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Abstract

We consider the problem of separating two sets of points in an
Euclidean space, with a hyperplane that minimizes the number of
points lying on the “wrong” side of the plane. This problem is NP-
complete, and only relatively small instances can be tackled with exact
algorithms. We present and test an improved exact formulation. We
also propose and test a heuristic approach, based on the Variable
Neighborhood Search framework, to determine the plane coefficients.
Numerical experiments with instances of up to 100,000 points in 6
dimensions, suggest that the heuristic method is fast and reliable. The
discriminating hyperplanes found appear to generalize well on holdout
sets, as compared to those obtained by alternative procedures.

1 Introduction

Given two distinct sets of points in an Euclidean space, we consider the
problem of finding a hyperplane such that each half space defined by it is
assigned to one of the sets, and the number of points lying in the half-space
corresponding to the other set is minimized.

This problem is known to be NP-complete [MS92], and several approaches
have been proposed to tackle it, both exactly and heuristically (e.g. [LW78,
Geh86, KE90, MS92, MMS95, Rub97, SS97]).

2 Formulation

2.1 Notation and Statement of the Problem

The scalar product of two vectors x and y both in R
n, is denoted xty. If

M is a matrix, Mi represents its ith row. When necessary, 0 and 1 denote,
respectively, vectors of zeros and ones in appropriate dimensions. We denote
A and B the two sets of points in R

n to be (approximately) separated by
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the desired hyperplane. Their coordinates are represented by the matrices
A ∈ R

m×n and B ∈ R
k×n. For a given plane

P =
{
x

∣∣wtx = γ
}

with γ ∈ R,w ∈ R
n, w 6= 0

we assign the half planes wtx < γ to the set A and wtx > γ to B. A point
x ∈ A∪B is then said to be misclassified when

wtx > γ if x ∈ A,

or
wtx < γ if x ∈ B.

and the objective is to find w and γ such that the number of such points
from both sets is minimized.

Most models used in the literature for misclassification minimization are
variations of the following mixed integer program:

min
w,γ,y,z






m∑

i=1

yi +
k∑

j=1

zj

∣∣∣∣∣

−wtAi + γ ≤Myi for i = 1, ..,m
wtBj − γ ≤Mzj for j = 1, .., k

y ∈ {0, 1}m, z ∈ {0, 1}k, w ∈ R
n, γ ∈ R




 (1)

where M is the famous “big M”, a sufficiently large constant. The binary
vectors y and z track misclassified points from sets A and B, respectively.
We will refer to this basic model in our subsequent discussion.

For practical classification applications, in particular when off-sample
generalization is the main concern, it might be important to consider other
criteria in the objective function. Key examples include asymmetrical weight-
ing of misclassifications from each set (to take account of different error costs
or priors, e.g. [LW78]) or introducing secondary criteria (such as consider-
ing deviations from the plane, e.g. [BH82, Rub97, PWL97]). We will not
be concerned with these variations and, for comparability, will only consider
the basic objective of minimizing the total number of misclassified points.

2.2 Background

In addition to the general challenges of any large, mixed integer programming
task, exact approaches to the linear misclassification minimization must deal
with specific problems which are also present in some continuous, LP-based
classification models [Koe90]. Of these problems, perhaps the most pervasive
is the issue of the null solution: in many formulations, an optimal solution can
be [γw] = 0, which is useless for classification purposes. A common practice
to rule out this undesirable outcome is to impose an additional standard-
ization constraint on the model. The choice of this constraint is, however,
delicate, and a large part of the literature on LP-based approaches to clas-
sification has been devoted to this problem [Gri72, MM85, FG86, GKD88,
CIS89, Koe89a, Koe89b, Glo90, Koe91, Xia93, Gle99].
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Many contributions in the literature concentrate on the algorithmic chal-
lenges of the MIP, without due attention to perverse, unforeseen consequences
of the choice of standardization constraint. For example, [MS92] impose1

w1 = ±1, while [MMS95] postulate max (|w1| , |w2| , . . . , |wn| , γ) = 1. Any of
these constraints may preclude the optimal solution2.

