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Abstract

We consider the problem of separating two sets of points in an

Euclidean space with a hyperplane that minimizes the sum of p-norm

distances to the plane of points lying on the “wrong” side of the plane.

A Variable Neighborhood Search metaheuristic framework is used to

determine the plane coefficients. For a set of examples with L1-norm,

L2-norm and L∞-norm, for which the exact solution can be computed,

we show that our algorithm finds it in most cases, and gets good

approximations in the others. The use of our heuristic solutions for

problems in these norms can dramatically accelerate exact algorithms.

Our method can be applied on very large instances that are intractable

by exact algorithms. Since the proposed approach works for truly

arbitrary norms (other than the traditional 1,2 and∞), we can explore

for the first time the effects of the choice of p on the generalization

properties of p-norm hyperplane separation.
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1 Introduction

Since Fisher’s seminal work [Fis36], linear discriminant functions have been

fundamental tools for automatic classification for several decades. Once the

parameters of such models are defined, new observations can be classified

with great ease and speed. This has made them, despite their limitations,

popular for a wide variety of applications. Furthermore, by expansion or

transformation of the original observation space, these techniques can be

applied to non-linear discrimination.

The linear discriminant can be seen as a hyperplane that somehow sep-

arates the representations of the training observations of each of the two

classes in an n-dimensional real space R
n. The coefficients of the plane will

provide the desired discriminant.

When the respective convex hulls of the two sets of observations inter-

sect, perfect separation with the plane is impossible. As some points will

necessarily lie on the wrong side of any plane, a natural idea is to choose the

separating plane by minimizing some measure of the aggregate error implied

by such misclassified points.

An intuitively appealing measure of this error is the sum of the distances

to the plane of the misclassified points. As this distance is, in general, non-

linear, the resulting optimization problem is quite difficult. Alternative ap-

proaches have therefore been used, that preserve the linearity of the objective

function, but in fact renounce the precise distance as the criterion. This is

often done by minimizing some other measure of deviation of misclassified

point with respect to the plane [Smi68, Gri72, FG81, Han81, LO90].

A recent vein in the literature has emerged that tackles explicitly the
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problem of minimizing the sum of distances to the plane. Analytical ex-

pressions for the distance in arbitrary Lp-norm from a point to a plane are

derived in [Mel97], but [Man99] appears to be the first to apply them to

the separating hyperplaneplane problem1. He shows that the L1-norm case

can be solved with 2n linear programs (each with about as many variables

and as many constraints as there are training set observations), and suggests

a formulation with a bilinear objective function and convex constraints for

the L2-norm case. The implications of these precise formulations for data

mining applications is yet to be fully explored, and it is in this context that

we consider our work.

In [AHK+04a] a linear mixed integer formulation is presented for the

L∞-norm, and apply a branch and cut approach [AHJS00, Per04] to Man-

gasarian’s formulation of the L2-norm case.

These developments have been confined to the more usual cases of the

L1, L2 and L∞-norms, and except to some extent for the L1-norm, are in

practice unsuitable for application to large scale problems.

We here present a heuristic method that can be applied to a truly arbi-

trary (integer or fractional) norm, and that can scale up gracefully to rela-

tively large instances. The general idea is to project the objective function

(i.e. the sum of distances in the given Lp-norm, of misclassified points to

the plane) to the surface of a Euclidean unit sphere representing the possible

directions of the gradient of the plane. The heuristic search for a minimum

is then performed over this sphere.

1Mangasarian also presents his own proof of the formulae. Another, perhaps simpler

proof is given in [Pla]
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The two key insights behind our approach are the following:

• The search for an optimal hyperplane can be decomposed in determin-

ing its direction and then, for a given direction, its position or offset

with respect to the origin

• Once a direction is fixed, the conversion from the Euclidean distance

to an arbitrary Lp-norm is just a constant rescaling

The procedure is implemented in two steps. We first construct a query

function such that, given any point on the unit Euclidean sphere (i.e. any

direction for the gradient of the candidate plane), determines the optimal

position of the plane along that direction, and computes the sum of distances

(in the given Lp-norm) of misclassified points to the best plane lying in that

direction. In the second step, the optimization phase, the heuristic takes this

function as an oracle and queries it repeatedly as it searches the surface of

the sphere for the minimum.

