
HEC Montréal
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Abstract

In order to access foreign markets, global investors often need to

post collateral in currencies that are different from their benchmark

currency, resulting in undesired foreign exchange risk. Investors might

therefore be tempted to strictly post the minimum margins required,

however doing so maximizes the probability of margin calls and their

associated operational risk and cost. This thesis finds the posted mar-

gins that represent the best equilibrium between foreign exchange risk

and probability of a margin call. In order to do so, a robust dynamic

model of the asset prices and exchange rates dynamics is proposed,

and an optimization problem seeking the optimal equilibrium is solved.

The proposed model overperformed both a naive and a Gaussian al-

ternative model on a dataset of five futures contracts in four different

currencies over a period of nine years for the metrics of interest.

Keywords: Copula-based multivariate dynamic models, foreign ex-

change risk, multidimensional constrained optimization, collateral man-

agement.
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Résumé

Afin de pouvoir accéder aux marchés des capitaux étrangers, les

investisseurs institutionnels doivent souvent déposer en collatéral chez

leurs contreparties des montants en devises autres que la devise de

référence de leurs portefeuilles, ce qui résulte en un risque de taux de

change indésirable. Ces investisseurs peuvent alors être temptés de

déposer strictement les montants minimaux requis dans les comptes

de marges, toutefois cette politique maximise la probabilité d’appels

de marge et leurs coûts et risques opérationnels associés. Cet ouvrage

trouve les montants collatéraux qui représentent le meilleur équilibre

entre les coûts découlant du risque de change et ceux associés aux

appels de marges. Pour se faire, un modèle robuste de la dynamique

des prix d’actifs et des taux de changes est proposé, et le problème

d’optimisation cherchant l’équilibre optimal est résolu. Le modèle pro-

posé surperforme des modèles näıf et Gaussien pour un ensemble de

données de cinq contrats à termes en quatre devises sur une période

de neuf ans pour les métriques visées.

Mots clés: Modèles dynamiques multivariés, copules paramétriques

multidimensionnelles, risque de taux de change, optimisation con-

trainte, gestion de collatéral.
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1 Introduction

With the globalization of financial markets, investors have access to a larger

investment universe giving them the opportunity to better diversify their

portfolio. A subclass of financial transactions (short selling and entering into

derivative contracts for example) requires the posting of margins, that is, the

deposit of collateral to attenuate the credit risk for the counterparty. If such

a transaction is performed in a foreign market, the required collateral will

most likely be in a currency different from the portfolio’s benchmark currency,

creating foreign exchange risk for the global investor. This investor might

therefore want to maintain the posted collateral to the strict minimum. This

policy will however maximize the probability that the counterparty, either the

investor’s broker or exchange, will require the posting of additional collateral

following an adverse price change, so-called a margin call.

Margin calls sometimes result in undesired operational costs for investors,

they are therefore to be avoided if possible. Not only counterparties may

impose penalties on margin calls, but the regulatory framework agreed upon

by members of the Basel Committee on Banking Supervision in the Basel III

accords impose tougher capital buffers and liquidity coverage on derivatives

transactions (BCBS, 2011a,b).

The purpose of this work is to use recent developments in the field of

econometrics to come up with a rigorous solution to the problem of multi-

currency collateral management. In addition, the methodology proposed here

can be extended to any financial or risk management applications where an

optimization problem needs to be constrained by practical considerations

(transaction costs for example).

The remainder of this thesis is organized as follows. Section 2 reviews

the existing literature on which this work builds upon. Section 3 exhibits the

framework used to model the dynamics of the asset prices and exchange rates.

Section 4 overviews the optimization problem at hand. Section 5 presents

the results of a backtest of the proposed solution performed on a real data
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set. Section 6 concludes and proposes avenues of future research.

2 Literature review

This section surveys the existing literature upon which this work builds and

explains how these different contributions come together to compose the pro-

posed solution. First, it is necessary to pick a model for the joint dynamics

of the financial time series. Seminal papers of univariate and multivariate

time series modeling are therefore reviewed. Second, the development of

copula theory provides a more flexible and powerful approach to capture the

dependence between multiple time series, so the exercise is repeated for the

literature on the theory of dependence copulas. Third, before blindly ap-

plying an arbitrary model to a problem, one has to gauge its validity from

both a qualitative and quantitative point of view. Statistically, it means test-

ing the model’s goodness of fit with respect to the data. The literature on

the empirical testing of the correctness of statistical models is therefore dis-

cussed. Fourth, in order to access and control risk in a quantitative manner,

it is necessary to choose the risk measures to be monitored. The history as

well as the strengths and weakness of the risk measures used in this work is

summarized. Finally, papers addressing constrained optimizations problems

similar to ours are surveyed.

2.1 Univariate processes

Since the beginning of the quantitative study of finance, many models have

been proposed to explain or reproduce the dynamics of financial time series.

Due to its convenient mathematical properties, Brownian motion has been

the most often used model to this day. First developed by the botanist Robert

Brown to describe the jiggling of pollen grains in water (Brown, 1828), the

first application of Brownian motion to model the returns of financial time

series is credited to the French mathematician Louis Bachelier (Bachelier,
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1900). The defining characteristic of Brownian processes is that their incre-

ments are independent and normally distributed. In mathematical terms, for

a Brownian process Bt,

Bt −Bs ∼ N(µ, σ)

, where N(µ, σ) is a normal distribution with mean µ and standard deviation

σ. The use of the Brownian process became mainstream in the financial

literature with the works of Merton (1969), who posited that it is in fact the

natural logarithm of the returns of financial assets that follow a Brownian

process.

Despite its widespread use, the Brownian model is often criticized for

failing to capture some features of the dynamics of asset prices (refer to

Mandelbrot (1963) and Haug and Taleb (2011) for a sample of those critics).

Indeed, the empirical study of financial time series reveals that asset price

returns are leptokurtic and heteroskedastic, thus leading market participants

to underestimate the risk of financial assets. Not only does the distribu-

tion of returns often have fat tails, that is, realizations far from the mean

occurring more frequently than the normal model would predict, but their

volatility is not constant and periods of high volatility tend to cluster to-

gether, a phenomenon dubbed volatility clustering. The reader is directed to

Guillaume et al. (1997), Pagan (1996), Vries and Leuven (1994), Cont (2001)

for empirical surveys of these stylized facts about financial time series.

In response to the cited caveats of Brownian motion, AutoRegressive Con-

ditionnal Heteroskedasticity (ARCH) models were tools developed to charac-

terize time series exhibiting time-varying volatility. The term was introduced

by Engle (1982) who proposed the following dynamic for the variance hi,t of

an ith financial time series at time t:

hi,t = κh,i +

q∑
j=1

αi,j ε
2
i,t−j hi,t−j,
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where εi,t−j are standardized residuals belonging to a distribution with mean

0 and standard deviation 1 and κh,i and αi,j are constants. For q = 1, it was

proved in the original paper (Engle, 1982) that the above process has finite

variance if αi,1 < 1 and finite kurtosis if 3α2
i,1 < 1. Clearly, the variance,

and hence the volatility, of the time series for a given period is a direct

function of the variance in the previous period, thus accounting for volatility

clustering. Furthermore, the process generates data with fatter tails than

the normal density. Tim Bollerslev, a graduate student of Engle, extended

his model with the generalized ARCH (GARCH) (Bollerslev, 1986). Thanks

to its parsimonious notation (see equations (3) and (4) in Section 3), this

model has become the most popular ARCH model in practice, including this

work.