Another approach to deal with the null solution is to minimize the aggre-
gate deviations from two reference planes, one for each class, instead of one3

[Smi68, Han81, BM92]. Although it has been applied for the misclassification
minimization problem [Geh86, Rub90, PWL97], this approach is not in fact
equivalent to minimizing the number of points and might yield a suboptimal
solution4.

Other approaches to deal with the null solution problem found in the
literature include the use of secondary objectives [Rub97] (which can also stir
the solution away from the desired optimum) or the imposition of arbitrary
constraints on the objective function [KE90].

Some of these contributions, despite eventual formulation failures with
respect to the null solution issue, introduce algorithmic improvements for the
solution of the mixed integer programs, such as decompositions [Rub97] and
branching strategies [SS97]. These techniques could in principle be applied
to various valid formulations, but we shall not consider them here; the focus
of our discussion and proposition for exact approaches will be on formulation.
Our only digression on MIP solution issues will be the use of our heuristic
bounds to accelerate a (generic) branch-and-bound process (see section XXX
below).

Mangasarian [Man99] exposed a subtle relationship between the stan-
dardization constraint and the Lp-norm in which distances are considered.
In particular, the Lp-norm distance between between a point x ∈ A∪ B and
its projection π(x) to the plane P is given by

‖x− π(x)‖p =
|wtx− γ|

‖w‖′p

where ‖·‖′p denotes the dual norm5 of ‖·‖p. A convenient and perfectly valid

1This idea is akin to that proposed for LP-models in [FG86], where γ = ±1
2The constraint in [MS92] forbids (potentially optimal) solutions with γ = 0. The

one in [MMS95] forces the solution [γ w] to lie in the L1-norm unit sphere in R
n+1; a

potentially optimal solution with γ > 1 and max (|w1| , |w2| , ..., |wn|) < 1, not lying on
this sphere, is thus excluded.

3For a survey and discussion of these double plane models, see CITE MON CHAPITRE
SUR CREDIT SCORING.

4To see why this is so, suppose the optimal solution to the double-plane model has
been found, and consider the region between the reference planes. Any point in this region
will not be counted as misclassified in the objective function, but can very well be on the
wrong side of the actual discriminating plane P , which lies midway between the two.

5We recall that, for 1 < p < ∞ , the dual norm ‖·‖′p = ‖·‖q where 1

p
+ 1

q
= 1 . The

cases p = 1 and p =∞ , are defined by a limit argument as ‖·‖′
1

= ‖·‖∞ and ‖·‖′∞ = ‖·‖
1
.
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standardization choice suggested by this equation is then ‖w‖′p = 1 for an
appropriate choice of p. This constraint does not rule out any direction
for the plane, because the gradient w of the plane can lie anywhere on the
surface of the Lp-norm unit sphere, and γ is unconstrained, thus permitting
any offset with respect to the origin6 The choice of the norm p might be
of interest in some classification applications7, but for the misclassification
minimization problem, the only relevant cases are p = 1 and p = ∞, since
they are manageable by linear formulations.

One of the earliest formulations for the misclassification minimization
problem is due to Liittschwager and Wang [LW78]. Their standardization
constraint is ‖w‖′

1
= ‖w‖

∞
= 1. This formulation (which we shall refer

to as LW) has stood the test of time; it has been used as base for other
research efforts (e.g. [SS97]) and, by the above discussion, unlike many of its
successors, it is formally correct in that it does not exclude valid solutions
from consideration as it avoids the null solution. Our formulation is an
improvement on this model8.