Our implementation of the optimization phase uses Variable Neighbor-

hood Search (VNS) [HM01b], an approach which has proved to be useful

in a variety of difficult global optimization problems [BM96, CH97, HM97,

BCK99, HMU00, MPKVC00].

Our numerical tests suggest that this algorithm often finds optimal or

near optimal solutions. As shown in [AHK+04b], these heuristic solutions

can also be used to significantly accelerate exact methods.

Since the proposed approach works for truly arbitrary norms (other than

the traditional 1,2 and∞), we can explore for the first time the effects of the

choice of p on the generalization properties of Lp-norm hyperplane separation.
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The rest of the paper is organized as follows. Section 2 establishes the

notation and explains the query function to be used as oracle in the search

process. Section 3 summarizes the VNS approach and presents the search

phase. Section 4 then summarizes our numerical results. The final section

concludes.

2 The Oracle

Following the notation of [Man99], we denote A and B the two sets of points

in R
n containing respectively m and k points represented by the matri-

ces A ∈ R
m×n and B ∈ R

k×n. The discriminating hyperplane is denoted

P = {x |wtx = γ },with γ ∈ R, w ∈ R
n, w 6= 0. Such plane can also be char-

acterized by a set of n − 1 angles, α = (α1, α2, ..., αn−1) which determine a

direction perpendicular to the plane, and by an offset ϕ from the origin along

this direction. The conversion from (α,ϕ) to the corresponding (w, γ) can be

performed by an iterative procedure [Ken61] [Som58].

Once the training data set A ∪ B and the desired norm p are fixed, the

input to the oracle is a direction α from the origin. We adopt the convention

that the set A is meant to lie on the side of the plane to which w points.

The output PNORMDIST(α) is the sum of p-distances of misclassified

points by the best possible plane along the given direction.

The algorithm is outlined in Figure 1.

The points in A and B are projected into the ray defined by α. Their

distances to the origin are recorded and ranked (distances to the origin are

signed, a negative value indicating the direction opposite to the origin with
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• missA← 0 /* counter of missed points from A */

• missB ← |B| /* counter of missed points from B */

• compute distA and distB /* vectors of projections to ray α */

• sort distA and distB

• sumdist← sum of all entries in distB

• bestdist← sumdist

• bestpoint← first point

• current← min(min(distA), min(distB)) /* initial position of plane */

• REPEAT

– move current to next point

– update missA , missB and sumdist

– IF (sumdist < bestdist)

∗ bestdist← sumdist

∗ bestpoint← current

– ENDIF

– UNTIL (all points considered)

• pbest← bestdist/DualNorm

• return pbest

Figure 1: Pseudocode for the PNORMDIST (α) oracle.

respect to w).

The candidate plane, perpendicular to the ray, is initially positioned at

the first point along the ray, i.e. the one with minimum distance. All the

observations start thus on the same side of this plane, with A being in the

correct half-space, while all B points are misclassified. The corresponding

counters missedA = 0 and missedB = |B| are initialized. The initial sum of

distances of misclassified points sumdist corresponds to the distance of all

points in B to the initial plane.

The plane is then moved along the ray, in the direction of α, to the

position corresponding to each successive point. The distance between suc-

cessive projections and the updated counters missedA and missedB are used
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to compute the new sumdist. The minimum distance best found along the

way is recorded. The position where this minimum occurs is also noted.

By equation (7) in [Man99], the conversion of this value to the corre-

sponding sum of distances in p-norm is obtained by dividing it by the dual

norm ‖w‖′p of the gradient w that corresponds to the given α. For 1 < p <∞

, ‖w‖′p = ‖w‖q where q is such that 1

p
+ 1

q
= 1. We therefore compute it as

‖w‖′p =
p−1

p

√∑
w

p

p−1 .

We also recall that ‖w‖′
1

= ‖w‖
∞

and vice versa, and deal with these

cases separately.

The adjusted value p−best is then the minimum sum of Lp-norm distances

of points misclassified by a plane in direction α. This value is returned by

the oracle.

The oracle function PNORMDIST (α) can then be queried by the op-

timization routine. Note that the angles (in radians) given by α are au-

tomatically reduced modulo 2π within the oracle2. This implies that the

optimization routine can search over the unconstrained domain α ∈ R
n−1.

Sorting the distance vector is theoretically the bottleneck step in the

oracle function. We use the C++ standard library function sort for this

task3. The distances for A and B are stored and sorted separately to speed

this step.

