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RÉSUMÉ

Nous étudions la séparation de deux ensembles distincts de points dans un espace
euclidien, par un hyperplan qui assigne un demi-espace à chacun des ensembles, en
minimisant un certain critère d’erreur. Les essais dans la thèse traitent de plusieurs
tels critères.

Le problème de la minimisation de la somme des distances Lp des points mal
classés à l’hyperplan, pour une valeur de p vraiment arbitraire, entière ou frac-
tionnaire, ne peut pas en général être résolue exactement. Nous appliquons à ce
problème une heuristique basée sur la recherche à voisinage variable (Variable
Neighborhood Search, VNS). Les solutions trouvées sont raisonnablement précises,
et les temps de solution augmentent modestement avec la taille des problèmes. Nous
constatons que le choix de p affecte les propriétés de généralisation du discriminant,
mais d’une façon qui dépend du cas spécifique.

Nous utilisons les bornes obtenues par notre heuristique VNS pour accélérer la
solution exacte dans les cas de p = 2 et p =∞.

Nous considérons aussi le critère de la minimisation du nombre de points mal
classés. Nous proposons une amélioration d’une formulation classique pour ce prob-
lème, et trouvons que, pour un certain nombre d’instances, elle réduit de manière
significative le temps nécessaire pour obtenir une solution exacte. Nous implantons
aussi le VNS pour ce problème, et constatons qu’il est rapide, et que les solutions
qu’il trouve se généralisent raisonnablement bien par rapport à quelques autres
classificateurs linéaires.

La dernière partie de la thèse est une application à la méthode des scores
de crédit (credit scoring). Le critère de choix pour ce volet est la minimisation
de la somme des déviations (i.e., pas nécessairement des distances) des points mal
classés à l’hyperplan. Nous explorons la question de la sélection de variables dans le
contexte d’un modèle de programmation linéaire. Notre travail est basé sur l’analyse
empirique de deux bases de données réelles. Nous suggérons quelques améliorations
à une méthode basée sur le principe du “jackknife”. Nous proposons également
une réinterprétation de cette méthode, considérée comme traitant implicitement un
problème bicritère. Notre interprétation suggère des formulations alternatives, et
le potentiel d’une application plus ample des idées sous-jacentes à cette technique.

Mots clés: classification automatique, séparation en norme arbitraire,

recherche à voisinage variable, exploitation des données, évaluation sta-

tistique du crédit, méthode des scores.



ABSTRACT

We consider the problem of separating two distinct sets of points in a Euclidean
space with a hyperplane that assigns a half space to each of the sets, by minimizing
some error criterion. The essays in the thesis deal with different such criteria.

The problem of minimizing the sum of Lp-norm distances of misclassified points
to the plane, for truly arbitrary, integer or fractional, values of p, cannot in general
be solved exactly. We successfully apply the Variable Neighborhood Search (VNS)
metaheuristic framework to this problem. The solutions found are reasonably ac-
curate, and scale gracefully to large instances. We find that the choice of p affects
the generalization properties of the discriminant in a case-dependent manner.

Exact solution methods exist for the cases p = 2 and p =∞. We use the VNS
bounds to accelerate the exact solution for the last two of these cases.

The next criterion we consider is the minimization of the number of misclassified
points. The exact solution of this problem leads to large MIP models that are often
difficult to solve. We propose and test an improvement to a classic formulation, and
conclude that, for a number of problems, it reduces significantly the exact solution
time. We adapt and implement the VNS framework to find heuristic solutions for
this, and find that it is fast, and that the solutions it finds generalize reasonably
well as compared with some other linear classifiers.

The final part of the thesis is an application to credit scoring. It considers the
criterion of minimizing deviations (which are not necessarily distances) of misclas-
sified points to the plane, and explores the issue of feature selection in the context
of a linear programming model. Our work is based on a case study of two real-life
credit databases. We suggest and test some improvements to a method based on
the jackknife principle. We also propose a reinterpretation of this method as im-
plicitly dealing with a bicriterion problem. Our interpretation suggests alternative
formulations, and a potential for wider application of the underlying ideas.

Keywords: automatic classification, arbitrary norm separation, fea-

ture selection, credit scoring, variable neighborhood search, misclassifi-

cation minimization, data mining, machine learning.
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INTRODUCTION

For over half a century, linear discriminant functions have been applied by statisti-

cians, computer scientists and operations researchers to a wide array of supervised

classification problems. An optimization dimension is present in every model of

classification, whether it is developed within a statistical, artificial intelligence or

operations research mindset. There is, however, a branch of the literature that ap-

proaches the problem specifically from a mathematical programming perspective.

This thesis belongs to that branch; it is a collection of essays, each presented in a

chapter, on various aspects of the construction of linear discriminant functions (for

brevity also called just “linear discriminants”), mostly from the perspective of the

optimization challenges involved.

The specific problem we deal with can be summarized as follows. Suppose we

have two distinct sets A and B, called classes. The members of these sets are

of the same kind as those that we wish to classify. We call them observations

or points, and they can represent clients, tumor tissue samples, credit applicants,

transactions, and so on1. For each of these points, we can observe a number (say

n) of features or characteristics2. It is assumed that the observations in each class

are essentially different in some sense relevant for the task at hand. The general

supervised (binary) classification problem3 is then: given a new observation (with

its corresponding features), whose true class belonging is unknown, should we assign

it to A or B?

It is useful to visualize the sets A and B as points in n-dimensional Cartesian

space R
n. A linear discriminant can then be seen as a hyperplane in this space. The

half-spaces defined by it are assigned to each of the two classes; a new observation

will be predicted to belong to either class depending on which side of the hyperplane

it appears. In most problems of practical interest, any plane will leave points from

at least one of the two sets on both sides (i.e., the convex hulls of A and B intersect)

and perfect discrimination is not possible. The challenge in the construction of a

linear discriminant is to find a plane that is the best in some reasonable sense.

In mathematical programming approaches to classification, the hyperplane is

found by minimizing some expression of the error with which it separates the

1In the literature they are also denominated individuals or patterns.
2Also called measurements or simply variables in statistics.
3Although many supervised classification methods can deal with multi-class problems, we

concentrate on the two-class case.
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classes. One such criterion is the sum of Lp-norm distances to the plane of misclas-

sified points, which has some intuitive appeal but poses a substantial optimization

challenge. For the cases of p = 1 (known as the Manhattan distance), p = 2 (the

Euclidean distance) and p =∞ (the max-norm distance), techniques are known to

find exact solutions. For a truly arbitrary choice of p, perhaps even fractional val-

ues, no exact algorithm is available, and one has to resort to heuristics. Chapter 1

deals with this problem. We propose and explore a heuristic based on the Variable

Neighborhood Search framework.

A crucial consideration for the choice of a criterion to construct the discriminat-

ing hyperplane is how well the resulting rule performs in correctly classifying new

observations (as opposed to looking only at how it classifies the observations on

which it is built). An interesting question in this context is how the choice of the

Lp-norm (i.e., the value of p) affects the discriminant’s predictive accuracy. This

issue is also discussed in chapter 1 where we study the generalization properties

of discriminants obtained under different norms on a set of real-life instances from

the famous UCI repository.

Chapter 2 considers the three cases for which an exact solution can be com-

puted, namely the norms 1, 2 and infinity. It has been established in the literature

that the case of the L1-norm can be solved with 2n linear programs. The L2-norm

case can be formulated as a quadratic program with non-convex quadratic con-

straints, and is tackled in Sylvain Perron’s recent doctoral dissertation from the

École Polytechnique de Montréal. Finally, for the L∞-norm case, we study a Mixed

Integer Programming (MIP) formulation. We discuss the predictive accuracy ob-

tained with these three criteria, again on the UCI examples. In this essay we also

show how our heuristic solution, exposed in chapter 1, can be used to accelerate

exact algorithms.

Other than measuring the Lp-norm distance of misclassified points to the plane,

an alternative way of characterizing the efficacy of a linear discriminant is to con-

sider the number of misclassified points4. In fact, this is the criterion under which

any discriminant is ultimately assessed. However, minimizing it directly is a dif-

ficult task, normally modeled with Mixed Integer Programs in which, in practice,

only small instances can be solved exactly. A distinct vein of the literature has

been devoted to both exact and heuristic approaches for this problem. In chapter

4Curiously, because of a limit consideration on the definition, this criterion is sometimes re-
ferred to as the L0-norm.
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3, we review this literature, propose a formulation that improves a classic model,

and adapt and apply our VNS heuristic to the setting of this problem of misclas-

sification minimization.

Linear discriminants are used in practice by comparing a weighted sum of the

features with some threshold value; the weights and the threshold determine the

discriminant and characterize the hyperplane in the geometrical interpretation.

The weighted sum in question is called in some applications a score. Rather than

considering the actual distance of points to the plane or the number of misclassified

points, as in the models mentioned above, another possible criterion for construct-

ing a linear discriminant is to minimize some measure of deviation of the scores of

misclassified points with respect to some reference value (related to the threshold).

This approach has the advantage of fully preserving the linearity of the objective

function, and is taken in a prolific vein of the literature. We explore it in the

context of an application to credit scoring in the last part of the thesis.

While the literature on discrimination for corporate bankruptcy prediction has

been well established for decades, it is only in recent years that the specific chal-

lenges of consumer credit scoring have received (dramatically increasing) attention

from academia, as results from research with proprietary data are published, with

appropriate reserves. Chapter 4 presents a brief review of issues in the construction

and use of linear discriminants for credit scoring, while in chapter 5 we review the

literature on linear programming (LP) approaches to discrimination and test alter-

native formulations for this problem. We also study the crucial problem of feature

selection in the context of LP based discrimination, and propose a reinterpretation

of a classic method. We were fortunate to have access to two large, real life credit

databases, one of mortgages and the other of car loans, on which our empirical

work is based.

The chapters are linked by a thematic thread and have some cross references

to each other. They are, however, conceived to be read as self contained essays.

Therefore, considerable redundancy is inevitable, and the valiant reader of the

entire thesis is asked for patience and forgiveness for some repeated definitions and

arguments along successive chapters.

A brief general conclusion follows the essays, and a common appendix describes

in detail the databases used in chapters 1, 2 and 3.



NOTATION

The following notation will be used across the chapters.

The scalar product of two vectors x and y both in R
n, is denoted xty.

If M is a matrix, Mi represents its ith row.

R
n
+ is the closed positive orthant.

Following [Man99], we denote A and B the two sets of points in R
n containing

respectively m and k points and represented by the matrices A ∈ R
m×n and B ∈

R
k×n.

For a given plane

P =
{
x
∣∣wtx = γ

}
with γ ∈ R,w ∈ R

n, w 6= 0,

a point x ∈ A∪B is said to be misclassified when

wtx > γ if x ∈ A,

or

wtx < γ if x ∈ B.

This is equivalent to the convention that the gradient w points to the half space

corresponding to A.



CHAPTER 1

ARBITRARY-NORM SEPARATION BY VARIABLE

NEIGHBORHOOD SEARCH

1.1 Introduction

Since Fisher’s seminal work [Fis36], linear discriminant functions have been

fundamental tools for automatic classification. Once the parameters of such models

are defined, new observations can be classified with great ease and speed. This has

made them, despite their limitations, popular for a wide variety of applications.

Furthermore, by expansion or transformation of the original observation space,

these techniques can be applied to non-linear discrimination.

The linear discriminant can be seen as a hyperplane that somehow separates

the representations of the training observations of each of the two classes in an

n-dimensional real space R
n. The coefficients of the plane will provide the desired

discriminant.

When the respective convex hulls of the two sets of observations intersect, per-

fect separation with the plane is impossible. As some points will necessarily lie

on the wrong side of any plane, a natural idea is to choose the separating plane

by minimizing some measure of the aggregate error implied by such misclassified

points.

An intuitively appealing measure of this error is the sum of the distances to

the plane of the misclassified points. As this distance is, in general, non-linear,

the resulting optimization problem is quite difficult. Alternative approaches have

therefore been used, that preserve the linearity of the objective function, but in fact

renounce the precise distance as the criterion. This is often done by minimizing

some other measure of deviation of misclassified points with respect to the plane

[Smi68,Gri72,FG81a,Han81,LO90].

A recent vein in the literature has emerged that tackles explicitly the problem

of minimizing the sum of distances to the plane. Analytical expressions for the

distance in arbitrary Lp-norm from a point to a plane are derived in [Mel97],

but [Man99] appears to be the first to apply them to the separating hyperplane

problem1. He shows that the L1-norm case can be solved with 2n linear programs

1Mangasarian also presents his own proof of the formulae. Another, perhaps simpler proof is
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(each with about as many variables and as many constraints as there are training

set observations), and suggests a formulation with a bilinear objective function

and convex constraints for the L2-norm case. The implications of these precise

formulations for data mining applications are yet to be fully explored, and it is in

this context that we consider our work.

In [AHK+04] a linear mixed integer formulation is presented for the L∞-norm,

and a branch and cut approach [AHJS00, Per04] is applied to Mangasarian’s for-

mulation of the L2-norm case.

These developments have been confined to the more usual cases of the L1,

L2 and L∞-norms, and except to some extent for the L1-norm, are in practice

unsuitable for application to large scale problems.

We here present a heuristic method that can be applied to a truly arbitrary

(integer or fractional) norm, and that can scale up gracefully to relatively large

instances. The general idea is to project the objective function (i.e., the sum of

distances in the given Lp-norm, of misclassified points to the plane) to the surface

of a Euclidean unit sphere representing the possible directions of the gradient of

the plane. The heuristic search for a minimum is then performed over this sphere.