2.2 Multivariate processes

Obviously proper financial modeling requires the consideration of dependence

between time series. For this reason the development of multivariate mod-

els quickly followed the one of univariate models. It is now widely accepted

(Cont, 2001, Peng and Ng, 2012) that robust risk management requires the

inclusion of higher-order moments and co-moments in the time series of finan-

cial assets. Not only do univariate distributions capturing higher moments

need to be picked to model single financial time series, but a model of de-

pendence between the different time series allowing for higher co-moments

is primordial. Indeed, traditional linear correlation between the returns of

financial assets fails to capture the “correlation breakdown” or “assets boom

alone but bust together” asymmetry observed in the markets.

Models have been proposed to extend the ARCH-type framework de-

scribed in the previous section to multivariate settings. They all face the

challenge of balancing sophistication with parsimony, of being flexible enough

to capture co-moment dynamics while avoiding the curse of dimensionality.

The objective is to model the dynamic of the random vector process rt with
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dimensions N × 1:

rt = H
1/2
t ηt,

where Ht is the N×N conditional covariance matrix of rt and ηt is the N×1

matrix of standardized residuals. The models distinguish themselves from

each other by providing different specifications of the matrix process Ht.

The VEC-GARCH of Bollerslev et al. (1988) is one of the earliest such

models. It is a direct generalization of the univariate GARCH model, where

every variance and covariance is conditional on lagged variances and covari-

ances:

vech(Ht) = κ+

q∑
j=1

Aj vech(rt−j · r′t−j) +

p∑
j=1

Bj vech(Ht−j),

where vech(·) is an operator that stacks the columns of the lower triangular

part of its argument square matrix, κ is an N(N + 1)/2× 1 vector, and Aj

and Bj are N(N + 1)/2×N(N + 1)/2 parameter matrices. While providing

flexibility, this model’s total number of parameters, (p+ q)(N(N + 1)/2)2 +

N(N +1)/2, grows large very quickly as the number of dimensions increases,

making it computationally intractable.

Engle and Kroner (1995) propose a restricted version of the VEC model,

dubbed the Baba-Engle-Kraft-Kroner (BEKK) model. Its advantage is that

the conditional covariance matrix stays positive definite by construction,

which is not the case for the VEC model. The BEKK model is defined

by

Ht = κκ′ +

q∑
j=1

K∑
k=1

A′kjrt−jr
′
t−jAkj +

p∑
j=1

K∑
k=1

B′kjHt−jBkj,

where A, B and κ are N ×N parameter matrices and κ is lower triangular.

Note that the number of parameters, (p + q)KN2 + N(N + 1)/2, although
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reduced, is still high.

Many other proposed simplified models attempt to reduce the number of

parameters and/or keep the covariance matrix positive definite. A significant

subset of these models adopt a factor decomposition approach. For a com-

prehensive survey of multivariate GARCH models, refer to Silvennoinen and

Teräsvirta (2008) or Laurent et al. (2006). Due to their lack of tractability in

higher dimensions, we decided to omit multivariate GARCH models in the

application part of this work.

2.3 Copulas

Copula theory allows to model dependence in a parsimonious yet rigorous

fashion. A copula, in combination with the univariate marginal distributions,

is sufficient to fully specify a multivariate distribution function, as proved by

Sklar (1959). The copula C underlying the random variables X1, X2, . . .,

XD is the joint cumulative distribution function of the transformed vari-

ables F1(x1), F2(x2), . . . , FD(xD), where Fi(x) = P[Xi ≤ x] are the marginal

cumulative distribution functions, and

C(u1, u2, . . . , uD) = P[F1(X1) ≤ u1, F2(X2) ≤ u2, . . . , FD(XD) ≤ uD].

The theory of copulas can be traced back to Fréchet (1951) who studied

the properties of bivariate density functions with uniform margins. However,

their name was coined by Sklar (1959), borrowing the term from the field of

linguistics where it designates a word used to link the subject of a sentence

with a predicate. Sklar also produced the fundamental theorem mentioned

above that bears his name.

The literature of the albeit young field of copulas is already too large

(and growing) to be covered in this work in any way that is not superficial.

Figure 1, borrowed from Genest et al. (2009a), displays the evolution of the

number of documents on copula theory in the last part of the twentieth cen-
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tury. An historical perspective can be found in Sklar (1996) and Jaworski

et al. (2010), while Joe (1997) and Nelsen (2006) are the references for a rig-

orous introduction of copula theory. The biggest strength of copulas is the

ability to model the marginal distributions of random variables and their de-

pendence independently. For illustration purposes, figure 2 exhibits a Monte

Carlo simulation of a bivariate Clayton copula with mixture of two normals

and Student marginal distributions. Note that the marginal distributions

need not be the same, and the asymmetry of dependence between positive

and negative realizations of the marginal variables.

Figure 1: Number of documents on copula theory, 1971-2005 (Genest et al.,
2009a)

Paul Embrecht and fellow researchers are credited for making the appli-

cation of copula theory mainstream in the field of finance (Embrechts et al.,

1999, McNeil et al., 2005). His group showed the pitfall of correlation and

proposed the use of copulas as a more rigorous way to manage financial risk.

Not long after, a paper by Li (2001), where the use of Gaussian copula mod-

els for the pricing of collateralized debt obligations was introduced, became

widely read amongst both academics and practitioners. The reader is pointed
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Figure 2: Bivariate Clayton copula modeling with non-normal margins

to Mikosch (2006) for a critical review of the use of copula in finance and to

Genest et al. (2009a) for a bibliometrical survey.

Closer to our domain of interest, applications of copula theory in the

field of econometrics is even younger than in risk management. This work

owes much to the findings of Chen Xiaohong and Fan Yanqin (Chen and

Fan, 2006), Andrew Patton (Patton and Kearney, 2000, Patton, 2006) and

Bruno Rémillard (Rémillard, 2010). The basis of these articles is that the

dependence between the error terms of multivariate time series is described

not in term of traditional correlation but by a given copula.
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2.4 Goodness-of-fit tests

Before the practical use of a model, it is primordial to access its validity with

respect to the dataset. There exists many frequentist tests to determine the

probability with which an univariate sample belongs to an arbitrary paramet-

ric distribution: the Shapiro-Wilk test, Kolmogorov-Smirnov test, Lilliefors

test and the Anderson-Darling test to name a few. A performance review of

these tests can be found in Razali and Wah (2011).