2The projections of the points to the plane are computed using the standard trigono-

metric functions.
3Modern implementations of the C++ standard library use introsort, which has a worst

case O(n log n) complexity, but is known to do much better on average [Mus97].
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3 The Heuristic Search

Variable Neighborhood Search is a metaheuristic framework that has been

successfully applied to a variety of difficult optimization problems. The ba-

sic methodology and several extensions can be found in [MH97], [HM99],

[HM01b], and [HM01c]. Applications to unsupervised classification include

[HM01a], [BHM02] and [HJM98].

In the realm of supervised classification, [GTMM03] use VNS to deal with

combinatorial challenges arising in variants and refinements of the k-nearest

neighbors approach.

A crucial insight underlying VNS is the observation that in many practical

optimization problems with multiple local minima, these tend to be somehow

clustered or correlated. Under these circumstances, a local minimum might

contain information useful to find other, perhaps better, minima. The general

idea in VNS is thus to try to escape from local minima by first exploring

subsets of the domain that are in some sense “close” to the incumbent, and

then going on to test for solutions that are increasingly different to it.

Among the family of metaheuristic frameworks, VNS has a number of

advantages that in our view make it suitable for the optimization phase of

this data mining problem. It is simple and transparent, with a very small

number of parameters; it is also quite flexible, allowing for any local search

procedure and objective function to be used without changing the general

framework.

The only two exogenous ingredients for the basic version of VNS are a

metric defined on the solution domain and a local descent procedure. The

metric is used to build a problem-dependent structure consisting of K ordered
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neighborhoods, N1(α
∗),N2(α

∗), ...,NK(α∗) centered around the current in-

cumbent solution point α∗. The first neighborhood N1(α
∗) includes only

solutions near the incumbent and subsequent neighborhoods include regions

farther from it.

A local descent procedure is applied starting from a randomly chosen

point within N1(α
∗), and then from increasingly farther neighborhoods until

a better solution is found or the stopping criterion is met. If an improved

solution is found, the whole structure is recentered around it and the process

restarts.

For the search over R
n−1 in our problem, we adopt the following neigh-

borhood structure:

N1(α
∗) =

n−1∏

i=1

[
α∗

i −
1

2K
,α∗

i +
1

2K

]

Nj =

{
n−1∏

i=1

[
α∗

i −
j

2K
,α∗

i +
j

2K

]}
\

j−1⋃

l=1

Nl(α
∗) for j = 2, ..., K

where
∏

denotes Cartesian product. A unit hyperbox is thus centered

on α and sliced into K successive symmetric layers with equal thickness.

Note that, the Nj(α
∗) being mutually exclusive, they do not correspond to

topological neighborhoods4.

Also note that the volume of each Nj(α
∗) is increasing in j. Since at

each iteration one point for restarting the local search is drawn at random

4N1, however, would be a neighborhood under the L1-norm, in the topological sense of

the word.
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• Get initial point α∗

• best←∞

• REPEAT

– k ← 0

– REPEAT

∗ Get random candidate α ∈ Nk(α
∗)

∗ Call local search; returns new local min

∗ new = PNORMDIST (α̂)

∗ IF (new < best)

· best← new

· α∗ ← α̂

· k ← 0

∗ ENDIF

∗ ELSE k ← k + 1

– UNTIL (k = K)

• UNTIL (stop criterion met)

• return α∗ and best

Figure 2: Pseudocode for the VNS heuristic.

from each neighborhood, the implication is that the search is relatively more

intensive near the incumbent. Figure 2 summarizes the algorithm.

The input to the local descent function is the starting point α and the

output is α̂, the new minimum found. PNORMDIST (α̂), the objective

function evaluated at this point, is thus the sum of distances of misclassified

points to the best plane in direction α̂.

For the local descent during the optimization phase, we use the downhill

simplex method of [NM65]. Our implementation is roughly based on the

structure suggested in [PFTV88].

The first neighborhood structure is arbitrarily centered at the origin. We

use as stopping criterion for VNS the number of runs through all neighbor-
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hoods without improvement5.

We now present the results of our numerical experiments.

4 Experimental Results

We tested our algorithm on several series of random problems, as well as on

a set of real life instances from the UCI Repository [CM98]. For moderately

sized instances, exact solutions can be obtained for p values of 1, 2 and

∞. We first compare our heuristic’s performance to these exact results,

and then explore the algorithms’s speed on larger problems, for which exact

benchmarks are impossible or impractical to obtain.