The two key insights behind our approach are the following:

• The search for an optimal hyperplane can be decomposed in determining its

direction and then, for a given direction, its position or offset with respect to

the origin;

• Once a direction is fixed, the conversion from the Euclidean distance to an

arbitrary Lp-norm is just a constant rescaling.

The procedure is implemented in two steps. We first construct a query function

such that, given any point on the unit Euclidean sphere (i.e., any direction for

the gradient of the candidate plane), determines the optimal position of the plane

along that direction, and computes the sum of distances (in the given Lp-norm) of

misclassified points to the best plane lying in that direction. In the second step,

the optimization phase, the heuristic takes this function as an oracle and queries

it repeatedly as it searches the surface of the sphere for the minimum.

Our implementation of the optimization phase uses Variable Neighborhood

Search (VNS) [HM01b], an approach which has proved to be useful in a vari-

given in [PC01].
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ety of difficult global optimization problems [BM96,CH00,HM97,BCK99,HMU04,

MJPČ03].

Our numerical tests suggest that this algorithm often finds optimal or near

optimal solutions. As shown in chapter 2, these heuristic solutions can also be

used to significantly accelerate exact methods.

Since the proposed approach works for truly arbitrary norms (other than the

traditional 1, 2 and ∞), we can explore for the first time the effects of the choice

of p on the generalization properties of Lp-norm hyperplane separation.

The rest of the chapter is organized as follows. Section 1.2 establishes the

notation and explains the query function to be used as oracle in the search process.

Section 1.3 summarizes the VNS approach and presents the search phase. Section

1.4 then summarizes our numerical results. The final section concludes.

1.2 The Oracle

Recall that A and B denote the two sets of points in R
n containing respectively

m and k points represented by the matrices A ∈ R
m×n and B ∈ R

k×n

The discriminating hyperplane P = {x |wtx = γ } can also be characterized by a

set of n − 1 angles, α = (α1, α2, ..., αn−1) which determine a direction perpendicular

to the plane, and by an offset ϕ from the origin along this direction. The conversion

from (α,ϕ) to the corresponding (w, γ) can be performed by an iterative procedure

[Ken61] [Som58].

Once the training data set A∪B and the desired norm p are fixed, the input to

the oracle is a direction α from the origin. We adopt the convention that the set

A is meant to lie on the side of the plane to which w points.

The output PNORMDIST(α) is the sum of p-distances of misclassified points

by the best possible plane along the given direction.

The algorithm is outlined in Figure 1.1.

The points in A and B are projected into the ray defined by α. Their distances

to the origin are recorded and ranked (distances to the origin are signed, a negative

value indicating the direction opposite to the origin with respect to w).

The candidate plane, perpendicular to the ray, is initially positioned at the first

point along the ray (i.e., the one with minimum distance). All the observations

start thus on the same side of this plane, with A being in the correct half-space,

while all B points are misclassified. The corresponding counters missedA = 0 and

missedB = |B| are initialized. The initial sum of distances of misclassified points
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• missA← 0 /* counter of missed points from A */

• missB ← |B| /* counter of missed points from B */

• compute distA and distB /* vectors of projections to ray α */

• sort distA and distB

• sumdist← sum of all entries in distB

• bestdist← sumdist

• bestpoint← first point

• current← min(min(distA),min(distB)) /* initial position of plane */

• REPEAT

• move current to next point

• update missA , missB and sumdist

• IF (sumdist < bestdist)

• bestdist← sumdist
• bestpoint← current

ENDIF

UNTIL current = max (max(distA),max(distB)) /* all points considered */

• pbest← bestdist/DualNorm

• return pbest

Figure 1.1: Pseudocode for the PNORMDIST (α) oracle.

sumdist corresponds to the distance of all points in B to the initial plane.

The plane is then moved along the ray, in the direction of α, to the position

corresponding to each successive point. The distance between successive projec-

tions and the updated counters missedA and missedB are used to compute the

new sumdist. The minimum distance best found along the way is recorded. The

position where this minimum occurs is also noted.

By equation (7) in [Man99], the conversion of this value to the corresponding

sum of distances in p-norm is obtained by dividing it by the dual norm ‖w‖′p of the

gradient w that corresponds to the given α. For 1 < p <∞ , ‖w‖′p = ‖w‖q where

q is such that 1

p
+ 1

q
= 1. We therefore compute it as

‖w‖′p =
p−1

p

√∑
w

p

p−1 .

We also recall that ‖w‖′
1

= ‖w‖∞ and vice versa, and deal with these cases

separately.

The adjusted value p− best is then the minimum sum of Lp-norm distances of
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points misclassified by a plane in direction α. This value is returned by the oracle.

The oracle function PNORMDIST (α) can then be queried by the optimization

routine. Note that the angles (in radians) given by α are automatically reduced

modulo 2π within the oracle2. This implies that the optimization routine can search

over the unconstrained domain α ∈ R
n−1.

Sorting the distance vector is theoretically the bottleneck step in the oracle

function. We use the C++ standard library function sort for this task3. The

distances for A and B are stored and sorted separately to speed this step.

1.3 The Heuristic Search

Variable Neighborhood Search is a metaheuristic framework that has been suc-

cessfully applied to a variety of difficult optimization problems. The basic method-

ology and several extensions can be found in [MH97], [HM99], [HM01b], and

[HM01c]. Applications to unsupervised classification include [HM01a], [BHM02]

and [HJM98].

In the realm of supervised classification, [GTMM03] use VNS to deal with com-

binatorial challenges arising in variants and refinements of the k-nearest neighbors

approach.

A crucial insight underlying VNS is the observation that in many practical opti-

mization problems with multiple local minima, these tend to be somehow clustered

or correlated. Under these circumstances, a local minimum might contain informa-

tion useful to find other, perhaps better, minima. The general idea in VNS is thus

to try to escape from local minima by first exploring subsets of the domain that

are in some sense “close” to the incumbent, and then going on to test for solutions

that are increasingly different from it.

Among the family of metaheuristic frameworks, VNS has a number of advan-

tages that in our view make it suitable for the optimization phase of this data

mining problem. It is simple and transparent, with a very small number of para-

meters; it is also quite flexible, allowing for any local search procedure and objective

function to be used without changing the general framework.

The only two exogenous ingredients for the basic version of VNS are a metric

2The projections of the points to the plane are computed using the standard trigonometric
functions.

3Modern implementations of the C++ standard library use introsort, which has a worst case
O(n log n) complexity, but is known to do much better on average [Mus97].
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defined on the solution domain and a local descent procedure. The metric is used

to build a problem-dependent structure consisting of K ordered neighborhoods,

N1(α
∗),N2(α

∗), ...,NK(α∗) centered around the current incumbent solution point

α∗. The first neighborhood N1(α
∗) includes only solutions near the incumbent and

subsequent neighborhoods include regions farther from it.

A local descent procedure is applied starting from a randomly chosen point

within N1(α
∗), and then from increasingly farther neighborhoods until a better

solution is found or the stopping criterion is met. If an improved solution is found,

the whole search structure is recentered around it and the process restarts.

For the search over R
n−1 in our problem, we adopt the following neighborhood

structure:

N1(α
∗) =

n−1∏

i=1

[
α∗

i −
1

2K
, α∗

i +
1

2K

]

Nj =

{
n−1∏

i=1

[
α∗

i −
j

2K
, α∗

i +
j

2K

]}
\

j−1⋃

l=1

Nl(α
∗) for j = 2, ..., K

where
∏

denotes Cartesian product. A unit hyperbox is thus centered on α

and sliced into K successive symmetric layers with equal thickness. Note that, the

Nj(α
∗) being mutually exclusive, they do not correspond to topological neighbor-

hoods4.

Also note that the volume of each Nj(α
∗) is increasing in j. Since at each

iteration one point for restarting the local search is drawn at random from each

neighborhood, the implication is that the search is relatively more intensive near

the incumbent. Figure 1.2 summarizes the algorithm.

The input to the local descent function is the starting point α and the output is

α̂, the new minimum found. PNORMDIST (α̂), the objective function evaluated

at this point, is thus the sum of distances of misclassified points to the best plane

in direction α̂.

For the local descent during the optimization phase, we use the downhill simplex

algorithm of [NM65]. This is a derivative-free method that explores the solution

space by iteratively modifying an irregular polyhedron of n + 1 vertices. Our

implementation is roughly based on the structure suggested in [PFTV88].

The first neighborhood structure is arbitrarily centered at the origin. We use as

4N1, however, would be a neighborhood under the L1-norm, in the topological sense of the
word.
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• Get initial point α∗

• Call local search; returns new local min α̂

• best← PNORMDIST (α̂)

• α∗ ← α̂

• REPEAT

• k ← 1

• REPEAT

• Get random candidate α ∈ Nk(α
∗)

• Call local search; returns new local min α̂
• new = PNORMDIST (α̂)
• IF (new < best)

• best← new
• α∗ ← α̂
• k ← 1

ENDIF
ELSE k ← k + 1

UNTIL (k = K)

UNTIL (stop criterion met)

• return α∗ and best

Figure 1.2: Pseudocode for the VNS heuristic.

stopping criterion for VNS the number of runs through all neighborhoods without

improvement5.

We now present the results of our numerical experiments.

1.4 Experimental Results

We tested our algorithm on several series of random problems, as well as on a

set of real life instances from the UCI Repository [DNM98]. For moderately sized

instances, exact solutions can be obtained for p values of 1, 2 and ∞. We first

compare our heuristic’s performance to these exact results, and then explore the

algorithms’s speed on larger problems, for which exact benchmarks are impossible

or impractical to obtain.

Although known exact methods can be applied to moderately sized problems

in 2-norm and ∞-norm, and to some extent to larger problems for the 1-norm,

5Unless otherwise indicated, we set the limit of passes without improvement at 6 (i.e., the
algorithm stops if it has visited all neighborhoods six times without improvement). This yielded
reasonable results in moderate time in most of our test problems.
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for the case of a truly arbitrary, integer or fractional p > 1, there are no available

general exact methods. An interesting issue for practical data mining applications

is whether a choice of p results in better generalization for a class of problems. Our

heuristic approach allows this issue to be tackled. In the final part of this section,

we study the effects of using a range of values for p on the generalization properties

of the resulting planes, as estimated by k-cross validation on a set of UCI problems.

1.4.1 Benchmarks to Known Exact Solutions

For a set of real life instances from the UCI Repository and two sets of artificial

problems, we compare the heuristic solutions found by our algorithm for the L1-

norm, L2-norm and L∞-norms to the corresponding exact solutions.

For the L1-norm case, the exact solutions were found by solving 2n linear pro-

grams, as suggested in [Man99]. We solved these 2n LPs sequentially6, but acceler-

ated the solution process by adding at each step the constraint that the objective

value be at most the best found so far. This technique can save a number of phase

II solutions and reduces considerably total computation time.

The exact L2-norm and L∞-norm solutions were found with the techniques

proposed in [AHK+04].

The random problems were created with D. Musicant’s NDC generator [Mus98],

which produces normally distributed clusters. This generator is publicly available

and has been used in other discrimination studies (e.g., [FM01,MM00]).

For the first series of random problems, we fixed the dimension at 6 and explored

the effects of increasing the number of points from 2000 to 20000 (by steps of 2000).

As the exact solution in L1-norm is much easier than for the other norms, we were

able to extend the series to 100000 by increments of 20000 for this case.

We then generated a second series of problems with 2000 points, with dimen-

sions ranging from 4 to 13. For each problem size, we generated 10 instances and

report the corresponding mean values of the results.

The parameters used for the generation of the artificial sets, as well as the

preprocessing steps for the real life instances from the UCI Repository are detailed

in the appendix.

Tables 1.1, 1.2 and 1.3 present, respectively, the results for the Irvine datasets

and each of the two families of artificial problems. The gap columns shows the

percentage above the exact minimum of the objective function value found by the

6As the 2n linear programs are independent, a parallel implementation would be possible.
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heuristic. The fit column shows the full-set accuracy of the discriminant (i.e., the

percentage of points correctly classified by the corresponding hyperplane). The

computation time in seconds is shown in the CPU column. Results are shown for

the L1-norm, L2-norm and L∞-norms.

problem dim obs gap % fit  CPU fit CPU gap % fit  CPU fit  CPU gap % fit CPU fit CPU

cancer 9 683 0.00% 96.78% 5.3     97.07% 0.08 0.50% 97.07% 6.2     97.07% 156      0.01% 97.37% 7.6 97.51% 1.1
echocardiogram 6 74 0.00% 75.68% 0.5     77.03% 0.01 0.03% 75.68% 0.6     75.68% 5          0.00% 72.97% 0.5 77.42% 0.1
glass 9 214 2.33% 95.79% 3.3     95.79% 0.03 0.79% 94.86% 3.5     95.33% 5          0.82% 94.39% 2.8 95.79% 0.4
hepatitis 16 150 0.60% 88.00% 4.3     90.00% 0.06 1.17% 86.67% 4.4     88.00% 14,181 3.49% 89.33% 7.4 90.00% 65.7
housing 13 506 0.17% 85.77% 28.8   84.58% 0.14 0.57% 84.19% 13.9   84.39% 550      4.50% 86.76% 13.2 88.14% 30.4
pima 8 768 0.00% 72.79% 4.7     73.05% 0.42 0.00% 75.39% 4.4     75.39% 612      0.00% 76.04% 4.4 76.04% 8.1

L� -norm
VNS EXACT

L1-norm L2-norm
VNS EXACTVNS EXACT

Table 1.1: UCI instances.

Exact solution times are not reported for the random problems in L2-norm for

12 and 13 dimensions, since these exact solutions could not be obtained within the

predetermined maximum allowed CPU time without the heuristic bound7.