The LW formulation enforces the condition ‖w‖
∞

= 1 within a single
MIP, with the constraints

−1 + 2Dl ≤ wl ≤ 1− 2El l = 1, . . . , n (2)
n∑

l=1

Dl +
n∑

l=1

El (3)

E ∈ {0, 1}n D ∈ {0, 1}n

The condition ‖w‖
∞

= 1 can also be tackled by solving 2n separate
programs, each of which forces wl to be either 1 or −1, for l = 1, . . . , n,
and with −1 ≤ wl ≤ 1. This is the preferred approach when minimizing
the sum of L1-norm distances [Man99]. We performed some experiments
to compare the solution speed on the same set of problems, with the two
approaches: a single MIP or 2n smaller MIPs. We found that there appears
to be no advantage in general to splitting the problem into 2n slightly smaller
ones, and we concentrate our subsequent discussion on the formulation with
a single MIP. The issue, however, might deserve further study.

In [LW78], it is shown that the“big M” can be set to

M = 2n max



 max
i=1,...,m
l=1,...,n

|Ail| , max
j=1,...,k
l=1,...,n

|Bjl|



 (4)

6This idea had been applied for the Euclidean distance [CIS89], and elegantly general-
izes to the arbitrary-norm case in [Man99].

7See, CITE MON PREMIER CHAPITRE, where the potential effect of the choice of
p on off-sample generalization is explored.

8In [LW78] the yi and zi in the objective function are weighted by cost and prior
probabilities. As explained in section 2.1, we ignore these weights.
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We will assume that the data in A and B have been rescaled to the range
[0, 1]; this is a quite standard procedure in practice, and all of our databases
conform to it.

2.3 Our Model

A remarkable insight in [MMS95] is that the “big M” can in fact be deter-
mined on a per observation basis, thus resulting in a tighter formulation. We
apply this idea to the LW framework, and use the constants

MA
i = n + n max

l=1,...,n
|Ail| i = 1, . . . ,m (5)

MB
j = n + n max

l=1,...,n
|Bjl| j = 1, . . . , k

in the corresponding constraints, instead of the common M . The validity of
this bound can be seen by an argument almost identical to that presented in
[LW78], recalling that the matrices A and B have been rescaled9.

Our final formulation is then

min
w,γ,y,z






m∑

i=1

yi +
k∑

j=1

zj

∣∣∣∣∣

−wtAi + γ ≤MA
i yi for i = 1, ..,m

wtBj − γ ≤MB
i zj for j = 1, .., k

−1 + 2Dl ≤ wl ≤ 1− 2El
n∑

l=1

Dl +
n∑

l=1

El






(6)

with y ∈ {0, 1}m, z ∈ {0, 1}k, w ∈ R
n, γ ∈ R, E ∈ {0, 1}n, D ∈ {0, 1}n and

the constants MA
i and MB

i defined as in (5).

3 Heuristic Approach

The basic idea of our approach is to decompose the problem into determining
a direction for the hyperplane and finding the optimal position, of offset to
the origin, in a given direction. This kind of decomposition is not uncommon
in the global optimization literature [EXAMPLE], and has been applied to
the misclassification minimization problem elsewhere [CM96]. The two main
components of our method are thus:

• A function (henceforth referred to as “the oracle”) which, given a di-
rection for the plane, finds an optimal parallel shift and returns the
corresponding number of misclassified points, and

• An optimization framework that searches the space of directions for a
minimum, by repeatedly querying the oracle.

9The first n covers the worst case for γ and, e.g. for the case ofA, the term n max
l=1,...,n

|Ail|

covers the highest possible absolute value of wtAi.
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The space of directions is searched with a heuristic framework known as
Variable Neighborhood Search (VNS) [HM98], which has been applied suc-
cessfully in a number of global optimization tasks (e.g. [BM96, CH97, HM97,
BCK99, HMU00, MPKVC00] [ARE THESE THE BEST EXAMPLES?]).

We first describe the oracle and then summarize the VNS framework
within which it is inserted.