Although known exact methods can be applied to moderately sized prob-

lems in 2-norm and ∞-norm, and to some extent to larger problems for the

1-norm, for the case of a truly arbitrary, integer or fractional p > 1, there

are no available general exact methods. An interesting issue for practical

data mining applications is whether a choice of p results in better general-

ization for a class of problems. Our heuristic approach allows this issue to

be tackled. In the final part of this section, we study the effects of using a

range of values for p on the generalization properties of the resulting planes,

as estimated by k-cross validation on a set of UCI problems.

5Unless otherwise indicated, we set the limit of passes without improvement at 6, i.e.

the algorithm stops if it has visited all neighborhoods six times without improvement.

This yielded reasonable results in moderate time in most of our test problems.
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4.1 Benchmarks to Known Exact Solutions

For a set of real life instances from the UCI Repository and two sets of artifi-

cial problems, we compare the heuristic solutions found by our algorithm for

the L1-norm, L2-norm and L∞-norms to the corresponding exact solutions.

For the L1-norm case, the exact solutions were found by solving 2n linear

programs, as suggested in [Man99]. We solved these 2n LPs sequentially6, but

accelerated the solution process by adding at each step the constraint that

the objective value be at most the best found so far. This technique can save

a number of phase II solutions and reduces considerably total computation

time.

The exact L2-norm and L∞-norm solutions were found with the tech-

niques proposed in [AHK+04b].

The random problems were created with D. Musicant’s NDC genera-

tor [Mus98], which produces normally distributed clusters. This genera-

tor is publicly available and has been used in other discrimination studies

(e.g., [FM01, MM00]).

For the first series of random problems, we fixed the dimension at 6 and

explored the effects of increasing the number of points from 2000 to 20000

(by steps of 2000). As the exact solution in L1-norm is much easier than for

the other norms, we were able to extend the series to 100000 by increments

of 20000 for this case.

We then generated a second series of problems with 2000 points, with

dimensions ranging from 4 to 13. For each problem size, we generated 10

6As the 2n linear programs are independent, a parallel implementation would be pos-

sible.
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instances and report the corresponding mean values of the results.

The parameters used for the generation of the artificial sets, as well as

the preprocessing steps for the real life instances from the UCI Repository

are detailed in Appendix A.

Tables 1, 2 and 3 present, respectively, the results for the Irvine datasets

and each of the two families of artificial problems. The gap columns shows the

percentage above the exact minimum of the objective function value found

by the heuristic. The fit column shows the full-set accuracy of the discrim-

inant (i.e. the percentage of points correctly classified by the corresponding

hyperplane). The computation time in seconds is shown in the CPU column.

Results are shown for the L1-norm, L2-norm and L∞-norms.

problem dim obs gap % fit  CPU fit CPU gap % fit  CPU fit  CPU gap % fit CPU fit CPU

cancer 9 683 0.00% 96.78% 5.3     97.07% 0.08 0.50% 97.07% 6.2     97.07% 156      0.01% 97.37% 7.6 97.51% 1.1
echocardiogram 6 74 0.00% 75.68% 0.5     77.03% 0.01 0.03% 75.68% 0.6     75.68% 5          0.00% 72.97% 0.5 77.42% 0.1
glass 9 214 2.33% 95.79% 3.3     95.79% 0.03 0.79% 94.86% 3.5     95.33% 5          0.82% 94.39% 2.8 95.79% 0.4
hepatitis 16 150 0.60% 88.00% 4.3     90.00% 0.06 1.17% 86.67% 4.4     88.00% 14,181 3.49% 89.33% 7.4 90.00% 65.7
housing 13 506 0.17% 85.77% 28.8   84.58% 0.14 0.57% 84.19% 13.9   84.39% 550      4.50% 86.76% 13.2 88.14% 30.4
pima 8 768 0.00% 72.79% 4.7     73.05% 0.42 0.00% 75.39% 4.4     75.39% 612      0.00% 76.04% 4.4 76.04% 8.1

L� -norm
VNS EXACT

L1-norm L2-norm
VNS EXACTVNS EXACT

Table 1: UCI instances.