As far as the objective function is concerned, the heuristic finds the exact solu-

tion in most of our datasets, and is close on many of the cases where it does not.

As we can see from the results for housing and hepatitis, as well as the last lines

of table 1.2, performance deteriorates on dimensions above about 10, but appears

to be robust to the number of observations8. The glass problem, although only

in 9 dimensions, appears to have a very large number of local minima under the

L1-norm, and the heuristic fails to find the optimum within the limits set by our

stopping criterion. Interestingly, the full set fit of the heuristic plane is the same

as that of the exact solution.

For the L1-norm, the gap was zero in nine out of the 10 problems with 18000

observations in 6 dimensions, while the remaining one failed by almost 13%; the

heuristic found the exact solution for all but one of the problems with 80000 ob-

servations, which was missed by an (abysmal) 32%.

The small but systematic apparent disadvantage of the heuristic solution in full

set accuracy for some problem sets appears to be due to round-off and precision

differences between our algorithm and the exact solver.

7The use of heuristic solutions to accelerate exact solution in L2- and L∞-norms is discussed
in chapter 2.

8Poor performance on higher dimensions can be traced to the limitations of the local search
technique, the Nelder-Mead simplex search.
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For this range of problem sizes, the computing time for our heuristic appears

to be linear in the number of observations, and quadratic in the dimension9. The

time gains are most dramatic with respect to the L2-norm, which is the hardest

of the three to compute exactly. For the problems with 2000 observations in 11

dimensions, the heuristic found the optimum in about 1

600

th
of the time of the

exact algorithm. Exact solutions under the L1-norm are of course the easiest to

obtain, and the heuristic approach is not worthwhile for small problems (such as

our Irvine examples and problems with up to 10000 observations). However, even

under the L1-norm, the heuristic looks advantageous in all instances larger than

20000 observations, and the difference reaches a full order of magnitude for 100000

points, with very little loss of average accuracy.

9Least squares fit of the model CPUtime = β0 + β1 ∗ dim + β2 ∗ dim2 yields an R2 of .977
with β0 = 17.0918, β1 = −5.09 and β2 = 0.6314.
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dim obs gap % fit  CPU fit CPU gap % fit  CPU fit  CPU gap % fit CPU fit CPU

4 2000 0.00% 94.33% 8.5     94.36% 0.4 0.00% 94.41% 10.5   94.41% 5          0.00% 94.29% 8.3 94.31% 0.8
5 2000 0.00% 93.68% 7.6     93.70% 0.5 0.00% 93.83% 11.1   93.84% 11        0.00% 93.69% 7.1 93.71% 1.5
6 2000 0.00% 92.95% 7.5     92.98% 0.6 0.00% 93.21% 13.9   93.23% 34        0.00% 93.11% 6.9 93.14% 3.9
7 2000 0.51% 90.98% 11.3   90.92% 1.0 0.00% 91.73% 21.8   91.75% 118      0.00% 91.49% 9.4 91.54% 8.8
8 2000 0.53% 89.29% 15.3   89.46% 1.4 0.00% 90.13% 29.2   90.16% 557      0.00% 89.63% 14.0 89.69% 20.6
9 2000 0.01% 89.85% 22.8   89.96% 1.6 0.00% 90.13% 44.3   90.17% 1,796   0.05% 89.92% 21.4 90.06% 49.4

10 2000 0.01% 88.86% 27.5   88.94% 1.9 0.00% 89.51% 56.8   89.55% 3,194   0.00% 89.37% 28.2 89.46% 102.8
11 2000 0.00% 82.32% 43.4   82.45% 3.4 0.00% 83.65% 64.0   83.74% 38,531 0.02% 83.48% 31.4 83.59% 330.9
12 2000 2.09% 87.61% 49.0   88.25% 2.8 0.01% 88.87% 78.5   89.02% N/A 0.04% 88.41% 42.3 88.58% 530.5
13 2000 10.12% 84.49% 53.7   84.71% 4.0 0.01% 86.02% 93.8   86.15% N/A 0.27% 85.56% 49.7 85.73% 1324.6

L2-norm L �-norm
VNS EXACT

L1-norm
VNS EXACT VNS EXACT
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dim obs gap % fit  CPU fit CPU gap % fit  CPU fit  CPU gap % fit CPU fit CPU

6 2000 0.00% 93.12% 8.1     93.14% 0.7 0.00% 93.14% 14.6   93.15% 36        0.00% 93.10% 7.1 93.13% 4
6 4000 0.00% 92.16% 15.2   92.17% 3.0 0.00% 92.22% 28.3   92.22% 213      0.00% 91.90% 13.5 91.92% 15
6 6000 0.21% 91.08% 18.5   91.21% 8.9 0.00% 91.59% 34.2   91.60% 636      0.00% 91.51% 16.5 91.53% 41
6 8000 0.00% 91.65% 36.0   91.66% 16.1 0.00% 92.27% 54.9   92.28% 960      0.00% 92.24% 33.8 92.25% 65
6 10000 0.00% 91.22% 50.5   91.22% 27.3 0.00% 91.04% 77.7   91.04% 1,433   0.00% 91.08% 45.2 91.08% 126
6 12000 0.00% 90.70% 35.4   90.71% 44.2 0.00% 91.01% 69.6   91.01% 2,593   0.00% 90.94% 32.9 90.94% 204
6 14000 0.00% 89.34% 40.3   89.35% 62.6 0.00% 89.68% 74.9   89.69% 2,858   0.00% 89.56% 37.2 89.58% 321
6 16000 0.00% 92.09% 79.1   92.10% 54.3 0.00% 92.25% 112.4 92.25% 2,146   0.00% 92.21% 70.6 92.22% 288
6 18000 1.27% 92.57% 57.8   92.61% 77.5 0.00% 92.80% 115.5 92.80% 5,916   0.00% 92.82% 52.1 92.82% 391
6 20000 0.00% 94.48% 58.1   94.48% 96.7 0.00% 94.59% 118.5 94.59% 5,777   0.00% 94.49% 57.1 94.49% 368
6 40000 0.00% 92.18% 193.28 92.18% 528.4
6 60000 0.00% 95.06% 162.25 95.06% 1000.7
6 80000 3.23% 91.58% 233.16 91.84% 2039.2
6 100000 0.00% 90.51% 306.83 90.51% 4384.7

L2-norm L �-norm
EXACT VNS EXACTVNS EXACT

L1-norm
VNS
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1.4.2 Test on Larger Problems

We explored empirically the computation time of our algorithm on larger prob-

lems, for which exact benchmarks are unavailable. In order to control for problem

difficulty, we constructed an additional set of nine test problems, with a simpler

structure than those used for benchmarking accuracy10. The dimension was fixed

at 10, and the number of observations was increased from 200000 to one million,

by steps of 100000.

Figure 1.3 shows the CPU time of the heuristic (for the Euclidean norm) as

function of problem size. For this range of problem sizes, computation time still

appears to grow linearly; the instance with one million points in ten dimensions

took a little under two hours to run.

computing time on symmetric test problems in 10 dimensions
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Figure 1.3: Running time for large problems.

We used for these experiments the same stopping criterion as in the accuracy

benchmarks discussed in the previous section. However, for all of these large prob-

lems, the heuristic solution that’s eventually reported is found very quickly (within

the first 3% to 5% of the total time), the rest of the time being spent spanning

the neighborhoods without further improvement. In our example with one million

points, the final solution was found in only 4.5 minutes.

10The problems were constructed by fixing two arbitrary centers, assigning one half of the
points to each and generating independent columns from a normal distribution for each of them.
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We suspect this phenomenon to be due to the fact that in problems with simple

structures, with a large number of points in moderate dimensions, the effect of each

single point on the surface of the objective function is relatively small, and deep,

narrow valleys are unlikely to exist. Under these circumstances, just a few runs of

the local descent lead to the global minimum. This suggests that, when this kind

of problem is identified, and complex clusters of local minima are not present, the

use of our oracle with a suitable descent routine can provide a good, quick answer

even in fairly large instances.

1.4.3 Classification Accuracy with Arbitrary Norm

We now turn to the study of the effect on classification accuracy of the choice

of the norm p for the UCI datasets. Our experimental set up is as follows. We

compute the 10-cross validation accuracy of separating hyperplanes that minimize

the p-norm distance of misclassified points, as found by our heuristic, for 30 values

of p, starting from 1 with increments of .2. In order to smooth out the effect of the

partition, we repeat the process 10 times for each data set11.

As accuracy was more important than speed for this exercise, the stopping

criterion for VNS runs was raised to 10 passes through all neighborhoods without

improvement. As we did not expect the optimal planes to vary dramatically for

nearby values of p, the VNS search was initiated at the best point found for the

previous value of p considered12.

The results are plotted in figures 1.4 to 1.9. The lighter lines represent the

10-cross validation accuracies obtained with each partition; the darker line is the

average. For echocardiogram, glass and hepatitis, there seems to be no systematic

effect of the value of p on testing set classification accuracy. For cancer, despite

some fluctuations, it appears that the planes with p = 1 perform generally at least

as good as any others.

Results for the housing data set show an increasing trend on p, with average

accuracy raising from 82% to 84% as p goes from 1.6 to 6.8. For the pima data set

the effect is quite remarkable: for all the partitions considered, accuracy is lowest

under the L1-norm and increases until about p = 3.

11We considered alternative approaches to deal with this issue. Performing 20- or 30-cross
validation would have been a reasonable choice only for the larger datasets, whereas leave-one-
out was computationally impractical. Averaging over several partitions with 10-cross validation
appeared to be a solution appropriate for all the datasets.

12The case p = 1, for which no previous solution is available, was started at the origin.
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Figure 1.4: 10-fold validation accuracy vs. norm chosen: Cancer Dataset.

The choice of p appears thus to be relevant in some, but not all instances. A

practical implication is that a range of values (including fractions) might be tried

when Lp-norm separation is being considered.
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Figure 1.5: 10-fold validation accuracy vs. norm chosen: Echocardiogram Dataset.
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Figure 1.6: 10-fold validation accuracy vs. norm chosen: Housing Dataset.



21

pima

0.71

0.72

0.73

0.74

0.75

0.76

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

p

1
0

-k
 v

a
li

d
a

ti
o

n
 a

c
c

u
ra

c
y

Figure 1.7: 10-fold validation accuracy vs. norm chosen: Pima Dataset.

glass

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

p

1
0
-k

 v
a
li

d
a
ti

o
n

 a
c
c
u

ra
c
y

Figure 1.8: 10-fold validation accuracy vs. norm chosen: Glass Dataset.
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Figure 1.9: 10-fold validation accuracy vs. norm chosen: Hepatitis Dataset.
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1.5 Conclusion

Our heuristic approach for the Lp-norm separating hyperplane problem appears

to be very promising for data mining applications for which this criterion is chosen.

It is able to find good solutions in reasonable time, for large instances in up to about

10 dimensions. The quality of the solutions found deteriorates in higher dimensions

but appears to be robust to the number of observations. In moderate dimensions,

the algorithm scales very gracefully (apparently linearly) to very large problems.

The proposed method can furthermore deal with problems for which no practical

method for exact solution is known, namely when a truly arbitrary p is considered.

Our exploration of the generalization properties of Lp-norm separation with respect

to the choice of p suggest that there are classes of problems for which the norm

matters, while for others the resulting hyperplane is essentially the same regardless

of the norm.

Possible avenues for further work on the optimization phase include exploring

the use of local search procedures other than the downhill simplex method within

VNS, or of metaheuristic approaches other than VNS.



CHAPTER 2

EXACT SOLUTION OF L∞-NORM AND L2-NORM PLANE

SEPARATION

2.1 Introduction

A basic problem in supervised classification is the separation of (or discrimi-

nation between) two sets of points in the real space R
n with a (hyper)plane that

assigns a half-space to each of the sets. This problem is of interest in data mining

and machine learning settings. When the interior of the convex hulls of the sets

intersect, perfect linear separation is not possible, as there are no plane leaving all

points from the first set on a side of the plane, and those of the other set on the

opposite side. A discriminating plane may be found by minimizing some measure

of the separation error, such as the total or average number of misclassified points,

or some notion of distance of such points to the plane (for a historical overview,

see [Sta97] and references therein). This often leads to difficult optimization chal-

lenges, and the separation criteria are sometimes chosen so as to keep the problem

tractable.

The fairly intuitive objective of minimizing the sum of distances of misclassi-

fied points to the plane appears to have been behind several approaches to the

separation problem, often leading to various Linear Programming formulations.

The objective functions in these programs are, however, only substitutes for the

true measures of the distances that ignore the essentially non-linear nature of the

optimization problem.

In [Man99], Mangasarian states the problem precisely in terms of the analytical

expression for the sum of Lp-norm distances of misclassified points to the plane.

This results in a formulation of the general problem as that of minimizing a convex

function (involving a sum of max {0, ·} operators) over a unit sphere in a norm dual

to that one originally chosen to measure the distances from the misclassified points

to the plane. An exact solution is often practical for p = 1, as for the L1-norm the

problem can be solved by 2n linear programs1.

Our work takes these efforts a step further by exploring an exact solution ap-

1An alternative heuristic approach for this case is also presented in [Man99] which is a suc-
cessive linearization algorithm applied to a penalty reformulation of the problem. It is indirectly
suggested that this technique could also be used for the L∞-norm case.
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proach for the L∞-norm, for which we propose and test a mixed integer formulation.

In order to probe the practical applicability, potential scalability and speed

of our formulation, we test it on several publicly available data sets, as well as

on four series of randomly generated problems. In the context of these tests, we

also explore the effect of using heuristic bounds to accelerate our exact solution

implementation.