3.1 The Oracle

A plane P can be characterized either by the n components of its gradient
w and the scalar γ or by n − 1 angles α = (α1, α2, ..., αn−1) and an offset
constant ϕ. We choose to search the space of directions as characterized
by the n − 1 angles α. We thus avoid scaling issues in the choice of the
gradient10 and exploit in the algorithm the fact that ϕ represents directly
the offset with respect to the origin11. The conversion from [α ϕ] to the
corresponding [w γ] can be performed by an iterative procedure [Ken61]
[Som58].

The input to the oracle is a direction α from the origin. We recall the
convention that the set A is meant to lie on the side of the plane to which w

points. The output COUNTMISSED(α) is the number of points misclassified
by the best possible plane along the given direction α. The algorithm is
outlined in Figure 1.

The candidate plane, perpendicular to the ray, is initially positioned at
the first point along the ray, i.e. the one with minimum distance. All the
observations start thus on the same side of this plane, with A being in the
correct half-space, while all B points are misclassified. The corresponding
counters missedA = 0 and missedB = |B| are initialized. The initial number
of misclassified points totalmissed corresponds to all the points in B.

The plane is then moved along the ray, in the direction determined by α,
to the position corresponding to each successive point. The counters missedA

and missedB are updated for the current position depending on whether it
corresponds to a point in A or B. The minimum number best found along
the way is returned. Its position is also recorded.

The oracle function COUNTMISSED(α) can then be queried by the op-
timization routine as explained below. Note that the angles (in radians)
given by α are automatically reduced modulo 2π within the oracle12. This
implies that the optimization routine can search over the unconstrained do-
main α ∈ R

n−1.

10We recall that there is a degree of freedom in the definition of P , a plane in R
n, when

defined by [w γ] ∈ R
n+1.

11The equivalent expression in terms of [w γ] would be γ
‖w‖

2

.
12The projections of the points to the plane are computed using the standard trigono-

metric functions.
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• compute distA and distB /* vectors of projections to ray α */

• sort distA and distB

• CurrentMissed← all points in B

• BestMissed← CurrentMissed

• Position← min(min(distA), min(distB)) /* initial position of plane */

• BestPosition← Position

• REPEAT

– move Position to next point

– update CurrentMissed

– IF (CurrentMissed < BestMissed) THEN

∗ BestMissed← CurrentMissed

∗ BestPosition← Position

– ENDIF

– UNTIL (all points considered)

• return BestMissed and store BestPosition

Figure 1: Pseudocode for the COUNTMISSED(α) oracle.

Sorting the distance vector is theoretically the bottleneck step in the
oracle function. We use the C++ standard library function sort for this
task13. The distances for A and B are stored and sorted separately to speed
this step up.

3.2 Variable Neighborhood Search

A crucial insight underlying VNS is the observation that in many practical
optimization problems with multiple local minima, these tend to be somehow
clustered or correlated. Under these circumstances, a local minimum might
contain information useful to find other, perhaps better, minima. The general
idea in VNS is thus to try to escape from local minima by first exploring
subsets of the domain that are in some sense “close” to the incumbent, and
then going on to test for solutions that are increasingly different to it.

13Modern implementations of the C++ standard library use introsort, which has a worst
case O(n log n) complexity, but is known to do much better on average [Mus97].
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The only two exogenous ingredients for the basic version of VNS are a
metric defined on the solution domain and a local descent procedure. The
metric is used to build a problem-dependent structure consisting of K ordered
neighborhoods, N1(α

∗),N2(α
∗), ...,NK(α∗) centered around the current in-

cumbent solution point α∗. The first neighborhood N1(α
∗) includes only

solutions near the incumbent and subsequent neighborhoods include regions
farther from it.

A local descent procedure is applied starting from a randomly chosen
point within N1(α

∗), and then from increasingly farther neighborhoods until
a better solution is found or the stopping criterion is met. If an improved
solution is found, the whole structure is recentered around it and the process
restarts.

