Index -1.643622346 11.19037495
HFRI Equity Market Neutral Index -2.258515275 2.472596466
HFRI Equity Non-Hedge Index 7.453328183 4.603254198
HFRI Event-Driven Index 2.862294451 12.29110626
HFRI Fixed Income (Total) -2.603139406 2.402853856
HFRI Fixed Income : Arbitrage Index -4.087640896 4.977681096
HFRI Fixed Income : High Yield Index 2.638073684 2.387582196
HFRI FOF : Conservative Index -2.598299696 2.863947585
HFRI FOF : Diversified Index -5.7248332 -2.263005293
HFRI FOF : Market Defensive Index -7.19063663 3.850690389
HFRI FOF : Strategic Index -8.584197214 7.510126485
HFRI FOF Composite Index -4.800243375 3.856993799
HFRI FOF Composite Index (Off.) -7.540482923 5.850515308
HFRI Fund Weighted Composite Index 2.244013529 15.42135204
HFRI Macro Index -2.491140954 7.274298256
HFRI Merger Arbitrage Index -3.635490602 2.457954561
HFRI Regulation D Index -4.354249204 3.999422953
HFRI Relative Value Arbitrage Index -1.757126584 4.245628798
HFRI Short Selling Index -30.41350326 21.98728382
Average of the hedging errors over the indices -3.106425558 6.989782153
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Table 2.XXII – Hedging errors (basis per points) of the EDHEC and HFRI indices
for each of two reserve assets over the first sub-period (1997–2001).

Fund Hedging error
Reserve 1 Reserve 2

EDHEC-Convertible Arbitrage -5.854414114 7.331726159
EDHEC-CTA Global -3.261304874 15.48344278
EDHEC-Distressed Securities -10.63141111 18.21688996
EDHEC-Emerging Markets -41.58467617 10.40839934
EDHEC-Equity Market Neutral 0.216747837 4.117171088
EDHEC-Event Driven 5.530304616 15.02572238
EDHEC-Fixed Income Arbitrage -10.48685482 12.72732957
EDHEC-Global Macro -1.950399253 10.81371999
EDHEC-Long/Short Equity -5.472302407 8.63029379
EDHEC-Merger Arbitrage -7.268360093 9.778517204
EDHEC-Relative Value 12.74567524 8.974747668
EDHEC-Short Selling 9.60796941 55.3754198
EDHEC-Funds of Funds -12.45957574 9.552013774
Average of the hedging errors over the indices -5.4514308 14.34118411

HFRI Convertible Arbitrage Index -4.443351952 3.162705469
HFRI Distressed Securities Index -9.790346341 17.16305189
HFRI Emerging Markets (Total) -35.23487925 15.15013559
HFRI Equity Hedge Index -15.50411415 10.73944888
HFRI Equity Market Neutral Index -3.470329903 4.313327157
HFRI Equity Non-Hedge Index -23.74524481 12.04989301
HFRI Event-Driven Index -14.22269812 2.919363113
HFRI Fixed Income (Total) -8.573296126 5.631050796
HFRI Fixed Income : Arbitrage Index -4.419486285 7.911636813
HFRI Fixed Income : High Yield Index -11.13974405 8.52434995
HFRI FOF : Conservative Index -0.431323396 5.769353502
HFRI FOF : Diversified Index -35.19300862 10.4684057
HFRI FOF : Market Defensive Index -10.3549352 11.11226975
HFRI FOF : Strategic Index -12.24470309 11.52847099
HFRI FOF Composite Index -7.634859635 9.191341753
HFRI FOF Composite Index (Off.) -9.434687073 11.45793373
HFRI Fund Weighted Composite Index -24.92998374 8.097748863
HFRI Macro Index 3.853207823 15.60074834
HFRI Merger Arbitrage Index -3.887143693 5.073019858
HFRI Regulation D Index -2.431374814 13.42772207
HFRI Relative Value Arbitrage Index -12.36688683 -0.033279555
HFRI Short Selling Index -11.04287744 4.216592611
Average of the hedging errors over the indices -11.66554849 8.794331377
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Table 2.XXIII – Hedging errors (basis per points) of the EDHEC and HFRI indices
for each of two reserve assets over the second sub-period (2002–2006).

Fund Hedging error
Reserve 1 Reserve 2

EDHEC-Convertible Arbitrage -0.216644211 14.71418971
EDHEC-CTA Global -6.582901453 36.52509979
EDHEC-Distressed Securities -1.016305328 13.72616412
EDHEC-Emerging Markets -10.13043018 31.53349596
EDHEC-Equity Market Neutral -1.061827125 5.534718588
EDHEC-Event Driven 6.84618159 12.12860342
EDHEC-Fixed Income Arbitrage -0.469146864 9.667485841
EDHEC-Global Macro -0.423280278 15.97182143
EDHEC-Long/Short Equity -4.781157282 11.93987295
EDHEC-Merger Arbitrage 2.432702745 11.46724918
EDHEC-Relative Value 1.392743596 6.816342792
EDHEC-Short Selling 8.422391583 44.59416583
EDHEC-Funds of Funds -0.055444422 12.87295253
Average of the hedging errors over the indices -0.434085972 17.49939709

HFRI Convertible Arbitrage Index 0.262326757 12.38729712
HFRI Distressed Securities Index 0.409148738 14.75409472
HFRI Emerging Markets (Total) -9.733473043 18.61313588
HFRI Equity Hedge Index -7.44974449 20.13641716
HFRI Equity Market Neutral Index -0.864838511 7.778622358
HFRI Equity Non-Hedge Index -12.1917044 22.30909531
HFRI Event-Driven Index 2.282364634 16.12105281
HFRI Fixed Income (Total) 0.028468682 4.514146651
HFRI Fixed Income : Arbitrage Index -0.000830608 8.164211829
HFRI Fixed Income : High Yield Index 0.197970856 10.94636336
HFRI FOF : Conservative Index -3.168935239 6.353466396
HFRI FOF : Diversified Index -0.756117028 12.47152293
HFRI FOF : Market Defensive Index -4.356542614 12.3839458
HFRI FOF : Strategic Index -5.764923859 19.62428265
HFRI FOF Composite Index -0.639004576 8.640850198
HFRI FOF Composite Index (Off.) -0.945047981 9.668544712
HFRI Fund Weighted Composite Index -4.808300645 13.62398725
HFRI Macro Index 1.031221433 30.93949304
HFRI Merger Arbitrage Index 2.456653636 12.85418557
HFRI Regulation D Index 0.291293742 28.74394205
HFRI Relative Value Arbitrage Index 0.400473588 7.062009818
HFRI Short Selling Index 7.951857962 38.58089671
Average of the hedging errors over the indices -1.607621953 15.30325292
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Appendix B : Some properties of mixtures of biva-

riate Gaussian variables

One property that is quite important in our setting is the fact that a sum of inde-

pendent Gaussian mixtures is still a Gaussian mixture. In fact, if X1, . . . , Xn are inde-

pendent and identically Gaussian mixtures with parameter θ, then X = X1 + · · ·+Xn

is also a Gaussian mixture. To describe the associated parameters, let

A = {α = (α1, . . . , αm);αj ≥ 0 and α1 + . . .+ αm = n}.

Then card(A) =
(

n+m−1
m−1

)

so there are
(

n+m−1
m−1

)

regimes. The parameters of the mixture

are (πα)α∈A, (µα)α∈A, (Aα)α∈A, where for each α ∈ A, πα is the multinomial probability

πα = π(α1,··· ,αm) =
n!

α1! · · ·αm!

m
∏

k=1

παk
k ,

and the mean vectors µα and covariances Aα are respectively given by

µα =

n
∑

k=1

αkµk, Aα =

n
∑

k=1

αkAk.

Remark 2.7.1 If n is moderately large, then mn is huge and it is computationally

impossible to calculate the new parameters. In fact, most probabilities could be very

small so in fact, the sum could be a mixture of fewer terms. Therefore, one has to

estimate again the joint law of
(

R
(1)
0,T , R

(2)
0,T

)

by a Gaussian mixture, using the monthly

returns this time. As a result, the marginal distributions F1 and F2 are (univariate)

Gaussian mixtures and C1,2 is the copula deduced from the bivariate Gaussian mixture.

Finally, consider the conditional distribution of a bivariate Gaussian mixture X =

(X(1), X(2)). Set βk = ρk
σk2

σk1
and αk = µk2 − βkµk1, k = 1, . . . , m. Then it is easy to

check that the conditional distribution of X(2) given X(1) = x1 is a Gaussian mixture

with parameters {π̃k(x1)}mk=1 , {µ̃k(x1)}mk=1, {σ̃2
k}mk=1, where

π̃k(x1) =
πkφ(x1;µk1, σ

2
k1)

∑m
j=1 πjφ(x1;µj1, σ

2
j1)

(2.7)
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and

µ̃k(x1) = αk + βkx1, σ̃2
k = σ2

k(1− ρ2k). (2.8)
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Appendix C : Estimation and goodness-of-fit

In this section, we describe the estimation procedure and the goodness-of-fit tests.

C.1 : EM algorithm for bivariate Gaussian mixtures

Let y1, . . . , yn be a random sample from a bivariate Gaussian mixture with para-

meters π = (πk)
m
k=1, µ = (µk)

m
k=1 and A = (Ak)

m
k=1. Start with an initial estimator θ(0).

Given an estimator θ(ℓ) =
(

π(ℓ), µ(ℓ), A(ℓ)
)

of the parameters θ = (π, µ, A), set

πk
(

yi, θ
(ℓ)
)

=
π
(ℓ)
k φ2

(

yi;µ
(ℓ)
k , A

(ℓ)
k

)

∑m
j=1 π

(ℓ)
j φ2

(

yi;µ
(ℓ)
j , A

(ℓ)
j

) , i = 1, . . . , n,

and define the new estimator θ(ℓ+1) =
(

π(ℓ+1), µ(ℓ+1), A(ℓ+1)
)

viz.

π
(ℓ+1)
k =

1

n

n
∑

i=1

πk
(

yi, θ
(ℓ)
)

,

µ
(ℓ+1)
k =

1

n

n
∑

i=1

yiπk
(

yi, θ
(ℓ)
)

/

π
(ℓ+1)
k ,

and

A
(ℓ+1)
k =

1

n

n
∑

i=1

(

yi − µ
(ℓ+1)
k

)(

yi − µ
(ℓ+1)
k

)⊤
πk

(

yi, θ
(ℓ)
)

/

π
(ℓ+1)
k ,

for k = 1, . . . , m. As ℓ increases, the numbers {πk
(

yi, θ
(ℓ)
)

; k = 1, . . . , i = 1, . . . , n}

stabilize and the estimators converge.

C.2 : Tests of goodness-of-fit

Testing goodness-of-fit is an essential step for modelling data. There are many tests

available but to our knowledge, the best ones are based on empirical processes (Genest

and Rémillard, 2005, Genest et al., 2009). Here, we only consider two tests based on

the so-called Rosenblatt‘s transform. The first one is due to Durbin (1973) but the

calculation of P -values is recent (Stute et al., 1993). For the second test designed for
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testing goodness-of-fit for bivariate data, the validity of the algorithm for calculating

P -values follows from Genest and Rémillard (2005).

C.3 : Tests of goodness-of-fit for a univariate parametric distribution

Let X1, . . . , Xn be a sample of size n from a (continuous) distribution F on R.

Suppose that the hypotheses to be tested are

H0 : F ∈ F = {Fθ; θ ∈ Θ} vs H1 : F 6∈ F

For example, the parametric family F could be the family of univariate Gaussian

mixtures with m regimes.

The proposed test statistic is based on Durbin (1973). Let θn = Tn(X1, . . . , Xn) be

a regular estimator of θ, in the sense of Genest and Rémillard (2005) and set

Dn(u) =
1

n

n
∑

i=1

I(Ui ≤ u), u ∈ [0, 1],

where Ui = Fθn(Xi), i = 1, . . . , n. To test H0 against H1, one may use the Cramér-von

Mises type statistic

Sn = n

∫ 1

0

{Dn(u)− u}2du

=
1

n

n
∑

i=1

n
∑

j=1

{

U2
i + U2

j − 2max(Ui, Uj)

2
+

1

3

}

.

Since the Ui’s are “almost uniformly distributed on [0, 1]” under the null hypothesis,

large values of Sn should lead to rejection of the null hypothesis. However, in general

the limiting distribution of Sn depend on the unknown parameter θ. To calculate the

P -value of Sn, one can use a parametric bootstrap approach as described below.

a) Calculate θn and Sn.

b) For some large integer N (say 1000), repeat the following steps for every k ∈

{1, . . . , N} :
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(i) Generate a random sample X1,k, . . . , Xn,k from distribution Fθn.

(ii) Calculate

θn,k = Tn (X1,k, . . . , Xn,k) ,

Ui,k = Fθn,k
(Xi,k), i = 1, . . . , n,

Sn,k =
1

n

n
∑

i=1

n
∑

j=1

{

U2
i,k + U2

j,k − 2max(Ui,k, Uj,k)

2
+

1

3

}

.

An approximate P -value for the test based on the Cramér–von Mises statistic Sn is

then given by

1

N

N
∑

k=1

I(Sn,k > Sn).

C.4 : Tests of goodness-of-fit for a bivariate parametric distribution

Let (X1, Y1) . . . , (Xn, Yn) be a sample of size n from a (continuous) distribution F

on R
2. Suppose that the hypotheses to be tested are

H0 : F ∈ F = {Fθ; θ ∈ Θ} vs H1 : F 6∈ F

For example, the parametric family F could be the family of bivariate Gaussian mix-

tures with m regimes. Denote by Gθ the distribution function of Xi and let Hθ be the

conditional distribution function of Yi given Xi, i.e., Hθ(x, y) = P (Yi ≤ y|Xi = x).

The proposed test statistic is based on Durbin (1973) and the Rosenblatt’s trans-

form (Rosenblatt, 1952).

Suppose that θn = Tn(X1, Y1, . . . , Xn, Yn) is a regular estimator of θ, in the sense of

Genest and Rémillard (2005) and set

Dn(u, v) =
1

n

n
∑

i=1

I(Ui ≤ u, Vi ≤ v), u, v ∈ [0, 1],

where Ui = Gθn(Xi), Vi = Hθn(Xi, Yi), i = 1, . . . , n. To test H0 against H1, one may
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use the Cramér-von Mises type statistic

Sn = n

∫ 1

0

∫ 1

0

{Dn(u, v)− uv}2dudv

=
1

n

n
∑

i=1

n
∑

j=1

[

1

9
− 1

4
(1− U2

i )(1− V 2
i )−

1

4
(1− U2

j )(1− V 2
j )

+{1−max(Ui, Uj)}{1−max(Vi, Vj)}
]

.

Since the pairs (Ui, Vi)’s are “almost uniformly distributed on [0, 1]2” under the null

hypothesis, large values of Sn should lead to rejection of the null hypothesis. However,

in general the limiting distribution of Sn depend on the unknown parameter θ. To

calculate the P -value of Sn, one can use a parametric bootstrap approach as described

below.

a) Calculate θn and Sn.

b) For some large integer N (say 1000), repeat the following steps for every k ∈

{1, . . . , N} :

(i) Generate a random sample (X1,k, Y1,k), . . . , (Xn,k, Yn,k) from distribution Fθn .

(ii) Calculate

θ∗n,k = Tn (X1,k, Y1,k, . . . , Xn,k, Yn,k) ,

Ui,k = Gθn,k
(Xi,k), Vi,k = Hθn,k

(Xi,k, Yi,k), i = 1, . . . , n

Sn,k =
1

n

n
∑

i=1

n
∑

j=1

[

1

9
− 1

4
(1− U2

i,k)(1− V 2
i,k)−

1

4
(1− U2

j,k)(1− V 2
j,k)

+{1−max(Ui,k, Uj,k)}{1−max(Vi,k, Vj,k)}
]

.

An approximate P -value for the test based on the Cramér–von Mises statistic Sn is

then given by

1

N

N
∑

k=1

I(Sn,k > Sn).
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Appendix D : Implementation of the dynamic tra-

ding strategy

Before describing the algorithm, it is important to define what is meant by a par-

tition. Here we assume that St = ωt(St−1, ξt), ξt ∼ µt being independent of Ft−1,

t = 1, . . . , T .

Definition 2.7.1 A partition P of a compact convex set K, is any finite set P =

{S1, . . . , Sm} of simplexes with disjoint non empty interiors, so that K =
⋃m

j=1 Sj. The

set of vertices of the partition P is denoted by V(P).

Note that K is then the convex hull generated by V(P).

The algorithm is based on Monte Carlo simulations, combined with a sequence of

approximations on compact sets K0, . . . , KT−1, determined by partitions P0, . . . ,PT−1.

The idea behind the algorithm is quite simple : Given approximations f̃t, of ft, one

first get L̂1t, L̂2t, Ât, ∆̂t, Ût and f̂t−1, by estimating these functions at every vertices

x ∈ V(Pt−1), using Monte Carlo simulations, and then, one uses a linear interpolation

to extend them at any point x ∈ Kt−1. More precisely, one may proceed through the

following steps.

D.1 : Algorithm

– Set f̃T = fT ;

– For each t = T, . . . , 1

– Generate ξ1,t, . . . , ξNt,t according to µt ;
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– For every s ∈ V(Pt−1), calculate

L̂1t(s) =
1

Nt

Nt
∑

i=1

ωt(s, ξi,t)

L̂2t(s) =
1

Nt

Nt
∑

i=1

ωt(s, ξi,t)ωt(s, ξi,t)
⊤

Ât(s) = L̂2t(s)− L̂1t(s)L̂1t(s)
⊤

ψ̂t(s) = Ât(s)
−1 1

Nt

Nt
∑

i=1

{ωt(s, ξi,t)− L̂1t(s)}f̃t{ωt(s, ξi,t)}

Ût(s, x) = 1− {L̂1t(s)− βt−1s/βt}⊤Ât(s)
−1{x− L̂1t(s)}

f̂t−1(s) =
βt
βt−1

1

Nt

Nt
∑

i=1

Ût{s, ωt(s, ξi,t)}f̃t{ωt(s, ξi,t)}.

– Interpolate linearly ∆̂t and f̂t−1 over Kt−1 and extend it to all of X.

A detailed description of the linear interpolation implementation techniques is given

below, but first, the following result adapted from Del Moral et al. (2006), confirms

that the algorithm produces good approximations.

Theorem 2 Suppose that fT is continuous and that for all 1 ≤ t ≤ T , ωt(·, ξ) are

continuous for a fixed ξ. Let K0 be a given compact convex subset of X. Let ǫ > 0 be

given. Then one can find compact convex sets K1, . . . , Kn−1 ⊂ X, partitions P0, . . .Pn−1

generating respectively K0, . . . , Kn−1, and integers N10, . . . , Nn0, so that for the simple

interpolation method,

max
1≤k≤n

‖ψt − ψ̃t‖Kt−1 < ǫ,

and

max
0≤k≤n−1

‖ft − f̃t‖Kt < ǫ,

whenever N1 ≥ N10, . . . , Nn ≥ Nn0.
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D.2 : Linear interpolations

Definition 2.7.2 Given a function h and a partition P of K, a linear interpolation

of h over P is the (unique) function g̃ defined in the following way :

If S ∈ P is a simplex with vertices x1, . . . , xd+1, then set

h̃(x) =

d+1
∑

i=1

λih(xi),

where the barycenters {λ1, . . . , λd+1} are the unique solution of

x =

d+1
∑

i=1

λixi,

d+1
∑

i=1

λi = 1, λi ∈ [0, 1], i = 1, . . . d+ 1.

If x 6∈ K, let xK be the (unique) closest point to x that belongs to K, and set h̃(x) =

h̃(xK). Uniqueness follows from the convexity of K and the strict convexity of the

Euclidean norm.