Exact solution times are not reported for the problems in L2-norm for

12 and 13 dimensions, since these exact solutions could not be obtained

within the predetermined maximum allowed CPU time without the heuristic

bound7.

7The use of heuristic solutions to accelerate exact solution in L2- and L∞-norms is

discussed in [AHK+04b].
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As far as the objective function is concerned, the heuristic finds the exact

solution in most of our datasets, and is close on many of the cases where it

does not. As we can see from the results for housing and hepatitis, as well

as the last lines of table 2, performance deteriorates on dimensions above

about 10, but appears to be robust to the number of observations8. The

glass problem, although only in 9 dimensions, appears to have a very large

number of local minima under the L1-norm, and the heuristic fails to find

the optimum within the limits set by our stopping criterion. Interestingly,

the full set fit of the heuristic plane is the same as that of the exact solution.

For the L1-norm, the gap was zero in nine out of the 10 problems with

18000 observations in 6 dimensions, while the remaining one failed by almost

13%; the heuristic found the exact solution for all but one of the problems

with 80000 observations, which was missed by an (abysmal) 32%.

The small but systematic apparent disadvantage of the heuristic solution

in full set accuracy for some problem sets appears to be due to round-off and

precision differences between our algorithm and the exact solver.

For this range of problem sizes, the computing time for our heuristic

appears to be linear in the number of observations, and quadratic in the

dimension9. The time gains are of course most dramatic with respect to

the L2-norm, which is the hardest of the three to compute exactly. For the

problems with 2000 observations in 11 dimensions, the heuristic found the

optimum in about 1

600

th
of the time of the exact algorithm. Exact solutions

8Poor performance on higher dimensions can be traced to the limitations of the local

search technique, the Nelder-Mead simplex search.
9Least squares fit of the model CPUtime = β0 + β1 ∗ dim + β2 ∗ dim2 yields an R2 of

.977 with β0 = 17.0918, β1 = −5.09 and β2 = 0.6314.
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under the L1-norm are of course the easiest to obtain, and the heuristic

approach is not worthwhile for small problems (such as our Irvine examples

and problems with up to 10000 observations. However, even under the L1-

norm, the heuristic looks advantageous in all instances larger than 20000

observations, and the difference reaches a full order of magnitude for 100000

points, with very little loss of average accuracy.
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dim obs gap % fit  CPU fit CPU gap % fit  CPU fit  CPU gap % fit CPU fit CPU

4 2000 0.00% 94.33% 8.5     94.36% 0.4 0.00% 94.41% 10.5   94.41% 5          0.00% 94.29% 8.3 94.31% 0.8
5 2000 0.00% 93.68% 7.6     93.70% 0.5 0.00% 93.83% 11.1   93.84% 11        0.00% 93.69% 7.1 93.71% 1.5
6 2000 0.00% 92.95% 7.5     92.98% 0.6 0.00% 93.21% 13.9   93.23% 34        0.00% 93.11% 6.9 93.14% 3.9
7 2000 0.51% 90.98% 11.3   90.92% 1.0 0.00% 91.73% 21.8   91.75% 118      0.00% 91.49% 9.4 91.54% 8.8
8 2000 0.53% 89.29% 15.3   89.46% 1.4 0.00% 90.13% 29.2   90.16% 557      0.00% 89.63% 14.0 89.69% 20.6
9 2000 0.01% 89.85% 22.8   89.96% 1.6 0.00% 90.13% 44.3   90.17% 1,796   0.05% 89.92% 21.4 90.06% 49.4

10 2000 0.01% 88.86% 27.5   88.94% 1.9 0.00% 89.51% 56.8   89.55% 3,194   0.00% 89.37% 28.2 89.46% 102.8
11 2000 0.00% 82.32% 43.4   82.45% 3.4 0.00% 83.65% 64.0   83.74% 38,531 0.02% 83.48% 31.4 83.59% 330.9
12 2000 2.09% 87.61% 49.0   88.25% 2.8 0.01% 88.87% 78.5   89.02% N/A 0.04% 88.41% 42.3 88.58% 530.5
13 2000 10.12% 84.49% 53.7   84.71% 4.0 0.01% 86.02% 93.8   86.15% N/A 0.27% 85.56% 49.7 85.73% 1324.6

L2-norm L �-norm
VNS EXACT

L1-norm
VNS EXACT VNS EXACT
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dim obs gap % fit  CPU fit CPU gap % fit  CPU fit  CPU gap % fit CPU fit CPU