The results for the L∞-norm are compared to those corresponding to the exact

solution to the L2-norm problem, as obtained by Sylvain Perron [Per04] with an

adaptation of the branch-and-cut algorithm of Audet et al. [AHJS00] for non-convex

quadratically constrained quadratic programs, and reported in [AHK+04].

The rest of the chapter is organized as follows. The following section establishes

the notation and summarizes some key results from [Man99]. Section 2.3 presents

our formulation for the L∞-norm. We then describe, in Section 2.4, the data sets

used for our numerical tests and discuss the corresponding results. Section 2.5

concludes.

2.2 Notation and problem statement

We here establish some additional notation and state the general optimization

problem.

For a fixed p ∈ [1,∞], the Lp-norm distance between a point x ∈ A∪ B and its

projection π(x) to the plane P is given [Man99] by

‖x− π(x)‖p =
|wtx− γ|

‖w‖′p
(2.1)

where ‖·‖′p denotes the dual norm of ‖·‖p . We recall that, for 1 < p < ∞ , ‖·‖′p =

‖·‖q where 1

p
+ 1

q
= 1 . The cases p = 1 and p =∞ are defined by a limit argument.

Thus,

‖·‖′
2

= ‖·‖
2
, ‖·‖′

1
= ‖·‖∞ and ‖·‖′∞ = ‖·‖

1
. (2.2)

Although the formulae for the arbitrary-norm distance from a point to a hyper-

plane had been derived in other settings (e.g., [Mel97] ), [Man99] appears to be the

first to establish and use them explicitly in the context of linear discrimination.

Note that there is one degree of freedom in the characterization of the plane P ,
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which can be used to fix an arbitrary scale. The choice of the scaling constraint

‖w‖′p = 1 (2.3)

removes the denominator from (2.1) and rules out the null solution w = 0 that

has haunted some previous formulations of this problem. This approach, which

appears to have been first proposed in [CIS89], is used in several studies (see, e.g.,

[MMS95] and references therein), and elegantly generalizes to the arbitrary-norm

case.

The resulting optimization problem (problem(17) of [Man99]) is

min
w,γ

{
m∑

i=1

max
{
−wtAi + γ, 0

}
+

k∑

j=1

max
{
wtBj − γ, 0

}
∣∣∣∣∣ ‖w‖

′
p = 1

}
(2.4)

where w ∈ R
n and γ ∈ R.

This program can be reformulated in order to linearize the max {·, 0} operators

in the objective function. This results in

min
w,γ,y,z






m∑

i=1

yi +
k∑

j=1

zj

∣∣∣∣∣

yi ≥ −wtAi + γ for i = 1, .., m

zj ≥ wtBj − γ for j = 1, .., k

‖w‖′p = 1

y ≥ 0, z ≥ 0






(2.5)

where w ∈ R
n, γ ∈ R, y ∈ R

m and z ∈ R
k. The following sections are based on

this last formulation.

2.3 L∞-norm: A Mixed Integer Formulation

For the L∞-norm case, the constraint (2.3) requires

‖w‖′∞ = ‖w‖
1

=
n∑

l=1

|wl| = 1. (2.6)

This can be addressed by the usual technique to linearize the absolute value
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operator. We replace w by two non-negative vectors w+ and w− in R
n
+ such that

w+ + w− = |w| (2.7)

w+ − w− = w (2.8)

0 ≤ w+ ≤ 1 0 ≤ w− ≤ 1. (2.9)

We must also include a vector of binary variables δ ∈ {0, 1}n to force at most

one of each pair of variables w+

l and w−
l to be nonzero.

The resulting formulation is:

min
w+,w−,γ,δ,y,z






m∑

i=1

yi +

k∑

j=1

zj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yi ≥ (−w+ + w−)
t
Ai + γ for i = 1, .., m

zj ≥ (w+ − w−)
t
Bj − γ for j = 1, .., k

∑n

l=1
(w+

l + w−
l ) = 1

w+

l ≤ δl for l = 1, ..., n

w−
l ≤ 1− δl for l = 1, ..., n

y ≥ 0, z ≥ 0

w+ ≥ 0, w− ≥ 0

δ ∈ {0, 1}n





(2.10)

where γ ∈ R, y ∈ R
m, z ∈ R

k, w+ ∈ R
n and w− ∈ R

n.

This model is somehow similar to the one proposed in [Gle99], where a MIP

approach is presented as an answer to the null solution problem2. The spirits of

both approaches are clearly related. However, two significant differences should be

pointed out. In the model presented in [Gle99]:

• Non zero w−
i and w+

i variables are forced to be greater than a small but

arbitrary parameter ε, and

• A classification gap is inadvertently introduced3.

Under these circumstances, although the standardization constraints are sim-

ilar, this model does not strictly address the problem of minimizing the sum of

2This reference came to our attention after having independently studied the proposed formu-
lation. There is what appears to be a typographical error in [Gle99]; the inequalities in expressions
(10e) and (10g) are meant to correspond to those in expressions (9b) and (9d), for which they
would have to be inversed.

3This can be seen by comparing the signs of γ and d in expressions (10b) and (10c) of [Gle99]
with the corresponding constraints in our formulation or in program (20) of [Man99]. We believe
this to be accidental because the author later mentions that a gap can be forced.
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L∞-norm distances of misclassified points; it was developed in a different context

and was never meant to do so. To the best of our knowledge, the generalization

properties of this model have not been studied in the literature.

We now discuss the results of our empirical tests.

2.4 Numerical experiments

We tested our formulation (2.10) for the L∞-norm case and our solution ap-

proach for program (2.5) for the L2-norm case on a set of instances from the UCI

Repository [DNM98] and two series of random problems created with D. Musi-

cant’s NDC generator [Mus98], which produces normally distributed clusters. This

generator is publicly available and has been used in other discrimination studies

(e.g., [FM01,MM00]). The parameters used for the generation of the artificial sets,

as well as the preprocessing steps for the real life instances from the UCI Repository

are detailed in the Appendix.

Heuristic approaches are being increasingly used as valuable tools to accelerate

exact solution methods (see, e.g., [DDS02, HBUM03]). We measure the effect,

on the performance of our implementations, of adding a heuristic bound. We

first obtain heuristic solutions to all the problems with an application of Variable

Neighborhood Search (VNS) [AHK+04], and use the objective value found as a

cutoff limit in the branching processes.

The mixed integer programs for the L∞-norm were solved directly with ILOG

CPLEX 8.1, using default settings. All tests were performed on dual processor

computers4 running under Linux.

In all tables, the fit column is the full set classification accuracy of the solution

found. The objective value is rounded to its approximate accuracy, namely 10−5.

Time is measured in CPU seconds, unless otherwise indicated. Time is also reported

for the runs where the heuristic solution was used to accelerate the exact solution

process. The last column shows the net time savings obtained by this procedure

with respect to the solution time without the heuristic bound, considering of course

the time used to obtain the heuristic solution5. It is interesting to point out that

the VNS heuristic used found the exact solution, to within its accuracy, for most

4Intel Xeon 3.06 GHz, 1 Mb cache memory, 2 GO RAM.
5The savings are computed as TWOB−TWB−TGB

TWOB
, where TWOB is the exact solution time

without heuristic bound, TWB is the solution time with the bound and TGB is the time used
to get the bound (i.e., the VNS CPU time).
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instances. For the others, the solution was quite close. The exact algorithms were

thus performing mostly a confirmation exercise.

We first discuss the results obtained on the random problems, and then turn to

the UCI real life instances.

2.4.1 Random problems

For the first series of random problems, we fixed the dimension at 6 and explored

the effects of increasing the number of points from 2000 to 20000 (by steps of

2000). We then generated a second series of problems with 2000 observations, with

dimensions ranging from 4 to 13. We will refer to these two test sets as NDC6d

and NDC2k respectively. For each problem size, we generated 10 instances and

report the corresponding mean values of the results in tables 2.1, 2.2, 2.3 and 2.4.

Acceleration by inclusion of a heuristic solution results in significant time sav-

ings on relatively large problems, for both the L2-norm and the L∞-norm cases.

However, the inclusion of the heuristic solution is counterproductive in some cases.

Under the L2-norm, this is due to the fact that the new bound is used to refine

existing bounds (in nodes of depth up to five); the time spent on these refinements is

not compensated for by the node reduction effect on problems with few dimensions.

The net savings in higher dimensions, as well as in the UCI problems, are dramatic.

In fact, instances in 12 and 13 dimensions could not be solved in reasonable time

without the heuristic bound.

Under the L∞-norm, inclusion of the heuristic bound results in net time gains

in larger instances than for the L2-norm case, because the exact solution time is

relatively small with respect to the effort of obtaining the heuristic solution in the

first place. Since exact solutions are found very quickly for all the UCI problems and

the artificial problems with less than about 10000 points or about 10 dimensions,

the heuristic enhancement is not appropriate. However, significant net savings are

obtained for larger instances, and they increase with the size of the problem.
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Table 2.1: L∞-norm results on NDC2k series

dim obs gap % fit
CPU 
secs fit

CPU 
secs

CPU 
secs

net time 
savings

4 2000 0.00% 94.29% 8.3 94.31% 0.8 0.3 -1363%
5 2000 0.00% 93.69% 7.1 93.71% 1.5 0.7 -366%
6 2000 0.00% 93.11% 6.9 93.14% 3.9 1.8 -166%
7 2000 0.00% 91.49% 9.4 91.54% 8.8 4.5 -80%
8 2000 0.00% 89.63% 14.0 89.69% 20.6 14.7 -49%
9 2000 0.05% 89.92% 21.4 90.06% 49.4 33.4 -10%

10 2000 0.00% 89.37% 28.2 89.46% 102.8 66.5 11%
11 2000 0.02% 83.48% 31.4 83.59% 330.9 281.1 5%
12 2000 0.04% 88.41% 42.3 88.58% 530.5 423.9 14%
13 2000 0.27% 85.56% 49.7 85.73% 1324.6 1213.9 8%

problem size VNS MIP MIP w/initial sol

Table 2.2: L∞-norm results on NDC6d series

dim obs gap % fit
CPU 
secs fit

CPU 
secs

CPU 
secs

net time 
savings

6 2000 0.00% 93.10% 7.1 93.13% 3.7 1.7 -140%
6 4000 0.00% 91.90% 13.5 91.92% 14.9 7.8 -43%
6 6000 0.00% 91.51% 16.5 91.53% 40.9 23.3 3%
6 8000 0.00% 92.24% 33.8 92.25% 65.1 37.3 -9%
6 10000 0.00% 91.08% 45.2 91.08% 126.5 73.6 6%
6 12000 0.00% 90.94% 32.9 90.94% 204.0 114.0 28%
6 14000 0.00% 89.56% 37.2 89.58% 320.7 168.8 36%
6 16000 0.00% 92.21% 70.6 92.22% 288.1 160.4 20%
6 18000 0.00% 92.82% 52.1 92.82% 391.3 234.8 27%
6 20000 0.00% 94.49% 57.1 94.49% 368.0 202.8 29%

problem size VNS MIP MIP w/initial sol

Differences between L∞-norm and L2-norm in full set accuracy do not appear

to be very large. However, on both NDC series, the planes found with the L2-norm

criterion provided better fit than those obtained by minimizing the L∞-norm.

Solution time grows exponentially with the dimension, while it appears to fol-

low a power rule with respect to the number of observations. Best-fit details are

provided in Appendix 2.6.

Under the L2-norm, solution of instances of 20000 observations in 6 dimensions

took an average of about 1.6 CPU hours, while the L∞-norm problems on the same

data sets where solved in an average of only about six CPU minutes.
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Table 2.3: L2-norm results on NDC2k series

dim obs gap % fit
CPU 
secs fit CPU secs

CPU 
secs

net time 
savings

4 2000 0.00% 94.41% 10.5 94.41% 4.961 6.3 -238%
5 2000 0.00% 93.83% 11.1 93.84% 11.447 17.4 -149%
6 2000 0.00% 93.21% 13.9 93.23% 34.471 38.1 -51%
7 2000 0.00% 91.73% 21.8 91.75% 118.343 95.6 1%
8 2000 0.00% 90.13% 29.2 90.16% 557.403 223.1 55%
9 2000 0.00% 90.13% 44.3 90.17% 1796.287 680.1 60%

10 2000 0.00% 89.51% 56.8 89.55% 3194.37 1728.4 44%
11 2000 0.00% 83.65% 64 83.74% 38530.52 17491.7 54%
12 2000 0.01% 88.87% 78.5 89.02% N/A 18970.8 N/A
13 2000 0.01% 86.02% 93.8 86.15% N/A 60818.1 N/A

EXACT w/initial sol.problem size VNS EXACT

Table 2.4: L2-norm results on NDC6d series

dim obs gap % fit
CPU 
secs fit CPU secs

CPU 
secs

net time 
savings

6 2000 0.00% 93.14% 14.6 93.15% 36.0 38.2 -47%
6 4000 0.00% 92.22% 28.3 92.22% 212.6 210.6 -12%
6 6000 0.00% 91.59% 34.2 91.60% 635.5 726.1 -20%
6 8000 0.00% 92.27% 54.9 92.28% 959.7 947.1 -4%
6 10000 0.00% 91.04% 77.7 91.04% 1433.3 1950.2 -41%
6 12000 0.00% 91.01% 69.6 91.01% 2593.5 2131.5 15%
6 14000 0.00% 89.68% 74.9 89.69% 2858.2 3877.6 -38%
6 16000 0.00% 92.25% 112 92.25% 2146.0 3143.3 -52%
6 18000 0.00% 92.80% 116 92.80% 5915.7 5700.6 2%
6 20000 0.00% 94.59% 119 94.59% 5777.2 3508.1 37%

problem size EXACT w/initial sol.VNS EXACT

As exact solution of L∞-norm problems is considerably faster than that of L2-

norm problems, we considered worthwhile to test the behavior of our L∞-norm

method on larger problems, for which averaging over several instances would be

impractical. We therefore generated two additional series of unique problems, with

simpler structure and for which the complexity (as approximated by the number

of full-set missclassifications) could be easily controlled. The first set of these addi-

tional test problems, denoted Sym2k , considers instances with 2000 observations

in 14, 16 and 18 dimensions, while the set which we call Sym6d includes instances

in 6 dimensions with up to 100000 points by increments of 10000.

