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Abstract

The purpose of this paper is to confront economic models of climate change with
the reality that limited information exists with which to form expectations about
the evolution of the climate. A key element in the tension between those who believe
we should impose aggressive climate change mitigation policies and those who do
not is the question of whether we are merely in a long period of shock-induced,
above average temperatures or if observed increases in temperature are a result
of carbon emissions. This paper characterizes learning dynamics resulting from the
use of observations of temperature to update beliefs about two key characteristics of
global climate: the persistence of natural trends and the sensitivity of temperature
to atmospheric carbon levels. This paper shows that, contrary to predictions in the
literature that uncertainty may be resolved very quickly, the time to learn the true
processes may be in the order of thousands of years. Further, this paper shows the
effects of uncertainty on the likelihood that observations from the statistical record
lead to important estimate and policy errors.
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Reinsborough, as well as seminar participants at Université Laval and participants
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1 Introduction

A large and growing literature in economics addresses the challenge of devel-
oping optimal climate change policy in the face of uncertainty and expected
future learning. Both the persistence of temperature changes (whether natural
or anthropogenic) and the degree to which greenhouse gas (GHG) accumula-
tion causes temperature change will be important for policy formation. In this
paper, a model which captures the need to use a limited amount of information
to form expectations about a complex system in order to set climate policy is
developed. While there exist reasonable data describing the recent evolution
of both temperature and atmospheric GHG accumulation, separately identi-
fying the sources of temperature change as natural or anthropogenic solely
based on the statistical record leads to significant uncertainty surrounding the
relative magnitudes of these effects. If we assume knowledge of the natural
process which governs temperature evolutions, then the process of identify-
ing the effect of carbon is made to appear much less complex. This paper
describes the nature of the uncertainty that exists over the mechanism of cli-
mate change through an empirical exercise, then characterizes the dynamics
which are likely to arise as this uncertainty is resolved using a reduced form,
learning experiment. Finally, learning and uncertainty are imposed in an op-
timal policy model to characterize how uncertainty is likely to affect policy
choices and vice-versa.

The benchmark contributions to climate change economics are Manne and
Richels (1992), Manne, Mendelsohn and Richels (1995), Nordhaus (1994),
and Nordhaus and Boyer (2000). Each of these contain extensive reference
to uncertainty, but generally treat uncertainty only through sensitivity anal-
ysis, reporting results for various parameter vectors. Pizer (1999) introduces
a model where the regulator specifically accounts for parameter uncertainty
in the social planning decision. Related papers on active learning to resolve
uncertainty about the value of parameters governing climate change and the
damages it may cause include Kolstad (1994, 1996, 1997), Ulph and Ulph
(1997), Kelly, Kolstad, and Mitchell (1999), Kelly and Kolstad (1999), and
Karp and Zhang (2004).

Kelly and Kolstad (1999) is closely related to the exercise undertaken here.
This paper proposes a model in which a social planner uses information from
temperature realizations to update prior beliefs about the temperature re-
sponse to atmospheric GHG levels. The planner chooses the optimal level of
savings and emissions control conditional on current knowledge of the mecha-
nism of climate change at each point in time, updates these beliefs, and thus
adjusts their actions, conditional on observations of climate data. Learning is
Bayesian, thus the planner is using information in an optimal manner. A key
result shown with the model is that the expected learning time (the time after
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which parametric uncertainty is essentially removed from the planner’s prob-
lem) is 90-160 years. The results also show that there is a tradeoff between
the benefits of controlling emissions and information.

I first extend the results of Kelly and Kolstad (1999) by exploring, in a reduced-
form environment, the dynamics of learning where uncertainty exists over the
values of two parameters which jointly determine the evolution of global cli-
mate. While Kelly and Kolstad evaluates the expected time to resolve uncer-
tainty about the effect of atmospheric GHG accumulation on temperature, I
build on these results by examining the implications of adding uncertainty over
the value of a parameter governing the persistence of temperature changes.
Where uncertainty exists over these two parameter values simultaneously, re-
sults of a numerical experiment show that uncertainty is substantially more
persistent, such that an increase in learning times of hundreds of years is pos-
sible. Further, it is shown that the inclusion of uncertainty in two dimensions
greatly increases the likelihood that observations from the statistical record
will support a mis-estimation of the true process of climate change.

The second contribution of this paper is to examine the effect of imposing the
same type of uncertainty described above in an optimal policy model with
learning. I use a modified Nordhaus and Boyer (2000) integrated assessment
model (IAM), for which general results are already well known. The model is
calibrated to economic data, and simulations are used to provide predictions
on two effects. First, simulations are used to re-examine the dynamics of the
resolution of uncertainty, and examine how these dynamics may be altered
under differing assumptions about the true process. Second, the decisions of
the planner characterize optimal carbon emissions control where beliefs have
differing accuracy and levels of uncertainty relative to a certainty benchmark.

Simulations of the IAM show that the planner will under-regulate where un-
certainty is present, which may decrease the persistence of uncertainty by
increasing variance of emissions. It is also shown that the likelihood of persis-
tent errors in estimates of the severity of climate change may lead to long-term
inefficient policies. Sensitivity analysis shows that learning may be faster in
expectation, but much more subject to errors, when the initial beliefs of the
planner imply an under-estimate the severity of climate change.

This paper proceeds as follows. Section 2 presents the climate model, discusses
the Bayesian learning approach, and presents a numerical learning experiment.
Section 3 presents the climate and economy model with learning. Section 4
presents the solution algorithm. The model is calibrated in Section 5, and
Section 6 presents simulations and optimal policy results. Section 7 concludes.
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2 Learning about Two Causes of Climate Change

2.1 Model of Climate Change

The climate system is represented as in the DICE-99 model presented in Nord-
haus and Boyer (2000); an autoregressive, distributed lag model where climate
variables evolve as a function of GHG emissions inputs. The model, presented
below for clarity of notation, is such that observed changes in temperature
may reflect the persistence of natural, stochastic events or the effect of GHG
emissions.