When it comes to non-normal multivariate distributions and copulas, few

such tests existed until recently. In 1979, Efron (1979) introduced the re-

sampling bootstrap technique, which takes advantage of the ever growing

available computing power. A derivative of this technique is parametric boot-

strapping, which makes goodness-of-fit testing possible with any multivariate

distributions.

Unfortunately, copulas have often been used prior to the existence of

proper goodness-of-fit tests, that is, without properly testing whether the

data being modeled belongs to the chosen copula or not in a statistically

significant manner. One of the first instance of copulas goodness-of-fit test

for multivariate time series can be found in Chen and Fan (2006), however

this test can only rank the appropriateness of different copulas relative to

each other, not in a statistically absolute sense. Fortunately, Genest et al.

(2009b) and Rémillard (2010) applied the parametric bootstrapping tech-

nique to copulas allowing one to do so in an intuitive, powerful manner. Its

use with copulas evolved naturally from previous applications to univariate

and multivariate distributions. The application of this test prevents the use

of a copula where inappropriate.

2.5 Risk measures

Quantitative risk management requires the selection of existing risk mea-

sures or the definition of new ones. In order to minimize risk, one first has
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to define what risk is, and risk measures translate the vague concept of risk

into measurable quantities. This work uses three different measures of risk:

the tracking error, the Value-at-Risk (VaR) and Tail Conditional Expecta-

tion (TCE).

Tracking error is simply the absolute divergence of a portfolio with its

benchmark or, more specifically, the absolute difference between the returns

of the portfolio of interest and those of an arbitrary chosen benchmark. It is

almost exclusively used when the explicit objective of a portfolio is to track

an arbitrary predetermined benchmark.

VaR is perhaps the most widely measure of financial risk. In financial

terms, VaR is the threshold loss such that the probability that the return

on the portfolio over a predetermined time horizon is under this value for

the chosen probability level. In statistical terms, VaR is the negative of an

arbitrary quantile of the distribution of returns of a given portfolio over an

arbitrary time horizon. Let Qα(X), α ∈ [0, 1], be a quantile of X such that

P (X ≤ Qα(X)) = α. VaR is then defined by

VaRα(X) = −Qα(X).

The mathematics of VaR were first defined by Roy (1952) and Markowitz

(1952) in the context of equity portfolio construction. However, the term was

popularized in the 1990s by RiskMetrics, then a group within J.P. Morgan.

An often mentioned criticism of VaR is that it does not take into account the

characteristic of the distribution of losses beyond the chosen threshold. De-

spite this shortcoming, VaR has arguably become the most used risk measure

in market finance.

As time passes and with the recurrence of financial crises, the field of

risk management matures and gains in sophistication. Artzner et al. (1999)

formulated the four conditions that a risk measure must meet to be coherent.

These are monotonicity, sub-additivity, positive homogeneity and transla-
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tion invariance (refer to appendix A for a formal description). VaR does not

satisfy the sub-additivity criteria, which leads investors using it to underdi-

versify. As an alternative, the authors propose TCE, a measure satisfying

the four criterion. Simply put, TCE is the expected loss incurred in the α%

worst cases of the portfolio:

TCEα(X) = E[X|X ≤ Qα(X)].

This measure captures the shape of the loss distribution in the tails, therefore

accounting for adverse extreme outliers (“black swans”).

2.6 Similar constrained optimization problems

The tools developed in this work can also be applied to related problems:

balancing tracking error and transaction costs (see Chan and Ramkumar

(2011)), foreign currency risk and hedging costs (see Campbell et al. (2010)),

sales and marketing costs, etc. In the case of balancing foreign exchange risk

on posted collateral and the costs associated to margin calls, global investors

have historically used heuristics or more sophisticated policies to mitigate

the two inconveniences. For literature on the subject, one can refer to Miller

and Orr (1966), Higson et al. (2010) for solutions to the similar problem of

optimal inventory management, to Cotter (2001), Lam et al. (2004), Kao and

Lin (2010), Longin (1999) for solutions to the problem of setting the margins

requirements by a central counterparties (e.g. clearing houses) and to Fujii

et al. (2010) for an example where the market participant has the choice of

collateral currency.

3 Copula-based multivariate dynamic models

In order to develop a cash management strategy which strikes an optimal

balance between the opposing goals of minimizing foreign exchange risk and
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minimizing the cost associated with margin calls, it is first necessary to choose

a model of underlying asset prices and exchange rates movements. It is now

widely accepted that proper modeling is robust to volatility clustering and

excess kurtosis. That is, the volatility in financial time series is not constant

across time but periods of relatively high volatility tend to cluster together.

Furthermore, the probability of extreme events in the joint distributions of

multivariate financial time series innovations is higher than predicted under

a Gaussian model. The latter phenomenon is also known as “fat tails”. Refer

to Pagan (1996), Cont (2001) for evidence of stylized facts of financial time

series and more precisely to Vries and Leuven (1994), Guillaume et al. (1997)

for evidence of such facts in exchange rate returns.

We propose the use of a dynamic multivariate discrete stochastic volatil-

ity model with a copula-based dependence structure. This model has been

successfully applied to exchange rate returns in the literature (Chen and Fan,

2006, Rémillard, 2010, Patton, 2006). The multivariate time series Xt, t ≥ 1

has D dimensions and is given by

Xi,t = µt(θi) + ht(θi)
1/2 εi,t, (1)

where i = 1, . . . , D and innovations ε1,t, . . . , εD,t are i.i.d. with copula distri-

bution function C.

We know from Sklar theorem (Sklar, 1959) that, given that K is contin-

uous, there exists a unique copula C such that

K(x1, . . . , xD) = Cθ(F1(x1), . . . , FD(xD)), (2)

where the Fi are the cumulative distribution functions of the marginal dis-

tributions Xi and Cθ is the copula function with parameter(s) θ.

An interesting property of copulas is that the dependence between the

variables is encapsulated in the copula function and is independent of the
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marginal distribution functions chosen.

We model the marginal distributions of the financial time series with

AR(k)-GARCH(p,q) models (Bollerslev, 1986). We chose this model be-

cause we believe it offers the best equilibrium between sophistication and

parsimony. Their formulation is given by

µt(θi) = κµ,i +
k∑
j=1

γi,j xi,t−j, (3)

and

ht(θi) = κh,i +

q∑
j=1

αi,j ε
2
i,t−j +

p∑
j=1

βi,j ht−j(θi). (4)

We tested the goodness-of-fit of common elliptical (Gaussian and Student)

and Archimedean (Clayton, Frank, Gumbel) copulas on the standardized

residuals of the AR-GARCH margins processes emerging from the dataset

described in section 5.1. Their distributions are given below.

The Gaussian copula with dependence parameter matrix Σ is given by

CΣ(u) = ΦΣ

(
Φ−1(u1), . . . Φ−1(uD)

)
, (5)

where Φ−1(·) is the inverse cumulative distribution function of a standard

normal, ΦΣ(·) is the joint cumulative distribution function of a multivariate

normal distribution with zero means and covariance matrix Σ. Its density is

given by

cΣ(u) = |Σ|−
1
2 exp

−1

2


Φ−1(u1)

...