Remark 2.7.2 Note that since each xi is extreme in S, the unique solution of

xi =
d+1
∑

j=1

λjxj ,
d+1
∑

j=1

λj = 1, λj ∈ [0, 1], j = 1, . . . d+ 1,

is λi = 1 and λj = 0 for all j 6= i, yielding g̃(xi) = g(xi) for all 1 ≤ i ≤ m. Moreover,

g̃ is affine on each simplex, justifying the term “linear interpolation”.

Finally, g̃ is continuous and bounded on X and

sup
x∈K

|g(x)− g̃(x)| ≤ ω(g,K,mesh(P)),

where

mesh(P) = max
S∈P

sup
x,z∈S

‖x− z‖

and ω(g,K, δ) is the modulus of continuity of g over K, i.e.

ω(g,K, δ) = sup
x,z∈K,‖x−z‖≤δ

|g(x)− g(z)|.
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Example 2.7.1 Suppose d = 1. Then the linear interpolation g̃ of a monotone (res-

pectively convex) function g on K = [a, b] is monotone (respectively convex). To see

that, set ai = a + i(b − a)/m, i = 0, . . . , m and let P be the partition given by

P = {[ai−1, ai]; i = 1, . . . , m}. Set ∆i = g(ai)−g(ai−1)
ai−ai−1

, 1 ≤ i ≤ m. Then the linear

interpolation of g over K is given by

h̃(x) =







h(a), x ≤ a,
h(ai) + (x− ai)∆i+1, x ∈ [ai, ai+1], i = 0, . . . , m− 1,
h(b) x ≥ b.

If h is monotone, the slopes ∆i all have the same sign, so h̃ has the same monotonicity.

If h is convex, the slopes ∆i are non decreasing, so h̃ is also convex.

Example 2.7.2 Suppose d = 2. First define interpolation on [0, 1]2. Suppose that h is

known at points (0, 0), (0, 1), (1, 0) and (1, 1). If one wants to linearly interpolate h, as

in Definition 2.7.2, a convenient choice for the partition P of [0, 1]2 is P = {S1, S2}

where

S1 = {(x1, x2) ∈ [0, 1]2; x1 ≤ x2} S1 = {(x1, x2) ∈ [0, 1]2; x1 ≥ x2}.

Any x ∈ S1 can be uniquely written as

x = λ1(0, 1) + λ2(1, 1) + λ3(0, 0),

with λ2 = x1, λ1 = x2 − x1, and λ3 = 1− x2, so one can define

h̃(x) = λ1h(0, 1) + λ2h(1, 1) + λ3h(0, 0)

= h(0, 0) + x1{h(1, 1)− h(0, 1)}+ x2{h(0, 1)− h(0, 0)}.

Similarly, for any x ∈ S2, one obtains

h̃(x) = λ1h(0, 1) + λ2h(1, 1) + λ3h(0, 0)

= h(0, 0) + x1{h(1, 0)− h(0, 0)}+ x2{h(1, 1)− h(1, 0)}.



60

Suppose now that K = [a1, b1] × [a2, b2] is partition into smaller rectangles. On

each of these sub-rectangles R = [y1, y2] × [z1, z2], just use the linear interpolation

on [0, 1]2 by transforming x ∈ R into x′ = (x′1, x
′
2) ∈ [0, 1]2 through the mapping

x′1 =
x1−y1
y2−y1

, x′2 =
x2−z1
z2−z1

.

Outside K, h̃ is defined as follows :

h̃(x) =



















































h̃(x1, a2) if x ∈ [a1, b1]× (−∞, a2)

h̃(x1, b2) if x ∈ [a1, b1]× (b2,∞)

h̃(a1, x2) if x ∈ (−∞, a1)× [a2, b2]

h̃(b1, x2) if x ∈ (b1,∞)× [a2, b2]

h̃(a1, a2) if x ∈ (−∞, a1)× (−∞, a2)

h̃(b1, a2) if x ∈ (b1,∞)× (−∞, a2)

h̃(a1, b2) if x ∈ (−∞, a1)× (b2,∞)

h̃(b1, b2) if x ∈ (b1,∞)× (b2,∞)

.



61

Appendix E : Auxiliary results

Throughout this appendix, L2 = L2(Ω,F , P ) is the set of all random variables on

(Ω,F) which are square integrable.

Proposition 1 Suppose that X is non negative random variable on (Ω,F , P ) such

that E(X) < ∞. Suppose G is a sub σ-algebra of F and let Z = E(X|G) ≥ 0, P

almost surely. Then for any non negative G-measurable random variable ξ, the following

equality holds

E(ξX) = E(ξZ).

Proof In the case of bounded random variable ξ, the result follows from the very

definition of the conditional expectation. In particular it is true for ξn = min(n, ξ) ≥ 0,

for any n ≥ 1. Since ξn ↑ ξ, it follows from Beppo-Levy theorem that

E(ξX) = lim
n→∞

E(ξnX) = lim
n→∞

E(ξnZ) = E(ξZ).

Proposition 2 Suppose that ξ ∈ R
d and η ∈ R are L2 random variables in (Ω,F)

and suppose that A = E(ξξ⊤|G) is invertible, where G is a sub σ-algebra of F . Then

ϕ ∈ R
d minimizes E{(ϕ⊤ξ − η)2} over all ϕ ∈ G such that ϕ⊤ξ ∈ L2 if and only if

ϕ = A−1b, where b = E(ξη|G). In particular ϕ⊤ξ is square integrable.

Proof Set ϕ = A−1b. To prove that ϕ⊤ξ ∈ L2, note that it follows from Proposition

1 that

E
{

(ϕ⊤ξ)2
}

=

d
∑

i=1

E(ϕ2
i ξ

2
i )

=

d
∑

i=1

E{ϕ2
iE(ξ

2
i |G)}

=

d
∑

i=1

E(ϕ2
iAii)

= E(b⊤A−1b).
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Since A is symmetric and positive definite, there exist a d× d matrix M ∈ G such

that M−1 = M⊤ and a d × d diagonal matrix ∆ ∈ G such that A = M∆M⊤. Set

ξ̃ = M⊤ξ and b̃ = M⊤b. Then ∆ = E(ξ̃ξ̃⊤|G), b̃ = E(ξ̃η|G), E(ξ̃2i |G) = ∆ii > 0 by

hypothesis, and

b⊤A−1b = b̃⊤∆−1b̃

=
d

∑

i=1

E2(ξ̃iη|G)
E(ξ̃2i |G)

≤ dE(η2|G) a.s. ,

from Cauchy-Schwarz inequality. Hence

E{(ϕ⊤ξ)2} ≤ pE(η2) <∞.

Next, let ψ be any random vector in G such that ψ⊤ξ ∈ L2. Then

E{(ψ⊤ξ − η)2} = E
[

E{(ψ⊤ξ − η)2|G}
]

,

and it is easy to check that

E{(ψ⊤ξ − η)2|G} = ψ⊤Aψ − 2ψ⊤b+ c

= (ψ − ϕ)⊤A(ψ − ϕ) + ϕ⊤Aϕ− 2ϕ⊤b+ c

= (ψ − ϕ)⊤A(ψ − ϕ) + E{(ϕ⊤ξ − η)2|G}.

Hence the result.
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Appendix F : Proof of the main results

In this section, we will prove the two main results, using the propositions proved in

Appendix 2.7.

F.1 : Proof of Theorem 1

Recall that the process ϕ = (ϕt)
T
t=0 is predictable. For any 1 ≤ t ≤ T , set ∆t =

St −E(St|Ft−1) and

Gt = ϕt
⊤∆t − {Ct − E(Ct|Ft−1)} , (2.9)

where CT = C and

βt−1Ct−1 = E(βtCt|Ft−1)− ϕt
⊤E(βtSt − βt−1St−1|Ft−1). (2.10)

It follows from equations (2.9)-(2.10) that

βtGt = βt−1Ct−1 − βtCt + ϕt
⊤(βtSt − βt−1St−1), 1 ≤ t ≤ T. (2.11)

Note that the Gt ∈ Ft and E(Gt|Ft−1) = 0, for all 1 ≤ t ≤ T . Moreover, using

(2.2)–(2.3) and (2.11), one gets

T
∑

t=1

βtGt = C0 − βTC +

T
∑

t=1

ϕ⊤
t (βtSt − βt−1St−1) = G+ C0 − V0

and E(G) = E(G|F0) = C0 − V0, since E(Gt|Ft−1) = 0 for all t = 1, . . . , T . It also

follows from well known properties of conditional expectations that

E(G2) = E(G2|F0) = (C0 − V0)
2 +

T
∑

t=1

E
(

β2
tG

2
t |F0

)

(2.12)

= (C0 − V0)
2 +

T
∑

t=1

E
{

β2
t E

(

G2
t |Ft−1

)∣

∣F0

}

.

Because Gt depends only on ϕt, . . . , ϕT through Ct, to minimize E(G2), it suffices

to find ϕT minimizing E (G2
T |F0), then to find ϕT−1 minimizing E

(

G2
T−1|F0

)

and so
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on. Doing so, we will find the minimum since each term is non negative. Having found

the optimal ϕ, one obtains that the optimal choice for V0 is C0.

First, note that GT = ξ⊤T ϕT − ηT , where ξT = ∆T = ST − E(ST |FT−1) and ηT =

C − E(C|FT−1) = CT − E(CT |FT−1).

Using Proposition 2, one can conclude that

ϕT = (ΣT )
−1E (ξTηT |FT−1) = (ΣT )

−1E (ξTCT |FT−1)

minimizes E(G2
T |F0). Having found the optimal ϕT , one can define CT−1 as in (2.10).

Suppose now that ϕT , . . . , ϕt have been defined and define Gt−1 and Ct−1 according

to (2.9) and (2.10). Then one can use again Proposition (2) to conclude ϕt−1 given by

(2.4) minimizes E(G2
t−1|F0).

Therefore the risk E(G2|F0) is minimized by choosing the ϕt’s according to (2.4).

Finally, using (2.12), the optimal value of V0 is C0. This completes the proof.

F.2 : Proof of Corollary

The proof of the representation Ct−1 = E(CtUt|Ft−1) follows directly from Theorem

1. In fact, using equations (2.4) and (2.5), one obtains

βt−1Ct−1 = E(βtCt|Ft−1)− ϕ⊤
t E(βtSt − βt−1St−1|Ft−1)

= E(βtCt|Ft−1)

−E
{

Ct∆
⊤
t (Σt)

−1E(βtSt − βt−1St−1|Ft−1)
∣

∣Ft−1

}

= E(CtUt|Ft−1),

where Ut is defined by (2.6). One can easily see that E(Ut|Ft−1) = 1, so (Mt)
T
t=0 is a

martingale.

It only remains to prove that βtStMt is a martingale. All is needed is to prove

that E(βtStUt|Ft−1) = βt−1St−1. To this end, let t ∈ {1, . . . , T} be given and set
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ξt = E (βtSt − βt−1St−1|Ft−1). Note that

βtStUt = βtSt − {∆t + E(St|Ft−1)}∆⊤
t (Σt)

−1 ξt.

Next, since E(∆t|Ft−1) = 0, one has

E(βtStUt|Ft−1) = E(βtSt|Ft−1)−E(∆t∆
⊤
t |Ft−1) (Σt)

−1 ξt

−E(St|Ft−1)E(∆
⊤
t |Ft−1) (Σt)

−1 ξt

= E(βtSt|Ft−1)− Σt (Σt)
−1 ξt − 0

= E(βtSt|Ft−1)− ξt = βt−1St−1.

Hence the result.



Chapitre 3

Optimal Hedging Strategies with an Application to Hedge
Fund Replication

3.1 Introduction

Over the last couple of years, considerable attention paid within the hedge fund

industry to the development replicating strategies. Many of the large banks have laun-

ched beta replication funds that attempt to use a portfolio of liquid assets to replicate

the time-series properties of various hedge fund strategies. 1 The tracking portfolio

generally consists in exposure to market, credit and liquidity premia. However, the re-

plicating portfolio may consist of assets that are not necessarily employed by managers

(e.g., high yield bonds may explain exposure of hedge equity to liquidity risk).

An interesting alternative replication method was proposed by Amin and Kat (2003)

and more recently extended by Kat and Palaro (2005). Based on the Payoff Distribution

Model put forth by Dybvig (1988), the authors attempt to replicate hedge fund returns

not by identifying the return generating betas, but identifying a systematic trading

strategy that can be used to generate the distribution of the hedge fund returns. Kat

and Palaro (2005) show that for most hedge funds, their statistical properties can be

replicated by investing in an alternative dynamic strategy.

The derivation of the bivariate Payoff Distribution Model by Kat and Palaro (2005)

1. ML Factor Index, GS Absolute Return Tracker, Partners Group AB Program, JPM AB Index
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represents an interesting contribution to the performance evaluation and asset pricing

literature. The implementation proposed by Kat and Palaro is however subject to

several shortcomings and inconsistencies. In this paper we will address these problems

and propose some techniques for overcoming these issues.

3.2 The Payoff Function

In Kat and Palaro (2005), the authors show that given two risky assets S(1) and

S(2), it is possible to “reproduce” the statistical properties of the joint composed re-

turns R
(1)
0,T = log(S

(1)
T /S

(1)
0 ) and R

(3)
0,T = log(S

(3)
T /S

(3)
0 ), in the sense that there exists a

function g such that the joint distribution of R
(1)
0,T and g

(

R
(1)
0,T , R

(2)
0,T

)

is the same as

the joint distribution of R
(1)
0,T and R

(3)
0,T . Note that one does not replicate the value of

R
(3)
0,T at period T , but instead one wants to imitate its distribution properties like its

expectation, volatility, skewness, kurtosis, as well as dependence measures with respect

to R
(1)
0,T such as Pearson and Spearman correlations to name a few.

The payoff’s return function g is easily shown to be calculable using the marginal

distribution functions F1, F2 and F3 of S
(1)
T , S

(2)
T , S

(3)
T , and the copulas C1,2 and C1,3 as-

sociated respectively with the joints returns
(

R
(1)
0,T , R

(2)
0,T

)

and
(

R
(1)
0,T , R

(3)
0,T

)

. For details

on its derivations see Kat and Palaro (2005). The exact expression for g is given by

g(x, y) = Q
{

x, P
(

R
(2)
0,T ≤ y|R(1)

0,T = x
)}

, (3.1)

where Q(x, α) is the order α quantile of the conditional law of R
(3)
0,T given R

(1)
0,T = x,

i.e., for any α ∈ (0, 1), q(x, α) satisfies

P
{

R
(3)
0,T ≤ Q(x, α)|R(1)

0,T = x
}

= α.

Using properties of copulas, e.g. Nelsen (1999), the conditional distributions can be
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expressed in terms of the margins and the associated copulas.

P
(

R
(2)
0,T ≤ y|R(1)

0,T = x
)

=
∂

∂u
C1,2(u, v)

∣

∣

∣

∣

u=F1(x),v=F2(y)

.

Once the function has been calculated all that remains is to find the trading strategy

that will allow to replicate the function. In essence, we can view the function as an

option that cannot be traded, so we need to replicate the payoff of the option with the

greatest possible precision by trading the underlying securities.

3.3 Replication and the shortcomings of the Kat-

Palaro approach

There are three steps in the replication procedure.

– Modelling part :

– Estimation of the parameters of the marginal distribution functions F1, F2 and

F3 of S
(1)
T , S

(2)
T , S

(3)
T , and the copulas C1,2 and C1,3 associated respectively with

the joints returns
(

R
(1)
0,T , R

(2)
0,T

)

and
(

R
(1)
0,T , R

(3)
0,T

)

.

– Calculate the payoff function g.

– Replication part :

– Choose an appropriate replication method ;

– Find the initial amount v0 to be invested in the portfolio and find an hedging

strategy ϕ.

3.3.1 Modeling issues

The correct calculation of the payoff function relies therefore on the precise mode-

ling of the statistical properties of our three assets. The marginal distributions F1, F2

and F3 must be capable of capturing the necessary skewness and kurtosis, and a proper

empirical test must be implemented in order to select the two copulas C1,2 and C1,3. Any
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mis-specification of the statistical properties will induce an error in the calculation of

the payoff function g, which, in turn, will not capture the statistical properties of R
(3)
0,T .

Kat and Palaro (2005) use the Gaussian, Student and Johnson distributions to model

the monthly returns of the three assets and five copula functions (Gaussian, Student,

Frank, Gumbel and symmetrized Joe-Clayton) to model the dependence. The estima-

tion and choice of marginal distribution and copula is performed using the Inference

for Margins (IFM) method.

There are two significant shortcomings related to the modeling approach proposed

by Kat and Palaro (2005). The first issue relates to the aggregation properties of the

distributions and copula functions, and represents a fundamental flaw in the modeling

approach. The second issue is also not trivial and relates to the choice of estimation

technique.

The main flaw in the Kat and Palaro (2005) model has to do with the distribution

of the returns R1, . . . , RT versus the distribution of R0,T . In their paper, Kat and Palaro

(2005) start by fixing the law of the monthly returns, distribution functions F1, F2, F3

and the copulas C1,2, C1,3, and then solve for the corresponding daily hedging strategy for

assets S(1) and S(2). The compatibility problem between the law of the daily returns

and monthly returns is not addressed by the authors. According to Sklar’s theorem

(Sklar, 1959), the law of the bivariate vector R0,T is determined by F1, F2 and C1,2.

However, the joint law of the returns (Rt)
T
t=1 must be compatible with the relation

R0,T =
T
∑

t=1

Rt. (3.2)

Let’s consider, for the sake of simplicity, that returns are independent and identi-

cally distributed. In the bivariate Gaussian case, it is easy to find the law of the returns

(Rt)
T
t=1 given the law of R0,T . In fact, even if the marginal distribution of R

(1)
0,T and R

(2)
0,T

are Gaussian and their copula C1,2 is not Gaussian, the margins of R
(1)
t and R

(2)
t are
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Gaussian. However, there is no known way to find out what the common copula of the

Rt’s should be so that the copula of the sum match the copula C1,2. Although copula

provide us with much flexibility in terms of modeling the dependence, there is however

no proof to this day that the statistical properties of copula functions are divisible.

This compatibility condition is not a trivial matter. In fact, if for any T , the relation

(3.2) is satisfied with independent and identically distributed returns (Rt)
T
t=1, then the

law of R0,T must be infinitely divisible. Such laws can be characterized completely (see

Barndorff-Nielsen et al. (2001) or Sato (1999)). For example, it is known that the univa-

riate Student distribution is infinitely divisible, but the common law of the associated

returns (Rt)
T
t=1 satisfying (3.2) is not known. Note that Johnson’s law, proposed in Kat

and Palaro (2005), is not infinitely divisible. Therefore, it should not serve as a model

for the distribution of R
(1)
0,T or R

(2)
0,T if the daily returns are assumed to be independent.

The lesser of the two problems pertains to the choice of estimation technique. IFM

is a two-stage estimation process : first the marginal distributions are estimated and

then these distributions are used in order to calculate the parameters of the copula.

Kim et al. (2007) show that an inappropriate choice of models for the margins may

have detrimental effects on the estimation of the dependence parameter per se. A

much more robust method consists of separating the estimation for the margins and

the dependence. Ideally the estimation of the dependence should rely on normalized

ranks and be independent of the marginal distributions. For a detailed description see

Genest et al. (1995).

Overcoming the aggregation problems

In order to deal with the compatibility restriction, instead of estimating the law of

the monthly returns R0,T for assets S(1) and S(2), it is preferable to take the opposite

point of view, by first determining a model for the daily returns (Rt)
T
t=1, and then
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solving for the associated law for the composed bivariate return R0,T . The important

issue is select bivariate laws whose aggregation properties are known. A good candidate

for the law of the returns Rt is a mixture of bivariate Gaussian distributions. It is easy to

check that the law of R0,T will then be also a Gaussian mixture. Properties of Gaussian

mixtures, as well as estimation and goodness-of-fit are treated in Papageorgiou et al.

(2007). We do not need to concern ourselves with the distribution of asset S(3) since it

is not used in the trading strategy.