6 2000 0.00% 93.12% 8.1     93.14% 0.7 0.00% 93.14% 14.6   93.15% 36        0.00% 93.10% 7.1 93.13% 4
6 4000 0.00% 92.16% 15.2   92.17% 3.0 0.00% 92.22% 28.3   92.22% 213      0.00% 91.90% 13.5 91.92% 15
6 6000 0.21% 91.08% 18.5   91.21% 8.9 0.00% 91.59% 34.2   91.60% 636      0.00% 91.51% 16.5 91.53% 41
6 8000 0.00% 91.65% 36.0   91.66% 16.1 0.00% 92.27% 54.9   92.28% 960      0.00% 92.24% 33.8 92.25% 65
6 10000 0.00% 91.22% 50.5   91.22% 27.3 0.00% 91.04% 77.7   91.04% 1,433   0.00% 91.08% 45.2 91.08% 126
6 12000 0.00% 90.70% 35.4   90.71% 44.2 0.00% 91.01% 69.6   91.01% 2,593   0.00% 90.94% 32.9 90.94% 204
6 14000 0.00% 89.34% 40.3   89.35% 62.6 0.00% 89.68% 74.9   89.69% 2,858   0.00% 89.56% 37.2 89.58% 321
6 16000 0.00% 92.09% 79.1   92.10% 54.3 0.00% 92.25% 112.4 92.25% 2,146   0.00% 92.21% 70.6 92.22% 288
6 18000 1.27% 92.57% 57.8   92.61% 77.5 0.00% 92.80% 115.5 92.80% 5,916   0.00% 92.82% 52.1 92.82% 391
6 20000 0.00% 94.48% 58.1   94.48% 96.7 0.00% 94.59% 118.5 94.59% 5,777   0.00% 94.49% 57.1 94.49% 368
6 40000 0.00% 92.18% 193.28 92.18% 528.4
6 60000 0.00% 95.06% 162.25 95.06% 1000.7
6 80000 3.23% 91.58% 233.16 91.84% 2039.2
6 100000 0.00% 90.51% 306.83 90.51% 4384.7

L2-norm L �-norm
EXACT VNS EXACTVNS EXACT

L1-norm
VNS
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4.2 Test on Larger Problems

We explored empirically the computation time of our algorithm on larger

problems, for which exact benchmarks are unavailable. In order to control

for problem difficulty, we constructed an additional set of nine test problems,

with a simpler structure than those used for benchmarking accuracy10. The

dimension was fixed at 10, and the number of observations was increased

from 200000 to one million, by steps of 100000.

Figure 3 shows the CPU time of the heuristic (for the Euclidean norm)

as function of problem size. For this range of problem sizes, computation

time still appears to grow linearly; the instance with one million points in

ten dimensions took a little under two hours to run.

We used for these experiments the same stopping criterion as in the accu-

racy benchmarks discussed in the previous section. However, for all of these

large problems, the heuristic solution that’s eventually reported is found very

quickly (within the first 3% to 5% of the total time), the rest of the time

being spent spanning the neighborhoods without further improvement. In

our example with one million points, the final solution was found in only 4.5

minutes.

We suspect this phenomenon to be due to the fact that in problems with

simple structures, with a large number of points in moderate dimensions, the

effect of each single point on the surface of the objective function is relatively

small, and deep, narrow valleys are unlikely to exist. Under these circum-

10The problems were constructed by fixing two arbitrary centers, assigning one half of

the points to each and generating independent columns from a normal distribution for

each of them.
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computing time on symmetric test problems in 10 dimensions
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Figure 3: Running time for large problems.

stances, just a few runs of the local descent lead to the global minimum. This

suggests that, when this kind of problem is identified, and complex clusters

of local minima are not present, the use of our oracle with a suitable descent

routine can provide a good, quick answer even in fairly large instances.

4.3 Classification Accuracy with Arbitrary Norm

We now turn to the study of the effect on classification accuracy of the choice

of the norm p for the UCI datasets. Our experimental set up is as follows.

We compute the 10-cross validation accuracy of separating hyperplanes that

minimize the p-norm distance of misclassified points, as found by our heuris-

tic, for 30 values of p, starting from 1 with increments of .2. In order to

smooth out the effect of the partition, we repeat the process 10 times for

19



each data set11.