Let mt (mb) represent the current (pre-industrial) accumulation of carbon in
the atmosphere. 1 Atmospheric carbon stock decays naturally at rate δm ∈
(0, 1), and is augmented by emissions Et according to the following law of
motion:

mt+1 = Et + (1 − δm)(mt − mb) + mb. (2.1)

Deviations from the mean of global temperature are modeled as a stochastic,
first-order autoregressive process with drift generated by accumulated carbon
in the atmosphere. Let G and O represent global surface and ocean tempera-
ture deviations respectively, and let the law of motion for G be given by:

Gt+1 = λ1Gt + ωOt + η





log
(

mt

mb

)

log(2)



 + ut, u ∼ NID(0, σ2
u). (2.2)

Climate change is buffered in the short run by thermal inertia, captured
through slowly changing ocean temperatures which are modeled as a deter-
ministic, autoregressive process with parameter λ2 ∈ (0, 1) as:

Ot+1 = λ2Ot + (1 − λ2)Gt. (2.3)

This stylized climate model allows us to parameterize an important variable of
policy interest: the long-run temperature change associated with a doubling
of atmospheric carbon, denoted by G2C = η

1−λ1−ω
. This expression is only

informative where |λ1 + ω| ∈ [0, 1), a condition which assures the convergence
of temperature to a long run equilibrium for any accumulation of carbon. All
climate changes in the model are reversible so long as values of λ1 and ω satisfy
this condition.

1 While this paper uses carbon mass, carbon may be measured in concentration
(ppmv) or mass (GtC) of carbon or CO2 , as long as mt, mb, and the contribution
of emissions to accumulated carbon are measured in the same units.
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2.2 Estimation of Climate Model Parameters

Schlesinger et al. (undated) explores in detail the use of statistical techniques
to estimate parameter values for climate models of the class described in equa-
tions (2.1)-(2.3). I use similar techniques to investigate whether is it reason-
able to assume that the stationarity condition described above holds, and to
characterize uncertainty over values of G2C and underlying parameters of the
climate model. In particular, the parameters of the following restricted version
of the model are estimated: 2

Gt+1 = λ̂Gt + η̂





log
(

mt

mb

)

log(2)



 + ut, u ∼ NID(0, σ2
u). (2.4)

Two sets of global temperature data are used; the Jones et al. (2005) data,
which track temperature anomalies for years 1860-2000, and predictions gen-
erated by the Hadley Center HadCM-2 climate model (Johns et al., 1997)
for years 2000-2100 under the IS-92a emissions scenario. 3 These data are
matched with historic atmospheric carbon concentration data and predictions
under the IS-92a emissions scenario from Joos and Siegenthaler (1999). 4 The
estimation results are shown in the first and second columns of Table 1.

The first question of interest is the stationarity of temperature. From a policy
point of view, stationarity has important implications since there is a strong
discontinuity between the benefits to emissions abatement policy if temper-
atures are stationary versus if they are potentially growing without bound.
Augmented Dickey-Fuller (ADF) tests for the presence of a unit root, allow-
ing for a forcing trend, are performed using each of the data sets. The results
of these tests are presented the third and fourth columns of Table 1. In both
cases, the null hypothesis that temperature data exhibit a unit root is re-
jected. This provides support for the traditional assumption that the true law
of motion for temperature is a stationary process.

2 The restriction that λ2 = 0 is imposed on the climate model. Under this assump-
tion, the estimate of λ̂ in equation (2.4) is equal to λ1 + ω from equation (2.2).
3 See http://www.metoffice.com/research/hadleycentre/models/modeldata.html
for the Hadley data. A slight adjustment of the Jones et al. (2005) data was
undertaken. The data summarize anomalies relative to the 1961-1990 period.
During this period, Jones et al. note that the global average temperature reference
value was 14.0◦C. The temperature data are transformed by adding this value,
calculating the mean for the 1850-1889 period and re-normalizing the data relative
to this mean, such that (2.2) is estimated with no constant term.
4 The historical data are based on the standard IPCC CO2 concentration history
data (Enting et al. 1994), but are used as reported in Joos and Siegenthaler (1999).

5



Table 1
Regression and ADF test results.

Regression Results ADF Test Results

Jones HadCM-2 Jones HadCM-2

Gt−1 .6804* .9399* -.4642* -.4288*

(.06217) (.02633) (.07196) (.08428)

log

(

mt
mb

)

log(2)

.4031* .1911* .9241* 1.721*

(.08785) (.06829) (.1678) (.3411)

Constant -.07800* -.57014*

(.02172) (.1249)

Observations 140 100 140 100

Adj R2 .08361 .9978

ADF Test Statistic -6.45 -5.09

(.000) (.000)

Standard errors in parentheses (MacKinnon approximate p-values for ADF test
statistics).
* indicates statistical significance at the 1% level.

The results of the regressions presented in Table 1 do not allow us to directly
determine the expected value of G2C , since this expression is not well-defined
over the entire support of the parameter distribution. However, E [G2C ] can be
estimated by η̂

1−λ̂
, although this estimate will be increasingly negatively biased

as the standard error of λ̂ increases, since the value of the transformation is
increasing and convex in λ.

While the value of E [G2C ] is not well-defined, the Delta method allows for the
derivation of the asymptotic covariance matrix for the estimate G2C = η̂

1−λ̂
,

which is a measure of the state of uncertainty surrounding G2C . 5 Estimates
from the Jones et al. (2005) data suggest that:

G2C
a

−→ N [1.283, 0.02490] ,

while the HadCM-2 data yield an estimate of

G2C
a

−→ N [3.197, 0.1138] .