For the simpler, more precisely controlled instances of the Sym2k and Sym6d se-

ries (used only with the L∞-norm criterion), the objective function grows monoton-

ically, as expected, with the problem size. Note, however, that the average objective

function values for the NDC series showed some fluctuations, reflecting the greater
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variability of those problems.

Table 2.5: L∞-norm results on Sym2k series

dim obs gap % fit
CPU 
secs fit CPU hrs CPU hrs

net time 
savings

14 2000 0.00% 92.00% 34.1 92.20% 0.6 0.5 12%
16 2000 0.01% 91.90% 56.7 92.10% 2.7 2.5 4%
18 2000 0.00% 89.95% 86.5 90.20% 16.9 13.8 18%
20 2000 0.02% 91.95% 106.8 92.15% 81.5 60.2 26%

problem size VNS MIP MIP w/initial sol

Table 2.6: L∞-norm results on Sym6k series

dim obs gap % fit
CPU 
secs fit

CPU 
secs

CPU 
secs

net time 
savings

6 10000 0.00% 88.95% 17.1 88.96% 156.3 96.7 27%
6 20000 0.00% 88.73% 36.4 88.74% 786.4 461.4 37%
6 30000 0.00% 89.10% 50.1 89.11% 1774.4 1197.7 30%
6 40000 0.00% 89.01% 78.8 89.01% 3972.7 2326.4 39%
6 50000 0.00% 88.95% 89.8 88.95% 6004.2 3428.2 41%
6 60000 0.00% 89.06% 133.6 89.07% 7655.7 5050.1 32%
6 70000 0.00% 89.22% 126.6 89.23% 15215.0 7495.1 50%
6 80000 0.00% 88.86% 169.2 88.86% 21864.7 10639.1 51%
6 90000 0.00% 89.02% 175.9 89.02% 20072.5 11650.6 41%
6 100000 0.00% 88.98% 177.1 88.99% 35206.3 14020.3 60%

problem size VNS MIP MIP w/initial sol

In addition to the four random problem series discussed above, we solved, for

the L∞-norm, a single instance of 100000 points in 10 dimensions, generated with

the same criteria as the Sym6d and Sym2k problem series. The solution time,

accelerated by the inclusion of the heuristic solution, was about 84 CPU hours.

2.4.2 Real life instances

Tables 2.7 and 2.8 present the results obtained for the UCI problems, under the

L∞-norm and the L2-norm, respectively. These instances are considerably smaller

than our random problems, and the use of a heuristic bound does not yield net time

savings in the exact solution under the L∞-norm. Under the L2-norm, however,

the time savings are very significant in all but one problem.
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Table 2.7: L∞-norm results on UCI instances

dim obs gap % fit
CPU 
secs fit

CPU 
secs

CPU 
secs

net time 
savings

cancer 9 683 0.01% 97.37% 7.6 97.51% 1.1 1.1 -694%
diabetes 8 768 0.00% 76.04% 4.4 76.04% 8.1 7.7 -50%
echocardiogram 6 74 0.00% 72.97% 0.5 77.42% 0.1 0.1 -440%
glass windows 9 214 0.82% 94.39% 2.8 95.79% 0.4 0.4 -657%
hepatitis 16 150 3.49% 89.33% 7.4 90.00% 65.7 63.5 -8%
housing 13 506 4.50% 86.76% 13.2 88.14% 30.4 29.1 -39%

problem
problem size VNS MIP MIP w/initial sol

Table 2.8: L2-norm results on UCI instances

dim obs gap % fit
CPU 
secs fit CPU secs

CPU 
secs

net time 
savings

cancer 9 683 0.50% 97.07% 6.2 97.07% 156.2 57.0 60%
pima 8 768 0.00% 75.39% 4.4 75.39% 611.6 211.2 65%
echocardiogram 6 74 0.03% 75.68% 0.6 75.68% 4.6 1.3 58%
glass 9 214 0.79% 94.86% 3.5 95.33% 4.5 1.4 -8%
housing 13 506 0.57% 84.19% 13.9 84.39% 550.2 30.4 92%
hepatitis 16 150 1.17% 86.67% 4.4 88.00% 14181.3 50.7 99.6%

problem
problem size EXACT EXACT w/initial sol.VNS

2.4.3 Cross validation

The techniques proposed in this paper allow us to compare the classification per-

formance of separating planes obtained by minimizing different norms. Figure 2.1

summarizes the full-set fit for the UCI problems under the L2- and L∞-norms. We

also include, for comparison, the results under the L1-norm obtained by solving

the corresponding 2n linear programs (see [Man99]). Figure 2.2 shows the 10-cross

validation mean accuracy of the planes found under the three norms.

To our surprise, the plane obtained under the L∞-norm performs at least as

well as the others, both in full set and 10-cross accuracy, for all problems except

echocardiogram, which is by far the smallest dataset we consider, with only 74

points.

We note that the L1-norm plane, which is considerably easier to compute than

the others, performs better than the L2-norm plane in three cases and nearly as

well in two others. This suggests that the L1-norm could be a good bet on large

problems for which the alternatives are impractical.
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2.5 Conclusion

Lp-norm separation, a classic problem in supervised classification, presents im-

portant optimization challenges. Despite recent progress, practical techniques for

the exact solution of cases other than the L1-norm have remained unavailable.

We propose and implement an approach for the exact solution of fairly large

problems in L∞-norm. We solve in reasonable computing times examples of up to

20000 points (in 6 dimensions) and 13 dimensions (with 2000 points). A solution

was also found for an example of 100000 points in 10 dimensions.

We also show that, for sufficiently large problems, computation times for the

L2 and L∞-norms can be substantially reduced by incorporating heuristic results

in the exact solution process.

Several real-life instances from the UCI Repository are also considered, and

we are able to compute and compare full set fit and generalization properties (as

estimated by 10-cross validation) for the L1, L2 and L∞-norms.

2.6 Appendix: Details on Curve Fitting for Solution Time Behavior

Among the models tried, the best fit for the case with 2000 points was obtained

by t = κ1 ·eκ2·n, where t is CPU time in seconds. For the problems on 6 dimensions,

the best curve was t = κ3 · (m + k)κ4 , where m + k is the total number of points.

The estimation details are as follows. For the L∞-norm:

• κ1 = .0336 , κ2 = .8004 , R2 = .998

• κ3 = .00000042 , κ4 = 2.3683 , R2 = .994

For the L2-norm:

• κ1 = .0246 , κ2 = 1.2409 , R2 = .985

• κ3 = .0000044 , κ4 = 2.1267 , R2 = .974

These estimates where performed considering together the data from NDC and

Sym tables, without heuristic acceleration.



CHAPTER 3

MISCLASSIFICATION MINIMIZATION: EXACT AND HEURISTIC

APPROACHES

3.1 Introduction

Given two distinct sets of points in an Euclidean space, we consider the problem

of finding a hyperplane such that each half space defined by it is assigned to one

of the sets, and the number of points lying in the half-space corresponding to the

other set is minimized.

This problem is known to be NP-complete [MS92], and several approaches have

been proposed to tackle it, both exactly and heuristically (e.g., [LW78, Geh86,

KE90,MS92,MMS95,Rub97,SS97]).

3.2 Formulation

3.2.1 Statement of the Problem

Most models used in the literature for misclassification minimization are varia-

tions of the following mixed integer program:

min
w,γ,y,z






m∑

i=1

yi +
k∑

j=1

zj

∣∣∣∣∣

−wtAi + γ ≤Myi for i = 1, .., m

wtBj − γ ≤Mzj for j = 1, .., k

y ∈ {0, 1}m, z ∈ {0, 1}k, w ∈ R
n, γ ∈ R





(3.1)

where M is the famous “big M”, a sufficiently large constant. The binary vectors

y and z track misclassified points from sets A and B, respectively. We will refer to

this basic model in our subsequent discussion.

For practical classification applications, in particular when off-sample general-

ization is the main concern, it might be important to consider other criteria in the

objective function. Key examples include asymmetrical weighting of misclassifica-

tions from each set (to take account of different error costs or priors, e.g., [LW78])

or introducing secondary criteria (such as considering deviations from the plane,

e.g., [BH82,Rub97,PWL97]). We will not be concerned here with these variations

and, for comparability, will only consider the basic objective of minimizing the

total number of misclassified points.
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3.2.2 Background

In addition to the general challenges of any large, mixed integer programming

task, exact approaches to the linear misclassification minimization must deal with

specific problems which are also present in some continuous, LP-based classification

models [Koe90]. Of these problems, perhaps the most pervasive is the issue of

the null solution: in many formulations, an optimal solution can be [γ w] = 0,

which is useless for classification purposes. A common practice to rule out this

undesirable outcome is to impose an additional standardization constraint on the

model. The choice of this constraint is, however, delicate, and a large part of the

literature on LP-based approaches to classification has been devoted to this problem

[Gri72,MM85,FG86,GKD88,CIS89,Koe89a,Koe89b,Glo90,Koe91,Xia93,Gle99].

Many contributions in the literature concentrate on the algorithmic challenges of

the MIP, without due attention to perverse, unforeseen consequences of the choice of

standardization constraint. For example, [MS92] impose1 w1 = ±1, while [MMS95]

postulate max (|w1| , |w2| , . . . , |wn| , γ) = 1. Any of these constraints may preclude

the optimal solution2.

Another approach to deal with the null solution is to minimize the aggre-

gate deviations from two reference planes, one for each class, instead of one3

[Smi68,Han81,BM92]. Although it has been applied for the misclassification min-

imization problem [Geh86,Rub90,PWL97], this approach is not in fact equivalent

to minimizing the number of points and might yield a suboptimal solution4.

Other approaches to deal with the null solution problem found in the literature

include the use of secondary objectives [Rub97] (which can also stir the solution

away from the desired optimum) or the imposition of arbitrary constraints on the

objective function [KE90].

Some of these contributions, despite eventual formulation failures with respect

to the null solution issue, introduce algorithmic improvements for the solution

of the mixed integer programs, such as decompositions [Rub97] and branching

1This idea is akin to that proposed for LP-models in [FG86], where γ = ±1.
2The constraint in [MS92] forbids (potentially optimal) solutions with γ = 0. The one in

[MMS95] forces the solution [γ w] to lie on the L1-norm unit sphere in R
n+1; a potentially

optimal solution with γ > 1 and max (|w1| , |w2| , ..., |wn|) < 1, not lying on this sphere, is thus
excluded.

3For a survey and discussion of these double plane models, see chapter 5.
4To see why this is so, suppose the optimal solution to the double-plane model has been found,

and consider the region between the reference planes. Any point in this region will not be counted
as misclassified in the objective function, but can very well be on the wrong side of the actual
discriminating plane P , which lies midway between the two.
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strategies [SS97]. These techniques could in principle be applied to various valid

formulations, but we shall not consider them here; the focus of our discussion and

proposition for exact approaches will be on formulation.

Mangasarian [Man99] exposed a subtle relationship between the standardization

constraint and the Lp-norm in which distances are considered. In particular, the

Lp-norm distance between a point x ∈ A∪ B and its projection π(x) to the plane

P is given by

‖x− π(x)‖p =
|wtx− γ|

‖w‖′p

where ‖·‖′p denotes the dual norm5 of ‖·‖p. A convenient and perfectly valid stan-

dardization choice suggested by this equation is then ‖w‖′p = 1 for an appropriate

choice of p. This constraint does not rule out any direction for the plane, be-

cause the gradient w of the plane can lie anywhere on the surface of the Lp-norm

unit sphere, and γ is unconstrained, thus permitting any offset with respect to

the origin6. The choice of the norm p might be of interest in some classification

applications7, but for the misclassification minimization problem, the only relevant

cases are p = 1 and p =∞, since they are manageable by linear formulations.

One of the earliest formulations for the misclassification minimization problem

is due to Liittschwager and Wang [LW78]. Their standardization constraint is

‖w‖′
1

= ‖w‖∞ = 1. This formulation (which we shall refer to as LW) has stood the

test of time; it has been used as base for other research efforts (e.g., [SS97]) and,

by the above discussion, unlike many of its successors, it is formally correct in that

it does not exclude valid solutions from consideration as it avoids the null solution.

Our formulation is an improvement on this model8.

The LW formulation enforces the condition ‖w‖∞ = 1 within a single MIP, with

5We recall that, for 1 < p <∞ , the dual norm ‖·‖′p = ‖·‖q where 1

p
+ 1

q
= 1 . The cases p = 1

and p =∞ , are defined by a limit argument as ‖·‖′
1

= ‖·‖∞ and ‖·‖′∞ = ‖·‖
1
.

6This idea had been applied for the Euclidean distance [CIS89], and elegantly generalizes to
the arbitrary-norm case in [Man99].

7See chapter 1, where the potential effect of the choice of p on off-sample generalization is
explored.