A concern in the modeling of the daily returns can be presence of serial correlation

in the daily time series. One interesting extension of Papageorgiou et al. (2007) would

be to be to the model joint returns of assets S(1) and S(2) as a mixture of bivariate

Gaussian distribution with a Markovian dependence in the mixtures. One could also

consider mixture of bivariate GARCH processes. The aggregation properties and es-

timation of multi-variate mixtures of GARCH processes have been studied by Hafner

and Rombouts (2007).

3.3.2 Hedging issues

Having modeled the return distributions and dependence structures, we can then

calculate the payoff function g. The final step is to find a dynamic trading strategy

that allows us to best approximate this function. The hedging strategy proposed by

Kat and Palaro (2005) is quite simple. They use a trinomial approach proposed by He

(1990) even though the law of the (daily) returns

Rt =
{

log
(

S
(1)
t /S

(1)
t−1

)

, log
(

S
(2)
t /S

(2)
t−1

)}⊤

is not necessarily Gaussian.

In their calculations they implemented the technique of Boyle and Lin (1997), a

trinomial approach that incorporates transactions costs. This approach is clearly ineffi-
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cient, specially since the distributions of the traded assets S(1) and S(2), and the hedge

fund S(3) are clearly not Gaussian. In order to get rid of this inconsistency which is

common in option pricing, Papageorgiou et al. (2007) propose an alternative methodo-

logy adapted from American option pricing techniques. The authors extend the results

of Schweizer (1995) by selecting the portfolio (v0, ϕ) such as to minimize the (square)

root mean square hedging error (RMSHE)

√

E
[

β2
T {VT (v0, ϕ)− CT}2

]

,

where βT is the discount factor and ϕ is a dynamic replication strategy. The value, at

period t, of the portfolio defined by the initial value v0 and strategy ϕ is denoted by

Vt(v0, ϕ). Note that there is no “risk-neutral” evaluation involved, all calculations are

carried out under the objective probability measure.

Optimal hedging

Suppose that (Ω, P,F) is a probability space with filtration F = {F0, . . . ,FT},

under which the stochastic processes are defined. Assume that the price process St is

d-dimensional, i.e. St =
(

S
(1)
t , . . . , S

(d)
t

)

.

A dynamic replicating strategy can be described by a (deterministic) initial value v0

and a sequence of random weight vectors ϕ = (ϕt)
T
t=0, where for any j = 1, . . . , d, ϕ

(j)
t

denotes the number of parts of assets S(j) invested during period (t− 1, t]. Because ϕt

may depend only on the values values S0, . . . , St−1, the stochastic process ϕt is assumed

to be predictable. Initially, ϕ0 = ϕ1, and the portfolio initial value is v0. It follows that

the amount initially invested in the non risky asset is v0 −
∑d

j=1 ϕ
(j)
1 S

(j)
0 = v0 − ϕ⊤

1 S0.

Since the hedging strategy must be self-financing, it follows that for all t = 1, . . . , T ,

βtVt(v0, ϕ)− βt−1Vt−1(v0, ϕ) = ϕ⊤
t (βtSt − βt−1St−1). (3.3)
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Using the self-financing condition (3.3), it follows that

βTVT = βTVT (v0, ϕ) = v0 +
T
∑

t=1

ϕ⊤
t (βtSt − βt−1St−1). (3.4)

The replication strategy problem for a given payoff C is thus equivalent to finding

the strategy (v0, ϕ) so that the hedging error

GT (v0, ϕ) = βTVT (v0, ϕ)− βTC (3.5)

is as small as possible. Here, the RMSHE measures the quality of replication. It is

therefore natural to suppose that the prices S
(j)
t have finite second moments. We further

assume that the hedging strategy ϕ satisfies a similar property, namely that for any

t = 1, . . . , T , ϕ⊤
t (βtSt − βt−1St−1) have finite second moments. Note that these two

technical conditions were also made by Schweizer (1995).

For simplicity, set ∆t = St − E(St|Ft−1), t = 1, . . . , T . Under the above moment

conditions, the conditional covariance matrix Σt of ∆t exists and is given by

Σt = E
{

∆t∆
⊤
t |Ft−1

}

, 1 ≤ t ≤ T. (3.6)

In Schweizer (1995), the author treats the case d = 1 and assumes a restrictive

boundedness condition. Here, in contrast, we treat the general d-dimensional case and

we only suppose that Σt is invertible for all t = 1, . . . , T . This was implicitly part of

the boundedness condition of Schweizer (1995).

If Σt is not invertible for some t, there would exists a ϕt ∈ Ft−1 such that ϕ⊤
t St =

ϕ⊤
t E(St|Ft−1), that is, ϕ

⊤
t St is predictable. Our assumption can be interpreted as saying

that the genuine dimension of the assets is d.

Difference between optimal hedging and hedging under Black-Scholes set-
ting

To compare the two methods, simply take T = 1, βT = 1, and d = 1. In this

case, the solution for optimal hedging yields ϕ⋆ = Cov{∆S1, C(S1)}/Var(∆S1), where
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∆S1 = S1 − S0, and v
⋆
0 = E{C(S1)} − ϕ⋆E(∆S1).

For the Black-Scholes setting, vBS
0 = E

{

C
(

S0e
σZ−σ2/2

)}

and

ϕBS = E
{

eσZ−σ2/2C ′
(

S0e
σZ−σ2/2

)}

, with σ2 = Var {log(S1/S0)}, where Z ∼ N(0, 1),

provided C is differentiable. See, e.g., Broadie and Glasserman (1996).

In general, ϕ⋆ 6= ϕBS and v⋆0 6= vBS
0 , so

E
[

{V1(v⋆0, ϕ⋆)− C(S1)}2
]

< E
[

{

V1(v
BS
0 , ϕBS)− C(S1)

}2
]

.

For an analysis of the (discrete) hedging error in a Black-Scholes setting, see, e.g.,

Wilmott (2006).

Hedging Error Comparison

To illustrate the advantage of the optimal hedging strategy proposed in Papageor-

giou et al. (2007), we compare the mean hedging error and the RMSHE as defined

in equation (3.5) for the optimal hedging and for the Kat-Palaro approach. For this

example, we specify assets S(1), S(2) and S(3) as follows :

– Asset S(1) is a proxy for the typical institutional Canadian pension fund as des-

cribed in Benefits Canada Review (May 2007)

– Asset S(2) is a diversified portfolio of typical market exposures, specifically global

equity indices, credit indices and commodity indices

– Asset S(3) that is being replicated is chosen to be gaussian distribution with an

annual volatility of 12%.

We model bivariate daily and monthly distributions of assets S(1) and S(2) over the

period from 2000 to 2007 using normal mixtures, as detailed in Papageorgiou et al.

(2007). This leads to 7 regimes for the daily mixture and 2 regimes for the monthly

mixture. We do not specify the required dependence between S(3) and S(1), instead we

run the hedging comparison for different levels of dependence between the two assets.
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More precisely, we allow Kendall’s Tau to vary from −0.9 to 0.9 for three different

copulas (Gaussian, Clayton and Frank) and measure the impact of this dependency

variable between S(1) and S(3) on hedging error measures. To compare the optimal

hedging replication method and the Kat-Palaro method, 10 000 scenarios of 22 daily

returns (1 trading month) were simulated for the assets S(1) and S(2). For each scenario,

the terminal value VT of the portfolio was computed and the hedging error is calculated.

The plots of the hedging errors are presented below.
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Figure 3.1 – Hedging Error Measures

The results lend strong support to the hedging approach put forth in Papageorgiou

et al. (2007). Hedging Errors for the ”Optimal Hedging” algorithm are centered on 0

with a low sensitivity to Kendall’s Tau as well as to the type of copula. The Kat-

Palaro algorithm is considerably more sensitive to the level of dependence (Kendall’s

tau) and copula family. This is a direct result of their approach being nested in the
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Black-Scholes setting and can lead to large hedging errors. It is also important to note

that the Optimal Hedging approach systematical produces smaller Root Mean Square

Hedging Errors (RMSHE) providing further validation of the Papageorgiou et al. (2007)

approach.

3.4 Conclusion

In the paper, we have discussed some of the challenges that one is confronted with

in implementing the bivariate Payoff Distribution Model proposed by Kat and Palaro

(2005). We exposed some of the flaws in the modeling and the dynamic trading strategy,

and proposed some techniques for overcoming these inconsistencies. Finally, we showed

that the hedging algorithm proposed in Papageorgiou et al. (2007) provides a more

precise replication of the payoff function that the Black-Scholes approach put forth by

Kat and Palaro (2005)

What remains to be seen is how well these statistical replication techniques fare in

practice. Desjardins Global Asset Management should soon be able to provide some

insight into this issue. They have been working with the authors of Papageorgiou et al.

(2007) and have recently launched the first statistical replication fund that is open to

investors.
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Chapitre 4

The Payoff Distribution Model : An Application to Dynamic
Portfolio Insurance

4.1 Introduction

The recent market meltdown has put the spotlight back on the dangers of financial

leverage and the importance of careful and flexible risk management techniques. Many

financial institutions and asset management firms suffered unprecedented losses du-

ring the financial crisis, impacting their balance sheet and jeopardizing the viability of

many structured products, such as equity linked notes and guaranteed principal notes.

The vast majority of institutions employ leverage and manage their market exposures

(de-leveraging) on these products using some form of portfolio insurance strategies.

Recent events have highlighted some of the important limitations of the traditional dy-

namic portfolio insurance techniques used to manage downside risk. These approaches

include the stop-loss insurance, option based replication insurance, and constant pro-

portion portfolio insurance (CPPI). However, given the often prohibitive costs and

institutional constraints in purchasing OTC portfolio insurance, not to mention the

increasing concern about counterparty risk, these dynamic portfolio insurance metho-

dologies often present the only viable risk management option for fund managers.

The earliest portfolio insurance model, proposed by Brennan and Schwartz (1979)



80

and Rubinstein and Leland (1981), consisted of overlaying a synthetic put option on

the existing portfolio, and delta managing the overall exposure using the Black and

Scholes (1973) option pricing formula. Although theoretically sound, this approach is

subject to significant error when confronted to the reality of non-continuous trading,

transaction costs and the time-varying nature of volatility. A further approach to dy-

namic risk management, specifically Constant Proportion Portfolio Insurance (CPPI),

was proposed by Black and Jones (1987) and Black and Perold (1992). The CPPI stra-

tegy requires that exposure to the risky asset is a linear function of a cushion, defined as

the excess wealth above a specific floor limit. The exposure is then determined by mul-

tiplying the cushion by a predetermined multiple. The initial cushion, multiple, floor

and tolerance can be chosen according to the investor’s own objectives and preferences.

The 1987 stock market crash provided a clear evidence as to the limitations and

dangers inherent in these dynamic risk management strategies. Lack of liquidity and

suspension of trading in certain markets left many orders unexecuted and the under-

lying portfolios exposed to massive gap risk. This motivated more recent research by

Cont and Tankov (2007), who build on the work of Liu et al. (2003) and Bertrand

and Prigent (2003) and study the impact that jumps in prices and volatility have on

investment strategies such as CPPI. Liu et al. (2003) provide analytical solutions to the

optimal portfolio problem and prove that event risk dramatically affects the optimal

strategy. Cont and Tankov (2007) develop analytically tractable expressions for the

probability of hitting the floor, the expected loss and the distribution of losses but also

use a criterion for adjusting the multiplier based on the investorŠs risk aversion. More

recently, Annaert et al. (2009) evaluate the performance of the stop-loss, synthetic

put and constant proportion portfolio insurance techniques based on a block-bootstrap
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simulation and compare them using the stochastic dominance criteria. The main draw-

back of their approach is the arbitrary assumption that the CPPI multiplier is time

invariant. Moreover their bootstrap methodology results in a positive expected return

for the underlying portfolio, which is not consistent with guaranteed capital program

testing.

We present a novel approach to dynamic portfolio insurance that overcomes many

of the limitations of the earlier techniques. Our approach is based on the Payoff Distri-

bution Model (PDM) proposed by Dybvig (1988) and incorporates recent extensions

by Papageorgiou et al. (2008). The underlying principle of the PDM is quite simple : it

aims to see whether the statistical properties of a fund or asset can be generated more

efficiently using a systematic trading strategy on a liquid assets (or portfolio of liquid

assets). This approach was at first conceived as a tool for performance evaluation, and

it was shown by Dybvig (1988) and by Amin and Kat (2003) that the marginal return

distributions of mutual fund and hedge fund managers could be successfully replica-

ted using the PDM. The methodology was later extended to a bi-variate setting by

Papageorgiou et al. (2008), who also propose an optimal hedging strategy. However,

beyond it’s applications as a performance measure to evaluate the ex-post distribution

of an asset/fund, the PDM offers a unique framework that can be used to generate

funds with ”target” distributions that are tailored to an investor’s specific needs. In

this paper we extend this latter application of the PDM to funds with embedded risk

controls. We propose an innovative methodology to manage the downside risk of such

funds by targeting a distribution that incorporates the desired risk profile. Specifically,

we generate a fund that is characterized by a Left Truncated Gaussian distribution and

then demonstrate, using different performance and risk measures, that this approach
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to managing market exposure leads to a better risk control at a lower cost than more

popular dynamic portfolio insurance strategies.

The paper will be structured as follows. In section 4.2, we present an overview of

the Payoff Distribution model. Next, we detail our portfolio insurance methodology

by introducing the Truncated Gaussian distribution family. In section 4.4 we discuss

the benchmark models and performance measures. Section 4.5 presents the empirical

results of our study and section 4.6 concludes.

4.2 The Payoff Distribution Model (PDM)

The Payoff distribution model was introduced by Dybvig (1988) to price and eva-

luate the distribution of consumption of a given portfolio. The main idea was to propose

a new performance measure that allowed preferences to depend on all the moments of

a distribution, providing a richer framework than the traditional mean-variance ap-

proach. For example, in evaluating the performance of a US equity mutual fund, the

PDM can be used to price the payoff function that links the return distributions of the

fund and that of an equity index such as the S&P500. This allows us to evaluate, using

all the information available in the return distributions, whether the performance of

the fund is superior to that of the S&P500.

4.2.1 Tailor-made Funds

The most innovative and interesting application of the Payoff Distribution Model is

as a tool to generate funds with pre-specified monthly statistical properties. The PDM

allows us to deduce and price the payoff function that must be applied to the distri-

bution of an asset (S&P500 or other) in order to generate the desired distributional

properties. The payoffs are replicated by implementing a dynamic delta management
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strategy on the underlying asset. Typically, one seeks to generate monthly properties,

hence the maturity of the payoff function is one month. Over several months of gene-

rating the payoff, the properties of the resulting monthly returns will match those of

the specified target density. By targeting a defined monthly distribution, the aim is to

control the whole risk profile of the fund, specifically the volatility, the asymmetry, as

well as the potential monthly draw-down. These controls are embedded in a unique risk

model, hence eliminating the need for any risk management overlay. This methodology

clearly requires a liquid underlying asset to manage the exposure, or at least a liquid

proxy that should not be exposed to excessive basis risk.

The steps required to generate a fund with a target distribution are as follows :

– Define the underlying asset or fund and its tradable proxies if needed.

– Identify the desired statistical properties of the target fund (select the density

function and the necessary parameters).

– Estimate the daily process of the underlying asset and infer its monthly distri-

bution.

– Derive the monthly payoff function of the targeted distribution.

– Price the replication strategy and derive the hedging strategy over the month. In

essence, the dynamic trading strategy distorts the distribution of the underlying

asset so as to generate the desired payoff.

Details regarding the derivation of the hedging strategy are provided in appendix

4.6.

4.2.2 The Payoff Function

In Amin and Kat (2003), the authors show that given an underlying asset SUnder

with monthly returns RUnder and a targeted distribution to deliver FTarget, it is possible
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to “generate” the statistical properties of the returns at time T (end of month). Spe-

cifically, there exists a function g such that the distribution of g (RUnder) is the same

as the distribution FTarget. This payoff’s return function g is easily shown to be calcu-

lable using the distribution function FUnder of the underlying asset and the marginal

distribution function of the targeted distribution FTarget.

The exact expression for g is given by

g(x) = Q {P (RUnder ≤ x)} ; ∀x ∈ R (4.1)

where Q(α) is the order α quantile of the distribution FTarget.

An other notation for g is :

g(x) = F−1
Target (FUnder(x)) ; ∀x ∈ R (4.2)

This payoff function g falls in the same category of more classical known payoffs

such as put and call options except than instead of being written on the underlying

price, g is written on the underlying monthly return. This implies a more adapted

payoff to integrate the whole risk profile of the underlying returns density.

4.3 Extensions of the PDM to Risk Management

The ability to generate any type of distribution (Gaussian or other) using the PDM

provides us with a very flexible setting for fund management. In order to address the

need for managing downside risk and incorporate dynamic portfolio insurance prin-

ciples, we opt to target a Left Truncated Gaussian distribution. The properties of the

Left Truncated Gaussian distribution are presented below.
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4.3.1 Truncated Distributions

A truncated distribution is a conditional distribution that is derived from a more

general probability distribution. Let X a random variable with probability density

function f(x) and cumulative distribution function F (x) with infinite support. The idea

underlying the truncation is to identify the probability density of x after restricting

the support with two constants such that a < X ≤ b.

Then

fX|a<X≤b(x) =
g(x)

F (b)− F (a)
= Tr(x) (4.3)

with

g(x) =

{

f(x) a < X ≤ b

0 Otherwise.
(4.4)

The truncated distribution Tr(x) is a probability density function and integrates to

one :

∫ b

a

Tr(x)dx =

∫ b

a

fX|a<X≤b(x)dx =
1

F (b)− F (a)

∫ b

a

g(x)dx = 1 (4.5)

Left-side Truncation

A truncated distribution with only a left-side truncation is then written :

fX|X>a(x) =
g(x)

1− F (a)
(4.6)

with

g(x) =

{

f(x) a < X

0 Otherwise.
(4.7)
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Truncated Gaussian distribution

Let X be N(µ, σ2) and Y a truncated normal TrN(µ, σ2, a, b) random variable. Then :

f
(

y, µ, σ2, a, b
)

=

1√
2πσ2

exp
(

−(y−µ)2

2σ2

)

Φ
(

b−µ
σ

)

− Φ
(

a−µ
σ

) I[a,b](y) (4.8)

with Φ the standard normal cumulative distribution function, φ the standard normal

probability density function and

I[a,b](y) =

{

1 a < y ≤ b

0 Otherwise.
(4.9)

Left Truncated Gaussian distribution

Let X be N(µ, σ2) and Y a truncated normal LTrN(µ, σ2, a) random variable. Then :

f
(

y, µ, σ2, a, b
)

=

1√
2πσ2

exp
(

−(y−µ)2

2σ2

)

1− Φ
(

a−µ
σ

) Ia(y) (4.10)

with Φ the standard normal cumulative distribution function, φ the standard normal

probability density function and

Ia,(y) =

{

1 a < y

0 Otherwise.
(4.11)

For details on these results see Johnson and Balakrishnan (1996). The formulas for

the cumulative density functions and the probability density functions are presented

in appendix 4.6. The formulas for the first four moments are presented in appendix

4.6. Note that if we decide to left side truncate a Gaussian distribution, the resulting

distribution will have a higher mean, lower volatility and be positively skewed that the
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original distribution. All these features make the Left Truncated Gaussian distribution

an interesting choice of target distribution from an investor’s perspective. Figure 4.1

illustrates a Left Gaussian Truncated pdf and cdf with parameters µ = 0, σ = 3% and

the left truncation point a = −4%.
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Figure 4.1 – Left Truncated Gaussian Distribution

4.3.2 Payoff Function g and hedging

The targeted distribution to deliver FTarget is a Left Truncated Gaussian distribu-

tion, with mean µT , standard deviation σT and left-side floor a. The payoff function g

can be expressed :

g(x) = µT + σT ∗ Φ−1

[

Φ

(

a− µT

σT

)

+ FUnder(x)

[

1− Φ

(

a− µT

σT

)]]

(4.12)

with FUnder the monthly distribution of the underlying asset and x the associated

monthly return.