5 For details, see Greene (2003), pp. 108-110.
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2.3 Learning about Model Parameters

The empirical exercise above summarizes the ability of information in the sta-
tistical record to identify values of climate model parameters and quantifies
the nature of uncertainty surrounding these values. To characterize the step-
wise updating of these estimates based on the receipt of new information, I
use a Bayesian learning framework which takes as given σ2

u, the variance of
the shock in the law of motion for surface temperature. In this section, the
full climate model presented in Section 2.1 is used, however uncertainty is
assumed to exist only over the values of λ1 and η, while parameters λ2 and ω

are assumed to be known with certainty. Uncertainty is assumed to exist over
these two parameter values in particular since they capture directly the persis-
tence of temperature deviations (λ1) and the effect of carbon emissions (η) on
surface temperature. From a policy perspective, these parameters jointly de-
termine two important measures: the benefit of current emissions control and
the expected future temperature as a function of the current climate state.

In order to simplify notation for the learning model, define the temperature
change net of the effect of ocean temperature Ht ≡ Gt−ωOt−1 and right-hand
side observations:

Xt ≡











Gt−1

log

(

mt−1

mb

)

log(2)

Gt−2

log

(

mt−2

mb

)

log(2)











. (2.5)

Let the prior distribution be bivariate normal with mean estimates Θ ≡
(

λ̂1 η̂

)′

and covariance matrix Φ. Updating based on observations of H and

X in each time period leads to a posterior distribution which is normal with
mean Θ′ and covariance matrix Φ′, according to updating rules are given as
follows:

Θ′ = WΘ + (I − W )(XTX)−1XT H, (2.6)

where

W =
[

Φ−1 +
[

σ2
u(X

TX)]−1
]−1

]−1

Φ−1 (2.7)

and

Φ′ =
[

Φ−1 +
[

σ2
u(X

TX)−1
]−1

]−1

. (2.8)

such that the updated estimate of the mean vector in (2.6) is a weighted
average of the mean of the prior distribution and the Ordinary Least Squares
coefficient vector. 6

6 Since two parameter estimates will be updated, there must be at least rows in H

and X, such that X ′X will be of full rank.
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Table 2
Prior Distribution Parameters

Hadley Prior Jones Prior Diffuse Prior

UV BV UV BV UV BV

λ̂1 0.9112 0.9286 0.9112 0.6711 0.9112 0.9112

SE(λ̂1) 0.02666 0.06212 0.03252

η̂ 0.3641 0.2838 0.1461 0.5904 0.3416 0.3416

SE(η̂) 0.03842 0.1008 0.01797 0.1289 0.1743 0.1028

Covariance -0.002642 -0.006633 0

E(G2C ) 3.192 3.192 1.283 1.283 3 3

Var(E(G2C )) 0.1138 0.1138 0.002490 0.002490 2.343 2.343

2.4 Monte Carlo Experiment

In Kelly and Kolstad (1999), an analytic result is presented which defines the
expected number of periods it takes for agents to reach a reasonable estimate
of the true parameter describing the temperature change induced by accumu-
lated carbon. Below, I use the results of a numerical experiment to further
characterize the relationship between carbon emissions, the tightness and ac-
curacy of the prior and the expected number of observations required to reject
a false null hypothesis about the values of parameters of the climate system.
The experiment results also show the effect of additional uncertainty on the
magnitude of potential errors.

The estimator of E [G2C ] = η̂

1−λ̂1−ω
is used as the parameter of interest for

learning. The experiment uses three prior distributions for which the elements
of the mean vectors and covariance matrices are shown in Table 2. The first
two priors are the parameter distributions from the regression results reported
in Table 1, denoted the Jones and Hadley priors respectively, and the third is
a more diffuse prior with accurate mean estimates. For each case, a univari-
ate prior is constructed such that the mean and asymptotic variance of the
estimate of G2C are equivalent to those in their corresponding bivariate pri-
ors. Subject to the observation of simulated data, posterior distributions are
derived from Bayesian updating as described in equations (2.6-2.8). Learning
times are reported as the number of observations required, on average, to re-
ject a false null hypothesis about the value of G2C . The experiment proceeds
as follows:
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Experiment 1 Monte-Carlo Learning Experiment

1. The true parameters of the climate model defined by equations (2.1-2.3)
are as given in Table A.1. 7

2. Initial emissions (E0) are 8.4 GtC and annual emissions (Et) are deter-
mined by growth rate γE:

Et = Et−1 ∗ (1 + γE).

3. From initial values of m0 = 770, G0 = 0.31, and 00 = 0.104, generate
1000 sets of climate data according to equations (2.1-2.3) with σu = .11,
given Et.

4. For each of the initial priors given in Table 2, solve for the sequence
of posterior distributions for each set of generated data. Updating rules,
conditional on simulated data, are given by equations (2.6-2.8).

5. Given that the assumed true value for G2C is 3oC, learning is defined as
having occurred when the posterior distribution is such that the null hy-
potheses Ho:G2C < 2.9 and Ho:G2C > 3.1 are first simultaneously rejected
at the 5% level.