8In [LW78] the yi and zi in the objective function are weighted by cost and prior probabilities.
As explained in section 3.2.1, we ignore these weights.
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the constraints

−1 + 2Dl ≤ wl ≤ 1− 2El l = 1, . . . , n (3.2)
n∑

l=1

Dl +
n∑

l=1

El = 1 (3.3)

E ∈ {0, 1}n D ∈ {0, 1}n.

The condition ‖w‖∞ = 1 can also be tackled by solving 2n separate programs,

each of which forces wl to be either 1 or −1, for l = 1, . . . , n, and with −1 ≤ wl ≤ 1.

This is the preferred approach when minimizing the sum of L1-norm distances

[Man99]. We performed some experiments to compare the solution speed on the

same set of problems, with the two approaches: a single MIP or 2n smaller MIPs.

We found that there appears to be no advantage in general to splitting the problem

into 2n slightly smaller ones, and we concentrate our subsequent discussion on the

formulation with a single MIP. The issue, however, might deserve further study.

In [LW78], it is shown that the “big M” can be set to

M = 2n max



 max
i=1,...,m
l=1,...,n

|Ail| , max
j=1,...,k
l=1,...,n

|Bjl|



 . (3.4)

We will assume that the data in A and B have been rescaled to the range

[−1, 1]. Linear rescaling is a quite standard procedure in practice, and all of our

databases conform to it9.

3.2.3 Our Model

A remarkable insight in [MMS95] is that the “big M” can in fact be determined

on a per observation basis, thus resulting in a tighter formulation. We apply this

idea to the LW framework, and use the constants

MA
i = n + n max

l=1,...,n
|Ail| i = 1, . . . , m (3.5)

MB
j = n + n max

l=1,...,n
|Bjl| j = 1, . . . , k

9Note that the data used in the other chapters is rescaled to [0, 1]. The choice of a different
range (i.e., [−1, 1]), for the experiments reported in this chapter was made because we suspected
that this larger range might improve numeric performance, while it obviously respects the as-
sumptions of the model. We did not actually test the hypothesis that performance is indeed
better under the alternative rescaling.
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in the corresponding constraints, instead of the common M . The validity of these

bounds can be seen by an argument similar to that presented in [LW78]. Its

adaptation to our model can be intuitively summarized as follows. Since −1 ≤

wl ≤ 1, it follows that for any i = 1, . . . , m,

wtAi ≤ n max
l=1,...,n

|Ail| (3.6)

wtBi ≤ n max
l=1,...,n

|Bil| . (3.7)

Also note that

γ ≤ max

(
max

i=1,...,m
wtAi , max

j=1,...,k
wtBj

)
≤ n

where the second inequality follows from the fact that the matrices A and B

have been rescaled to the range [−1, 1]. We therefore have that the first n in

the right hand sides of 3.5 covers the worst case for γ and the terms n max
l=1,...,n

|Ail|

and n max
l=1,...,n

|Bil| take care of the highest possible absolute values of wtAi and wtBj ,

respectively.

Our final formulation is then

min
w,γ,y,z






m∑

i=1

yi +

k∑

j=1

zj

∣∣∣∣∣

−wtAi + γ ≤MA
i yi for i = 1, .., m

wtBj − γ ≤MB
i zj for j = 1, .., k

−1 + 2Dl ≤ wl ≤ 1− 2El
n∑

l=1

Dl +
n∑

l=1

El = 1






(3.8)

with y ∈ {0, 1}m, z ∈ {0, 1}k, w ∈ R
n, γ ∈ R, E ∈ {0, 1}n, D ∈ {0, 1}n and the

constants MA
i and MB

i defined as in (3.5).

3.3 Heuristic Approach

The basic idea of our approach is to decompose the problem into determining a

direction for the hyperplane and finding the optimal position, of offset to the origin,

in a given direction. This kind of decomposition is not uncommon in the global

optimization literature, and has been applied to the misclassification minimization

problem elsewhere [CM96]. The two main components of our method are thus:

• A function (henceforth referred to as “the oracle”) which, given a direction

for the plane, finds an optimal parallel shift and returns the corresponding

number of misclassified points, and
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• An optimization framework that searches the space of directions for a mini-

mum, by repeatedly querying the oracle.

The space of directions is searched with a heuristic framework known as Variable

Neighborhood Search (VNS) [HM01b], which has been applied successfully in a

number of global optimization tasks (e.g., [BM96, CH00, HM97, BCK99, HMU04,

MJPČ03]).

The algorithm for the oracle differs from that described in section 1.2 in that, for

a given direction, it returns the minimum possible number of misclassified points,

instead of the sum of Lp-norm distances. It is outlined in Figure 3.1.

The pseudo-code for the VNS search is the same as in figure 1.2, with the

function PNORMDIST(α̂) replaced by COUNTMISSED(α̂).

• compute distA and distB /* vectors of projections to ray α */

• sort distA and distB

• CurrentMissed← all points in B

• BestMissed← CurrentMissed

• Position← min(min(distA),min(distB)) /* initial position of plane */

• BestPosition← Position

• REPEAT

– move Position to next point

– update CurrentMissed

– IF (CurrentMissed < BestMissed) THEN

∗ BestMissed← CurrentMissed

∗ BestPosition← Position

– ENDIF

– UNTIL (all points considered)

• return BestMissed and store BestPosition

Figure 3.1: Pseudocode for the COUNTMISSED(α) oracle.

We now present the results of our numerical experiments.

3.4 Numerical Experiments

We try our exact formulation and our heuristic on a small set of problems from

the famous UCI Machine Learning repository [DNM98], and on a set of random
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problems created with Musicant’s NDC, a publicly available generator [Mus98].

Preprocessing details and parameters used for the datasets are given in annex 5.8.

Our exact solutions were obtained using the CPLEX callable library [ILO03],

running under Linux10. Some of the problems we originally considered, such as the

Pima database, could not be solved within the memory constraints of our solution

setup11.

We first compare the solution time for the LW model with our improved formu-

lation, model (3.8) above, refered to as LWtight in the tables). The behavior of the

heuristic is considered next: we study the full set fit and generalization properties

of the solutions found by VNS by comparing it to known exact solutions, and then

explore the solution time for sets of instances too large to be realistically tackled

by an exact method with currently available technologies.

3.4.1 Exact Solutions

Table 3.1 compares the solution times of the original LW formulation with

our improved version. The first column shows the objective value; the size of

the problem is indicated in the next two columns, followed by the percentage of

(full set) misclassified points at the optimum. In problems that take under a

couple of seconds to solve, CPU time is not consistently accurate and comparisons

should be made with caution. As the problems with substantial solution times,

Iris took the same time under both formulations, and the tighter formulation of

Cancer was solved in just 55% of the benchmark time. Much to our surprise, the

Housing problem took longer to solve with the tighter formulation. We suspect

this to be due to lengthier solutions for the LP relaxations at each node under

the tighter formulation; this can happen, for instance, if a barrier method is used

for the relaxations and the tighter MIP formulations result in their being nearly

degenerate12. This phenomenon shows that the proposed formulation is not always

better under the default settings, and that care should be taken in the choice of

algorithms for the relaxations. We believe this issue to deserve further analysis.

Table 3.2 shows the corresponding results for the five random problems with 300

observations in 6 dimensions. In this case as well, the savings seem quite significant.

10The processors are Intel Xeon 3.06 GHz, 1 Mb cache memory and 2 GO RAM.
11CPLEX appears to use some sophisticated memory management tricks [ILO03] and we did

not explore alternative approaches. For comparability and to focus on the differences between
the formulations, we used CPLEX’s own branching scheme with default settings.

12In the sense of not having proper interior solutions.
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Problem obj obs dim
bad   
rate LW LWtight savings

cancer 13 683 9 1.9% 634.13 342.77 46%
echocardiogram 7 74 7 9.5% 2.31 2.31 0%
glass_windows 3 214 9 1.4% 1.31 1.20 8%
hepatitis 2 150 16 1.3% 1.77 1.78 -1%
housing 9 506 13 1.8% 6476.58 7499.78 -16%
iris 25 150 4 16.7% 54.25 54.17 0%

CPU seconds

Table 3.1: CPU times for LW and LWtight formulations: UCI problems

Although this sample is too small for a definitive assessment, it would seem that

there is a correlation between the difficulty of the underlying classification problem,

as estimated by the bad rate, and the solution time of the corresponding MIP.

obj obs dim
bad   
rate LW tight savings

21 300 6 7.0% 910.53 383.85 58%
30 300 6 10.0% 19011.81 15001.50 21%
21 300 6 7.0% 867.13 507.46 41%
6 300 6 2.0% 3.06 1.77 42%

23 300 6 7.7% 2549.89 1725.72 32%

CPU seconds

Table 3.2: CPU times for LW and LWtight formulations: NDC problems

3.4.2 Heuristic Solutions

We first consider the speed and accuracy of the heuristic on the full sets (as

opposed to training-testing partitions) of our UCI problems. Table 3.3 shows the

best objective value found by the heuristic (VNS obj) and the implied fit, as well

as the percentage of the time taken by it with respect to the exact solution; the

exact solution and its accuracy are shown for reference.

The heuristic found the exact solutions in only two of the problems, but it did

so quite fast. The gap in the objective value for the other cases is substantial. On

the other hand, these approximations are obtained, for large problems, in a small

fraction of the exact solution time. Consider, for instance, the Housing problem,

with priors of about 1

2
(i.e., about half of the observations in each class). A plane

that leaves about 91% of them on the correct side is obtained in .4% of the time it
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Problem obs dim
exact 
obj fit

VNS 
CPU 
secs

fraction of 
exact time

VNS 
obj fit

cancer 683 9 13 98.10% 16.51 4.8% 13 98.10%
echocardiogram 74 7 7 90.54% 0.88 38.0% 11 85.14%
glass_windows 214 9 3 98.60% 5.06 420.3% 6 97.20%
hepatitis 150 16 2 98.67% 6.47 363.3% 12 92.00%
housing 506 13 9 98.22% 29.72 0.4% 47 90.71%
iris 150 4 25 83.33% 5.21 9.6% 25 83.33%

Table 3.3: Full set accuracy and VNS running times: NDC problems

takes the exact algorithm to reach an accuracy of about 98%. Whether the trade

off is worthwhile will depend on the specific application, but we argue that the

observed performance of the heuristic would be advantageous in many practical

circumstances.

The huge difference in running times for the Glass and the Hepatitis problems

(with VNS taking about four times longer than the exact method) should perhaps

not be surprising. These are very easy instances, with exact solutions taking only

a couple of CPU seconds; there is clearly no advantage in using any heuristic on

them13.

A key consideration when assessing a classifier is its off-sample performance. We

performed a ten-fold cross validation exercise on the UCI datasets, comparing the

average testing set accuracy of both the exact and heuristic solutions14. In order to

have a reference to another, mathematical programing based linear discrimination

alternative, we also compared them with the results obtained with RLP, a popular,

double-plane linear programming discrimination model proposed in [BM92]. The

results are summarized in figure 3.2. The heuristic generalized better than the

exact solution on two problems, and worse on the other three. The performance of

the exact solution on Hepatitis and the Echocardiogram problems was dramatically

superior to both the heuristic and RLP15. These are, however, easy instances for

which no heuristic is likely to be competitive in practice.

Studying the solution times of the heuristic on increasingly large datasets, with

13Furthermore, the full set fit for Hepatitis is also quite poor in the heuristic solution.
14For a detailed discussion of the k-cross validation and its properties, see e.g., [Han97,DHS00].
15It should be noted that RLP, unlike the other two methods being compared, does not at-

tempt directly to minimize misclassifications on the training sets. However, the ultimate goal
of any discrimination procedure being usually off-sample prediction, the comparison presented is
relevant.
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Figure 3.2: Generalization accuracy for alternative linear discriminants

a fixed stopping criterion, we find that it scales up gracefully to problem sizes

where exact solution is not an option. We created a hundred random problems in 6

dimensions with observations ranging from 2000 to 20000 by steps of 2000. Figure

3.3 shows the average running time of the ten random problems of each size, for a

constant stopping criterion. On this range of problem sizes solution time appears

to grow linearly.

An additional series of ten problems with 100000 observations each was solved in

an average of 16 CPU minutes. Exact solution of this kind of problems is currently

impossible. Although nothing can be said of the precision of our heuristic solutions,

we have no reason to believe that the performance would be much worse than in

the smaller problems for which an exact benchmark could be obtained, as discussed

above.
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Figure 3.3: VNS solution time for NDC random problems in 6 dimensions.

3.5 Conclusion

We review the main approaches to the misclassification minimization problem,

and present and test an improved exact formulation. We also propose a heuristic

based on the Variable Neighborhood Search framework.

Our tests suggest that the proposed exact formulation generally outperforms

the classic benchmark on which it is based.

The heuristic appears to find reasonable solutions in small running times, and to

perform acceptably in cross validation exercises. It scales up gracefully to problem

sizes beyond the reach of exact methods.

We believe our approach to be promising and to provide a base for further

research. In particular it would be interesting to try the proposed exact formulation

along with some of the algorithmic improvements introduced in the literature for

this family of Mixed Integer Programs. The heuristic can be also benchmarked

to alternative heuristic approaches for the classification minimization problem and

tried on other sets of databases.



CHAPTER 4

ISSUES IN CONSUMER CREDIT SCORING

4.1 Introduction

In order to set up some thematic background on research about credit scor-

ing, and provide a broader context for the following essay, this chapter presents a

very brief review of issues, ideas, and references on the application of supervised

classification models to the prediction of consumer credit behavior.