When FUnder is a Gaussian distribution N(µR, σR), g can be expressed :

g(x) = µT + σT ∗ Φ−1

[

Φ

(

a− µT

σT

)

+ Φ

(

x− µR

σR

)[

1− Φ

(

a− µT

σT

)]]

(4.13)

with Φ the standard normal cumulative distribution function and Φ−1 the inverse.
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Once the target density is defined, we derive the optimal hedging strategy that

replicates the payoff function g. This can be performed in a Black-Scholes setting as

done by Amin and Kat (2003). However, in order to resolve the Black-Scholes option

replication bias, we price and derive the replication strategy by minimizing the root

mean square hedging error using a Monte Carlo approach under the real probability

measure, as described in appendix 4.6. For more detail on the implementation of the

hedging methodology, and for a comparison of the Black-Scholes hedging strategy and

the Optimal hedging strategy in a Gaussian framework see Hocquard et al. (2008).
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Figure 4.2 – Left Truncated Gaussian Hedging Strategy

Figure 4.2 plots the (T − 1) hedging strategy of the Left Truncated Gaussian with

zero mean, a target monthly volatility of 3%, a downside protection at −4% written

on an underlying asset with zero mean and 5% monthly volatility. The delta is similar

to a call option delta on returns. Since a long position in a risky asset combined with

a put option written on this asset is equivalent to a long position in a call option, the

Left Truncated Gaussian payoff respects this intuition and allows for a better control

of the risk factors of the underlying asset.
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4.4 Methodology

In order to highlight the advantages of the Left Truncated Gaussian distribution,

we contrast our methodology with three commonly used portfolio insurance strategies :

a stop loss strategy, a synthetic put strategy and a constant proportion portfolio insu-

rance (CPPI) strategy. We use several performance measure, notably the Sharpe ratio,

Omega ratio and Cornish-Fisher VaR, to evaluate the effectiveness and cost of these

different dynamic portfolio insurance strategies.

To evaluate the effectiveness of the different approaches, we assume a very simple

scenario. An investor has access to a risky asset S and a non-risky asset B paying

interest r. The investor wants his portfolio Π to be exposed to S for a time horizon T ,

but manages his downside risk using different methods. We denote ωt the weight of the

portfolio invested in the risky asset S at time t. (1−ωt) will be invested in the non-risky

asset Bt. If (1 − ωt) < 0 the investment in the risky asset St will be leveraged an the

investor should borrow in Bt. In order to illustrate the (T − 1) hedging strategies for

each methodology, a plot is presented targeting a downside protection at −4% written

on an underlying asset with 5% monthly volatility. Section 4.4.1 and 4.4.2 provide a

brief review of the three benchmark models and the performance measures, respectively.

All empirical results are provided in Section 4.5.

4.4.1 Portfolio Insurance Strategies

Stop Loss

The stop loss strategy is the easiest way to protect a portfolio against major losses.

The portfolio Π is fully invested in S at time t = 0, and the investor selects a floor F
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to be the stop loss level. This strategy consists, at any time t (t = 0, ..., T − 1) :

Π0 = S0 → ω0 = 1

while Πt ≥ e−r(T−t)F

Πt = St → ωt = 1

if Πk < e−r(T−k)F for k = 1, ..., T − 1

Πt = Bt → ωt = 0 for t = k, ..., T

(4.14)

Then :

Πt = ωtSt + (1− ωt)Bt (4.15)

If the portfolio value is higher that the discounted floor, the investor remains fully

invested in the risky asset, otherwise the risky asset is sold and the portfolio is fully

invested in the non-risky asset until the end of the investment horizon T .

Advantages

- The portfolio is totally unexposed to the risky asset once the floor is reached, preser-

ving the portfolio against a larger drop in S.

- No dynamic trading in involved, which minimizes the transaction costs during the

investment horizon.

Disadvantages

- The investor cannot profit from any upward move in the risky asset after ωt = 0.

- The investor is exposed to substantial losses since the portfolio is fully exposed

(ωt = 1) until the floor is reached.

- The investor will have to liquidate all the positions in the risky asset at once, exposing

himself to large transaction costs and liquidity constraints.

In fact the stop loss strategy could be viewed as an “asset-or-nothing call”, typical

binary option, paying one unit of asset if above the strike at maturity.
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Figure 4.3 – Stop Loss Hedging Strategy

BS Synthetic Put

The synthetic put strategy is a dynamic trading strategy that attempts to replicate

a long put position Q with strike level K. The hedge ratios ∆Put can be computed

at every time t according to the portfolio value St, portfolio volatility σt, interest rate

level and time to horizon. In a Black Scholes framework, the formula for the put is

(non-dividend underlying assumed) :

Qt = −StΦ(−d1,t) +Ke−r(T−t)Φ(−d2,t)

d1,t =
ln(St/K) + (r + 0.5σ2) (T − t)

σ
√
T − t

d2,t = d1,t − σ
√
T − t

∆Put
t = Φ(d1,t)− 1

(4.16)

Then a protective put investment is :

St +Qt = StΦ(d1,t) +Ke−r(T−t)Φ(−d2,t) (4.17)

such as at any time t in 0, ..., T − 1, the proportion invested in the risky asset S is :

ωt =
St(1 + ∆Put

t )

St +Qt
(4.18)
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and (1 − ωt) will be invested in the non-risky asset B, and Qt the price of the put

option at time t.

Then :

Πt = ωtSt + (1− ωt)Bt (4.19)

As the value of the portfolio approaches the strike price, the impact of the put increases

on the overall strategy and the investor transfers an increasing proportion of his portfo-

lio from the risky asset to risk-free asset. If the portfolio put is deep out-of-the money,

the portfolio is then fully invested in the risky asset. At the other end of the scale, if

the put is deep in-the-money, the investor will be fully invested in the risk-free asset.

Advantages

- There is no binary decisions in contrast to the stop loss strategy. Except deep-in-the

money put scenario, the portfolio is always at least partially invested in the risky asset

and could benefit from upward movements in S.

- The dynamic trading strategy allows the investor to react frequently according to the

evolution of S.

Disadvantages

- The strategy requires a good approximation of the volatility in the BS framework.

- Depending of the volatility level, the put convexity can be very high, meaning high

gamma, implying large adjustments and potentially large transaction costs.
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Figure 4.4 – Synthetic BS Put Hedging Strategy

Constant Proportion Portfolio Insurance

This strategy provides a cushion to the risky asset, adjusted by a multiplier. The

cushion is computed by subtracting a floor value Ft from the portfolio value Πt. The

multiplier represents the sensitivity of the CPPI strategy to the risky asset movements,

and can be interpreted as the risk aversion sensitivity factor. To stay consistent with the

different methodologies, we impose a no-short sale constraint and a leverage constraint

on the CPPI strategy. The exposure at time t in the risky asset St according to the

CPPI is :

ωt = max

[

min

[

m
(

St − Fe−r(T−t)
)

St

, Cap

]

, 0

]

(4.20)

and (1−ωt) will be invested in the non-risky asset B, with m the multiplier and Cap a

cap factor on leverage. We impose a long position in St with the max(., 0) constraint.

The cushion is the value
(

St − Fe−r(T−t)
)

with the associated weight
m(St−Fe−r(T−t))

St

Then :

Πt = ωtSt + (1− ωt)Bt (4.21)



94

When the portfolio value decreases, the cushion decreases and the investor transfers

part of his portfolio from the risky asset to the non-risky asset at the ”speed”m.

Advantages

- The CPPI strategy is simple and does not require estimation of volatility or price

process.

Disadvantages

- The CPPI strategy is very sensitive to the multiplier m value, and there is no rule of

selection for m.

- This strategy can lead to large adjustments in the portfolio, and hence large transac-

tion costs and market impact.
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Figure 4.5 – CPPI Hedging Strategy for different multiplier values
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4.4.2 Performance and Risk Measures

In order to compare the different portfolio insurance strategies, we compute a num-

ber of performance measures and risk measures.

We define Ri = ln
(

Πi,T

Πi,0

)

the i-th portfolio monthly return of a time series of length N

and Rf the monthly risk free rate.

To compare the performance of each portfolio insurance strategy, we use :

– Sharpe Ratio

– Omega Ratio

To compare the risk management of each portfolio insurance strategy, we use :

– 5% - Cornish Fisher Value at Risk

– Maximum drawdown

– Floor Ratio :
∑N

i=1 IRi<Floor(Ri)

N

– Floor Shortfall : E [Ri|Ri < Floor]

– Floor Maximum breakdown : min (Ri|Ri < Floor)

IRi<Floor(Ri) =

{

1 if Ri < Floor

0 Otherwise.
(4.22)

The Sharpe Ratio (SR)

The Sharpe ratio introduced by Sharpe (1966) is the most commonly used ratio in

the industry. The main advantage of this measure is that it is easy to compute and

interpret. The underlying assumption is that any asset class can be fully described in

terms of risk-return relationship by the expected excess return and the variance of the

asset class. All assets evolve in a Gaussian world in which risk is fully characterized by

the volatility (no asymmetry and kurtosis).
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The Sharpe ratio (SR) can be expressed as :

SR =
(E [Ri]− Rf)

σΠ
(4.23)

where σΠ is the standard deviation of the portfolio returns.

The Omega Ratio (Ω)

The Omega ratio introduced by Keating and Shadwick (2002) relaxes the hypothe-

sis that returns follow a Gaussian distribution. In fact, it is a well accepted fact that

returns are not normally distributed. This measure leads to a full characterization of

the risk reward properties of the distribution by measuring the overall impact of all

moments.

Omega ratio (Ω) can be expressed as :

Ω(L) =

∫ +∞
L

[1− F (x)] dx
∫ L

−∞ F (x)dx
(4.24)

where F the portfolio’s return distribution and L a threshold selected by the investor

(could be Rf ).

Omega could also be written in terms of returns Ri :

Ω(L) =
E [max(Ri − L, 0)]

E [max(L− Ri, 0)]
(4.25)

Cornish Fisher Value at Risk

We use the modified Cornish-Fisher VaR through the use of a Cornish Fisher ex-

pansion to come up with a risk measure that takes the higher moments of non-normal
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distributions. The Cornish Fisher expansion approximates quantiles of a random va-

riable based on its first five cumulants.

Cumulants κr of a random variable X can be expressed in terms of its mean µ =

E(X) and central moments µr = E[(X − µ)r] such as :

κ1 = µ

κ2 = µ2

κ3 = µ3

κ4 = µ4 − 3µ2
2

κ5 = µ5 − 10µ3µ2

Suppose that X has mean 0 and standard deviation 1. The q-quantile Φ−1
X (q) of X

based upon its cumulants is :

Φ−1
X (q) ≈ Φ−1

Z (q) +
Φ−1

Z (q)2 − 1

6
κ3 +

Φ−1
Z (q)3 − 3Φ−1

Z (q)

24
κ4

− 2Φ−1
Z (q)3 − 5Φ−1

Z (q)

36
κ23 +

Φ−1
Z (q)4 − 6Φ−1

Z (q)2 + 3

120
κ5

− Φ−1
Z (q)4 − 5Φ−1

Z (q)2 + 2

24
κ3κ4 +

12Φ−1
Z (q)4 − 53Φ−1

Z (q)2 + 17

324
κ33

Then one can easily express the q-quantile x∗ of X∗ = X−µ
σ

where µ and σ are respecti-

vely the mean and the standard deviation of X . For more details on the calculation one

can refer to Zangari (1996) and Favre and Galeano (2002). The Cornish-Fisher expan-

sion also avoids computationally intensive techniques such as re-sampling or Monte-

Carlo simulation to compute the Value at Risk.



98

4.5 Empirical Results

In order to evaluate the performance of the Left Truncated Gaussian distribution

we run several out-of-sample tests, adjusting both the level and maturity of the desi-

red insurance. Specifically, we will consider insurance horizons of both 1 month and

6 months, and provide portfolio insurance at the 5% and 10% levels. Hedging will be

applied on a daily basis for the Left Truncated Gaussian as well as the benchmark

strategies. We also present results for the CPPI using a monthly re-balancing which is

more consistent with the industry standard (daily re-balancing is prohibitively expen-

sive given the relative size of the trades).

The risky asset will be the front-month S&P500 futures contract from January

1988 and December 2008. We use the 1−month BBA Libor as the non-risky asset. All

prices are close prices extracted from the Bloomberg database. The experiments will be

applied out of sample, using a rolling 251 days window for underlying return’s process

modeling. To illustrate the embedded cost of such strategies in a “bull” market versus

the effectiveness in a “bear”market, we split the data in two samples : 1988−1998 and

1998− 2008.

To implement a realistic environment, we propose two layers of hedging costs :

– Transaction costs : 10bps applied on portfolio adjustment size.

– Financing Spread : the spread between lending and borrowing a dollar amount

for a hedging strategy is 50bps per annum.

The cost C function can therefore be expressed as :

Ct = |Wt −Wt−1| ∗ St ∗ 0.001 + IWt>1 ∗ |Wt − 1| ∗
(

e0.05/360 − 1
)

(4.26)
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Payoff Distribution Model

The target monthly distribution is a Left Truncated Gaussian distribution, which al-

lows for volatility, asymmetry and downside risk control. We test for two different

target volatility : 8% and 12% monthly annualized volatility. The underlying process of

the daily returns of the S&P500 is modeled as a Gaussian distribution and simulated

100, 000 times for each day step. The monthly law is then inferred from the daily pro-

cess. For the sake of simplicity and comparability across the methodologies, we make

the assumption that the the return distribution of the S&P500 is Gaussian, however

the PDM can accommodate any form of underlying distribution. Using a less restrictive

assumption about the returns would only strengthen the results.

BS Synthetic Put

The classical put option will be evaluated under a Black-Scholes framework, as an in-

dustry standard for option valuation. We use the daily standard deviation on the past

251 days (rolling window) as the volatility input for the Black-Scholes formula.

CPPI

The CPPI approach needs to fix a value for the multiplier m. Since there is no metho-

dology to evaluate this parameter, instead of fixing the multiplier constant arbitrarily,

the value for m is computed each month by fitting the CCPIt=0 exposure to the BS

delta value (ωBS
0 ), such as :

m = 100 ∗ ωBS
0

(100− Fe−rT )
(4.27)

with 100 the standardized initial monthly value for the hedged portfolio, F the selected

floor value and r the risk free rate.
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4.5.1 Numerical Results

All the results presented in the following section are out-of-sample.

Experiment 1

The downside protection is set at −5% per month. Results are presented for the

two sub-periods, 1988-1998 and 1998-2008.

Table 4.I – Monthly downside protection at −5% 1988− 1998

Measure S&P500 Stop-Loss BS Put CPPI D CPPI M Tr. 8% Tr. 12%
Mean 0.0123 0.0095 0.0095 0.0059 0.0108 0.0059 0.0072
Std. dev. 0.0382 0.0383 0.0357 0.0395 0.0329 0.0205 0.0277
Skewness -0.8925 -0.3642 -0.4406 0.5858 -0.7972 -0.5481 -0.3551
Kurtosis 5.7848 2.8542 3.4131 4.5841 5.2215 3.5761 3.2019
Minimum -0.1631 -0.0891 -0.1027 -0.1086 -0.1327 -0.0593 -0.0659
Maximum 0.1072 0.1072 0.1052 0.1586 0.0960 0.0609 0.0844
Sharpe Ratio 1.1106 0.8626 0.9170 0.5163 1.1321 0.9975 0.8958
Omega Ratio 2.2838 1.8471 1.9439 1.4831 2.2979 2.0666 1.9217
VaR @95% -0.0642 -0.0593 -0.0554 -0.0521 -0.0526 -0.0319 -0.0428
Max DD 0.1654 0.1514 0.1585 0.2057 0.1368 0.0929 0.1306
Fl. Ratio (%) 4.5455 10.6061 6.0606 4.5455 3.0303 1.5152 3.0303
Floor Shortfall -0.0843 -0.0638 -0.0719 -0.0695 -0.0848 -0.0549 -0.0600
Fl. Max breakdown -0.1631 -0.0891 -0.1027 -0.1086 -0.1327 -0.0593 -0.0659
Trans. Costs (bps) 0 2.1798 5.9741 25.3541 0.1592 2.0639 6.1538
Lev. Costs (bps) 0 0 0 0.4296 0 0 0.0996
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Table 4.II – Monthly downside protection at −5% 1998− 2008

Measure S&P500 Stop-Loss BS Put CPPI D CPPI M Tr. 8% Tr. 12%
Mean -0.0027 -0.0040 -0.0060 -0.0104 -0.0017 -0.0013 -0.0031
Std. dev. 0.0449 0.0412 0.0395 0.0367 0.0362 0.0203 0.0278
Skewness -0.8266 -0.1168 -0.3043 0.5649 -0.6967 -1.0374 -0.6589
Kurtosis 4.7925 2.5548 2.9135 3.0267 4.0719 5.5761 3.7602
Minimum -0.1894 -0.1036 -0.1280 -0.0987 -0.1411 -0.0956 -0.1100
Maximum 0.0993 0.0993 0.0887 0.1052 0.0823 0.0397 0.0577
Sharpe Ratio -0.2089 -0.3385 -0.5233 -0.9861 -0.1654 -0.2241 -0.3829
Omega Ratio 0.8510 0.7852 0.6845 0.5067 0.8832 0.8447 0.7531
VaR @95% -0.0882 -0.0747 -0.0744 -0.0618 -0.0684 -0.0408 -0.0529
Max DD 0.4642 0.5559 0.5573 0.7142 0.3916 0.2436 0.3626
Fl. Ratio (%) 13.3333 21.6667 15.0000 10.0000 10.8333 0.8333 5.8333
Floor Shortfall -0.0860 -0.0635 -0.0712 -0.0621 -0.0724 -0.0956 -0.0634
Fl. Max breakdown -0.1894 -0.1036 -0.1280 -0.0987 -0.1411 -0.0956 -0.1100
Trans. Costs (bps) 0 4.2618 10.1051 28.4649 0.1792 1.9053 5.4877
Lev. Costs (bps) 0 0 0 0.3377 0 0 0.0417

Overall, the Payoff Distribution Model delivers a portfolio with a better risk profile.

The PDM funds exhibit lower volatilities than the other portfolio insurance strategies,

because of the 8% and 12% volatility targets. Note that the realized volatilities (out-

of-sample) are very close to the targeted volatilities. The Payoff Distribution approach

tends to adjust the leverage for the prevailing market conditions, as illustrated in

figure 4.8. All of the portfolio insurance methodologies deliver a lower return than the

S&P500 in the 88 − 98 period. This is not surprising as there is an implicit cost to

any insurance program. In the case of dynamic hedging, that cost will be reflected

in the performance during upward trending markets. The cost is comparable across

the different approaches, with the exception of the CPPI with daily hedging, which

underperforms significantly due to the important transaction costs (over 40 bps per

month).

During the bear market period, the Omega ratio is highest for the two PDM strate-

gies and the CPPI with monthly re-balancing, and are comparable to the performance

of the market. The value-at-risk estimates are however lower for the PDM strategies.
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The two PDM models also outperform the monthly CPPI in terms of respecting the

maximum drawdown and the other risk parameters.

For illustration purpose we present the evolution of the different strategies over the

1998 − 2008 period, as well as the monthly return densities and fund exposures. We

also plot in appendix figure 4.15 the evolution of the CPPI multiplier over the 98− 08

period.