The results of the experiment characterize the expected number of observa-
tions required to extract sufficient information from the statistical record to
reject a false null hypothesis about a measure of the severity of climate change.
The expected learning time as a function of emissions growth rates for each
prior are shown on a logarithmic scale in Figure A.1. Three intuitive results
are worthy of note. First, there is a great deal of acceleration in the learn-
ing time generated by increases in emissions growth rates. Kelly and Kolstad
(1999) discusses this result, noting that emissions control policy is therefore a
determinant of expected learning times. Second, learning times increase with
the addition of uncertainty over a second parameter. Third, the number of
observations required in all cases is such that there is limited sensitivity of
learning times to initial prior means, and the tightness of the initial prior has
a greater effect on learning times in the single-parameter case. 8 Figure A.2
shows the role of the assumed prior variance in determining learning times.
This figure shows the results of a replication of the learning experiment begin-
ning with the diffuse prior means and 2% emissions growth rates for different

7 These parameter values are standard in the literature. Readers familiar with
Nordhaus and Boyer (2000) should note that I assume an annual time interval,
not the Nordhaus and Boyer (2000) ten-year interval. Parameter values are thus
comparable to Pizer (1999). The assumed true value of η differs slightly from the
Pizer (1999) value, as G2C is set to exactly 3oC for simplicity.
8 For the case where emissions growth is 2% per year, learning times in the two-
parameter case are 206, 210, and 211 years for the diffuse, Jones, and Hadley priors
respectively. There is slightly more variation in the single parameter setting, where
learning times given the same assumptions are 139, 136 and 161 years respectively.
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prior variances. 9 As expected, the learning time decreases non-linearly in the
initial variance of the estimate of G2C , ceteris paribus.

The results above suggest that there may not be significant differences in the
conclusions reached by studying the univariate and bivariate cases, particu-
larly for low emissions growth rates. However, two additional measures of the
learning dynamics bring to light important differences; these are the expected
learning path and the variance of potential learning paths. The expected learn-
ing path informs us as to how much uncertainty would be expected to remain
at a point in time in the future for a random draw from the data generat-
ing process given by the climate model. Using the asymptotic distribution for
parameter estimates λ̂1 and η̂, the expected mean and variance of the esti-
mate of G2C over time are calculated. Figure A.3 shows the evolution of these
estimates for the Jones prior.

Two points are well illustrated by this figure. First, the expected estimate of
G2C converges more quickly to the true value where the values of two parame-
ters are uncertain. Second, the uncertainty surrounding this estimate is larger
and more persistent in the two parameter case, which is a key determinant of
the higher learning times reported above. Uncertainty is likely to affect policy
choices in that a risk-averse policy-maker would tend to choose lower emis-
sions control, ceteris paribus, in the two parameter case since the returns to
investing in environmental capital are less certain.

The likelihood that a particular learning path takes us far from the true value
is also important, and this is where further differences arise when considering
a second unknown parameter. Consider Figure A.4 which shows the bootstrap
mean and confidence intervals for the estimate of G2C across samples begin-
ning again from the Jones prior. In the univariate case, the learned value of
G2C from any series of data will be within .265oC of the expected learning
path in all time periods 95% of the time. Where two parameter values are
uncertain, the learning path can deviate much more significantly from its ex-
pected path, lying within 1.36oC of its expected path 95% of the time. Thus,
with two unknown parameters, learning from the statistical record is far more
likely to lead to incorrect estimates of G2C than would be the case where the
value of a single parameter is uncertain. These results are sensitive to the
initial prior variance on one or both parameter estimates. Consider Figure
A.5 which shows the same set of results for the diffuse prior. In this case, the
bootstrap confidence interval around the estimate of G2C is such that errors
of 2.5oC are possible in the first 30 observations.

9 Emissions growth rates averaged 2.5% per year over the 1960 to 1998 period, and
are expected to average 1.6% over the 1990-2030 period (IEA, 2004). The IS-92a
emissions scenario assumed that business-as-usual emissions would grow at 1% per
year (IPCC, 2001).
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These results show that, where uncertainty exists of the values of two param-
eters, policy-makers are more likely to face persistent uncertainty and more
likely to make significant estimation errors. In what follows, the character-
ization of learning and uncertainty is imbedded in a model of climate and
economy to determine how optimal policy decisions are altered under uncer-
tainty and the potential effects of errors and uncertainty on the evolution of
the economy.

3 Integrated Assessment Model

This section embeds the learning characterization with multiple parameter un-
certainty outlined above in a modified Nordhaus and Boyer (2000) IAM of the
global economy, where a social planner chooses savings and emissions control
rates in each period. This extends the model proposed in Kelly and Kolstad
(1999) which studies the actions of a social planner facing uncertainty over
the effect of current atmospheric carbon stocks on temperature. As compared
to the learning experiment in the previous section, results from simulations
of this model will allow us to characterize the co-evolution of uncertainty and
policy where emissions are an endogenous result of economic activity and the
decisions of the planner.

3.1 The Economy

Three sources of exogenous change are assumed to exist in the economy: factor
productivity A, the ratio of emissions to output φ, and labour supply L, each
determined as a function of calendar time T . 10 The generic law of motion for
technology J ∈ {A,L, φ} as a function of time, initial condition J0, growth
rate γJ , and convergence rates δJ and δ2,J is given by:

J(T ) = J0 exp
(

γJ

δJ

(1 − e−δJT )
)

. (3.1)

Total factor productivity is determined by exogenous factor productivity and
two endogenous effects; the choice of emissions control rate τ ∈ [0, 1) reduces
factor productivity by (1 − b1τ

b2
t ), and increased surface temperature G re-

duces aggregate productivity by (1 + θ1G
θ2)−1. A single good used for both

10 Calendar time is an index for the transition of exogenous state variables. It denotes
the number of years since the initial values described the state of the economy, and
is interpreted as a state variable as in Kelly and Kolstad (1999).
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consumption, C, and investment, I, is produced using Cobb-Douglas technol-
ogy with inputs of capital, K and labour as follows:

Y (T, τ,K,G) =
1 − b1τ

b2

1 + θ1Gθ2
A(T )KαL(T )1−α = C + I. (3.2)

The capital stock evolves endogenously as a function of chosen investment and
depreciation rate δk ∈ [0, 1] according to:

Kt+1 = (1 − δk)Kt + It. (3.3)

Emissions Et are determined by the exogenous ratio of emissions to output
and chosen emissions control level, such that

Et = (1 − τ)φ(T )Y (T, τ,K,G). (3.4)

Emissions are fed through the climate model described in equations (2.1-2.3)
to determine the evolution of state variables G, O, and m.