Since the seminal work of Altman in the late 1960’s [Alt68] the applications

of various discrimination techniques to corporate bankruptcy has been described

in an overwhelming body of literature. Consumer default modeling, however, was

mostly ignored in scholarly publications until very recently. Academic interest in

the field has dramatically increased in recent years and a large number of journal

articles and working papers are now available.

This phenomenon can probably be traced to several causes:

• The consumer lending industry itself has exploded in the last 20 years, and

the demand for scoring technologies and related services has been pulled by

it. As an example, Fair Isaac, the leader in the market for credit scoring

systems, had gross revenues of only US$329 million in 2001, but made nearly

US$600 million in 2004.

• As with other Data Mining applications, availability of huge databases and in-

creased computing power opens new analytical opportunities and challenges.

• Unlike the financial ratios used to forecast corporate bankruptcy, consumer

credit records are not publicly available. This is perhaps the single most im-

portant limitation to academic work on this subject. Increasingly, empirical

work with proprietary data is reported, with some limitations, in scholarly

journals. This is now the standard practice in the field, and one may wonder

if it would have been considered acceptable 20 years ago.

Along the credit scoring process, one finds most of the usual challenges in any

data mining task: data cleaning and preprocessing, feature selection, model selec-

tion and performance assessment. However, some issues (such as reject inference),
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have greater relevance than in other applications and others (e.g., population drift)

display structural characteristics particular to the field.

Several surveys provide overviews of the issues involved in credit scoring, from

various perspectives (ex. [RCW83,RG94,HH97,Han01,Tho00]). Hand’s book [Han97],

provides a summarizing overview of practical classification, and includes a section

discussing credit scoring. Some technical papers prepared in the context of doctoral

dissertations also survey the field ( [Liu02]).

The following sections enumerate briefly some of the key issues in the construc-

tion of a consumer credit classification system.

4.2 Endogenous class definitions

A peculiar feature of the credit scoring problem is that the definition of the

classes is itself a relevant part of the modeling effort. The observations on which

models are built are usually existing portfolios of loans, some of which are defined as

“good” or “performing” and others as “bad” or “non-performing”. Although class

definitions are often exogenously imposed by the circumstances (legal, regulatory,

traditions, etc.) to the classification model, they are by no means obvious from the

structural nature of the problem. A very common definition of a non-performing

loan is one that has missed 3 consecutive payments. However, other reasonable

characterizations can be defended. For example, [DAG96] used the definition of

four consecutive missed payments, because it was the one adopted by the Spanish

bank that provided their database.

This situation seems to be in contrast with some other examples of applications

where the classes themselves are somehow natural or not subject to much ambiguity

(is the tumor cancerous or not, is the character an “A” or a “B”, is the wine from

region X or Y, etc.). Of course this “structural” fuzziness in class definitions is

not exclusive of this problem. For example, among the problems in the Irvine

Repository, at least the Boston Housing database (where the threshold value for

class definition of $21,000 seems quite arbitrary) is a similar case.

In the context of corporate bankruptcy, the issue of class definitions has received

considerable attention (e.x. [Hay03] and numerous references therein), but remains

poorly explored for consumer models.
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4.3 Sample bias and reject inference

The “labeled” loans used to train the typical credit scoring system entered the

institution’s portfolio because they where selected from a pool of applications by

another credit scoring system or by any other selection mechanism. They are not,

therefore, representative of the applicant population. The labels of the applications

that where not accepted are usually unknown. Some statistical techniques are used

to try to compensate for the resulting bias. Usually, some assumption about the

prior probabilities of the classes or about the distribution of the characteristics is

required. This is known in the literature as reject inference.

The sample bias phenomenon and the reject inference techniques proposed to

address it have been extensively discussed in the credit scoring literature ( [SG89,

Joa94,AC01,BCT03,CB04,VVDP04]). The theoretical and empirical advantages

of using reject inference techniques is at best doubtful, but they are often included

in best practice implementations.

4.4 Mixed variable types

Credit scoring databases invariably contain both numeric (age, income, etc.)

and categorical variables (gender, product category, location, etc.), so the usual

difficulties of dealing with mixed variable types arise.

Some distance-based methods could theoretically incorporate numeric and cat-

egorical variables in an appropriate definition of the distance, as is done in some

clustering applications (e.g., [Hua98]). In practice, however, the usual approach is

to convert variables of one kind into the other. Some techniques to assign numerical

weights to categorical variables are discussed in [Han97] and applied, for instance,

in [HH96]. In credit scoring applications, the most common choice appears to be

categorizing numeric variables, and several alternative algorithms for this purpose

are discussed in the literature.

The most straightforward ways of partitioning the range of a continuous variable

in order to recode it as a categorical one are either to take equal intervals or to

consider the cut points that correspond to the percentiles of the desired number of

intervals. As these methods do not take into consideration the distribution of the

variable conditional to the class to which an observation belongs, their performance

is bound to be poor. They are, however, sometimes used in practice (and, in the

pattern recognition jargon, belong to the “unsupervised categorization” family of
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algorithms).

Numerous, more sophisticated, approaches have been proposed for this task. A

famous one, based on information theory, is due to Fayyad and Irani ( [FI92]), and

is implemented in several software packages. A linear programming approach is

proposed in [Gle04], while a simulated annealing algorithm is presented in [HA00].

A heuristic commonly used in the industry is to start with a fine (unsupervised)

partition and then manually join a sufficient number of adjacent categories in order

to smooth the weights of evidence of the resulting categories.

4.5 Model selection

As in most other classification domains, an important section of the litera-

ture is devoted to proposing and comparing alternative models. Of course, most

researchers find that their method outperforms the others.

Several serious studies tend to find that differences between good implementa-

tions of different methods are often not dramatically large, and that the choice of

the best model is database dependent. The structure of credit scoring problems

does not therefore appear to be systematically suited for a particular family of

prediction models (e.g., [BVGV+03] and references therein).

In practice, regression-based models (logit, probit, etc.) are perhaps the most

commonly implemented, along with linear programming based models.

4.6 Feature selection

A fundamental problem in any data mining application, feature selection is of

course central to the credit scoring process. An initial set of 200-700 variables is

common. However, in order to capture interactions among some variables (reflect-

ing non-linearities in the decision frontier), they must be combined to generate

additional dimensions. The resulting variables are sometimes called “derogatory

trees” ( [Han97]). The challenge is thus to select the few best among at least several

hundred (often thousands) of alternatives.

The most widely used methods belong to the stepwise family. Variables are

inserted and removed, usually one at a time, according to various criteria, until

some stopping rule is met. These are, of course, local descent heuristics which

work around the combinatorial challenge of approximating a global solution.

Some more or less sophisticated heuristic implementations have been proposed
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to explore the attribute space (e.g., [DMS01, BLSvW96]), but are only tried on

very small instances and appear to be of limited applicability in practice.

Some recently proposed variations of the stepwise approach seem to be promis-

ing ( [Pir99, Pir04] and specially [FS04]), specially in the context of statistical

methods. There is, however, an important link between model choice and variable

selection. Most of the literature on feature selection for credit scoring focuses on

trees, logistic or regression models. The 1988 paper by Nath & Jones [NJ88] stands

out as one of the very few, and perhaps the earliest discussions specifically oriented

to LP based scoring models; it is discussed at length in chapter 5.

4.7 Population drift

Unlike many problems in the natural sciences, the structure in the credit clas-

sification problem is believed to change over time, as new credit applicants come

from a population that is not appropriately represented by the sample used to

build the model. This makes the choice of the observations used to train the sys-

tem an important issue. On the one hand, one would like loans of different ages

and maturities represented. In particular, it is important to have “seasoned” as

well as relatively new loans in the training sample. However, the variables that

best predict the performance of old loans may not be the same for the population

from which new applications are drawn.

This issue is discussed, for example in [Tho00, HH97], and [HH96] point out

that an advantage of nearest-neighbor approaches is that the training set can be

smoothly updated by adding new cases and removing the oldest ones.

4.8 Application vs. behavioral scores

In the industry jargon, credit scorecards are often distinguished as to whether

they are used for the original decision to grant a loan (application scoring) or to

assess the ongoing status of an existing client (behavioral scoring). The latter can

be used to predict credit quality (just like the application scores, but including

internal data on the performance of the client), or to determine a level of collection

action (such as letter, call or referral to legal team) or marketing action (cross

selling of products, etc.).

The crucial difference from the analytical point of view is the panel-like structure

of the data. Examples of recent references on this issue include [TH03], [AHT01]
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and [KS04].



CHAPTER 5

LINEAR PROGRAMMING APPROACHES TO CREDIT SCORING

5.1 Introduction

We consider the problem of discriminating credit applicants into two classes

with different expected repayment behaviors. Although we base our discussion and

our case study on the ranking of credit applicants, identical models are applied to

other binary classification tasks in credit risk management, marketing, consumer

relationship management, etc. Typical examples include rating loans in an existing

portfolio, targeting offers or promotions to groups of consumers most likely to react

to them, and detecting clients most likely to churn.

Many pattern classification techniques have been applied to this problem [RCW83,

DEG92,RG94,HH97,Tho00,Han01]. It is sometimes desirable to produce, for each

customer, a score, which is a scalar monotonically related to its predicted probabil-

ity of belonging to a certain class. Furthermore, for many business processes, one

would like to be able to compute this score as a weighted sum of observable vari-

ables (or at most a simple combination of them). The weight vectors in question

are known as scorecards, and they characterize the family of linear discriminants.

Although some implementations of techniques such as neural networks or clas-

sification trees can be adapted to produce scores, in practice the most popular

families of models for estimating them directly are regression (linear, logit, probit,

etc.) and Linear Programming (LP). Our work focuses on the latter.

Since Fisher’s seminal paper [Fis36] appeared in 1936, linear discriminants of

various flavors have been developed by statisticians and applied in numerous fields.

The introduction of discrimination by linear programing to the Operations Research

literature can perhaps be credited to [Man65], although the fundamental ideas can

be traced a few years earlier [Min61, Cha64]. The subject did not receive much

academic attention for over a decade, but a paper published in 1981 by Freed

and Glover’s [FG81b] triggered a rich vein of literature on the subject. LP based

discrimination is nowadays recognized as a powerful alternative in a data miner’s

toolbox, and is the engine behind some successful scoring systems implemented in

the industry.

We study the optimal choice of variables to be considered in constructing the

discriminant, from the set of available characteristics (a problem known as feature
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selection), within the context of discrimination by LP. We will refer indistinctly to

the variables available for each observation, once properly codified, as character-

istics, features or columns1. Feature selection (FS) is one of the key challenges in

pattern recognition and an enormous literature on the subject exists. An appro-

priate choice of a subset of the available features has several advantages (limiting

computational burden, easing interpretability, etc.), but the most important in

many applications, and the one we will focus on, is the effect of variable choice on

the generalization properties of the classifier. Too many features will overfit the

training data and perform poorly on new observations; on the other hand, too few

features will fail to capture the structure of the data and will not generalize well

either2.

In all problems of practical interest, with more than a few initial features to

consider, the combinatorial challenge of choosing the best (in the sense of truly

optimal) subset of features for a given classification task is overwhelming, and

most research on this field develops and compares various heuristics3.

Some FS algorithms consider correlations amongst the features and between

the features and the training set class labels, without reference to a particular

prediction model. These methods are often referred to as filters. On the other

hand, there are FS algorithms, known as wrappers, which assess the performance of

a specific classifier with a given subset of features, and then search the combinatorial

space of columns for a (local) optimum4.

Various FS methods are used in practical credit scoring applications. The filters

commonly used include the χ2 and the information statistic [TEC02], while the

wrappers of choice belong to the family of stepwise local-search heuristics where

a single (or a small number) of features is added and/or removed at each step.

Stepwise algorithms (including backward, forward or hybrid) are included in many

software packages and are used extremely frequently to estimate regression models5.

In principle, any filter method can be used to select a subset of columns to use

1They would be called independent variables in statistics.
2For a full discussion of this issue, in the context of an application to a credit database,

see [GT00].
3The difficulty of the combinatorial task, even in moderately sized problems, is perhaps better

understood by noting that implicit enumeration approaches are not usually possible due to the
lack of monotonicity in the most reasonable performance measures, i.e., the most useful set k
columns does not necessarily contain the best set of k − 1 columns and so on [Tou71].

4The now common denomination of filters and wrappers was apparently introduced by Kohavi
and John [JKP94,KJ97].

5Sophisticated variants have been developed and applied to credit scoring applications (see
e.g., [FS04]).
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in an LP based classification model, and many wrapper algorithms can be applied

using an LP model as the target performance method. The specific properties of

LP models with respect to feature selection have, however, received relatively little

attention in the literature. Nath and Jones [NJ88] were perhaps the first to address

the issue of feature selection specifically in the context of LP models. We discuss,

reinterpret and adapt their idea, and explore its performance on two real-life credit

databases. We find that it outperforms other approaches, including common filter

methods.

The use of proprietary databases in academic research on credit scoring has

become increasingly common in recent years6. The impossibility of disclosing many

details of the data and of any independent replication are compensated by the

potential practical relevance of the results, which is naturally more questionable in

work with the extremely limited and poor databases on consumer credit that are

publicly available.

The rest of the paper is structured as follows. The next section presents the

LP formulation that we implement for our study, placing it in the context of the

family of models to which it belongs. Section 5.3 discusses the assessment criteria

we use to compare the performance of the classification models. The Nath and

Jones (NJ) heuristic is explained and discussed in section 5.4, where the benchmark

methods that we compare it to are also presented. As is usual in academic work

on proprietary information, our confidentiality agreements limit the details that

can be disclosed about the sources. However, we attempt in section 5.5 to give an

overview of relevant features and orders of magnitude in our databases. Section 5.6

summarizes the results of our numerical experiments. We propose some concluding

remarks in section 5.7.