For the search over R
n−1 in our problem, we adopt the following neigh-

borhood structure:

N1(α
∗) =

n−1∏

i=1

[
α∗

i −
1

2K
,α∗

i +
1

2K

]

Nj =

{
n−1∏

i=1

[
α∗

i −
j

2K
,α∗

i +
j

2K

]}
\

j−1⋃

l=1

Nl(α
∗) for j = 2, ..., K

where
∏

denotes Cartesian product. A unit hyperbox is thus centered
on α and sliced into K successive symmetric layers with equal thickness.
Note that, the Nj(α

∗) being mutually exclusive, they do not correspond to
topological neighborhoods14.

Also note that the volume of each Nj(α
∗) is increasing in j. Since at

each iteration one point for restarting the local search is drawn at random
from each neighborhood, the implication is that the search is relatively more
intensive near the incumbent. Figure 2 summarizes the algorithm.

The input to the local descent function is the starting point α and the
output is α̂, the new minimum found. COUNTMISSED(α̂), the objective
function evaluated at this point, is thus the number points misclassified by
the best possible plane in direction α̂.

For the local descent during the optimization phase, we use the downhill
simplex method of [NM65]. Our implementation is roughly based on the
structure suggested in [PFTV88].

The first neighborhood structure is arbitrarily centered at the origin. We
use as stopping criterion for VNS the number of runs through all neighbor-
hoods without improvement15.

14N1, however, would be a neighborhood under the L1-norm, in the topological sense of
the word.

15Unless otherwise indicated, we set the limit of passes without improvement at 10, i.e.
the algorithm stops if it has visited all neighborhoods ten times without improvement.
This yielded reasonable results in moderate time in most of our test problems.
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• Get initial point α∗

• best←∞

• REPEAT

– k ← 0

– REPEAT

∗ Get random candidate α ∈ Nk(α
∗)

∗ Call local search; returns new local min

∗ new = COUNTMISSED(α̂)

∗ IF (new < best)

· best← new

· α∗ ← α̂

· k ← 0

∗ ENDIF

∗ ELSE k ← k + 1

– UNTIL (k = K)

• UNTIL (stop criterion met)

• Return α∗ and best

Figure 2: Pseudocode for the VNS heuristic.

We now present the results of our numerical experiments.
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4 Numerical Experiments

We try our exact formulation and our heuristic on a small set of problems
from the famous UCI Machine Learning repository [BM98], and on a set of
random problems created with Musicant’s NDC, a publicly available genera-
tor [Mus98]. Preprocessing details and parameters used for the datasets are
given in annex A.

Our exact solutions were obtained using the CPLEX callable library
[ILO03], running under Linux16. Some of the problems we originally con-
sidered, such as the Pima database, failed to solve within the memory con-
straints of our solution setup17.

We first compare the solution time of the LW model with our improved
formulation (LWtight). The behavior of the heuristic is considered next:
we study the full set fit and generalization properties of the solutions found
by VNS by comparing it to known exact solutions, and then explore the
solution time for sets of instances too large to be realistically tackled by an
exact method with currently available technologies. Finally, we discuss the
acceleration of exact solutions using our heuristic bound.

4.1 Exact Solutions

Table 1 compares the solution times of the original LW formulation with our
improved version. The first column shows the objective value; the size of the
problem is indicated in the next two columns, followed by the percentage of
(full set) misclassified points at the optimum. In problems that take under
a couple of seconds to solve, CPU time is not consistently accurate and
comparisons should be made with caution. As the problems with substantial
solution times, Iris took the same time under both formulations, and the
tighter formulation of Cancer was solved in just 55% of the benchmark time.
Much to our surprise, the Housing problem took longer to solve with the
tighter formulation. We suspect this to be due to lengthier solutions for the
LP relaxations at each node under the tighter formulation; this can happen,
for instance, if a barrier method is used for the relaxations and the tighter
MIP formulations result in their being nearly degenerate18. This phenomenon
shows that the proposed formulation is not always better under the default
settings, and that care should be taken in the choice of algorithms for the
relaxations. We believe this issue to deserve further analysis.