3.2 Dynamic Optimization

Assume that a social planner maximizes expected welfare through choices of
aggregate investment and emissions control rates. Welfare is defined as the
expected, discounted stream of population-weighted, per-capita utility, where
utility has constant relative risk aversion form. Maintaining the notation for
the learning problem used in Section 2.1, denote the state of the economy by
S = {K, m, m−1, m−2, G, G−1, O, O−1, T , Θ, Φ}, where j−x and j′ denote the
x-period lagged and lead values of state variable j respectively. The solution to
the planner’s recursive problem with learning is characterized using Bellman’s
equation as:
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V (S) = max
I, τ

L(T )





C
L(T )

1 − σ





1−σ

+ βE
[

V
(

S ′
)

|Θ,Φ, I, τ, σ2
u

]

(3.5)

s.t. Y =
1 − b1τ

b2

1 + θ1Gθ2
A(T )KαL(T )1−α (3.6)

C = Y − I (3.7)

K ′ = (1 − δk)K + I (3.8)

m′ = (1 − τ)φ(T )Y + (1 − δm)(m − mb) + mb (3.9)

G′ = λ̂1G + η̂





log
(

mt

mb

)

log(2)



 + ωO + u, u ∼ N(0, σ2
u) (3.10)

O′ = λ2O + (1 − λ2)G (3.11)

Θ′ = WΘ + (I − W )(XTX)−1XT H (3.12)

Φ∗ =
[

Φ−1 +
[

σ2
u(X

TX)−1
]−1]−1

(3.13)

T ′ = T + 1. (3.14)

The parameters of the model are {A0, L0, φ0, b1, b2, θ1, θ2, λ2, δk, δm, δa, δl, δφ,
γa, γl,γφ, mb, λ1, η, ω, σ2

u}. Note that the true λ1 and η values are used only
to simulate the path of the learning economy, while the planner’s decisions are
based on the elements of Θ; parameter estimates λ̂1 and η̂.

4 Computation

Solving the recursive problem described in equations (3.5-3.14) presents a
challenge of dimensionality. In order to solve the model, small modifications
are made to the technique described in Kelly and Kolstad (1999, 2001), which
approximates the solution using an iterative algorithm combined with the use
of a neural network to approximation of the value function over a finite set of
grid points.

The neural network approximation is defined as follows. 11 Define by L the
number of nodes in the hidden layer, and let n represent the number of state
variables in the model, such that the state space is R

n. Denote by x ∈ R
n+1

a set of real-valued signals to the network, with the first element (x0 = 1)
being a bias signal, and the remaining elements being the state vector for
a particular element of the state space. Let χ1 be a (n + 1) × L matrix of
inner weights, and let z(x, χ1) be a (L + 1) × 1 vector, with the first element
(z0 = 1) being a bias signal. The additional elements (z1..zL) are the output

11 For a detailed discussion of neural networks, the interested reader is referred to
Hassoun (1995).
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Table 3
State variable ranges used in solving the model.

State Definition Units Grid 1995

Variable Min Max Value a

K Capital Stock 1012$US1997 10 1200 55.75

m Atmospheric Carbon GtC 590 1800 770

G Global Surface Temp. oC -.75 12 .31

O Ocean Temp. oC 0 10 .104

G−1 Temp. Lag 1 oC 0 12 .24

λ̂1 Mean Estimate of λ1 - .5 .97 .9112

η̂ Mean Estimate of η oC 0 .7 .34163

Φ11 Variance Estimate λ̂1 - 0 .02 1−10

Φ22 Variance Estimate η̂ (oC)2 0 .2 1−10

Φ12√
Φ11

√
Φ22

Correlation of Estimates - -1 1 0

G2C Long run G for m = 2 × mb
oC 0 8 3

T Technology Index years 0 600 0

a From the calibration of the model.

values from the hidden layer of the network, zl = tanh(χ′
1lx)∀l = 1..L, where

χ1l is a column of χ1. The L+1 elements of z(x, χ1) are then aggregated using
outer weights χ2, a (L + 1) × 1 vector. The approximation is expressed as:

Υ(x) = χ′
2 (z(x, χ1)) . (4.1)

Using Υ(x) as an approximation to the value function defined over R
n+1, the

following iterative algorithm provides an approximate solution to the dynamic
programming problem.

Algorithm 1 Algorithm Preliminaries: Choose a convergence criterion ǫ,
number of network nodes L, and starting values for the weights χ1 and χ2 in
Υ(x). Draw N grid points from a low discrepancy sequence and transform
these points such that the bounds of the state space are those in Table 3. 12

Step 1: For each point on the grid {si}
N
i=1, define xi = (1 si,1..si,n), and solve

the maximization problem given in (3.5-3.14). Use analytic derivatives of the
approximating function to solve the first order conditions for optimal I∗

i and

12 A Halton sequence is used to draw a set of grid points which are uniformly
distributed within the state space. For details on low-discrepancy sequences, see
Judd (1998). For the results reported below, ǫ = 10−4, L=24, and N=100 000.
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τ ∗
i .

Step 2: Denoting by x′ the value of x corresponding to future states, update
the value at each point on the grid as:

V j+1(si) = U(si|I
∗
i , τ ∗

i ) + βEΥ(xi
′|xi, I∗

i , τ ∗
i ) (4.2)

Step 3: Use updated values {V j+1(si)}
N
i=1 to solve for new weights χ1 and χ2

that minimize ‖V j+1(s) − Υ(x)‖.