Φ−1(uD)


T

(Σ−1 − I)


Φ−1(u1)

...

Φ−1(uD)


 .
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The D-dimensional Student copula distribution as given by (Demarta and

McNeil, 2005):

CΣ,ν(u) =

∫ t−1
ν (u1)

−∞
. . .

∫ t−1
ν (uD)

−∞

Γ
(
ν+D

2

)
Γ
(
ν
2

)√
(πν)D|Σ|

(
1 +

x′Σ−1x

ν

)− ν+D
2

dx,

(6)

where t−1
ν () is the quantile function of a standard univariate Student distri-

bution with ν degrees of freedom. Its density can be derived to be

cΣ,ν(u) =
fΣ,ν(t

−1
ν (u1), . . . , t−1

ν (uD))∏D
i=1 fν(t

−1
ν (ui))

, (7)

where fΣ,ν is the joint density of a D-dimensional random vector from a

multivariate Student distribution with ν degrees of freedom and covariance

matrix Σ and fν is the density of a univariate Student distribution with ν

degrees of freedom. This copula not only captures excess kurtosis but was

also shown to accurately model the dependence between financial time series

in recent literature (Chen and Fan, 2006, Fischer et al., 2009).

Archimedean copulas are characterized by a single dependence parameter

and the following representation:

C(u1, u2, . . . , uD) = ψ(ψ−1(u1) + . . .+ ψ−1(uD)),

where ψ(·) is the generator of the copula. The generators for the three

Archimedean copulas tested in the applied section of this thesis are displayed

in table 1.

Family Generator ψ(t) Parameter G-distribution
Clayton (1 + t)−1/θ 0 < θ <∞ Gamma(1/θ, 1)
Frank − 1

θ log(1− (1− e−θ)e−t) 0 < θ <∞ Log series with α = (1− e−θ)
Gumbel exp(−t1/θ) 1 ≤ θ <∞ Stable(1/θ, 1, (cos(π/(2θ)))θ, 0)

Table 1: Generators of selected Archimedean copulas. G-distribution refers
to the distribution that has as Laplace transform the generator ψ(·).
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The parameters of the marginal processes and dependence copula can

be estimated with the maximum likelihood estimation (MLE) method. An

alternative two-stage estimation method for the Student copula proposed by

McNeil et al. (2005) is also described in Appendix B.

Chen and Fan (2006) showed the important result that applying the cop-

ula dependence structure from equation (2) to the innovations εi,t from equa-

tion (1) rather than to the realizations Xi,t yields the same results in terms

of estimation of the parameters of the copula. Rémillard (2010) showed that

the empirical copula and most dependence measures are unaffected as well.

3.1 Goodness-of-fit tests

Responsible modeling requires proper testing as to whether the modeled data

do in fact belong to the chosen model. When it comes to dynamic models,

many authors either omit goodness-of-fit (GOF) tests, or use only relative

tests that ranks the fit of different models. The problem with the latter

approach is that picking the model with the best fit out of a set of incorrect

models will still yield an incorrect model. Fortunately, absolute GOF tests

for dynamic models based on parametric bootstrapping have recently been

made available in the literature (Genest et al., 2009b, Rémillard, 2011).

The null hypothesis of the GOF test for a general dynamic univariate

process X can be stated as follows:

H0: The conditional distribution of Xt given Ft−1 is Ft,θ, for some

parameter θ ⊆ O.

Under the null hypothesis, it can be shown that U1 = F1,θ(X1), . . . , UT =

FT,θ are i.i.d. uniform variates on (0, 1). A general recipe to use parametric

bootstrapping for the hypothesis is as follow:

(i) Estimate the parameter θ on the process X1, . . . , XT by θ̂.
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(ii) Compute a distance statistic ST between the uniform distribution func-

tion and the distribution function FT of the pseudo-observations u1 =

F1,θ̂(X1), . . . , uT = FT,θ̂(XT ). A good candidate is the Cramér-von

Mises criterion:

ST =

∫ 1

0

{FT (u)− u}2 du.

(iii) Generate a large number k = 1, . . . , N of random sequences X
(k)
1 , . . .,

X
(k)
T from the dynamic model with parameters θ̂.

(iv) For each k from step (iii):

(a) Estimate the parameter θ by θ(k) for the sample X
(k)
1 , . . . , X

(k)
T .

(b) Compute the same distance statistic S
(k)
T as in step (ii) for the

sample X
(k)
1 , . . . , X

(k)
T .

(v) The p-value of the test is approximated by the fraction of values S
(k)
T

greater than the ST computed in step (ii):

p =
1

N

N∑
k=1

1
(
S

(k)
T > ST

)
.

As for the null hypothesis of the GOF test of a copula-based multivariate

dynamic model, it is of the form

H0: The copula associated with the innovations εt = (ε1,t, . . . , εD,t),

t = 1, . . . , T , belongs to a parametric family CΘ.

The procedure for the parametric bootstrap is:

(i) Estimate the parameters of each univariate marginal process and com-

pute the associated standardized residuals et = (e1,t, . . . , eD,t), t =

1, . . . , T .
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(ii) Compute the normalized ranks ui,t, i = 1, . . . , D, t = 1, . . . , T of

the standardized residuals resulting from step (i):

ui,t =
1

T + 1

T∑
k=1

1(ei,t ≥ ei,k).

(iii) Estimate the dependence parameter Θ of the parametric copula by Θ̂,

using the normalized ranks resulting from step (ii).

(iv) Compute a distance statistic ST between the empirical copula CT of the

normalized ranks and the parametric copula CΘ̂, where the empirical

copula is given by

CT (x1, . . . , xD) =
1

T

T∑
t=1

D∏
i=1

1(ui,t ≤ xi).

A good candidate for ST is the Cramér-von Mises statistic

ST =
1

T

T∑
t=1

{CT (u1,t, . . . , uD,t)− Cθ(u1,t, . . . , uD,t)}2 .

(v) For some large integer N , repeat the following steps for each k in

[1, . . . , N ]:

(a) Generate random vectors U
(k)
1 , . . . ,U

(k)
T with distribution CΘ̂. Most

existing statistical packages does not currently support the gener-

ation of multivariate Archimedean copulas random variables; see

Appendix D for correct methodology.

(b) Repeat steps (ii) to (iv) on trajectories generated in (a) to obtain

S
(k)
T , k = 1, . . . , N .
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(vi) The approximate p-value for the test is given by

p =
1

N

N∑
k=1

1
(
S

(k)
T > ST

)
.

Using the above procedure to test for the goodness-of-fit of elliptical cop-

ulas can prove tedious because there exists no explicit form for their cumu-

lative distribution functions and Monte Carlo integration of equations (5) or

(6) requires excessive computational resources for any non-small number of

dimensions. An ingenious alternative is described by Genest et al. (2009b).