Table 2 shows the corresponding results for the five random problems with
300 observations in 6 dimensions. In this case as well, the savings seem quite

16The processors are Intel Xeon 3.06 GHz, 1 Mb cache memory and 2 GO RAM.
17CPLEX appears to use some sophisticated memory management tricks [ILO03] and we

did not explore alternative approaches. For comparability and to focus on the differences
between the formulations, we used CPLEX’s own branching scheme with default settings.

18In the sense of not having proper interior solutions.
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Problem obj obs dim
bad   
rate LW LWtight savings

cancer 13 683 9 1.9% 634.13 342.77 46%
echocardiogram 7 74 7 9.5% 2.31 2.31 0%
glass_windows 3 214 9 1.4% 1.31 1.20 8%
hepatitis 2 150 16 1.3% 1.77 1.78 -1%
housing 9 506 13 1.8% 6476.58 7499.78 -16%
iris 25 150 4 16.7% 54.25 54.17 0%

CPU seconds

Table 1: CPU times for LW and LWtight formulations: UCI problems

significant. Although this sample is too small for a definitive assessment, it
would seem that there is a correlation between the difficulty of the underlying
classification problem, as estimated by the bad rate, and the solution time
of the corresponding MIP.

obj obs dim
bad   
rate LW tight savings

21 300 6 7.0% 910.53 383.85 58%
30 300 6 10.0% 19011.81 15001.50 21%
21 300 6 7.0% 867.13 507.46 41%
6 300 6 2.0% 3.06 1.77 42%

23 300 6 7.7% 2549.89 1725.72 32%

CPU seconds

Table 2: CPU times for LW and LWtight formulations: NDC problems

4.2 Heuristic Solutions

We first consider the speed and accuracy of the heuristic on the full sets (as
opposed to training-testing partitions) of our UCI problems. Table 3 shows
the best objective value found by the heuristic (VNS obj) and the implied
fit, as well as the percentage of the time taken by it with respect to the exact
solution; the exact solution and its accuracy are shown for reference.

The heuristic found the exact solutions in only two of the problems, but
it did so quite fast. The gap in the objective value for the other cases is
substantial. On the other hand, these approximations are obtained, for large
problems, in a small fraction of the exact solution time. Consider, for in-
stance, the Housing problem, with priors of about 1

2
, i.e. about half of the

observations in each class. A plane that leaves about 91% of them on the cor-
rect side is obtained in .4% of the time it takes the exact algorithm to reach
an accuracy of about 98%. Whether the trade off is worthwhile will depend
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Problem obs dim
exact 
obj fit

VNS 
CPU 
secs

fraction of 
exact time

VNS 
obj fit

cancer 683 9 13 98.10% 16.51 4.8% 13 98.10%
echocardiogram 74 7 7 90.54% 0.88 38.0% 11 85.14%
glass_windows 214 9 3 98.60% 5.06 420.3% 6 97.20%
hepatitis 150 16 2 98.67% 6.47 363.3% 12 92.00%
housing 506 13 9 98.22% 29.72 0.4% 47 90.71%
iris 150 4 25 83.33% 5.21 9.6% 25 83.33%

Table 3: Full set accuracy and VNS running times: NDC problems

on the specific application, but we argue that the observed performance of
the heuristic would be advantageous in many practical circumstances.

The huge difference in running times for the Glass and the Hepatitis
problems (with VNS taking about four times longer than the exact method)
should perhaps not be surprising. These are very easy instances, with exact
solutions taking only a couple of CPU seconds; there is clearly no advantage
in using any heuristic on them.

A key consideration when assessing a classifier is its off-sample perfor-
mance. We performed a ten-fold cross validation exercise on the UCI datasets,
comparing the average testing set accuracy of both the exact and heuristic
solutions19. In order to have a reference to another, mathematical program-
ing based linear discrimination alternative, we also compared them with the
results obtained with RLP, a popular, double-plane linear programming dis-
crimination model proposed in [BM92]. The results are summarized in figure
3. The heuristic generalized better than the exact solution on two problems,
and worse on the other three. The performance of the exact solution on He-
patitis and the Echocardiogram problems was dramatically superior to both
the heuristic and RLP20. These are, however, easy instances for which no
heuristic is likely to be competitive in practice.