Step 4: Return to Step 1 unless ‖V j+1(s)−V j(s)
V j(s)

‖ < ǫ.

Four changes are made to the algorithm detailed in Kelly and Kolstad (2001).
First, grid points are drawn from a low-discrepancy sequence. A low-discrepancy
sequence is an analog to a multi-dimensional, uniform random number genera-
tor. The low-discrepancy sequence minimizes the maximum Euclidean distance
between two grid points to generate the most even coverage of points within
a hypercube, which makes it an ideal tool for this problem. Three modifica-
tions are made to the low-discrepancy draw. First, values for the capital stock
and time period are re-scaled such that there is more density near the lower
bounds. Second, values of η̂ are re-scaled such that the value G2C does not
exceed 8oC. Finally, draws of G are used to assign values to state variable G−1

such that lagged temperature cannot be outside the possible values implied
by the ranges of η and λ1 on the grid. These assumptions allow grid points to
be consistent with the model and concentrated in areas where the combina-
tions of η̂ and λ̂1 are consistent with the potential magnitude of global climate
change, or where substantial curvature is likely to exist in the value function.

The second modification to the Kelly and Kolstad (2001) algorithm is the use
of Monte-Carlo integration rather than quadrature-based methods. Within
each pass of the value function iteration, expected future values are evaluated
using 100 point draws from the distribution of possible future states condi-
tional on the prior distribution, the variance of temperature shocks, and the
choice variables for investment and emissions control.

In order to render the problem solvable, and still capture the nature of the
policy problem at hand, it is necessary to make an assumption about the
planner’s expectations. Draws from the distribution of possible future states
are censored such that they lie within the bounds of the state grid. As such,
the planner does not admit the possibility of non-stationary temperature pro-
cesses, or combinations of η and λ1 which imply G2C > 8. This will bias down-
ward the planner’s expectations over future temperatures, and bias upward
their evaluation of the effect of emissions reduction on future temperature
changes. Additionally, the time period is unbounded, however its transition
is censored such that its value does not exceed 600 periods. For state points
close to the boundaries of the grid, these assumptions will introduce some bias
to the solution.
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The third modification to the Kelly and Kolstad (2001) algorithm is that
to solve the non-linear, minimization problem in Step 3, a sample of 25000
observations is randomly drawn, with replacement, at each iteration. Thus,
computation time is limited by not solving the approximation over all grid
points at each iteration, but all grid points have equal expected leverage on
the parameters of the neural network approximation.

Finally, in order to restrict the number of state variables and render the prob-
lem tractable, an assumption is made on the learning dynamics. The planner
is assumed not to keep track of the lagged values of either ocean temperature
or atmospheric carbon. Instead, when she enters a new period and observes
the evolution of the state, she is assumed to calculate growth rates for ocean
temperature (γO) and atmospheric carbon forcing (γf ) based on the previ-
ous state of the economy, and use those growth rates to impute lagged values
for forcing and ocean temperature, such that some elements of the X and H

matrices are imputed as:

X =







G log m
mb

G−1

log m
mb

(1+γf )





 , H =







G′ − ωO

G − ω Ot

(1+γO)





 .

The imputation above assumes that the second derivatives of O and m are zero
over two periods to allow the number of state variables in the planner’s prob-
lem to be reduced while maintaining full rank for the matrix of observations
used for learning. Lagged temperature is not treated in the same way, since
the second derivative of temperature at any point is a function of previous
draws of the random shock, and as such not necessarily close to zero.

5 Calibration

To calibrate the economy, I begin by setting most parameter values to values
from Kelly and Kolstad (1999) and Pizer (1999). The exceptions to this are as
follows. The variance of temperature residuals is taken from the estimation of
the regression model using Jones et al. (2005) temperature data reported in
Table 1. Starting values for each of the technology levels are set to 1995 val-
ues (ie. T=0 implies the year 1995). The initial labour supply and its growth
parameters are set such that its transition matches the median population
growth scenario from United Nations (2004) for years 1995-2050. The law of
motion for the ratio of emissions to output is calibrated to match the same
ratio in IEA (2004) for years 1995-2030. The initial capital stock is the Pizer
(1999) value of $US199755.75 × 1012. 13 Finally, the trend parameters for ex-

13 The currency conversion used is the ratio between the Pizer (1999) value for 1995
output, $US198924×1012 and the IEA value for the same period of $US199734.234×
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Table 4
Policy choice correlation with state variables, rounded to two decimal places.

K m G G−1 O λ̂1 η̂ Φ11 Φ22
Φ12√

Φ11

√
Φ22

T

I -0.23 0.01 -0.27 -0.27 -0.00 0.03 -0.01 -0.00 -0.00 -0.01 0.79

τ 0.68 0.11 0.24 0.17 0.02 0.41 -0.11 -0.03 -0.07 0.05 0.14

ogenous factor productivity are chosen using a simulation of the economy. I
use an approximate certainty benchmark where the planner’s prior has cor-
rect mean estimates, the diagonal elements of the covariance matrix are set
to 10−10, and the correlation of estimates is set to zero. This approximation is
necessary since the model does not actually nest perfect certainty, as the co-
variance would be undefined if either variance term were set to exactly zero. 14

The parameters for factor productivity are chosen such that the initial condi-
tions of the model and short-run transitions under the benchmark assumptions
match International Energy Agency (2004) output data and projections for
1995-2030. Starting values used for calibration are shown in Table 3, and final
parameter values are shown in Table A.1. The ability of the calibrated model
to match medium-term trends in population, aggregate production, and emis-
sions is shown in Figure A.6.