The method uses a critical property of Rosenblatt’s probability integral trans-

form1 T (Rosenblatt, 1952), namely that a multivariate vector U ∈ [0, 1]

has distribution function C if and only if the Rosenblatt transform of U has

the independence copula as distribution function C⊥:

U ∼ C ⇔ T (U) ∼ C⊥

The algorithm of the parametric bootstrap test applied to the elliptical cop-

ulas is as follow:

1. Estimate the parameters of each univariate marginal process and com-

pute the associated standardized residuals et = (e1,t, . . . , eD,t), t =

1, . . . , T .

2. Compute the normalized ranks ut = (u1,t, . . . , uD,t), where for i =

1, . . . , D, and t = 1, . . . , T ,

ui,t =
1

T + 1

T∑
k=1

1(ei,t ≥ ei,k).

1Refer to Appendix C for the definition of the transformation.
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3. Estimate the dependence parameter Θ of the parametric copula by Θ̂,

using the normalized ranks resulting from step (2).

4. Compute Rosenblatt transforms vt = (v1,t, . . . , vD,t) = TΘ̂(ut), t =

1, . . . , T , as shown in Appendix C.

5. Compute a distance statistic ST between the empirical copula CT of the

Rosenblatt transforms and the independence copula C⊥. The empirical

copula is given by

CT (x1, . . . , xD) =
1

T

T∑
t=1

D∏
i=1

1(vi,t ≤ xi).

The Cramér-von Mises criterion in this case is given by:

ST = T

∫
[0,1]D
{FT (v)− C⊥(v)}2dv

=
T

3D
− 1

2D−1

T∑
t=1

D∏
i=1

(
1− v2

i,t

)
+

1

T

T∑
t=1

T∑
k=1

D∏
i=1

(1−max(vi,t, vi,k)).

6. For some large integer N , repeat the following steps for each k in

[1, . . . , N ]:

(a) Generate random vectors U
(k)
1 , . . . ,U

(k)
T with distribution CΘ̂.

(b) Repeat steps (2) to (4) on trajectories generated in (a) to obtain

S
(k)
T , k = 1, . . . , N .

7. The approximate p-value for the test is given by

p =
1

N

N∑
k=1

1
(
S

(k)
T > ST

)
.
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4 Constrained optimization

One difficulty in the problem at hand is to find a way to balance foreign

exchange risk on one hand and the costs associated to margin calls on the

other. This exercise proves difficult given that these two forces have different

units. We posited that the costs associated to margin calls are an increas-

ing function of their frequency, and chose to minimize the foreign exchange

risk on the posted collateral conditionally to an arbitrary upper bound on

the probability of a margin call. Chan and Ramkumar (2011) offers an el-

egant framework to a problem similar in nature to ours. Their goal is to

balance trading costs associated with the rebalancing of a given portfolio

and tracking error. Their solution is to minimize the trading costs subject

to an imposed upper ceiling on the forecasted tracking error. Our objective

function described below is inspired from this approach.

We formulate the issue at hand as a one-period constrained optimization

problem. The first step consists in choosing a risk measure to assess the

foreign exchange risk. This work uses the expected tracking error (ETE),

the Value-at-Risk (VaR) and the Tail Conditional Expectation (TCE). The

method consists in finding the cash balances that minimize the (foreign ex-

change) risk measure subject to an arbitrary tolerance for the probability of

a margin call. A mathematical formulation of the optimization objective is

min
λ1,t,...,λD,t

Rα

(
D∑
i=1

(
λi,t − λ∗i,t

)
· Yi,t+1

)
, (8)

where

Rα(X) =


E [|X|] for expected tracking error,

−Qα(X) for Value-at-Risk,

−E[X|X ≤ Qα(X)] for Tail Conditional Expectation.

(9)
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In words, equation (8) finds the collateral in each currency λ1,t, . . . , λD,t above

the minimum margins requirements imposed by the counterparty λ∗1,t, . . .,

λ∗D,t that minimizes one of the risk measures Rα(·) described in equation (9)

against the changes in the exchange rates Y1,t+1, . . ., YD,t+1. The first con-

straint of the optimization is

λ∗i,t ≤ λi,t ≤ ∞, i = 1, . . . , D,

that is, each posted collateral λi,t must be between the minimum margin

requirement λ∗i,t and infinity. The second constraint of the optimization is

P

((
D∏
i=1

1
(
λi,t + PnLi,t+1 ≥ λ∗i,t

))
= 0

)
≤ Ptol,

where

PnLi,t+1 =

ni,t∑
j=1

iωj,t · iWj,t+1.

Here, Ptol is an arbitrary tolerance for the probability of a margin call, ni,t

is the number of different assets of the ith currency held, iωj,t is the number

of the jth asset of the ith currency held and iWj,t+1 is the change in the jth

asset of the ith currency between time t and t+ 1. To make things clear, the

only random variables in the model are the Yi,t and the iWj,t+1. Furthermore,

these random variables are not independent of each other. That is, the spot

exchange rates are not independent of the futures contracts prices and vice

versa.

The proposed methodology for the optimization is as follow: First, uni-

variate process are fitted to each time-series of log returns of exchange rates

and future prices. This step often involves the calibration of parameters with

the maximum likelihood estimation method. Second, goodness-of-fit tests of
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the selected model are performed on each time-series. If the test result is

negative for a given time-series of log returns, then another univariate model

is chosen for that specific time-series and the process is started anew from the

first step. Again, different time-series can have different univariate models.

Third, a parametric multivariate copula is fitted to the normalized ranks of

the standardized residuals obtained in the first step. Fourth, a goodness-

of-fit test as put forward in section 3.1 is performed on the copula-based

dynamic model with respect to the sample of time-series. If the test result

is negative, another copula is chosen and the process is restarted from the

third step. At this point, we know that the model is appropriate for the data

(at least in the statistical sense of the term). Here is where Monte Carlo

methods come into play. Fifth, a large number N of D-dimensional U [0, 1]

realizations is drawn from the parametric copula, were D is the number of

time-series modeled. Most modern statistical software packages provide tools

to perform this step for elliptical copulas. Methods used to generate random

drawings from selected multivariate Archimedean copulas are found in Ap-

pendix D. Sixth, the simulated standardized residuals of each univariate

process are obtained by entering the uniform drawings from the previous

step into their respective inverse cumulative distribution function. Seventh,

the simulated realizations of the log returns are obtained by combining of

the random standardized residuals and the computed deterministic part of

each univariate process. The final step consists in using constrained numer-

ical optimization to find the values of the control variables that optimize

the objective function while satisfying the constraint function. For us, the

control variables are the amount of collateral held in each currency, the ob-

jective function is the risk measure (tracking error, Var and TCE) and the

constraint function is the probability of a margin call. Notice that both the

objective and constraint are functions of the control variables (the amount of

collateral held in each foreign currency) and the simulated realizations from

the Monte Carlo simulation (the log returns of exchange rates and future
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prices). The objective and constraint functions being nonlinear, we obtained

the best results using the interior point optimization method, closely followed

by the active set algorithm.