Jan99 Jan04 Dec08

60

80

100

120

SP500 (black) vs Stop−Loss

Jan99 Jan04 Dec08

60

80

100

120

SP500 (black) vs BS Put

Jan99 Jan04 Dec08

40

60

80

100

120

SP500 (black) vs CPPI Daily

Jan99 Jan04 Dec08

70

80

90

100

110

120

SP500 (black) vs CPPI Monthly

Jan99 Jan04 Dec08

70

80

90

100

110

120

SP500 (black) vs Truncature 8%

Jan99 Jan04 Dec08

70

80

90

100

110

120

SP500 (black) vs Truncature 12%
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Experiment 2

The downside protection is now set at −10% with a 6-months horizon.

Table 4.III – Monthly properties for Hedged Campaigns 1988− 1998

Measure S&P500 Stop-Loss BS Put CPPI D CPPI M Tr. 8% Tr. 12%
Mean 0.0123 0.0101 0.0096 0.0068 0.0090 0.0061 0.0086
Std. dev. 0.0382 0.0364 0.0350 0.0364 0.0349 0.0198 0.0301
Skewness -0.8925 -0.9271 -0.6396 0.3710 -0.8783 -0.5413 -0.5437
Kurtosis 5.7848 6.4913 4.8138 4.0835 6.2274 4.1804 4.1497
Minimum -0.1631 -0.1631 -0.1272 -0.0787 -0.1525 -0.0695 -0.1012
Maximum 0.1072 0.1072 0.1071 0.1451 0.1069 0.0599 0.0919
Sharpe Ratio 1.1106 0.9566 0.9541 0.6486 0.8943 1.0742 0.9839
Omega Ratio 2.2838 2.0968 2.0452 1.6507 1.9957 2.2223 2.0794
VaR @95% -0.0642 -0.0672 -0.0572 -0.0536 -0.0637 -0.0301 -0.0473
Max DD 0.1654 0.1661 0.1611 0.2569 0.1872 0.0743 0.1193
Fl. Ratio (%) 0 9.0909 9.0909 13.6364 9.0909 0 0
Floor Shortfall 0 -0.1478 -0.1347 -0.1288 -0.1511 0 0
Fl. Max breakdown 0 -0.1816 -0.1548 -0.1690 -0.1704 0 0
Trans. Costs (bps) 0 0.3006 2.5213 12.1335 0.5397 1.4000 2.5252
Lev. Costs (bps) 0 0 0 0.2290 0.0000 0 0.2316

Table 4.IV – Monthly properties for Hedged Campaigns 1998− 2008

Measure S&P500 Stop-Loss BS Put CPPI D CPPI M Tr. 8% Tr. 12%
Mean -0.0027 -0.0019 -0.0047 -0.0092 -0.0025 -0.0005 -0.0014
Std. dev. 0.0449 0.0357 0.0367 0.0335 0.0290 0.0173 0.0260
Skewness -0.8266 -1.0806 -0.8827 -0.4072 -0.8042 -0.3001 -0.3546
Kurtosis 4.7925 5.6058 5.3579 3.3629 4.1911 2.2972 2.3912
Minimum -0.1894 -0.1376 -0.1631 -0.1041 -0.0986 -0.0422 -0.0626
Maximum 0.0993 0.0784 0.0670 0.0713 0.0618 0.0351 0.0473
Sharpe Ratio -0.2089 -0.1865 -0.4451 -0.9493 -0.2940 -0.0964 -0.1859
Omega Ratio 0.8510 0.8530 0.7111 0.4627 0.7842 0.9348 0.8766
VaR @95% -0.0882 -0.0754 -0.0775 -0.0698 -0.0585 -0.0310 -0.0477
Max DD 0.4642 0.5140 0.5770 0.6837 0.4647 0.2358 0.3438
Fl. Ratio (%) 20.0000 40.0000 40.0000 50.0000 5.0000 0 10.0000
Floor Shortfall -0.1909 -0.1154 -0.1473 -0.1384 -0.1121 0 -0.1282
Fl. Max breakdown -0.3530 -0.1374 -0.2193 -0.1940 -0.1121 0 -0.1561
Trans. Costs (bps) 0 1.3111 6.6194 17.5245 1.5319 1.6464 2.8916
Lev. Costs (bps) 0 0 0 0.2681 0 0 0.1204

For a rolling 6 months campaign, findings are similar to the previous experiments.

The 6 months downside protection is breached 10% of the time for the 12% Truncation



105

in the 98− 08 period, in comparison to 50% of the time for the CPPI and 40% for the

Stop Loss methodology. The Stop Loss model is unadapted for long horizon downside

hedging, since it cannot recover losses that occur at the beginning of the period.
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Figure 4.10 – Hedged Portfolios Monthly Returns Kernel Densities

One could argue that these results are highly dependent on the starting point of

the experiment, so the next table presents the average results for all possible 6 months

campaigns. That is, we run overlapping windows so each calendar month represents a

start date. Results are presented as 6 months cumulative returns.

Table 4.V – 6 Months cumulative return properties for Hedged Campaigns 1988−1998

Measure S&P500 Stop-Loss BS Put CPPI D CPPI M Tr. 8% Tr. 12%
Mean 0.0683 0.0624 0.0582 0.0498 0.0609 0.0384 0.0539
Std. dev. 0.0753 0.0841 0.0872 0.0854 0.0818 0.0479 0.0729
Skewness -0.1994 -0.4906 -0.5630 -0.2872 -0.3152 -0.0449 -0.0657
Kurtosis 2.5583 2.9263 3.0954 2.6621 2.6318 2.4465 2.4553
Minimum -0.1101 -0.1606 -0.1763 -0.2019 -0.1374 -0.0630 -0.0993
Maximum 0.2305 0.2305 0.2302 0.2268 0.2301 0.1416 0.2094
Sharpe Ratio 3.1400 2.5706 2.3102 2.0182 2.5778 2.7750 2.5600
Omega Ratio 9.0352 5.7622 4.8360 4.1591 5.9528 7.1995 6.1147
Fl. Ratio (%) 1.5748 7.0866 5.5118 3.9370 3.9370 0 0
Floor Shortfall -0.1086 -0.1226 -0.1490 -0.1386 -0.1236 0 0
Fl. Max breakdown -0.1101 -0.1606 -0.1763 -0.2019 -0.1374 0 0



107

Table 4.VI – 6 Months cumulative returns properties for Hedged Campaigns 1998 −
2008

Measure S&P500 Stop-Loss BS Put CPPI D CPPI M Tr. 8% Tr. 12%
Mean -0.0095 -0.0032 -0.0150 -0.0323 -0.0011 0.0005 -0.0027
Std. dev. 0.1136 0.0884 0.1004 0.1020 0.0843 0.0466 0.0705
Skewness -1.2768 -0.0311 -0.2478 -0.5099 -0.1352 -0.4793 -0.4498
Kurtosis 5.1231 1.6937 1.7787 2.5827 1.9440 2.3755 2.4114
Minimum -0.4475 -0.1373 -0.2187 -0.2929 -0.1718 -0.1118 -0.1862
Maximum 0.1810 0.1800 0.1729 0.1515 0.1720 0.0897 0.1364
Sharpe Ratio -0.2901 -0.1254 -0.5189 -1.0989 -0.0448 0.0389 -0.1318
Omega Ratio 0.7999 0.9211 0.7026 0.4310 0.9705 1.0270 0.9134
Fl. Ratio (%) 18.2609 33.9130 31.3043 23.4783 17.3913 1.7391 10.4348
Floor Shortfall -0.1953 -0.1110 -0.1442 -0.1801 -0.1233 -0.1114 -0.1322
Fl. Max breakdown -0.4475 -0.1373 -0.2187 -0.2929 -0.1718 -0.1118 -0.1862

The Left Truncated strategy outperform the underlying S&P500 buy and hold

strategy. The downside protection for the was breached only 2% and 10% for the 8%

and 12% PDM campaigns respectively, in comparison to almost 20% − 30% for the

other hedge programs in the period 98− 08.
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Figure 4.11 – Hedged Portfolios Campaigns Returns Kernel Densities

The complete out-of-sample test scenarios are presented in appendix 4.6. The Left
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Truncated PDM strategy is the less exposed to liquidity constraints. In the case of a

severe corrections, investors trying to cover his losses by liquidating his positions could

be confronted with a serious liquidity crunch, due to a lack of buyers or market depth

provided by market makers. In this context, the PDM with Left Truncation is more

dynamic and less exposed to liquidity risk. The Payoff Distribution also allows for a

volatility control of the hedged portfolio, even in a high volatile market condition such

as in recent past months.

4.6 Conclusion

In this paper, we propose a new approach to dynamic portfolio insurance. We ex-

tend Dybvig (1988) Payoff Distribution Model to include downside risk protection.

By targeting a Left Truncated Gaussian distribution using the PDM, an investor can

customize his return distribution and prevent significant drawdowns. This embedded

portfolio insurance technique does not require the fund manager to overlay any further

risk management structures. We demonstrate the effectiveness of the approach by com-

paring it to the more traditional dynamic portfolio insurance approaches, specifically

Constant Proportion Portfolio Insurance, a Stop loss strategy or a synthetic put. The

results clearly indicate that the PDM provides a more reliable framework for portfolio

insurance, without sacrificing the performance of the fund.
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Appendix A : Experiments Results

Table 4.VII – Monthly downside protection at −10% : Monthly Properties 1988−1998

S&P500 Stop-Loss BS Put CPPI D CPPI M Tr. 8% Tr. 12%
Mean 0.0123 0.0121 0.0115 0.0091 0.0119 0.0070 0.0098
Std. dev. 0.0382 0.0387 0.0384 0.0393 0.0373 0.0203 0.0308
Skewness -0.8925 -0.9653 -0.9594 0.1455 -0.8803 -0.5659 -0.6017
Kurtosis 5.7848 6.0069 5.9800 3.6867 5.7927 3.8596 3.7102
Minimum -0.1631 -0.1631 -0.1623 -0.0952 -0.1583 -0.0673 -0.0959
Maximum 0.1072 0.1072 0.1071 0.1434 0.1066 0.0604 0.0858
Sharpe Ratio 1.1106 1.0842 1.0391 0.7995 1.1068 1.1968 1.0967
Omega Ratio 2.2838 2.2496 2.1793 1.8191 2.2804 2.3785 2.2138
VaR @95% -0.0642 -0.0679 -0.0676 -0.0569 -0.0628 -0.0300 -0.0471
Max DD 0.1654 0.1692 0.1690 0.1815 0.1608 0.0719 0.1204
Fl. Ratio (%) 1.5152 1.5152 1.5152 0 1.5152 0 0
Floor Shortfall -0.1345 -0.1434 -0.1419 0 -0.1311 0 0
Fl. Max breakdown -0.1631 -0.1631 -0.1623 0 -0.1583 0 0
Trans. Costs (bps) 0 0.2255 1.2642 14.0707 0.1011 1.1229 1.9060
Lev. Costs (bps) 0 0 0 0.2870 0 0.0000 0.2338

Table 4.VIII – Monthly downside protection at−10% : Monthly Properties 1998−2008

Measure S&P500 Stop-Loss BS Put CPPI D CPPI M Tr. 8% Tr. 12%
Mean -0.0027 -0.0041 -0.0053 -0.0087 -0.0025 -0.0002 -0.0013
Std. dev. 0.0449 0.0474 0.0472 0.0428 0.0428 0.0192 0.0312
Skewness -0.8266 -0.8487 -0.8727 -0.0543 -0.7740 -0.6994 -1.3309
Kurtosis 4.7925 3.9754 4.1258 3.0051 4.4888 3.9789 7.6132
Minimum -0.1894 -0.1525 -0.1605 -0.1376 -0.1746 -0.0767 -0.1632
Maximum 0.0993 0.0993 0.0980 0.1055 0.0965 0.0431 0.0606
Sharpe Ratio -0.2089 -0.3019 -0.3874 -0.7073 -0.2003 -0.0317 -0.1401
Omega Ratio 0.8510 0.7888 0.7383 0.5981 0.8579 0.9773 0.8982
VaR @95% -0.0882 -0.0953 -0.0962 -0.0789 -0.0828 -0.0347 -0.0719
Max DD 0.4642 0.5027 0.5543 0.6775 0.4502 0.2058 0.3322
Fl. Ratio (%) 2.5000 6.6667 4.1667 1.6667 1.6667 0 0.8333
Floor Shortfall -0.1355 -0.1220 -0.1344 -0.1242 -0.1420 0 -0.1632
Fl. Max breakdown -0.1894 -0.1525 -0.1605 -0.1376 -0.1746 0 -0.1632
Trans. Costs (bps) 0 1.2292 3.3663 17.6007 0.1353 1.1886 1.8275
Lev. Costs (bps) 0 0 0 0.2452 0 0 0.1154
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Table 4.IX – 6−Months downside protection at−5% : Monthly Properties 1988−1998

Measure S&P500 Stop-Loss BS Put CPPI D CPPI M Tr. 8% Tr. 12%
Mean 0.0123 0.0053 0.0092 0.0051 0.0074 0.0055 0.0076
Std. dev. 0.0382 0.0303 0.0313 0.0356 0.0304 0.0187 0.0263
Skewness -0.8925 -0.0240 -0.0605 0.9252 -0.4994 -0.3373 -0.1685
Kurtosis 5.7848 3.9585 3.0656 6.0834 4.6639 3.3706 3.0737
Minimum -0.1631 -0.0736 -0.0659 -0.0768 -0.1107 -0.0458 -0.0518
Maximum 0.1072 0.1072 0.1055 0.1697 0.0977 0.0575 0.0840
Sharpe Ratio 1.1106 0.6083 1.0161 0.4938 0.8466 1.0266 1.0074
Omega Ratio 2.2838 1.6602 2.0875 1.5088 1.9654 2.1421 2.0975
VaR @95% -0.0642 -0.0490 -0.0444 -0.0542 -0.0496 -0.0281 -0.0385
Max DD 0.1654 0.1920 0.1390 0.1765 0.1592 0.0831 0.1174
Fl. Ratio (%) 4.5455 40.9091 13.6364 31.8182 13.6364 9.0909 9.0909
Floor Shortfall -0.0916 -0.0648 -0.0741 -0.0718 -0.0997 -0.0549 -0.0758
Fl. Max breakdown -0.0916 -0.0819 -0.1036 -0.1177 -0.1258 -0.0583 -0.0869
Trans. Costs (bps) 0 1.3530 5.5710 17.6921 1.1879 2.3624 4.5218
Lev. Costs (bps) 0 0 0 0.3269 0 0.0000 0.1634

Table 4.X – 6−Months downside protection at −5% : Monthly Properties 1998−2008

Measure S&P500 Stop-Loss BS Put CPPI D CPPI M Tr. 8% Tr. 12%
Mean -0.0027 -0.0022 -0.0057 -0.0075 -0.0020 -0.0018 -0.0032
Std. dev. 0.0449 0.0251 0.0268 0.0265 0.0203 0.0177 0.0248
Skewness -0.8266 -0.5174 -0.2082 -0.1616 -0.9624 -1.2079 -0.7779
Kurtosis 4.7925 4.5080 3.1787 5.5907 6.0186 6.7151 4.1377
Minimum -0.1894 -0.0896 -0.0788 -0.1093 -0.0861 -0.0889 -0.0991
Maximum 0.0993 0.0631 0.0576 0.0731 0.0484 0.0280 0.0408
Sharpe Ratio -0.2089 -0.3082 -0.7376 -0.9765 -0.3388 -0.3470 -0.4459
Omega Ratio 0.8510 0.7532 0.5884 0.3807 0.7209 0.7668 0.7173
VaR @95% -0.0882 -0.0509 -0.0513 -0.0621 -0.0452 -0.0395 -0.0497
Max DD 0.4642 0.3803 0.5255 0.5925 0.3610 0.2401 0.3535
Fl. Ratio (%) 35.0000 65.0000 55.0000 75.0000 30.0000 20.0000 35.0000
Floor Shortfall -0.1441 -0.0588 -0.0985 -0.0747 -0.0673 -0.0816 -0.0934
Fl. Max breakdown -0.3530 -0.0765 -0.1638 -0.1587 -0.0925 -0.1545 -0.2198
Trans. Costs (bps) 0 2.1307 11.9065 17.1488 2.1788 3.0330 5.6543
Lev. Costs (bps) 0 0 0 0.2427 0 0 0.0651
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Table 4.XI – 6−Months downside protection at −5% : 6 Months cumulative returns
properties 1988− 1998

Measure S&P500 Stop-Loss BS Put CPPI D CPPI M Tr. 8% Tr. 12%
Mean 0.0683 0.0409 0.0487 0.0328 0.0525 0.0334 0.0440
Std. dev. 0.0753 0.0876 0.0823 0.0947 0.0760 0.0493 0.0717
Skewness -0.1994 0.1599 -0.0984 -0.3353 0.0492 0.0324 0.1491
Kurtosis 2.5583 1.8626 2.2420 3.1732 2.3351 2.3693 2.4312
Minimum -0.1101 -0.0964 -0.1081 -0.3145 -0.1060 -0.0614 -0.0919
Maximum 0.2305 0.2305 0.2243 0.2175 0.2239 0.1409 0.2089
Sharpe Ratio 3.1400 1.6176 2.0484 1.1991 2.3941 2.3485 2.1260
Omega Ratio 9.0352 2.9634 4.1658 2.3495 5.8709 5.4006 4.7330
Fl. Ratio (%) 6.2992 32.2835 16.5354 20.4724 7.0866 3.9370 11.0236
Floor Shortfall -0.0839 -0.0628 -0.0806 -0.0965 -0.0860 -0.0579 -0.0727
Fl. Max breakdown -0.1101 -0.0964 -0.1081 -0.3145 -0.1060 -0.0614 -0.0919

Table 4.XII – 6−Months downside protection at −5% : 6 Months cumulative returns
properties 1998− 2008

Measure S&P500 Stop-Loss BS Put CPPI D CPPI M Tr. 8% Tr. 12%
Mean -0.0095 0.0014 -0.0181 -0.0358 0.0007 -0.0026 -0.0093
Std. dev. 0.1136 0.0691 0.0804 0.0870 0.0678 0.0433 0.0620
Skewness -1.2768 0.6492 0.2816 -0.2058 0.1480 -0.0926 -0.0708
Kurtosis 5.1231 2.1774 1.8710 2.8864 2.2040 1.9047 2.1711
Minimum -0.4475 -0.1033 -0.1616 -0.2756 -0.1499 -0.0890 -0.1452
Maximum 0.1810 0.1800 0.1523 0.1647 0.1519 0.0893 0.1310
Sharpe Ratio -0.2901 0.0681 -0.7814 -1.4270 0.0354 -0.2117 -0.5175
Omega Ratio 0.7999 1.0450 0.5985 0.3498 1.0246 0.8675 0.6989
Fl. Ratio (%) 29.5652 52.1739 45.2174 42.6087 28.6957 20.0000 29.5652
Floor Shortfall -0.1499 -0.0574 -0.0947 -0.1153 -0.0793 -0.0635 -0.0837
Fl. Max breakdown -0.4475 -0.1033 -0.1616 -0.2756 -0.1499 -0.0890 -0.1452
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Appendix B : Optimal hedging Strategy

In this section we describe the methodology used to derive the optimal hedging

strategy. Having solved for the payoff function g(RT ), we need to find an optimal

dynamic trading strategy that will replicate the payoff function. We do so by selecting

the portfolio (V0, ϕ) such as to minimize the expected square hedging error

E
[

β2
T {VT (V0, ϕ)− CT}2

]

,

where βT is the discount factor and CT = 100 expg(RT ) is the payoff at maturity.

In order to achieve this, we develop extensions of the results of Schweizer (1995).

Suppose that (Ω, P,F) is a probability space with filtration F = {F0, . . . ,FT}, under

which the stochastic processes are defined. Assume that the price process St is d-

dimensional, i.e. St =
(

S
(1)
t , . . . , S

(d)
t

)

.