From the solution to the social planner’s problem, the influence of state vari-
ables on policy choices can be established conditional on the calibration. The
unconditional correlations between the choice and state variables of the plan-
ner’s problem are shown in Table 4. The results are largely intuitive; the effects
of risk-aversion, decreasing marginal returns to capital, temperature are as ex-
pected. It is also shown that the planner’s beliefs on the both the persistence
of temperature deviations and the severity of climate change are important
for the choice of τ . The counter-intuitive correlations for η̂ are a result of the
negative correlation between λ̂1 and η̂ implied by the G2C constraint on the
state space. The correlations between η̂ and I and τ for larger values of λ̂1 are
positive.

6 Simulations

Having solved the social planner’s problem for the calibrated model, simula-
tions of the transition path characterize the effects of uncertainty and learning
on economy. In particular, I show the effect of endogenous emissions control on

1012.
14 I maintain the same assumption for implementing the univariate priors below.
The variance of the estimate of λ1 is set to 10−10, and the correlation of estimates
is set to the value from the bivariate prior.
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learning dynamics, and the effect of uncertainty on emissions control choices.
The simulations are draws from the economy characterized in Section 3. For
each simulation, the true parameter values and initial state of the model are
fixed. In each time period, the optimal decisions of the social planner given the
economic and climate states and a draw from the temperature shock distri-
bution determine the transition of the economy. The simulations are repeated
1000 times for each set of initial conditions to yield the average transition paths
and confidence intervals reported below. Three specific results are reported.
First, the expected learning paths for the planner, and the confidence inter-
vals around these paths are presented. Second, the sensitivity of the learning
path dynamics to the assumed true value of G2C is tested. Finally, the effects
of uncertainty and learning dynamics on emissions control policy are shown.
Where applicable, the results are reported relative to the benchmark model
used for calibration.

The initial state variables are the 2005 values from the calibration run of the
economy, such that all learning and policy choices take place in the future.
Simulations use the univariate and bivariate versions of the Jones, Hadley,
and diffuse priors described in Table 2, although recall that I approximate
the univariate priors by setting λ̂1 to its true value and setting its variance to
10−10. The results under the diffuse, univariate prior provide a close reference
to the IAM results in Kelly and Kolstad (1999). 15

As shown in Section 2.4, the growth rate of emissions is an important determi-
nant of learning dynamics. For a given emissions profile, the learning dynamics
in the IAM and the experiment will be almost identical, with slight differences
coming from the assumption of imputation of historical data by the planner
and the bounds on the learning state. However, emissions growth rates are
endogenous, stochastic, and decreasing over time in the IAM, whereas the ex-
periment uses constant, pre-determined growth rates. Uncertainty should have
an effect on learning times since the risk aversion of the planner should lead
to decreased emissions control, and thus decreased learning times the greater
the level of uncertainty. The link between climate change and the rate of re-
turn to future physical capital could also lead to growth effects of uncertainty,
although the near-zero correlation between investment and expectations of
future climate change reported in Table 4 suggests this effect is not likely to
be important. Furthermore, since errors in estimates of the severity of cli-
mate change are more likely to arise where two parameters of the system are
unknown and emissions control choices will depend on these estimates, uncer-
tainty over multiple parameter values should increase the variance in policy

15 In particular, Kelly and Kolstad (1999) uses an initial prior with the correct
estimate of G2C (2.5oC in the paper) and a variance of this estimate of 7.158. The
diffuse priors I use also provide a correct initial estimate but with a slightly tighter
variance.
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choices across simulations.

Figure A.7 shows the expected learning path for the planner, as well as the
bootstrap confidence intervals for these learning paths for the three priors.
Clearly the dynamics discussed earlier in the experiment are replicated in the
IAM. The univariate priors lead to slower transitions toward a correct estimate
of G2C in expectation, however the confidence intervals describing possible
learning curves are very tight around the expected path. The bivariate priors
lead to better estimates in expectation, with larger potential errors.

The results above depend on the calibration of G2C to 3oC. Figure A.8 shows
the expected learning paths and confidence intervals for the bivariate, diffuse
prior where the assumed true value for η is varied such that G2C is either 4.5oC
or 1.5oC. Clearly, the resolution of uncertainty varies both in expectation and
in the magnitude of potential errors depending on the sign of the error in initial
beliefs. The expected learning path reaches the true value more quickly where
the true G2C is 4.5oC, although there is a slight over-shooting. In the case of
an initial over-estimate of G2C , there is a slower adjustment of the estimate
toward the true value. Where initial beliefs underestimate (overestimate) the
severity of climate change, the likelihood of large errors in the estimate of
G2C increases (decreases) significantly.

Uncertainty and estimate errors each affect the planner’s choice of emissions
control. Figure A.9 shows the mean choice of emissions control policy for each
of the bivariate priors and the implied under-investment in emissions control
along each transition path relative to the calibration benchmark. The initial
underestimate of G2C implied by the Jones prior leads to sustained under-
investment over the entire simulation period. While the estimate of G2C is
improving over time, benchmark emissions control and GDP are increasing as
well. Since the costs of regulation are measured in terms of factor productivity,
even though the gap between the benchmark policy and the policy choices
under the Jones prior is decreasing over time, the amount of under-investment
is increasing. The Hadley prior adjusts only very slightly over the sample
period, maintaining a slight over-estimation of G2C and therefore a slight over-
investment in emissions control.

The role of uncertainty, ceteris paribus, is demonstrated by the transitions
from the diffuse priors. The planner’s parameter value estimates are correct in
expectation, however expected investment in emissions control is slightly below
the benchmark. While not shown graphically, simulations with the diffuse prior
also confirm that spreading uncertainty over the values of two parameters has
no effect in and of itself. Differences in chosen policy are insignificant between
the univariate and bivariate implementations of the diffuse prior, which share
identical and correct estimates of underlying parameter values in expectation.
However, as expected, there is a slight effect of spreading uncertainty over two
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parameter values on the variance of chosen policy. In each of the simulations,
the variance in policy choices across samples is less than 10−5, but three to
ten times higher in the bivariate implementations of each prior than for the
corresponding univariate prior.