As accuracy was more important than speed for this exercise, the stopping

criterion for VNS runs was raised to 10 passes through all neighborhoods

without improvement. As we did not expect the optimal planes to vary

dramatically for nearby values of p, the VNS search was initiated at the best

point found for the previous value of p considered12.

The results are plotted in figures 4 to 7. The lighter lines represent the

10-cross validation accuracies obtained with each partition; the darker line

is the average. For echocardiogram, glass and hepatitis, there seems to be

no systematic effect of the value of p on testing set classification accuracy.

For cancer, despite some fluctuations, it appears that the planes with p = 1

perform generally at least as good as any others.

Results for the housing data set show an increasing trend on p, with

average accuracy raising from 82% to 84% as p goes from 1.6 to 6.8. For the

pima data set the effect is quite remarkable: for all the partitions considered,

accuracy is lowest under the L1-norm and increases until about p = 3.

The choice of p appears thus to be relevant in some, but not all instances.

A practical implication is that a range of values (including fractions) might

be tried when Lp-norm separation is being considered.

11we considered alternative approaches to deal with this issue. Performing 20- or 30-

cross validation would have been a reasonable choice only for the larger datasets, whereas

leave-one-out was computationally impractical. Averaging over several partitions with

10-cross validation appeared to be a solution appropriate for all the datasets.
12the case p = 1, for which no previous solution is available, was started at the origin
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Figure 4: 10-fold validation accuracy vs. norm chosen: Cancer Dataset.
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Figure 5: 10-fold validation accuracy vs. norm chosen: Echocardiogram

Dataset.
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Figure 6: 10-fold validation accuracy vs. norm chosen: Housing Dataset.
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Figure 7: 10-fold validation accuracy vs. norm chosen: Pima Dataset.
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5 Conclusion

Our heuristic approach for the Lp-norm separating hyperplane problem ap-

pears to be very promising for data mining applications for which this crite-

rion is chosen. It is able to find good solutions in reasonable time, for large

instances in up to about 10 dimensions. The quality of the solutions found

deteriorates in higher dimensions but appears to be robust to the number of

observations. In moderate dimensions, the algorithm scales very gracefully

(apparently linearly) to very large problems.

The proposed method can furthermore deal with problems for which no

practical method for exact solution is known, namely when a truly arbitrary

p is considered. Our exploration of the generalization properties of Lp-norm

separation with respect to the choice of p suggest that there are classes of

problems for which the norm matters, while for others the resulting hyper-

plane is essentially the same regardless of the norm.

Possible avenues for further work on the optimization phase include ex-

ploring the use of local search procedures other than the downhill simplex

method within VNS, or of metaheuristic approaches other than VNS.

A Data Set Details

We considered the instances from the UCI Machine Learning Repository [CM98]

which either have only two classes or could be readily converted into a bi-

nary classification problem. We then retained those with very few or no

categorical variables.

Cancer refers to the Wisconsin Breast Cancer database. Rows with miss-
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ing attributes were deleted.

Pima refers to the Pima Indians Diabetes database.

For the Echocardiogram problem, all instances with missing labels were

deleted, and missing attributes were replaced by the corresponding class

means.

For the Glass database the two classes considered were window versus

non-window sources.

Housing refers to the Boston Housing database.

In the Hepatitis database, all observations with more than 6 missing at-

tributes were deleted, as were columns 16 and 18, which had too many miss-

ing entries. Missing observations were then replaced with column means (if

continuous) or modes. Column 3 trivially separates the set, and was also

removed.

Musicant’s NDC generator is a matlab program. It locates randomly a

given number of centers, assigns them to one of two classes by splitting the

set with a randomly generated plane, and then produces multivariate nor-

mal observations from these centers, using a randomly generated covariance

matrix. This approach provides some more generality than one might have

with other common practices. Note, however, that even within the class of

normally distributed problems, some reasonable, interesting configurations

(such as having a small cluster centered on the “wrong” side of the plane)

are not spanned by NDC. These limitations are inevitable in any exercise with

artificial data, and we feel that replicability is facilitated with the use of a

publicly available generator. The number of centers was made to be equal to

the dimension of the problem and the dispersion parameter nExpandFactor
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was fixed at 15.

All databases were linearly standardized to the range [0, 1].

The original files are available at http:XXXXX SAY WHERE
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