A dynamic replicating strategy can be described by a initial value V0 and a se-

quence of random weight vectors ϕ = (ϕt)
T
t=0, where for any j = 1, . . . , d, ϕ

(j)
t denotes

the number of parts of assets S(j) invested during period (t − 1, t]. Because ϕt may

depend only on the values values S0, . . . , St−1, the stochastic process ϕt is assumed to

be predictable. Initially, ϕ0 = ϕ1, and the portfolio initial value is V0. It follows that

the amount initially invested in the non risky asset is V0 −
∑d

j=1 ϕ
(j)
1 S

(j)
0 = V0 − ϕ⊤

1 S0.

Since the hedging strategy must be self-financing, it follows that for all t = 1, . . . , T ,

βtVt(V0, ϕ)− βt−1Vt−1(V0, ϕ) = ϕ⊤
t (βtSt − βt−1St−1). (4.28)

Using the self-financing condition (4.28), it follows that

βTVT = βTVT (V0, ϕ) = V0 +

T
∑

t=1

ϕ⊤
t (βtSt − βt−1St−1). (4.29)
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The replication strategy problem for a given payoff C is thus equivalent to finding

the strategy (V0, ϕ) so that the hedging error

GT (V0, ϕ) = βTVT (V0, ϕ)− βTC (4.30)

is as small as possible. Here, the RMSHE (root mean square hedging error) measures

the quality of replication. It is therefore natural to suppose that the prices S
(j)
t have

finite second moments. We further assume that the hedging strategy ϕ satisfies a similar

property, namely that for any t = 1, . . . , T , ϕ⊤
t (βtSt − βt−1St−1) have finite second

moments. Note that these two technical conditions were also made by Schweizer (1995).

For simplicity, set ∆t = St − E(St|Ft−1), t = 1, . . . , T . Under the above moment

conditions, the conditional covariance matrix Σt of ∆t exists and is given by

Σt = E
{

∆t∆
⊤
t |Ft−1

}

, 1 ≤ t ≤ T. (4.31)

In Schweizer (1995), the author treats the case d = 1 and assumes a restrictive

boundedness condition. Here, in contrast, we treat the general d-dimensional case and

we only suppose that Σt is invertible for all t = 1, . . . , T . This was implicitly part of

the boundedness condition of Schweizer (1995).

If Σt is not invertible for some t, there would exists a ϕt ∈ Ft−1 such that ϕ⊤
t St =

ϕ⊤
t E(St|Ft−1), that is, ϕ

⊤
t St is predictable. Our assumption can be interpreted as saying

that the genuine dimension of the assets is d.

Theorem 3 Suppose that Σt is invertible for all t = 1, . . . , T .

Then the risk E{G2(v0, ϕ)} is minimized by choosing recursively ϕT , . . . , ϕ1 satis-

fying

ϕt = (Σt)
−1E ({St − E(St|Ft−1)}Ct| Ft−1) , t = T, . . . , 1, (4.32)
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where CT , . . . , C0 are defined recursively by setting CT = C and

βt−1Ct−1 = βtE(Ct|Ft−1)− ϕt
⊤E(βtSt − βt−1St−1|Ft−1), (4.33)

for t = T, . . . , 1.

Moreover the optimal value of v0 is C0, and

E(G2) =
T
∑

t=1

E
(

β2
tG

2
t

)

,

where Gt = ϕt
⊤ {St −E(St|Ft−1)} − {Ct − E(Ct|Ft−1)}, 1 ≤ t ≤ T .

Remark 4.6.1 Because of the relation (4.33) and the fact that v0 = C0, one can

interpret Ct as the value to be invested at time t to replicate the payoff C at period T .

In an option context, Ct would be the “value” of the option at time t.

Example 4.6.1 (The Markovian case) If the price process S is Markovian, i.e., the

law of St given Ft−1 is νt(St−1, dx), and if the terminal payoff CT = C only depends

on the terminal prices, that is C = fT (ST ), then the Markov property, together with

Theorem 3, yield that Ct = ft(St) and ϕt = ψt(St−1), where

L1t(s) = E(St|St−1 = s) =

∫

xνt(s, dx),

L2t(s) = E(StS
⊤
t |St−1 = s) =

∫

xx⊤νt(s, dx),

At(s) = L2t(s)− L1t(s)L1t(s)
⊤,

ψt(s) = At(s)
−1E [{St − L1t(s)}ft(St)|St−1 = s]

= At(s)
−1

∫

(x− L1t(s))ft(x)νt(s, dx),

Ut(s, x) = 1− (L1t(s)− βt−1s/βt)
⊤At(s)

−1(x− L1t(s)),

ft−1(s) =
βt
βt−1

E{Ut(s, St)ft(St)|St−1 = s}

=
βt
βt−1

∫

Ut(s, x)ft(x)νt(s, dx).
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Note that E(St|Ft−1) = L1t(St−1) and Σt = At(St−1). Explicit calculations can be done

when the returns are assumed to be a finite Markov chain. In most models, one can

write St = ωt(St−1, ξt) where ξt is independent of Ft−1 and has law Pt. When µt has an

infinite support, there are ways to approximate ψt and ft. In the Markovian case, one

can use the methodology developed by Del Moral et al. (2006) to calculate both the ϕt’s

and the Ct’s. The algorithm for implementing the dynamic trading strategy is based on

Monte Carlo simulations and linear interpolation.
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Appendix C : Truncated Gaussian Distribution

C.1 : Cdf and Pdf

Two sides Truncation

Let X be N(µ, σ2) and Y a truncated normal TrN(µ, σ2, a, b) random variable.

With φ the standard normal probability density function, we can write :

The truncated normal pdf :

f(y, µ, σ2, a, b) =
φ
(

y−µ
σ

)

σ
[

Φ
(

b−µ
σ

)

− Φ
(

a−µ
σ

)]I[a,b](y) (4.34)

The truncated normal cdf :

F (y, µ, σ2, a, b) =
Φ
(

y−µ
σ

)

− Φ
(

a−µ
σ

)

Φ
(

b−µ
σ

)

− Φ
(

a−µ
σ

) I[a,b](y) (4.35)

Left-side Truncation

A truncated normal distribution with only a left-side truncation is then written :

f(y, µ, σ2, a) =
φ
(

y−µ
σ

)

σ
[

1− Φ
(

a−µ
σ

)]I(y>a)(y) (4.36)

The truncated normal cdf :

F (y, µ, σ2, a) =
Φ
(

y−µ
σ

)

− Φ
(

a−µ
σ

)

1− Φ
(

a−µ
σ

) I(y>a)(y) (4.37)



123

C.2 : Four moments

Two sides Truncation

The expressions for the mean and variance respectively are :

E(Y ) = µ+ σ

[

φ
(

a−µ
σ

)

− φ
(

b−µ
σ

)

[

Φ
(

b−µ
σ

)

− Φ
(

a−µ
σ

)]

]

(4.38)

V AR(Y ) = σ2

[

1 +

(

a−µ
σ

)

φ
(

a−µ
σ

)

−
(

b−µ
σ

)

φ
(

b−µ
σ

)

Φ
(

b−µ
σ

)

− Φ
(

a−µ
σ

)

]

− σ2

[

φ
(

a−µ
σ

)

− φ
(

b−µ
σ

)

[

Φ
(

b−µ
σ

)

− Φ
(

a−µ
σ

)]

]2

(4.39)

The skewness and kurtosis of a truncated normal distribution with arbitrary mean

and variance can be obtained from cumulants based on the moment generating func-

tion, detailed in Shah and Jaiswal (1966).

Skewness is defined by Sk = µ3/µ
3/2
2 with µi central moments.

Sk = − 1

V 3/2

(

2(zb − za)
3 + (3bzb − 3aza − 1)(zb − za) + b2zb − a2za

)

(4.40)

Kurtosis is defined by Ku = µ4/µ
2
2 with µi central moments.

Ku = 1
V 2 (−3(zb − za)

4 − 6(bzb − aza)(zb − za)
2 − 2(zb − za)

2

−4(b2zb − a2za)(zb − za)− 3(bzb − aza)− (b3zb − a3za) + 3)

Where :

V = 1− (bzb − aza)− (zb − za)
2 ; za =

φ(a)

Φ(b)− Φ(a)
; zb =

φ(b)

Φ(b)− Φ(a)
(4.41)

With φ denotes the standard normal distribution function and Φ denotes the density.
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Left-side Truncation

E(Y ) = µ+ σ

[

φ
(

a−µ
σ

)

[

1− Φ
(

a−µ
σ

)]

]

(4.42)

V AR(Y ) = σ2

[

1 +

(

a−µ
σ

)

φ
(

a−µ
σ

)

1− Φ
(

a−µ
σ

)

]

− σ2

[

φ
(

a−µ
σ

)

[

1− Φ
(

a−µ
σ

)]

]2

(4.43)

Sk =
1

V
3/2
a

(

2z3a − 3az2a + (a2 − 1)za
)

Ku =
1

V 2
a

(

−3z2a + 6az3a − 2(2a2 − 1)z2a + (a3 + 3a)za + 3
)

Where :

Va = 1 + aza − z2a ; za =
φ(a)

1− Φ(a)
(4.44)



Chapitre 5

Option Pricing and Dynamic Hedging for Regime-Switching
Geometric Random Walks Models

5.1 Introduction

In complete, frictionless capital markets with no transaction costs and where the

underlying securities follow geometric Brownian motions, the Black-Scholes formula

(Black and Scholes, 1973) provides an elegant and tractable solution for pricing deri-

vative securities. Unfortunately the actual financial markets are far more complex and

empirical testing of the Black-Scholes model have highlighted its’ many shortcomings.

It is well documented (Fama, 1965, Mandelbrot, 1963, Schwert, 1989) that the observed

properties of financial time series are not consistent with the underlying assumptions of

the Black-Scholes framework. Time-varying volatility, the presence of higher-order mo-

ments and serial correlation are now well established characteristics of asset returns.

Moreover, liquidity constraints, market frictions, transaction costs and discrete-time

hedging lead to sub-optimal replication of the option’s payoff function (Duffie and

Huang, 1985, Huang, 1985). Furthermore, Boyle and Emanuel (1980), Gilster (1990),

Mello and Neuhaus (1998) and Buraschi and Jackwerth (2001) demonstrate that un-

realistic assumptions about continuous-time hedging can lead to large hedging errors

and residual hedging risk.
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Over the past decade, several studies have proposed discrete time hedging models

based on different objective functions, see for example Owen (2002), Potters et al.

(2001) and Pochart and Bouchaud (2004). The idea of dynamic hedging, as detailed in

Cox and Ross (1976) and Harrison and Kreps (1979), is to find a self-financing optimal

investment strategy that replicates a terminal payoff of the option. In this paper we

build on the previous work of Föllmer and Schweizer (1990), Schweizer (1992, 1995),

Papageorgiou et al. (2008) and Rémillard and Rubenthaler (2009) to derive an optimal

discrete time hedging strategy based on the mean-square hedging error function for

asset returns that follow a regime-switching random walk. Our hedging methodology is

therefore robust to serially-correlated and non-Gaussian returns. Previous attempts to

incorporate conditional returns in option pricing include GARCH models (see Chris-

toffersen and Jacobs (2004) for a complete review), stochastic volatility models (Hull

and White, 1987, Wiggins, 1987, Heston, 1993) and jump models (Kou (2002) and Kou

and Wang (2004) to cite a few). These approaches have generally been successful at

reproducing market prices, however none of them offer an effective, let alone optimal,

hedging strategy.

Regime-switching models, popularized by Hamilton (1990) and Kim et al. (2008),

have many characteristics that lend themselves nicely to financial time-series modeling.

These models are easy to interpret, allow for time-dependent parameters and the ag-

gregate returns conserve their non-Gaussian properties. Regime-switching models have

previously been used by Bansal and Zhou (2002) to capture interest rate dynamics and

by So et al. (1998) and Fong and See (2001) to model volatility. However, very few pa-

pers have attempted to apply regime-switching models to option pricing and hedging.

In the case of American options, Buffington and Elliott (2002) and Guo and Zhang
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(2004) develop pricing models and Garcia et al. (2003) and Chabi-Yo et al. (2008)

propose a deep analysis of HMM processes applied to options characteristics, but none

of these studies are extended to the hedging properties. The aim of this paper is to

demonstrate how to implement optimal hedging strategies and obtain derivatives prices

when the underlying assets returns are modeled as regime-switching random walks. The

model that we propose is a discretized version of the continuous time regime-switching

model, and is sometimes referred to as a transmutation-diffusion model (Freidlin and

Lee, 1996) in the probability literature. The Baum-Welch algorithm (Baum et al., 1970)

and the EM algorithm (Dempster et al., 1977) both provide efficient estimation proce-

dures. For more details and results on estimation and convergence of estimators, see,

e.g., Cappé et al. (2005). We also propose a new goodness-of-fit test, based on the work

of Genest and Rémillard (2008), for selecting the optimal number of regimes.

The rest of the paper is structured as follows. Section 5.2 presents the models and

its properties and describes the goodness-of-fit test. To simplify the presentation, the

model estimation is deferred to Appendix 5.6 and the testing is presented in Appen-

dix 5.6. In Section 5.3, we describe the optimal dynamic discrete time hedging model

adapted to regime-switching processes. We show how to implement the proposed dyna-

mic hedging algorithm for European option payoffs when the underlying asset returns

are modeled by Gaussian regime-switching random walks. We illustrate the benefits of

such processes in Section 5.4 and propose numerical applications to option pricing and

hedging in Section 5.5.
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5.2 Regime-switching geometric random walk mo-

dels

A regime-switching geometric random walk model S is a process such that the asso-

ciated (d-dimensional) log-returns Rt = log(St/St−1) form a regime-switching random

walk.

The non-observable regimes τt, with values in {1, . . . , l}, form a Markov chain

with transition matrix Q, stationary distribution ν, and given τ1 = i1, . . . , τn = in,

R1, . . . , Rn are independent, with densities fi1 , . . . , fin . As a result, the law of Rt is a

mixture with densities

f(x) =
l

∑

i=1

νifi(x).

In general, (St)k≥0 is not a Markov process. Nonetheless, the process (St, τt)t≥0 is Mar-

kovian. Note that these models are particular cases of Hidden Markov Models (HMM).

Several reasons justify this choice of model. First, even in the case of Gaussian

densities, the law of the returns can be modeled adequately, provided the number of

regimes is large enough. Note that we do not restrict ourselves to only 2 or 3 regimes

as is often the case in the economic and financial literature. As a result of the serial

dependence in the regimes, the returns of the assets also exhibit serial dependence,

which is consistent with what is observed in financial time series. Finally, the conditional

distribution is not constant, leading to conditional volatility as well as conditional

asymmetry and kurtosis. The Black-Scholes-Merton model is a particular case when

there is only one regime and that the density is Gaussian.
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5.2.1 Properties of regime-switching random walks models

Regime prediction

In this section, we show how to find ηt(i) = P (τt = i|R1 = y1, . . . , Rt = yt). For

more details, see, e.g., Baum et al. (1970).

– Choose an a priori distribution q0 for the regimes ; for example, one could take a

uniform distribution on {1, . . . , l}.

– For any t ≥ 1, once Rt = yt is observed, compute, for every i = 1, . . . , l,

qt(i) = fi(yt)
l

∑

j=1

qt−1(j)Qji, (5.1)

and

ηt(i) =
qt(i)

Zt

, (5.2)

where Zt =
∑r

j=1 qt(j).

Remark 5.2.1 The choice of q0 is not so important in long term, as long as all regimes

have positive probability. Next, note that qt(i) = E
{

I(τt = i)
∏t

k=1 fτk(yk)
}

, so Zt is the

joint density of (R1, . . . , Rt) at (y1, . . . , yt).

Moments

One easy way to measure serial dependence is to look at the auto-covariance. The

following result provides the necessary formulas for the first and second moments of

the distribution.
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Proposition 3 Suppose that the mean and covariance matrix of each density fi is

given by µi and Ai respectively, for all i ∈ {1, . . . , l}. Then, for all k, t ≥ 1, one has

E(Rt) = µ =

l
∑

i=1

νiµi, (5.3)

Cov(Rt, Rt) = A =

l
∑

i=1

νiAi +

l
∑

i=1

νiµiµ
⊤
i − µµ⊤, (5.4)

Cov(Rt, Rt+k) =

l
∑

i=1

l
∑

j=1

νi(Q
k)ijµiµ

⊤
j − µµ⊤. (5.5)

=

l
∑

i=1

l
∑

j=1

νiµiµ
⊤
j

{

(Qk)ij − νj
}

. (5.6)

If Q is ergodic, then there exist a positive constant C and a ∈ (0, 1) so that for

all k ≥ 1, max1≤i,j≤l

∣

∣(Qk)ij − νj
∣

∣ ≤ Cak. It follows from (5.6) that Cov(Rt, Rt+k)

converges exponentially fast to 0 as k → ∞.

Conditional distributions

Recall from Remark 5.2.1 that the joint density f1:k of R1, . . . , Rt can be expressed

as Zt.

Next, for any k ≥ 2, the conditional density of Rt given R1, . . . , Rt−1, denoted by

ft:1, can be expressed as a mixture, viz.

ft:1(xt|x1, . . . , xt−1) = f1:k(x1, . . . , xt)
/

f1:k−1(x1, . . . , xt−1)

=

∑l
i=1

∑l
j=1 qt−1(i)Qijfj(xt)
∑l

i=1 qt−1(i)
(5.7)

=
l

∑

j=1

Wj,k−1fj(xt), (5.8)

where

Wj,k−1 =

∑l
i=1 qt−1(i)Qij
∑l

i=1 qt−1(i)
, j ∈ {1, . . . , l}. (5.9)

Since q0(j) = νj , then Wj,0 = νj , for all j ∈ {1, . . . , l}.
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Forecasting properties

First, for any nice function g, it is easy to check that

E{g(Rt+1)|Ft} =

l
∑

i=1

E{g(Rt+1)|Rt, τt = i}ηt(i) =
l

∑

i=1

l
∑

j=1

ηt(i)Qij

∫

g(x)fj(x)dx.

(5.10)

Formula (5.10) entails that the conditional law of Rt+1 given R1, . . . , Rt has density

ft+1:k(x) =
l

∑

i=1

l
∑

j=1

ηt(i)Qijfj(x). (5.11)

Similarly, using the Markov property, it is easy to check that all ℓ ≥ 1,

E{g(Rt+ℓ)|Ft} =
l

∑

i=1

l
∑

j=1

ηt(i)
(

Qℓ
)

ij

∫

g(x)fj(x)dx. (5.12)

That is, the conditional law of Rt+ℓ given R1, . . . , Rt has density

ft+ℓ:k(x) =
l

∑

i=1

l
∑

j=1

ηt(i)
(

Qℓ
)

ij
fj(x), (5.13)

which is a mixture with the same densities (fj)
l
j=1 and weights

∑l
i=1 ηt(i)

(

Qℓ
)

ij
for

regime j, j ∈ {1, . . . r}. In particular, the prediction for Rt+ℓ is

l
∑

i=1

l
∑

j=1

ηt(i)
(

Qℓ
)

ij
µj .

Confidence intervals for the prediction can be constructed using the quantiles of the

density ft+1:k given by (5.13).

Next, if the Markov chain (τt)t≥1, with transition matrix Q, is ergodic, then the

conditional law of Rt+ℓ given R1, . . . , Rt, converges to the stationary distribution

f(x) =

l
∑

i=1

νifi(x).

That is, for long time predictions, the behavior of the variable becomes independent of

its past.
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5.2.2 Goodness-of-fit

Having selected a model and estimated its parameters (see Appendix 5.6), one must

next test the adequacy of the fitted model. This is generally done by using a test based

on the likelihood, however, as expresed in Hamilton (1990), hypothesis testing using

MLE methods can be problematic due to singularities and unidentifiable parameters.