5 Backtesting

5.1 Dataset

In order to demonstrate the validity of the model proposed in the previous

sections, we compare its performance over a data set against alternative

strategies described in Section 5.2. The data set consists of daily holdings

of five futures contracts denominated in non-USD currencies from November

2003 to March 2012, for a total of 1941 observations. Figure 3 exhibits

the future contracts prices and the number of each contract held at any

moment. These holdings are exogeneous to our control; our aim is to find

the optimal cash margins given certain holdings of contracts denominated in

foreign currencies. Figure 4 displays the exchange rates of the currencies of

the futures contracts. The reader can notice the increase in volatility for both

the future prices and exchange rates during the banking crisis of 2008-2009,

with sharp declines of the Euro, the Australian and Canadian dollars relative

to the US dollar. The Japanese Yen, often considered a refuge currency,

gained during this difficult period.

A graphical test proposed by Gnanadesikan (1977) to test joint normality

was run on the data. If X = X1, . . . , Xd is from a multivariate Gaussian

distribution, then

(Xi − X̄)′ Σ (Xi − X̄), i = 1, . . . , N

where Σ is the covariance matrix of X have a χ2
d-distribution. A QQ plot can

then be used as a quick, “litmus” test of joint normality, as seen in Figure (5).

Evidently joint normality has to be rejected.
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Figure 3: Futures contracts prices and holdings
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Figure 4: Exchange rates of interest
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Figure 5: Graphical test of joint normality - QQ plot
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5.2 Alternative strategies

In order to access the validity of our model, we backtested it on the dataset

presented in the previous section. We also backtested two other strategies

on the same dataset to contrast their performances.

The first, “naive” strategy simply consists in keeping twice the compul-

sory collateral in the cash accounts at all times. That is, the collateral

posted in the accounts of the different currencies is brought back to twice

the mandatory minimum every day according to that day’s movements in

futures contracts prices and holdings.

The second strategy consists in modeling the returns of the futures con-

tracts and exchange rates with a static multivariate normal distribution as in

the Markowitz framework. Doing so allows us to gauge the accuracy added

by factoring in stochastic volatility and higher co-moments as done by the

model proposed in Section 3.

5.3 Calibration

A buffer of 500 business days (approximately 2 years) is used at the beginning

of the sample to calibrate the marginal processes and the dependence copula

parameters. The means and covariance matrix for the static multivariate

strategy is also computed with this buffer. Both models are recalibrated

every day using all data from the beginning of the sample (i.e. with an

extending window).

The tolerance for the probability of a margin call Ptol was arbitrarily set

to 0.05, which was also the level chosen for the quantile α of the VaR and

TCE measures.

Once at the beginning and then every 250 business days, with an ex-

tending window, the goodness-of-fit tests introduced in Section 3.1 were per-

formed on both the marginal processes and the dependence copulas. The

results of the goodness-of-fit tests for the AR(1)-GARCH(1,1) with Gaussian
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residuals, AR(2)-GARCH(2,2) with Gaussian residuals, AR(1)-GARCH(1,1)

with Student residuals and different dependence copulas are displayed in ta-

bles 2, 3, 4 and 5 respectively. Clearly, a combination of AR(1)-GARCH(1,1)

with Student residuals and the Student copula is the only appropriate model

from a statistical point of view for the time-series at hand.

5.4 Results

Figure 6 shows the difference between the optimal posted collateral if the

time series are modeled with the copula-based multivariate model or with a

static multivariate Gaussian distribution, for each currency. The units on the

y-axis are percentage of minimum margin requirements. The optimization

objective was to maximize the Tail Conditional Expectation of the value

of the posted collateral in USD. Notice the supplementary collateral posted

during the 2008-2009 crisis.

Figure 7 displays the daily change in the value of the posted collateral

in USD for each of the three strategies. The optimization objective was

to minimize the tracking error. Notice the increased volatility for the year

following the collapse of Lehman Brothers in September 2008 that marked the

start of the 2008-2009 financial crisis, and the large drawdown that occurred

in May 2010 “flash crash”. Figure 8 displays an histogram of the daily

change in the value of the posted collateral in USD for the static multivariate

Gaussian model and the copula-based multivariate dynamic model strategies.

Note the slightly higher unwanted kurtosis for the Gaussian model.
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Nov03 till Feb06 Mar07 Apr08 Apr09 May10 Jun11
Japanese 10 Yr Future Mini 0.02 0.07 0.00 0.00 0.00 0.00
Can 10 Yr Future 0.10 0.52 0.62 0.02 0.02 0.00
Euro Bund Future 0.00 0.00 0.00 0.00 0.00 0.00
AUD 10 Yr Future 0.00 0.00 0.00 0.00 0.00 0.00
AU 1-3 year Future 0.05 0.05 0.00 0.00 0.00 0.00
AUD/USD 0.30 0.14 0.00 0.00 0.00 0.00
CAD/USD 0.09 0.23 0.08 0.00 0.00 0.00
EUR/USD 0.00 0.00 0.00 0.00 0.00 0.00
JPY/USD 0.05 0.01 0.00 0.00 0.00 0.00

Table 2: p-values from the goodness-of-fit tests of AR(1)-GARCH(1,1) with
Gaussian residuals on the marginal processes. The number of bootstrapped
samples is N = 100.

Nov03 till Feb06 Mar07 Apr08 Apr09 May10 Jun11
Japanese 10 Yr Future Mini 0.06 0.08 0.01 0.00 0.00 0.00
Can 10 Yr Future 0.12 0.45 0.46 0.02 0.00 0.00
Euro Bund Future 0.00 0.01 0.00 0.00 0.00 0.00
AUD 10 Yr Future 0.00 0.01 0.00 0.00 0.00 0.00
AU 1-3 year Future 0.06 0.05 0.00 0.00 0.00 0.00
AUD/USD 0.36 0.14 0.00 0.00 0.00 0.00
CAD/USD 0.08 0.36 0.04 0.00 0.00 0.00
EUR/USD 0.01 0.01 0.00 0.00 0.01 0.00
JPY/USD 0.09 0.03 0.00 0.00 0.00 0.00

Table 3: p-values from the goodness-of-fit tests of AR(2)-GARCH(2,2) with
Gaussian residuals on the marginal processes. The number of bootstrapped
samples is N = 100

Nov03 till Feb06 Mar07 Apr08 Apr09 May10 Jun11
Japanese 10 Yr Future Mini 0.42 0.64 0.59 0.50 0.56 0.50
Can 10 Yr Future 0.51 0.79 0.75 0.72 0.69 0.79
Euro Bund Future 0.42 0.47 0.37 0.32 0.37 0.41
AUD 10 Yr Future 0.62 0.52 0.56 0.56 0.58 0.52
AU 1-3 year Future 0.53 0.61 0.53 0.52 0.50 0.49
AUD/USD 0.67 0.63 0.51 0.48 0.45 0.45
CAD/USD 0.53 0.68 0.69 0.50 0.60 0.45
EUR/USD 0.39 0.47 0.42 0.34 0.54 0.54
JPY/USD 0.45 0.64 0.53 0.64 0.62 0.48