Studying the solution times of the heuristic on increasingly large datasets,
with a fixed stopping criterion, we find that it scales up gracefully to problem
sizes where exact solution is not an option. We created a hundred random
problems in 6 dimensions with observations ranging from 2000 to 20000 by
steps of 2000. Figure 4 shows the average running time of the ten random
problems of each size, for a constant stopping criterion. On this range of

19For a detailed discussion of the k-cross validation and its properties, see e.g. [Han97,
DHS00].

20It should be noted that RLP, unlike the other two methods being compared, does not
attempt directly to minimize misclassifications on the training sets. However, the ultimate
goal of any discrimination procedure being usually off-sample prediction, the comparison
presented is relevant.
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Figure 3: Generalization accuracy for alternative linear discriminants

problem sizes solution time appears to grow linearly.
An additional series of ten problems with 100000 observations each was

solved in an average of 16 CPU minutes. Exact solution of these kind of prob-
lem is currently impossible. Although nothing can be said of the precision
of our heuristic solutions, we have no reason to believe that the performance
would be much worse than in the smaller problems for which an exact bench-
mark could be obtained, as discussed above.
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Figure 4: VNS solution time for NDC random problems in 6 dimensions.

4.3 Acceleration by Heuristic Bound

PENDING THE SOLUTION OF THE PROBLEMS WITH CPLEX

5 Conclusion

We review the main approaches to the misclassification minimization prob-
lem, and present and test an improved exact formulation. We also propose
a heuristic based on the Variable Neighborhood Search framework.

Our tests suggest that the proposed exact formulation generally outper-
forms the classic benchmark on which it is based. Its use can be explored
along with some of the algorithmic improvements introduced in the literature
for this family of Mixed Integer Programs.

The heuristic appears to find reasonable solutions in small running times,
and to perform acceptably in cross validation exercises. It scales up gracefully
to problem sizes beyond the reach of exact methods.

We believe our approach to be merit further research.
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A Data Set Details

We considered the instances from the UCI Machine Learning Repository [BM98]
which either have only two classes or could be readily converted into a bi-
nary classification problem. We then retained those with very few or no
categorical variables.

Cancer refers to the Wisconsin Breast Cancer database. Rows with miss-
ing attributes were deleted.

For the Echocardiogram problem, all instances with missing labels were
deleted, and missing attributes were replaced by the corresponding class
means.

For the Glass database the two classes considered were window versus
non-window sources.

Housing refers to the Boston Housing database.
In the Hepatitis database, all observations with more than 6 missing at-

tributes were deleted, as were columns 16 and 18, which had too many miss-
ing entries. Missing observations were then replaced with column means (if
continuous) or modes. Column 3 trivially separates the set, and was also
removed.

The problem known in the literature as Pima, the Pima Indians Diabetes
database, with 768 observations in 8 dimensions, failed to solve exactly even
with the best heuristic bound of .

Musicant’s NDC generator is a matlab program. It locates randomly a
given number of centers, assigns them to one of two classes by splitting the
set with a randomly generated plane, and then produces multivariate nor-
mal observations from these centers, using a randomly generated covariance
matrix. This approach provides some more generality than one might have
with other common practices. Note, however, that even within the class of
normally distributed problems, some reasonable, interesting configurations
(such as having a small cluster centered on the “wrong” side of the plane)
are not spanned by NDC. These limitations are inevitable in any exercise with
artificial data, and we feel that replicability is facilitated with the use of a
publicly available generator. The number of centers was made to be equal to
the dimension of the problem and the dispersion parameter nExpandFactor

was fixed at 15.
All databases were linearly standardized to the range [0, 1].
The original files are available at http:XXXXX SAY WHERE
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