The motivation for this analysis is that the interplay between natural and an-
thropogenic sources of climate change is important for choosing optimal policy.
For a given estimate of G2C , the planner’s choice of emissions reduction will
be a function of the relative importance of estimates η̂ and λ̂1. This effect is
clearly shown in Figure A.10, which plots the expected learning curve for both
parameter estimates along with policy choices under the Jones priors. Despite
the fact that the mean estimate of G2C is higher throughout the transition
for the bivariate prior, chosen regulation is lower throughout. This result is
due to an under-estimate of the persistence of climate changes in the bivari-
ate prior, which has initial λ̂1 = .6711, as compared to the correct estimate
λ̂1 = .9112 in the univariate case. While the estimate in the bivariate prior
adjusts over time, it remains below the true value. Thus, while the planner
estimates a higher marginal effect of emissions on next period’s temperature
under the bivariate prior, the lack of persistence is such that the marginal
welfare generated through emissions control will be smaller. This result is of
particular importance since it demonstrates clearly the leverage that λ1 has
on the marginal benefit of emissions control, and, as a consequence, the effects
of uncertainty over the value of this parameter on the likelihood of errors in
policy.

7 Conclusion

This paper uses both a reduced-form, numerical experiment and a dynamic,
optimal policy model to explore the effects of learning and uncertainty on the
ability to set effective climate change mitigation policies. This paper deals
specifically with that fact that it is difficult to determine the benefits of emis-
sions control when the relative importance of natural trends and anthropogenic
influences on temperature changes are unknown.

This paper extends earlier results from Kelly and Kolstad (1999) to show
that where uncertainty exists over two potential causes of observed climate
changes, the time to learn the true parameter values of the climate model
may be on the order of hundreds if not thousands of years. Perhaps more
importantly, it is shown that the probability that a particular learning path
yields very poor estimates of the severity of climate change is greatly affected
by the nature of initial uncertainty, and that uncertainty can be expected to
be much more persistent where more parameter values are uncertain. In part,
the results suggest that some trade-off must be made between investments
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in regulation under uncertainty and investments in accelerating the arrival
of new information. Further, the results emphasize the fact that temperature
data represent only a single draw from a complicated system about which
we have limited knowledge. In such an environment, allowing this single set of
observations to over-influence our policy choices may lead to significant errors.

The results presented here are limited by computational complexity. Uncer-
tainty clearly exists over values which are as important for the determination
of effective climate policies as those explored in this paper: the extent of dam-
ages, the cost of reducing emissions, and future technological progress are but
three important examples. Furthermore, even greater uncertainty may exist
over the regional distribution of the effects of climate change and potential
thresholds and irreversibility in the climate system, which are also not treated
in this paper.
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Table A.1
Calibrated Values

Parameter Description Calibrated Value

Inter-temporal Utility Function

σ Coefficient of risk aversion 1.2213

β Discount factor .9524

Production, Technology, and Labour Supply

α Production share of capital .25

δk Capital depreciation rate .1

A0 Initial factor productivity .01917

γa Initial growth rate of factor productivity .0195

δa Rate of decline of γa .0118

L0 Initial labour supply 5674

γL Initial growth rate of labour supply 0.015

δL Rate of decline of γL .024

φ0 Initial emissions: output ratio 0.166992

γφ Initial growth rate of emissions: output ratio -0.013

δφ Rate of decline of γφ .00161164

Climate

mb Preindustrial carbon stock (GtC) 590

(1 − δm) Atmospheric retention of carbon .99167

λ1 AR component of temperature change .9112

λ2 AR component of ocean temperature change .98

η Forcing parameter (oC) .34163

ω Transfer between ocean and surface temperature .009866

G2C Long-run temperature change for m = 2mb (oC) 3

σu Standard deviation of temperature residuals .11

Emissions Control Technology

b1 Linear control costs .0686

b2 Exponential control costs 2.887

Productivity Loss from Climate Change

θ1 Linear component of damages .00071

θ2 Exponent in damage function .00242
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Fig. A.1. Learning Time (log scale) vs. Growth Rate of Emissions. The curves show
the number of time periods required before we are able to reject the hypotheses
Ho:G2C < 2.9 and Ho:G2C > 3.1 at the 5% level, beginning from each of the priors.
Exogenous growth rates of emissions (γE) are shown on the horizontal axis.
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Fig. A.2. Learning times vs. initial variance in G2C estimate. In this Figure, the
learning times are shown for the bivariate diffuse prior with progressively tighter
variance around the estimate of G2C .
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Fig. A.3. G2C estimate and 95% confidence intervals implied by expected parameter
distribution over time, Jones prior.
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Fig. A.4. Bootstrap mean and confidence intervals for estimates of G2C over time,
Jones prior.
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Fig. A.5. Bootstrap mean and confidence intervals for estimates of G2C over time,
diffuse prior.
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Fig. A.6. Model calibration for labour supply, GDP, and emissions.
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Fig. A.7. Planner’s learning curve: Bootstrap mean and confidence intervals for
planner’s G2C estimate over time
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Fig. A.8. Bootstrap mean and confidence intervals for planner’s G2C estimate over
time. In this Figure, η is re-calibrated such that G2C is either 4.5oC or 1.5oC. Initial
priors are the bivariate, diffuse prior.
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Fig. A.9. Difference between mean policy choice under Jones, Hadley, and diffuse
priors and policy choices under the certainty benchmark. The units for difference
in emissions control are the absolute reduction in the percentage reduction over
uncontrolled emissions.
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Fig. A.10. Policy choices and learning, Jones prior. This Figure shows the average
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the transition path beginning from the Jones priors compared to the benchmark.
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