Cappé et al. (2005) show that goodness-of-fit tests based on likelihood ratio are not

recommended for regime-switching models. Using score functions, Hamilton (1996) sug-

gests some tests of goodness-of-fit which are not necessarily consistent because they

are not based on distribution functions. Building on the famous Rosenblatt’s transform

(Rosenblatt, 1952) and the idea of Durbin (1973), Diebold et al. (1998) proposed to

apply the conditional distribution functions to data. However, because parameters are

estimated and the limiting distribution depends in general on these unknown para-

meters, the methodology proposed by Diebold et al. (1998) is useless. When testing

goodness-of-fit for parametric families, one can use a parametric bootstrap for esti-

mating P-values, even when the limiting distribution of the test statistics depends on

unknown parameters. That was extended recently in Genest and Rémillard (2008) for

semi-parametric models. Furthermore, in Genest et al. (2009), it was shown that tests

based on the Rosenblatt’s transform were quite powerful for testing goodness-of-fit for

copulas, a class of semi-parametric models. The new goodness-of-fit test is described

in Appendix 5.6.

5.3 Optimal discrete time hedging

We recall the main properties of the optimal hedging methodology then we detail the

implementation issues when adapted to regime-switching models. See also Appendix

5.6 for additional details.
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5.3.1 Optimal hedging

For any d-dimensional vector x, let D(x) be the diagonal matrix with diagonal

elements x1, . . . , xd, and further let e(x) denote the vector with components exj , j =

1, . . . , d. Next, for every i ∈ {1, . . . , d}, set

κ(i) =

∫

(

ey−r1
)

fi(dy), B(i) =

∫

(

ey−r1
) (

ey−r1
)⊤
fi(dy).

Assume that B(i) is invertible 1. If φt denotes the number of shares of the d risky assets

in the portfolio at the beginning of period t− 1, and Vt is the value of the portfolio at

period t, then the optimal choice of V0 and φ1, . . . , φT that minimize the mean square

hedging error for a payoff Φ(ST ) at maturity T is V0 = C0(S0, τ0) and

φt = αt(St−1, τt−1)− Vt−1D
−1(St−1)ρt+1(τt−1), (5.14)

where ρT+1(i) =
{

∑l
j=1QijB(j)

}−1 {
∑l

j=1Qijκ(j)
}

, and for all t = T, . . . , 1 and every

i ∈ {1, . . . , l},

γt(i) =
l

∑

j=1

Qijγt+1(j)
{

1− ρt+1(i)
⊤κ(j)

}

, (5.15)

ρt(i) =

{

l
∑

j=1

Qijγt(j)B(j)

}−1{ l
∑

j=1

Qijγt(j)κ(j)

}

, (5.16)

Ct−1(s, i) =
e−r

γt(i)

l
∑

j=1

Qijγt(j)

×
∫

Ct {D(s)ey, j}
{

1− ρt+1(i)
⊤ (

ey−r1 − 1
)}

fj(dy), (5.17)

αt(s, i) = e−rD−1(s)

{

l
∑

j=1

Qijγt+1(j)B(j)

}−1 l
∑

j=1

Qijγt+1(j)

×
∫

Ct {D(s)ey, j}
(

ey−r1 − 1
)

fj(dy). (5.18)

Note that (5.15) and (5.16) can be evaluated explicitly off-line in general. Howe-

ver, this is not the case for (5.17) and (5.18), even if they are expressed in terms of

1. That is equivalent to supposing that the genuine dimension of Rt is d.
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expectations. Therefore, one has to rely on approximations for their evaluation. This

can be achieved in several ways, one of which is the Simulation/Interpolation method

proposed in Papageorgiou et al. (2008). This approach is described briefly in Appendix

5.6. Another approach is the linear approximation methods used in most dynamical

programming problems. One major problem with these kinds of approximations using

interpolations is the dimension. As d increases it becomes much more difficult to get

good approximations as the number of points required for interpolation increases ex-

ponentially. Finally, in order to implement the optimal strategy, it follows from (5.14)

that we must be able to predict the non-observable regimes. Section 5.2.1 describes the

methodology for predicting these regimes.

Remark 5.3.1 Note that V0 is chosen so that the expected hedging error is zero. Ré-

millard and Rubenthaler (2009) also show that Ct(St, τt) is the optimal investment at

period k so that the value of the portfolio at period n is as close as possible to Φ(Sn),

in terms of mean square hedging error, so Ct can be interpreted as the option price

at period k. That interpretation is justified since by increasing the number of hedging

periods, they showed that Ct tends to the price under a risk neutral measure.

5.3.2 Optimal hedging strategy implementation issues

There are two main problems related to the implementation of the hedging strategy :

Ct and αt defined by expressions (5.17) and (5.18) must be approximated and regimes

must be predicted. Here we chose to approximate Ct and αt by using the Stratified

Monte Carlo sampling procedure (N = 10, 000) described in Appendix 5.6 with a grid

G defined by 1000 equidistant points covering 99.9999% of each regime daily return

Gaussian density. Next, we need to predict τ0, then τ1 based on R1, and so on. To do
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so, consider n0 past values of S, up to present time t = 0 and estimate τt by

τ̂t = argmax
i
ηn0+t(i), t = 0, . . . , T − 1. (5.19)

The last equation indicates that the predicted regime is the regime having the largest

probability given the information on the prices up to time n0 + t. Then, according to

(5.14), the optimal weights φt for period [t− 1, t), are approximated by

φt = αt(St−1, τ̂t−1)− Vt−1D
−1(St−1)ρt+1(τ̂t−1), t = 1, . . . , T, (5.20)

and V0 is approximated by C0(S0, τ̂0). In particular the initial number of shares of the

risky assets φ1 is

φ1 = α1(S01, τ̂0)− V0D
−1(S0)ρ2(τ̂0), (5.21)

while one invests an amount V0 − φ⊤
1 S0 in the non risky asset. Next, as S1 is observed,

one can compute V1, then predict τ1 and evaluate φ2, and so on.

5.4 Implementation of regime-switching models

To illustrate the methodology, we examine the daily log-returns of the S&P 500 from

January 1st 1989 to December 31st 2009 (5086 observations). This time series includes

periods of high and low volatility, as shown in Figure 5.1 and its some descriptive

statistics are given in Table 5.I. Therefore, it is natural to try to model these data using

a regime-switching model. For the sake of simplicity, we choose the regime densities to

be Gaussian, which facilitates estimation of parameters. In this paper, we refer to the

Gaussian mixture model as GM, to Gaussian regime-switching model as GRS and to

Black-Scholes model as B&S.
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Table 5.I – Descriptive statistics for the S&P 500 daily returns.

Mean Volatility Skewness Kurtosis
0.0002 0.0116 -0.1985 12.2536

500

1000

1500

Jan90 Jan95 Jan00 Jan05 Jan10
−10%

  0%

 10%

Figure 5.1 – S&P 500 over the period 12/31/1989 to 12/31/2009.

The time series is modeled using a GRS model. For more details on the estimation

using the EM algorithm, see Appendix 5.6. According to Table 5.II, one should choose

a regime-switching model with 3 regimes, since it is the smallest number of regimes for

which the P-value of the goodness-of-fit test is larger than 5%.

Table 5.II – P-value and LLH for the goodness-of-fit tests using 1000 replications.

Number of regimes 1 2 3 4
P-value 0 0 9% 3%
Log-likelihood 10129.56 10274.14 10295.22 10291.37

We also provide the log-likelihood values for each number of regimes. The estimated

parameters for the Gaussian densities appear in Table 5.III : Mean and covariance

matrix of each density fi are noted µi and Ai. The table also contains the long term
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regime probability νi of each regime, together with the conditional probability ηn(i)

for the current regime, given all past information. The estimated transition matrix is

given in Table 5.IV.

Table 5.III – Parameter estimations for 3 regimes.

Regime i µi Ai νi ηn(i)
1 -0.00164 0.000810 0.0737 0.0003
2 0.00010 0.000131 0.4624 0.0869
3 0.00064 0.000034 0.4639 0.9128

Table 5.IV – Transition matrix Q for 3 regimes.

Regime 1 2 3
1 0.9673 0.0327 0
2 0.0053 0.9834 0.0113
3 0 0.0110 0.9890

Looking at the estimated transition matrix, if the process enters the high-volatility

regime, it has a probability of 96.73% of remaining in this regime and a 3.27% pro-

bability of moving to the mid-volatility regime. The η’s provides information on the

current state. The results indicate that there is 98.9% probability of being in the third

regime (lowest volatility and highest mean) by end of December 2009. ν describes the

stationary distribution of the S&P500. The model captures the recent the stock mar-

ket behavior, which has been characterized by positive returns and low volatility on

average interrupted by periods of sustained volatility and poor returns. By the end of

2009 the market enters a period of very low volatility and strong recovery, as illustrated

by the third regime.

Using the density forecast formula (5.13), one can plot the daily log-return density

of the forecast for several periods after December 31st 2009. This is illustrated in Figure
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5.2 for 1 day ahead, 5 days ahead and 21 days ahead (1 month). The weights of the

corresponding Gaussian densities are given in Table 5.V.

Table 5.V – Daily forecasts for the S&P 500 returns.

ℓ = 1 ℓ = 5 ℓ = 21 ℓ = ∞
Regime 1 weight 0.0007 0.0028 0.0136 0.0737
Regime 2 weight 0.0954 0.1276 0.2274 0.4624
Regime 3 weight 0.9039 0.8696 0.7590 0.4639
Forecasted mean 0.0006 0.0005 0.0004 0.0002
Forecasted volatility 0.0066 0.0069 0.0081 0.0116
Forecasted skewness -0.0616 -0.0888 -0.1690 -0.2037
Forecasted kurtosis 5.0050 6.4941 9.5507 9.2478

−4% −3% −2% −1%  0%  1%  2%  3%  4%
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1−day ahead
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Figure 5.2 – Forecasted densities for the log-returns of the S&P 500

These results demonstrate how the regime-switching model converges to the sta-

tionary distribution from the current state. Because the current state is defined by a

low volatility and a strong drift, the daily density exhibits little asymmetry and low

kurtosis. As the state distribution converges to the stationary distribution, the daily

density is characterized by a higher volatility, lower mean, and more asymmetry and
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kurtosis, taking into account more tail risk.

Finally, to illustrate these dynamic properties out-of-sample, we estimated both

a Gaussian regime-switching process and a Gaussian mixtures process on the daily

log-returns of the S&P 500 from December 1999 to December 2009. We performed

each month a goodness-of-fit test on the past daily returns considering the 1989-1999

sample as the initial data set. The selected number of regimes are presented in Figure

5.3. We then forecasted the intra-month moments (Figure 5.4) using formula (5.13)

and plotted the 95% confidence interval of the forecasted daily volatility on the S&P

500 daily returns (Figure 5.5).
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Figure 5.3 – Optimal number of regimes (goodness-of-fit)
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Figure 5.4 – Forecasted daily moments
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Figure 5.5 – Forecasted daily volatility on the S&P 500 daily log-returns

From Figure 5.5, we see that the Gaussian regime-switching model allows for a

good prediction of volatility, specifically in 2008 during the stock market crashed. It

captured both low volatility levels in 2004 and high volatility levels since 2007. That
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model performs better than the Gaussian mixture model due to its conditional proper-

ties. Skewness and kurtosis are also forecasted and reveal the higher asymmetry and

fat tails in 2008. Both the GRS and the GM models need between 3 to 5 regimes to

be well specified. Since volatility levels is an key driver for option pricing and hed-

ging, the dynamic hedging strategy as defined by equations (5.14)–(5.18) seems quite

appropriate. This will be further discussed in the next section.

5.5 Implementation of the optimal hedging stra-

tegy

To illustrate the dynamic hedging algorithm based on Gaussian regime-switching

models, we price and hedge a European call and a put option for a range of matu-

rities and moneyness. We compare the Gaussian regime-switching process (GRS) to

a Gaussian mixture process (GM) and a standard Black-Scholes hedging (B&S). The

return process is modeled as a 3-regimes for the GRS with parameters estimated in

section 5.4 and a 4-regimes for the GM (best goodness-of-fit P-value). The stationary

volatility given by the GRS is set as the Black-Scholes constant volatility. We also

compute the average hedging error (MHE) and the average root mean square hedging

error (RMSHE) from equation (5.25) on a sample of 100000 replications. To do so we

generate 100000 series of n daily returns following a 3-regimes GRS and we compute

the hedging strategy for each n-days sequence. The risk free rate is set at 3% per year

and the initial stock value is standardized such as S0 = 100. Because of the optimal

hedging algorithm characteristics, both pricing models are done in the real probability

measure, in contrast with the Black-Scholes option pricing framework.



142

5.5.1 Hedging error validation by Monte Carlo simulations

At-the-money pricing

Using a Gaussian regime-switching process with 3 regimes, one gets 3 option values,

each specific to each particular regime. By choosing the most probable regime, as

described in Section 5.3.2, one obtains the most probable price. We evaluate a call

and a put option at-the-money with 21 days maturity. We provide 95% confidence

intervals based on 10,000 generated pricing (except for the B&S evaluation done in

closed form). The most probable regime is regime 3 with associated option prices and

hedge ratios appearing in bold in table 5.VI. GRS option price is lower than the GM

and B&S option price since the current state exhibits a very low volatility. The GM

model can still consider the non-normality of the daily return density but the option

price is computed according to the stationary density, meaning the long run volatility,

so that the GM option values are close to the B&S option values. The confidence

intervals quickly converge to the estimated values even with only 10,000 pricing. The

hedge ratios are computed using formula (5.21).

Table 5.VI – ATM option prices and initial hedge ratios for GRS, GM and B&S
models

Call Put
Price V0 φ1 Price V0 φ1

GRS Reg. 1 4.4988± 0.0050 0.5257± 0.0002 4.3156± 0.0047 −0.4750± 0.0002
GRS Reg. 2 2.2497± 0.0031 0.5229± 0.0001 2.0613± 0.0029 −0.4757± 0.0002
GRS Reg. 3 1.2834± 0.0017 0.5389± 0.0001 1.1035± 0.0019 -0.4579± 0.0001

GM 2.1699± 0.0054 0.5332± 0.0003 2.0133± 0.0044 −0.4468± 0.0002
B&S 2.2161 0.5237 2.0412 −0.4763

Pricing over moneyness and maturities

To compare the three methodologies, we compute the B&S implied volatility on the

option prices with respect to their days-to-maturity (DTM) and strike price level. We
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test for a range of 20% out-of-the money to 20% in-the-money options with 21, 63, 126

and 252 days to maturity. Results are presented in Figure 5.6 and Figure 5.7.
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Figure 5.6 – Call option implied volatility
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Figure 5.7 – Put option implied volatility

The GRS implied volatility exhibits the well studied “smile” effect on option prices

across moneyness and the volatility term structure impact on prices over maturity.

According to recent market behavior, the smile is asymmetric with higher effect on

negative S&P 500 returns. The GM model capture some of the smile because of its

non-Gaussian properties but cannot capture the term structure effect. As expected,

B&S implied volatility remain constant across moneyness and maturities.

In-sample hedging error

We computed hedging errors for 21 days ATM options. GRS option prices lead to a

lower hedging error and RMSHE, as illustrated in Table 5.VII. Then we evaluated the

errors for a range of 20% out-of-the-money to 20% in-the-money options with 21 days

to maturity. As shown in Figures 5.8– 5.9, the hedging error is always closer to 0 for
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the GRS. Pricing and hedging at-the-money options in a constant volatility Gaussian

framework could lead to very large hedging errors due to the V0 mispricing in the GM

and B&S setting. The forecasting properties of the GRS model allow the option pricing

and hedging to be more dynamic to volatility shifts than a constant volatility.

Table 5.VII – ATM option hedging error and RMSHE

Call Put
Model MHE RMSHE MHE RMSHE
GRS 0.0076 0.5440 0.0097 0.5435
GM 0.7844 0.9855 0.7896 0.9892
B&S 0.8176 1.0062 0.8175 1.0062
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Figure 5.8 – Call option hedging error (HE) and RMSHE over moneyness
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Figure 5.9 – Put option hedging error (HE) and RMSHE over moneyness

5.5.2 Approximation by regime-switching geometric Brownian

motion

One interesting feature of the GRS model in a option pricing and hedging framework

is that it can be well approximated under some conditions by a continuous time process,

the so-called regime-switching geometric Brownian motion, as detailed in Rémillard and

Rubenthaler (2009). Such a process is determined by a continuous time Markov chain

τt with generator Λ 2, representing the regime at time t, and between the jumps of

τt, the process St follows a geometric Brownian motion with drift ψ(i) and covariance

matrix a(i), when τt = i. If the discrete data corresponds to daily returns and if

the densities fi are Gaussian with mean µ(i) and covariance matrix A(i), then the

relation with the parameters Λ, ψ and a is the following : Λ = n(Q − I), ψ(i) =

n(µ(i) − diag(A(i))), a(i) = nA(i) with n = 252. One could refer to Rémillard and

Rubenthaler (2009) for details on the pricing and hedging algorithm. To illustrate the

approximation effectiveness, we priced ATM European call and put options with 21

days maturity (dicretized in 10,000 steps) given the GRS estimations in Section 5.4.

We provided 95% confidence intervals for the results based on 106 simulations (Table

2. Λ is defined by the relation Λij = limt↓0 P (τt = j|τ0 = i)/t if j 6= i, and Λii = −
∑

j 6=i Λij .
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5.VIII) and hedging errors based on 105 simulated path of 21 daily returns (Table 5.IX).

Table 5.VIII – ATM option prices and initial hedge ratios

Call Put

Regime Price V0 φ1 Price V0 φ1

1 4.5406 ± 0.0079 0.5288 ± 0.0002 4.3674 ± 0.0061 −0.4712 ± 0.0001
2 2.2392 ± 0.0037 0.5243 ± 0.0001 2.0644 ± 0.0033 −0.4756 ± 0.0001
3 1.2882± 0.0020 0.5300± 0.0001 1.1132± 0.0018 -0.4699± 0.0001

Table 5.IX – ATM option hedging error and RMSHE

Call Put
MHE RMSHE MHE RMSHE
-0.0704 0.5803 -0.0701 0.5789

The continuous time approximation leads to call and put option values (prices and

φ1’s) that are very close to the values given by the discrete time hedging algorithm.

The difference is still significant in term of confidence intervals. It is the result of

the continuous time approximation and appears to be significant in term of hedging

error. The GRS forecasting properties remain valid when approximated by a regime-

switching geometric Brownian motion. That approximation could be very useful when

the dimension d of the pricing problem grows (options on d underlying assets) because

it does not require any interpolation or polynomial approximation by contrast with the

discrete time hedging algorithm.

5.5.3 Out-of-sample validation

To complete our validation of the Gaussian regime-switching hedging model, we

propose an out-of-sample test of the pricing and hedging efficiency for both the GRS,

the GM and the B&S model. From December 31st 1999 to December 31st 2009 we

priced and hedged at the first trading day of each month a European call a put option
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expiring the last trading day of the respective month (1-month maturity). We estimated

the GRS model and GM model as described in section 5.4. We present the average

hedging error and RMSHE on the 120 hedged options for different moneyness across

the 3 models. These results are illustrated in Figures 5.10–5.11. In particular they show

that the GRS model has lower mean error and root mean square measures that for the

other models in an out-of-sample experiment, for both call and put options.
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Figure 5.10 – Call hedging errors across moneyness
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Figure 5.11 – Put hedging errors across moneyness

5.6 Conclusion

In this paper, we propose a discretized version of the continuous time regime-

switching model, and demonstrate how to implement an optimal hedging strategies

to obtain derivatives prices when the underlying assets returns are modeled as regime-

switching random walks. Building mainly on the work of Hamilton (1990), we also

propose a test of goodness-of-fit for Markovian regime-switching models for univariate

and multivariate time series that uses the Rosenblatt’s transforms. To illustrate the

effectiveness of the test, we model the daily return series of the S&P 500. The re-

sults obtained from the goodness-of-fit test are consistent with the characteristics of

the market evolution during high and low volatility periods. Furthermore, we deve-

lop a pricing and hedging algorithm based on the previous work of Del Moral et al.