Table 4: p-values from the goodness-of-fit tests of AR(1)-GARCH(1,1) with
Student residuals on the marginal processes. The number of bootstrapped
samples is N = 100.
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Figure 6: Difference between the optimal posted collateral if the time series
are modeled with the copula-based multivariate model or with a static mul-
tivariate Gaussian distribution, for each currency. The units on the y-axis
are percentage of minimum margin requirements.The optimization objective
was to maximize the Tail Conditional Expectation of the value of the posted
collateral.
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Figure 7: Daily changes in the value of the posted collateral in USD due
to changes in the exchange rates for the three strategies. The optimization
objective was to minimize the tracking error.
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Figure 8: Frequency of daily tracking errors caused by exchange rates move-
ments for the multivariate Gaussian and the copula-based multivariate dy-
namic models. The optimization objective was to minimize the tracking
error.
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Nov03 till Feb06 Mar07 Apr08 Apr09 May10 Jun11
MV Gaussian 0.00 0.00 0.00 0.00 0.00 0.00
Gaussian copula 0.10 0.02 0.02 0.01 0.00 0.00
Student copula 0.59 0.28 0.38 0.21 0.09 0.19
Clayton copula 0.00 0.00 0.00 0.00 0.00 0.00
Frank copula 0.00 0.00 0.00 0.00 0.00 0.00
Gumbel copula 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: p-values from the goodness-of-fit tests of copulas. The marginal
processes were modeled with AR(1)-GARCH(1,1) with Student residuals.
The number of bootstrapped samples is N = 100.

Tables 6, 7 and 8 exhibit the results of the backtests over the entire

sample for the three risk measures of interest. The copula-based multivariate

dynamic approach is the only one that did not breach the imposed upper limit

on the frequency of margin calls, while maintaining similar risk measures

realizations.

The quality of a risk management strategy is known during rough, volatile

markets environments. We thus observed how our proposed model fared

during the 2008-2009 financial crisis. We chose the period form March 17th

2008, the fall of Bear Stearns, followed not long after by Lehman Brothers

and American Insurance Group (AIG), to February 17th 2009, when the

American Recovery and Reinvestment Act was passed. As we now know this

date did not mark the end of the crisis, but it does represent a milestone

when volatility in the futures and exchange rates markets declined. Tables 9,

10 and 11 exhibit the results of the backtests over this critical period. During

the crisis, the copula-based multivariate dynamic model clearly outperformed

the two other strategies. Though it did breach the limits on the frequency of

margin calls, it did so in a way much less drastic than the naive and Gaussian

strategies, while realizing similar risk statistics.
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Naive MV Gaussian Copula-based MV
strategy model dynamic model

Avg. daily tracking error
0.54 0.55 0.55

(% collateral)
Number of margin calls

104 94 71
(out of 1440 days)
Realized frequency

0.07 0.07 0.05
of margin call

Table 6: Results of the backtests for the three strategies for the complete
dataset period (November 2003 to March 2012) when the optimization ob-
jective is set to minimize the tracking error.

Naive MV Gaussian Copula-based MV
strategy model dynamic model

Realized daily VaR
1.19 1.21 1.24

(% collateral)
Number of margin calls

104 105 78
(out of 1440 days)
Realized frequency

0.07 0.07 0.05
of margin call

Table 7: Results of the backtests for the three strategies for the complete
dataset period (November 2003 to March 2012) when the optimization ob-
jective is set to minimize the Value-at-Risk.

Naive MV Gaussian Copula-based MV
strategy model dynamic model

Avg. daily tail loss
-1.83 -1.85 -1.85

(% collateral)
Number of margin calls

104 100 71
(out of 1440 days)
Realized frequency

0.07 0.07 0.05
of margin call

Table 8: Results of the backtests for the three strategies for the complete
dataset period (November 2003 to March 2012) when the optimization ob-
jective is set to maximize the Tail Conditional Expectation
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Naive MV Gaussian Copula-based MV
strategy model dynamic model

Avg. daily tracking error
0.75 0.77 0.79

(% collateral)
Number of margin calls

38 45 16
(out of 220 days)
Realized frequency

0.17 0.20 0.07
of margin call

Table 9: Results of the backtests for the three strategies for the crisis sub-
period (March 2008 to February 2009) when the optimization objective is set
to minimize the tracking error.

Naive MV Gaussian Copula-based MV
strategy model dynamic model

Realized daily VaR
2.09 2.05 2.11

(% collateral)
Number of margin calls

38 46 18
(out of 220 days)
Realized frequency

0.17 0.21 0.08
of margin call

Table 10: Results of the backtests for the three strategies for the crisis sub-
period (March 2008 to February 2009) when the optimization objective is set
to minimize the Value-at-Risk.

Naive MV Gaussian Copula-based MV
strategy model dynamic model

Avg. daily tail loss
-2.81 -2.69 -2.78

(% collateral)
Number of margin calls

38 45 18
(out of 220 days)
Realized frequency

0.17 0.20 0.08
of margin call

Table 11: Results of the backtests for the three strategies for the crisis sub-
period (March 2008 to February 2009) when the optimization objective is set
to maximize the Tail Conditional Expectation.
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6 Conclusion

We met three objectives in this work; first, we proposed a model that bet-

ter fits high-dimensional multivariate financial time-series than the classical

Gaussian model with the copula-based multivariate dynamic model. Sec-

ond, we used recent advances in absolute goodness-of-fit tests to show the

appropriateness of the chosen model from a statistical point of view. Third,

we used the proposed model to solve a problem encountered by managers

whose portfolio contains multiple assets on different exchanges and/or in dif-

ferent currencies, that is, how to balance the opposing nuisances of margin

calls and foreign exchange risk on collateral posted in a currency different

from the participant’s benchmark currency. The solution lies in calibrating

the model proposed in this work (or another robust model encapsulating

stochastic volatility, excess kurtosis and higher co-moments) to the financial

time series of interest. Then the desired constrained optimization is solved

using Monte Carlo methods.

Two potential avenues of future study are improvements in model so-

phistication and the development of rigorous models for problems with high

numbers of random variables. On the first front, models including time-

varying copula parameters, regime-switching and/or correlation asymmetry

may yield a better fit to financial time series. On the second front, portfolios

often have a large number of assets in many different currencies, however the

use of copula becomes exponentially harder when the number of dimension

is above 10. Methods for dimensionality reduction that conserve higher mo-

ments in the factors or efficiency improvements in algorithms for copula use

would help toward accomplishing this objective.
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A Risk measure coherence

Let G be the set of all risks, and ρ be a mapping of G into R. ρ is said to be

a coherent risk measure if it satisfies the following conditions (Artzner et al.,

1999):

(i) Monotonicity: for all X and Y ∈ G and X ≤ Y , ρ(Y ) ≤ ρ(X)

(ii) Sub-additivity: for all X and Y ∈ G, ρ(X + Y ) ≤ ρ(X) + ρ(Y )

(iii) Positive homogeneity: for all λ ∈ R+ and X ∈ G, ρ(λX) = λρ(X)

(iv) Translation invariance: for all X ∈ G and all α ∈ R, ρ(X + α) =

ρ(X)− α

B Parameters estimation for Student copula

Estimating the parameters of the t copula can be computationally tedious.