(2006), Papageorgiou et al. (2008) and Rémillard and Rubenthaler (2009) specifically

adapted to regime-switching models. We compare our hedging results to a Gaussian
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framework and a Gaussian mixture model and prove that Gaussian regime-switching

models generate lower hedging errors than constant volatility models, both in-sample

and out-of-sample test. This hedging algorithm could easily be extended to American

option payoffs, and adapted to conditional volatility models such as GARCH models.
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Freidlin, M. I. and Lee, T.-Y. (1996). Large deviation principle for the diffusion-

transmutation processes and Dirichlet problem for PDE systems with small parame-

ter. Probab. Theory Related Fields, 105(2) :227–254.

Garcia, R., Luger, R., and Renault, E. (2003). Empirical assessment of an intertemporal

option pricing model with latent variables. Journal of Econometrics, 116 :49–83.

Genest, C. and Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-

of-fit testing in semiparametric models. Ann. Inst. H. Poincaré Sect. B, 44 :1096–
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Appendix A : Estimation of regime-switching mo-

dels

In order to apply the EM algorithm for estimating parameters, see e.g., Cappé et al.

(2005), it is necessary to :

(E-Step) Compute the conditional probabilities

λt(i) = P (τt = i|R1, . . . , Rn) and Λt(i, j) = P (τt = i, τt+1 = j|R1, . . . , Rn),

for all 1 ≤ k ≤ n and any i, j ∈ {1, . . . , l}.

(M-Step) Estimate the new parameters.

The E-Step is described next for any densities. The M-Step will be stated only for

Gaussian densities. For more details of the EM algorithm, see, e.g., Cappé et al. (2005).

A.1 : Conditional distributions of the regimes (E-Step)

First, define, for all i ∈ {1, . . . , l},

q̄n(i) = 1,

q̄t(i) =
l

∑

β=1

q̄t+1(β)Qiβgt+1(β), 1 ≤ k ≤ n− 1.

Then, for all i, j ∈ {1, . . . , l}, one can check that

λt(i) =
qt(i)q̄t(i)

∑l
α=1 qt(α)q̄t(α)

, k = 1, . . . , n, (5.22)

Λt(i, j) =
Qijqt(i)q̄t+1(j)fj(Rt+1)

∑l
α=1

∑l
β=1Qαβqt(α)q̄t+1(β)gt+1(β)

, k = 1, . . . , n− 1, (5.23)

and Λn(i, j) = λn(i)Qij .

To see that (5.22) and (5.23) are consistent, note that for all 1 ≤ k ≤ n− 1,

r
∑

j=1

Λt(i, j) =
l

∑

j=1

Qijqt(i)q̄t+1(j)fj(Rt+1)
∑l

α=1

∑l
β=1Qαβqt(α)q̄t+1(β)gt+1(β)

=
qt(i)q̄t(i)

∑l
α=1 qt(α)q̄t(α)

= λt(i),
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using the definition of q̄t,
∑l

j=1Λn(i, j) =
∑l

j=1 λn(i)Qij = λn(i). Similarly, for all
1 ≤ k ≤ n− 1,

l
∑

i=1

Λt(i, j) =

l
∑

i=1

Qijqt(i)q̄t+1(j)fj(Rt+1)
∑l

α=1

∑l
β=1 Qαβqt(α)q̄t+1(β)gt+1(β)

=
qt+1(i)q̄t+1(j)

∑l
α=1 qt+1(α)q̄t+1(α)

= λt+1(i),

using the definition of qt+1.

A.2 : Estimation for Gaussian regime-switching models (M-Step)

When the densities f1, . . . , fl are those of Gaussian distributions with means (µi)
l
i=1,

and covariance matrices (Ai)
l
i=1, then the model is called a Gaussian HMM.

The M step consists in upgrading parameters (νi)
l
i=1, (µi)

l
i=1, (Ai)

l
i=1 and Q by

setting, for all i, j ∈ {1, . . . , l},

ν ′i =

n
∑

t=1

λt(i)/n,

µ′
i =

n
∑

t=1

xtwt(i),

A′
i =

n
∑

t=1

(xt − µ′
i)(xt − µ′

i)
⊤wt(i),

Q′
ij =

n
∑

t=1

Λt(i, j)
/

n
∑

t=1

λt(i) =
1

n

n
∑

t=1

Λt(i, j)
/

ν ′i,

where wt(i) = λt(i)
/

∑n
l=1 λl(i).

Note that ν ′ is not a stationary distribution for Q′ since for any j ∈ {1, . . . , l},

l
∑

i=1

ν ′iQ
′
ij =

1

n

n
∑

t=1

l
∑

i=1

Λt(i, j) =
1

n

n+1
∑

t=2

λt(j) = ν ′j +
λn+1(j)− λ1(j)

n
6= ν ′j.

However,

max
1≤j≤l

∣

∣

∣

∣

∣

l
∑

i=1

ν ′iQ
′
ij − ν ′j

∣

∣

∣

∣

∣

≤ 1/n.

Hence, when n is large, ν ′ is close to the stationary distribution of Q′.
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Remark 5.6.1 In Cappé et al. (2005), it is shown that the EM estimator of ν, when

ν is not the stationary distribution, is ν ′ = λ1.

It is interesting to note that the first two sample moments are preserved in the

Gaussian case, i.e., the sample mean and covariance matrix are equal to the theoretical

ones when applied to the estimated parameters.

A.3 : Fitting of sample moments

The sample mean and covariance matrix are defined by

x̄ =
1

n

n
∑

t=1

xt and S =
1

n

n
∑

t=1

(xt − x̄)(xt − x̄)⊤.

Using formula (5.3), one gets

µ′ =
l

∑

i=1

ν ′iµ
′
i =

1

n

l
∑

i=1

n
∑

t=1

λt(i)xt

=
1

n

n
∑

t=1

xt = x̄.

Next,

l
∑

i=1

ν ′iA′
i =

1

n

l
∑

i=1

n
∑

t=1

λt(i)(xt − µ′
i)(xt − µ′

i)
⊤

=
1

n

l
∑

i=1

n
∑

t=1

λt(i)xtx
⊤
t +

1

n

l
∑

i=1

n
∑

t=1

λt(i)µ
′
i(µ

′
i)
⊤

−1

n

l
∑

i=1

n
∑

t=1

λt(i)xt(µ
′
i)
⊤ − 1

n

l
∑

i=1

n
∑

t=1

λt(i)µ
′
ix

⊤
t

=
1

n

n
∑

t=1

xtx
⊤
t −

l
∑

i=1

ν ′iµ
′
i(µ

′
i)
⊤.
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Therefore, using formula (5.4), one obtains

A′ =

l
∑

i=1

ν ′iA
′
i +

l
∑

i=1

ν ′iµ
′
i(µi)

′⊤ − µ′(µ′)⊤

=
1

n

n
∑

t=1

xtx
⊤
t −

l
∑

i=1

ν ′iµ
′
i(µ

′
i)
⊤ +

l
∑

i=1

ν ′iµ
′
i(µi)

′⊤ − x̄x̄⊤

=
1

n

n
∑

t=1

(xt − x̄)(xt − x̄)⊤ = S.
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Appendix B : Test of goodness-of-fit and Rosen-

blatt’s transform

We define the goodness-of-fit test, which can be performed to assess the suitability

as well as to select the number l of Markov states (regimes). The proposed test, based

on the work of Diebold et al. (1998), Genest and Rémillard (2008) and Genest et al.

(2009), uses the Rosenblatt’s transform. It will be stated in full generality, not just for

Markovian regime-switching models.

B.1 : Conditional distribution functions and Rosenblatt’s transform

Let i ∈ {1, . . . , l} be fixed and Yi be a random vector with density fi. For any j ∈

{1, . . . , d}, denote by fi,1:j the density of
(

Y
(1)
i , . . . , Y

(j)
i

)

, and by fi,j the density of Y
(j)
i

given
(

Y
(1)
i , . . . , Y

(j−1)
i

)

. Further denote by Fi,j the distribution function associated

with density fi,j, where Fi,1 denotes the distribution function of Y
(1)
i .

In order words, the Rosenblatt’s transform

y 7→ Ti(y) = (Fi,1(y1), Fi,2(y1, y2), . . . , Fi,d(y1, . . . , yd))
⊤

is such that Ti(Yi) is uniformly distributed in [0, 1]d.

For example, in a bivariate Gaussian case where fi is the density of a bivariate Gaus-

sian distribution with mean µi and covariance matrix Σi =





v
(1)
i ρi

√

v
(1)
i v

(2)
i

ρi

√

v
(1)
i v

(2)
i v

(2)
i





then fi,2 is the density of a Gaussian distribution with mean µ
(2)
i +βi

(

y
(1)
i − µ

(1)
i

)

and

variance v
(2)
i (1− ρ2i ), where βi = ρi

√

v
(2)
i /v

(1)
i .
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The aim now is to find the Rosenblatt’s transform Ψt corresponding to the density

(5.8). Using the notations introduced above, one obtains that for any z1, . . . , zd ∈ R,

Ψ
(1)
t (z1) = Ψ

(1)
t (x1, . . . , xt−1, z1) =

l
∑

α=1

Wα,k−1Fα,1(z1) (5.24)

and for j ∈ {2, . . . , d},

Ψ
(j)
t (z1, . . . , zj) = Ψ

(j)
t (x1, . . . , xt−1, z1, . . . , zj) =

∑l
α=1Wα,k−1fα,1:j−1(z1, . . . , zj−1)Fα,j(zj)
∑l

α=1 Wα,k−1fα,1:j−1(z1, . . . , zj−1)
.

It then follows that the U1 = Ψ1(R1), . . . , Un = Ψn(R1, . . . , Rn) are independent and

uniformly distributed over [0, 1]d.

Suppose that R1, . . . , Rn be a sample of size n d-dimensional vectors from a joint

(continuous) distribution P . Suppose that the hypotheses to be tested are

H0 : P ∈ P = {Pθ; θ ∈ Θ} vs H1 : P 6∈ P

For example, the parametric family F could be the family of univariate Gaussian

regime-switching models with r regimes. Suppose also that Ψ1(·, θ), . . . ,Ψn(·, θ) are the

associated Rosenblatt’s transforms, that is, the d-dimensional vectors U1 = Ψ1(R1, θ),

U2 = Ψ2(R1, R2, θ), . . . , Un = Ψn(R1, . . . , Rn, θ) are uniformly distributed over [0, 1]d

and independent. Suppose also that θ is estimated by θn = Tn(R1, . . . , Rn).

Since θ is unknown, it must be estimated by θn, so the pseudo-observations Û1 =

Ψ1(X1, θn), . . . , Ûn = Ψn(R1, . . . , Rn, θn) are approximately uniformly distributed over

[0, 1]d and are approximately independent. However, it is well-known, contrary to what

is stated in Diebold et al. (1998) for example, that it does not matter if θ is replaced

by θn. There is a huge literature on empirical processes based on pseudo-observations,

and the main result is that there is always a price to pay for estimating parameters,

whenever empirical processes are concerned. See, e.g., Ghoudi and Rémillard (1998,

2004).
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B.2 : Goodness-of-fit test

The proposed test statistic is based on the empirical process

Dn(u) =
1

n

n
∑

i=1

I(Ui ≤ u) =
1

n

n
∑

i=1

d
∏

t=1

I(Uik ≤ ut), u = (u1, . . . , ud) ∈ [0, 1]d.

To test H0 against H1, we propose to use the Cramér-von Mises type statistic

Sn = Bn(Û1, . . . , Ûn)

= n

∫

[0,1]d

{

Dn(u)−
∏

t=1

ut

}2

du

=
1

n

n
∑

i=1

n
∑

j=1

d
∏

t=1

{

1−max
(

Ûik, Ûjk

)}

−
n

∑

i=1

d
∏

t=1

(

1− Û2
ik

)

+
n

3d
.

Since the Ûi’s are“almost”uniformly distributed on [0, 1]d under the null hypothesis,

large values of Sn should lead to rejection of the null hypothesis. However, in general

the limiting distribution of Sn depend on the unknown parameter θ. To estimate the

P -value of Sn, one can use a parametric bootstrap approach as described below. The

validity of the parametric bootstrap approach has been shown for a large range of

contexts in Genest and Rémillard (2008). Its validity for dynamic models is proven in

Rémillard (2010).

B.3 : Description of the parametric bootstrap

a) Calculate θn = Tn(R1, . . . , Rn) and Sn = Bn(Û1, . . . , Ûn).

b) For some large integer N (say 1000), repeat the following steps for every k ∈

{1, . . . , N} :

(i) Generate a random sample R
(k)
1 , . . . , R

(k)
n from distribution Pθn .
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(ii) Calculate

θ(k)n = Tn

(

R
(k)
1 , . . . , R(k)

n

)

,

Û
(k)
i = Ψi

(

R
(k)
1 , . . . , R

(k)
i , θ(k)n

)

, i = 1, . . . , n,

S(k)
n = Bn

(

Û
(k)
1 , . . . , Û (k)

n

)

An approximate P -value for the test based on the Cramér–von Mises statistic Sn is

then given by

1

N

N
∑

t=1

I
(

S(k)
n > Sn

)

.

Based on the results of Section 5.6, the Rosenblatt’s transform for a general Marko-

vian regime-switching model are also easy to calculate, so the goodness-of-fit test can

be applied to that type of model. For the selection of the number l of regimes, it makes

sense to choose the first l0 for which the P -value of the test of goodness-of-fit is larger

than 5%.
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Appendix C : Optimal hedging in discrete time

Denote the price process by S, i.e., St is the value of d underlying assets at period

k and let F = {Ft, k = 0, . . . , n} be a filtration under which S is adapted. Assume

that S is square integrable. Set ∆t = βtSt − βt−1St−1, where the discounting factors

βt are predictable, i.e. βt is Ft−1-measurable for k = 1, . . . , n. The aim is to find the

optimal initial investment amount V0 and the optimal predictable investment strategy

−→
φ = (φt)

n
t=1 that minimize the expected quadratic hedging error

E

[

{

G
(

V0,
−→
φ
)}2

]

, (5.25)

where G = G
(

V0,
−→
φ
)

= βn(C − Vn), and βtVt = V0 +
∑k

j=1 φ
⊤
j ∆j, k = 0, . . . , n.

To that end, set Pn+1 = 1, and for k = n, . . . , 1, define

At = E
(

∆t∆
⊤
t Pt+1|Ft−1

)

,

bt = A−1
t E (∆tPt+1|Ft−1) ,

αt = A−1
t E (βnC∆tPt+1|Ft−1) ,

Pt =

n
∏

j=k

(

1− b⊤j ∆j

)

.

We can now state Theorem 2.0.1 of Rémillard and Rubenthaler (2009), which is an

extension of a result of Schweizer (1995).

Theorem 4 Suppose that E(Pt|Ft−1) 6= 0 P-a.s., for k = 1, . . . , n. Then the solution
(

V0,
−→
φ
)

of the minimization problem is V0 = E(βnCP1)/E(P1), and

φt = αt − βt−1Vt−1bt, k = 1, . . . , n.

Note that V0 is chosen so that E(G) = 0. Rémillard and Rubenthaler (2009) also

show that if Ct is the optimal investment at period k so that the value of the portfolio
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at period n is as close as possible to C, in terms of mean square hedging error, then Ct

is given by the following equation :

βtCt =
E(βnCPt+1|Ft)

E(Pt+1|Ft)
, t = 0, . . . , n. (5.26)

Ct can be interpreted as the option price at period t.

C.1 : Monte Carlo evaluations

Expression (5.17) is of the form

gt(s, i) =

l
∑

j=1

Qij

∫

gt+1{π(s, y), j}wt(y, i, j)fj(y)dy, t = n− 1, . . . , 0, (5.27)

where w0, . . . , wn and gn are known functions, and πk(s, y) = ske
yk−r, k = 1, . . . , d. The

methodology proposed in Del Moral et al. (2006) for American options and in Papa-

georgiou et al. (2008) for hedging, is basically to use at each time step a Monte Carlo

method to approximate gt(s, i) for all points s in some finite grid G. Since the values

of gt+1 are also approximated at these points, an interpolation method is necessary to

evaluate it any possible point.

Algorithm 1 (Simple Monte Carlo sampling) To estimate gt(s, i) for every s ∈

G, one can proceed as follows.

– Fix i ∈ {1, . . . , l}.

– For k = 1, . . . , N , repeat the following steps :

– Generate vk ∼ Qi·, i.e., vk = j with probability Qij.

– If vk = j, generate Xk ∼ fj.

– For every s ∈ G, set

ĝt(s, i) =
1

N

N
∑

k=1

ĝt+1{π(s,Xk), vk}wt(Xk, i, vk).
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Note that the random sequence (Xk, vk)
N
k=1 is the same for every value of s ∈ G. In

fact, it can also be the same for every time period t, by looking at expression (5.27). In

algorithm 1, the proportion of regimes with value j would be approximately Qij . As it

is well-known in Sampling theory, usually a stratified sampling should perform better

(in term of variability). Therefore, one could replace the preceding algorithm by the

following one.

Algorithm 2 (Stratified Monte Carlo sampling) To estimate gt(s, i) for every s ∈

G, one can :

– Fix i ∈ {1, . . . , l}.

– For k = 1, . . . , N , repeat the following steps :

– For every j ∈ {1, . . . , l}, generate Xkj ∼ fj.

– For every s ∈ G, set

ĝt(s, i) =
1

N

l
∑

j=1

N
∑

k=1

Qij ĝt+1{π(s,Xkj), j}wt(Xkj, i, j).



Chapitre 6

Conclusion

Dans cette thèse, nous avons tenté d’apporter notre contribution à une littérature

vaste et compétitive. La structuration du profil de risque du portefeuille d’un investis-

seur suscite un vif intérêt tant dans la sphère académique que dans le milieu privé. Par

les résultats prometteurs énoncés au cours de ce travail, nous espérons avoir alimenté

une perspective de recherche établie autour de la définition de protocoles optimaux de

couverture en temps discret. Les pistes de travail restent conséquentes. L’intégration

des frais de transaction à la stratégie de réplication ainsi que la caractérisation d’une

stratégie optimale de couverture adaptée aux processus de type GARCH seront des

avenues de recherche que nous tenteront d’exploiter à l’avenir. A partir des premiers

résultats de Black-Scholes (1973) et de Schweizer (1992, 1995) nous proposons un al-

gorithme optimal de réplication en temps discret d’un ” payoff ” écrit sur le niveau du

sous-jacent (option classique) ou sur le rendement périodique du sous-jacent (option de

densité). Cette méthodologie améliore les résultats précédents en minimisant l’erreur

quadratique de couverture tout en conservant les caractéristiques de la fonction de ”

payoff ”désirée. Ceci a été caractérisé dans un contexte univarié et multivarié. Une mo-

délisation appropriée du processus des rendements du sous-jacent est essentielle dans la

minimisation l’erreur de réplication, particulièrement lors de tests hors échantillon. Une

première approche par mixture de lois gaussiennes a permis d’illustrer la nécessité de
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considérer les moments d’ordre supérieur dans la définition de la loi du sous-jacent, en

comparaison avec le modèle Black-Scholes. Nous avons ensuite poursuivi la démarche en

proposant une caractérisation de la loi des rendements par un processus à changements

de régimes de lois gaussiennes, respectant du même coup la non-normalité de la loi

empirique et la structure conditionnelle des rendements discrets. Ce faisant, une étude

comparative a permis d’illustrer les avantages d’une telle modélisation sur la couverture

d’option d’achat et de vente dans différents scénarios de volatilité. La définition d’un ”

payoff ” de densité d’après les résultats de Dybvig (1988) nous a également permis de

proposer une méthodologie d’assurance de portefeuille alliant la protection périodique

d’un niveau de pertes admissibles à un contrôle de la volatilité du portefeuille d’actifs

risqués. Cette innovation permet de limiter les erreurs de couverture tout en assurant

un investissement approprié conditionnel à la volatilité du sous-jacent.
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