McNeil et al. (2005) offers an efficient hybrid two-stages method. In the first

stage, estimate the ith-jth component of the correlation matrix Σ by

Σij = sin
(πτij

2

)
where τij is Kendall tau rank correlation coefficient between time series i and

j.

If Σ is not positive-semidefinite, it can be rescaled by performing the

following steps (Rousseeuw and Molenberghs, 1993):

(i) Replace negative entries in the diagonal eigenvalues matrix D of Σ by

zero.

(ii) Set Σ̂ = V D V > where V is a matrix with the eigenvectors of Σ as

columns and D is the eigenvalues described in step (i).
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(iii) Compute scaling column vector ~t where ~ti = Σ̂
− 1

2
i,i .

(iv) Compute scaling matrix T = ~t ~t >.

(v) Set Σi,j = Σ̂i,j · Ti,j.

This method is sometimes dubbed Spectral Decomposition in the literature.

In the second stage, the number of degrees of freedom ν can be estimated

using the MLE method by maximizing

L(ν) =
T∑
t=1

log(cν,Σ(ut)) (10)

where cν,Σ is the density given by equation (7) and ut are the normalized

ranks of the D-dimensional innovations of the tth draw.

C Rosenblatt’s transform

Rosenblatt (1952) introduces the transformation of a continuous D-variate

distribution C(u1, . . . , uD), ui ∈ (0, 1) into the uniform distribution on the

D-dimensional hypercube.

Let U = (U1, . . . , UD) be a random vector with distribution function

C(U1 = u1, . . . , U2 = uD). Consider the transformation T (u1, . . . , uD) =

(e1, . . . , eD) given by e1 = u1 and, for i = 2, . . . , D,

ei =

∂i−1

∂u1...∂ui−1
C(u1, . . . , ui, 1, . . . , 1)

∂i−1

∂u1...∂ui−1
C(u1, . . . , ui−1, 1, . . . , 1)

Algorithms 1 and 2 show how to compute the Rosenblatt transforms of a

sample of quantiles for the Gaussian and Student copulas respectively given

the parameter(s) of the elliptical copula. Φ−1(·) is the inverse cumulative dis-

tribution function of an univariate standard normal, Φ(·) is the cumulative
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distribution function of an univariate standard normal, F−1
ν (·) is the inverse

cumulative distribution function of an univariate Student distribution with

mean 0, variance 1 and number of degrees of freedom ν, diag(·) is an oper-

ator that returns a column vector composed out of the diagonal entries of

a square matrix and Fν(·) is the cumulative distribution function of an uni-

variate Student distribution with mean 0, variance 1 and number of degrees

of freedom ν.

Algorithm 1 Compute Rosenblatt transforms for Gaussian copula CΣ

Require: quantile vectors u1, . . . ,uD, D ×D covariance matrix Σ
e1 ← u1

for i = 2 to D do
Σi×i ← i× i covariance submatrix of the ith first elements
~c1×i−1 ← vector of covariances between elements i and 1, . . . , i− 1
B ← ~c1×i−1 · Σ−1

i×i
Xn×i−1 ← Φ−1(u1, . . . ,ui−1)
~yn×1 ← Φ−1(ui)
Ω← 1−B Σi×i B

ᵀ

µ← Xn×i−1 ×Bᵀ

ei ← Φ((~yn×1 − µ)/
√

Ω)
end for
return e1, . . . , eD
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Algorithm 2 Compute Rosenblatt transforms for Student copula CΣ,ν

Require: quantile vectors u1, . . . ,uD, D×D covariance matrix Σ, number
of degrees of freedom ν
e1 ← u1

for i = 2 to D do
Σi×i ← i× i covariance submatrix of the ith first elements
~c1×i−1 ← vector of covariances between elements i and 1, . . . , i− 1
B ← ~c1×i−1 · · ·Σ−1

i×i
Xn×i−1 ← F−1

ν (u1, . . . ,ui−1)
~yn×1 ← F−1

ν (ui)
Ω← 1−B Σi×i B

ᵀ

µ← Xn×i−1 B
ᵀ

Z ← diag(ν +Xn×i−1 ~c
−1
1×i−1 X

ᵀ
n×i−1)/(ν + i− 1)

ei ← Fν((~yn×1 − µ)/
√

Ω Z)
end for
return e1, . . . , eD

D Multivariate Archimedean copulas random

number generation

Generation of multivariate Archimedean copulas has historically been diffi-

cult, mainly because the most commonly used method, based on conditional

distributions, requires differentiation of the copula’s cumulative distribution

function for each dimensions of the problem. Marshall and Olkin (1988)

proposes an approach based on the Laplace transform that circumvents the

differentiation issue. The procedure below outlines the steps needed to be

followed in order to generate multivariate Archimedean copulas random vari-

ables according to the Marshall-Olkin method (Melchiori, 2006):

(i) Simulate D independent uniform variables u1, . . . , uD ∼ U [0, 1]

(ii) Simulate a variable Y with distribution functionG such that the Laplace

transform of G is the copula’s generator (the distributions G for each

Archimedean copulas considered is given in Table 1 while techniques
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producing random numbers for these distributions are proposed below)

(iii) Set si = − log(ui)/Y for i = 1, . . . , D

(iv) Set Xi = ψ−1(si) for i = 1, . . . , D

X1, . . . , XD belongs to the chosen Archimedean copula.

Stable random variables Stable(α, β, γ, δ) can be generated with the fol-

lowing recipe:

(i) Simulate an uniform variable Θ ∼ U [−1/2, 1/2]

(ii) Simulate an exponentially distributed variable W with mean 1 inde-

pendently of Θ

(iii) Set θ0 = arctan(β tan(πα/2))/α

(iv) Compute Y ∼ Stable(α, β, 1, 0):

Z =

 sin(α)(θ0+Θ)

(cos(αθ0) cos(Θ))1/α

[
cos(αθ0+(α−1)Θ)

W

] 1−α
α

if α 6= 1

2
π

[(
2
π

+ βΘ
)

tan(Θ)− β log
(
π
2
W cos(Θ)
π
2

+βΘ

)]
if α = 1

(v) Compute Z ∼ Stable(α, β, γ, δ):

Z =

{
γZ + δ if α 6= 1

γZ +
(
δ + β 2

π
γ log(γ)

)
if α = 1

Logarithmic series-distributed random variables can be generated using

Kemp’s second accelerated generator (Devroye, 1986):
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Algorithm 3 Kemp’s 2nd accelerated generator of Logarithmic Distribution

Require: parameter α
c← log(1− α)
Simulate V ∼ U [0, 1]
if V ≥ α then
X ← 1

else
Simulate U ∼ U [0, 1]
q ← 1− ecU
switch

case V ≤ q2

X ← floor
[
1 + log(V )

log(q)

]
case q2 < V ≤ q
X ← 1

case V > q
X ← 2

end if
return Logarithmic series-distributed random variable X
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