5.2 Problem Formulation

This section presents the details of the classification method used in our study.

We first establish some notation and explain our modeling choice in the context

of a brief review of LP approaches to binary classification7. The mathematical

program is then presented in detail.

6Examples of case studies based on private data from several countries include [DAG96,HH96,
MR99,SMH99,GT00,HA00,BCT03,CB04,FS04,ACC04].

7Various extensions to the multi-class case exist (see e.g., [Gri72, FG81b] and the chapters
on linear discriminants in [DHS00] and [Web02]), but we will only consider binary classification
models here.
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5.2.1 Background and Notation

Linear discriminant functions can be thought of as hyperplanes in the feature

(or characteristics) space, with a half-space assigned to each of the two classes.

Let n be the number of available features, and thus the dimension of the relevant

space. We denote A and B the two sets of points in R
n representing, respectively,

the m “good” and the k “bad” training set observations. Their coordinates are

represented by the matrices A ∈ R
m×n and B ∈ R

k×n.

For a discriminating plane P = {x |wtx = γ }, the vector w is sometimes referred

to as a scorecard and to the product wtx as point x’s score. Note that the often

overlooked case of points lying exactly on the plane is important, and will be

discussed below. We will as

A possible approach to the construction of a linear classifier is to try to minimize

the number of points on the wrong side of the plane; this choice, however, results in

Mixed Integer Programs that cannot currently be applied in practice to instances

of industrial interest8. The basic idea behind most LP-based discrimination models

is to find a hyperplane that minimizes some continuous, aggregate measure (such

as the sum, the mean or the maximum) of the deviation of misclassified points

(often called “external deviations”) with respect to the plane itself. This deviation

is defined as max(γ − xtw, 0) for x ∈ A and max(xtw − γ, 0) for x ∈ B.

The most basic example of this kind of model is the minimization of the sum

of deviations9

min
w∈Rn,γ∈R

{
m∑

i=1

max
{
−wtAi + γ, 0

}
+

k∑

j=1

max
{
wtBj − γ, 0

}
}

. (5.1)

We recall that each row Ai or Bj represents a point in A or B, respectively.

Note that a point only contributes to the objective if it is misclassified, and that

the objective value is zero at the optimum when the sets are linearly separable.

Some interesting variations, which we will not discuss further in this paper but

are worth mentioning, include giving some weight in the objective function to cor-

rectly classified points, or “internal deviations” (see e.g., reviews in [JS90,EK90]);

and minimizing deviations to class centroids, as in clustering models, instead of

8For a review of the literature on misclassification minimization, see chapter 3.
9This is also known as the perceptron criterion, and its origins can be traced to the work of

Rosenblatt in the early 1960’s [Han81,DHS00]. This is also the first model suggested in [FG81b].
Our notation follows roughly [Man99].
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considering deviations to the hyperplane10 [LO90,LCM96].

Two serious problems haunt many formulations in this family of models: null

and degenerate solutions11.

The null solution problem is the fact that w = 0, γ = 0 can be an optimal

solution to the mathematical program. This solution is, of course, useless for

discrimination purposes. Since there is a degree of freedom in the definition of

plane P , a standardization constraint can in principle be imposed on w to rule out

the null solution. The choice of this additional constraint, however, can be quite

problematic, and this issue has permeated a large part of the literature on LP-based

discrimination [Gri72,MM85,FG86,GKD88,CIS89,Koe89a,Koe89b,Glo90,Koe91,

Xia93,Gle99].

Degenerate solutions are usually defined as those in which all of the points of at

least one class lie on the plane itself [Koe90,Koe91,RS91]. In practice, when dealing

with large datasets a large fraction, though not necessarily all, of observations

from a class may fall on the plane at the optimum. This is obviously undesirable

and we consider degeneracy in this broader sense of having too many training set

observations with the same score.

From the classification perspective, degeneracy in LP-based discrimination is a

form of overfitting, in which besides the usual detrimental effects on generalization,

many training set observations remain in fact unclassifiable. This issue has perhaps

not received sufficient attention in the literature and there are several empirical

studies in which the effect of unclassified observations is not properly reported.

A modeling approach that has been useful in several contexts is to minimize

deviations with respect to two parallel planes, one for each class, instead of a single

one. We will subsequently refer to these planes as “reference planes”, since each

one is used as reference to measure deviation for a class. The final discriminant

corresponds in fact to a plane halfway between the two (see figure 5.1).

Originally intended as an answer to the null solution problem, this family of

double-plane models also alleviates somewhat mild degeneracy problems, in that

at least all training set observations can be classified12. In fact, in double-plane

10This approach is equivalent to considering internal deviations on the family of double-plane
models, described later in this section.

11Other anomalies, such as unbounded solutions, have also been studied [Koe89a] but will not
be discussed here.

12Some double-plane models are formulated in a way that leaves an unclassifiable region between
them. This is known in the literature as the “classification gap”; see [SR92] for a discussion of
this issue. We focus only on models in which the reference regions for both classes overlap, thus
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Figure 5.1: Reference planes and actual discriminant midway between them

models observations from different classes tend to stick to their respective reference

planes.

The generic form of this family of programs is

min
w∈Rn,γ∈R

{
ΦG

m∑

i=1

max
{
−wtAi + γ + ε, 0

}
+ ΦB

k∑

j=1

max
{
wtBj − γ + ε, 0

}
}

(5.2)

where ΦG and ΦB define, respectively, the weights of misclassifications from each

class13. The parameter ε > 0 forces the separation between the reference planes;

it is an arbitrary scaling factor and, following the usual practice, we fix it at the

value of 1 for our tests, and in our subsequent discussion.

To our knowledge, the earliest double-plane model was proposed in [Smi68],

with ΦG = ΦB = 1

m+k
. Without apparent awareness of this precedent, [Han81]

presents the model with ΦG = ΦB = 1.

The variation proposed in [BM92], where ΦG = 1

m
and ΦB = 1

k
, called “Ro-

bust Linear Programming” (RLP) by the authors, has become deservedly popular,

and is used as building block for diverse applications ( [MSW95, CM96, Man97,

leaving no gap.
13These weights also play a role in determining the (rather rare) cases where a null solution

can emerge in a double plane model [BM92].



59

BFM99,DBST02]). The relevant difference with this model’s predecessors is that,

by weighting observations inversely to their frequency, it deals effectively with the

problem of unbalanced class sizes, a crucial issue in credit scoring and other fields

(see e.g., [HV03b,HV03a]).

Let us now consider the distance between the resulting reference planes in the

family of double-plane models considered above. Mangasarian exposed in [Man99] a

subtle link between the vector w (which is the gradient of both reference planes) and

the distance that separates them, as measured by a general Lipschitz norm. It turns

out that the Lp-distance between the planes is 2

‖w‖′p
where ‖·‖′p is the norm dual14 to

‖·‖p. In particular, the L∞-distance between the planes is 2

‖w‖
1

and thus, for a fixed

orientation of the planes, reducing
∑

i |wi| separates them apart. Adding this term

as a weighted penalty to the objective function of the RLP model, [BM00] construct

a hybrid model that minimizes average deviation while maximizing the margin

between the reference planes, without leaving the realm of linear programming.

Furthermore, as the absolute value of the wi coefficients is penalized in the objective

function, those corresponding to uninteresting features are pushed toward zero,

contributing to the task of feature selection15. The authors call this model “Linear

Support Vector Machine” (LSVM), because it belongs to a particular family of

(linear kernel) Support Vector Machines [Bur98,BC00,BMM02]. We now present

the version of this model that we use for our experiments.

5.2.2 The Model

The model on which we base our tests has the form

min
w∈Rn,γ∈R

(1− λ)

(
ΦA

∑m
i=1

max {−wtAi + γ + 1, 0}+

ΦB

∑k

j=1
max {wtBj − γ + 1, 0}

)
+ λ ‖w‖

1
. (5.3)

As in RLP [BM92], the LSVM of [BM00] sets ΦA = 1

m
and ΦB = 1

k
. We have

found that, in dealing with large datasets, these parameters take values near or

beyond the precision of common LP solvers.

We rescale the whole term by the size of the larger class (almost always A

14Recall that, for w ∈ R
n, 1 < p <∞, the Lp-norm is ‖w‖p =

(
n∑

i=1

|wi|
p

) 1

p

and the dual norm

is defined as ‖w‖′p = ‖w‖q where q is such that 1

p
+ 1

q
= 1. Also, ‖w‖′

1
= ‖w‖∞ and vice versa

(see [Man99]).
15This formulation has been used in other studies, e.g., [GD03].
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in credit scoring applications) and thus take ΦA = 1 and ΦB = m
k

This choice is

numerically more robust, and still has the effect of weighting observations in inverse

proportion to their class size. The original model in [BM00] has λ
2

instead of λ in

the last term, to account for the fact that the L∞-distance between the reference

planes is 2

‖w‖1

. We omit the 2 and absorb its effect in the parameter λ.

After linearizing the max{·} and the |·| operators, our final formulation is16

min
w,γ,y,z

{
(1− λ)

(
m∑

i=1

yi +
m

k

k∑

j=1

zj

)
+ λ

n∑

r=1

sr

}

subject to (5.4)

yi ≥ −wtAi + γ + 1 for i = 1, .., m

zj ≥ wtBj − γ + 1 for j = 1, .., k

−sr ≤ wr ≤ sr for r = 1, .., n

y ≥ 0, z ≥ 0, s ≥ 0

where w ∈ R
n, γ ∈ R, y ∈ R

m, z ∈ R
k and s ∈ R

n.

The appropriate value for the parameter λ is determined by variables such as

the number of total observations, the scale of the data in matrices A and B, the

degree of separability of the classes, and so on. We spanned a wide range of values

for λ and kept the one that performed best in cross validation. We found that the

value that best generalizes is often far from the one that provides the best fit on

the training set. This suggests that there is indeed an important influence of the

margin effect on generalization.

To further explore this point, we compared the performance of the LSVM model

versus a basic RLP. As we report below, we found that the additional (margin) term

does indeed improve considerably the generalization accuracy of the scorecard.

5.3 Assessment Criteria

In most discrimination tasks, the analyst is just interested in forecasting the

class to which a new observation belongs. In some practical applications, however,

16Note that the variables sr take the value |wr|. This approach is equivalent to the more
traditional decomposition of the variables wr into non-negative w+

r and w−
r such that wr =

w+
r − w−

r , but facilitates a cleaner, more consistent notation. It is used, e.g., in [Man99].
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an important objective is to produce a ranking of observations by predicted like-

lihood of belonging to a group or another. This is often the use given to scoring

methods in various business processes, where managers adjust their decisions for

example by considering alternative cutoff scores.

A number of common statistics measure performance across all possible cut-

offs. Examples include the Mahalanobis distance and the Gini coefficient. Others,

like the frequently used Kolmogorov-Smirnov (KS) statistic, consider a single cut-

off which is not under the control of the analyst, with the possible risk of being

irrelevant in practice [Han97,DHS00,Web02,TEC02]. The costs of potential classi-

fication errors can also be taken into account, even when uncertain [Alt80,AH99].

The criterion we adopt is the rate of “bads amongst accepted” [Han05]. We

rank all observations by their score and assume they are to be considered in that

order. We then plot the total accepted versus the bads accepted (and abbreviate

it BAA chart). This chart is somehow similar to the ROC plot [Han97, Faw03],

but does not contain the same information; one needs the prior class distribution

to transform one into the other17.

This criterion has a number of advantages:

• it relates scorecard performance to a decision variable controllable by man-

agers, namely the percentage to accept,

• it aligns the evaluation of the scorecards to their use in the context where

the data were obtained18, and

• it allows us to average the curves along the vertical axis for cross validation

purposes [Faw03] and to compare them meaningfully [Gou92].

We apply this criterion within a five-fold cross validation framework. We ran-

domly partition sets A and B (separately) into 5 groups, and then match them

arbitrarily to create 5 buckets with approximately the same class distribution as

the original sample. Our scorecards are estimated on all subsets of four buckets

and the BAA chart is constructed on the fifth.

When comparing a parametric family of scorecards (for instance with different

number of input features) we also need summary, scalar measures. A natural one

17The ROC plot shows cumulative true positives on one axis and false positives on the other.
ROC stands for Receiver Operating Characteristic, a term that has its origins in the use of this
technique in processing noisy radio signals.

18The importance of aligning the assessment criterion to the planned use for the scorecard is
stressed in [HV03b] and [Han05].
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is to consider the areas under the BAA curves. This approach, however, is subject

to the critique of considering irrelevant threshold values [Han05]. If, for example,

actual acceptance rates will be fixed around 90%, the areas under the leftmost 10%

of the respective BAA curves have no interest whatsoever.

We propose an alternative criterion, which is aligned to the decision making

context in which our data was gathered. We assume that the relevant range of

acceptance is between 70% and 90%, and propose as performance statistic the area

under the BAA curve segment corresponding to this range. In reporting our results,

we refer to this statistic as the 70-90 slice.

5.4 Feature Selection

We now summarize the jackknife approach of [NJ88] and propose an inter-

pretation and adaptation of its ideas. We then describe some alternative feature

selection approaches that we compare it to.

5.4.1 The Jackknife Introduced

The procedure known in statistical pattern recognition as “the jackknife” was

not originally conceived as a feature selection algorithm, but is rather a resampling

technique used to estimate (and correct) biases in the error rate of the estimation

of a parameter [Han97,DHS00]. The basic idea is to compare a parameter estimate

computed over the whole sample with estimates obtained using various subsets of

it19. For convenience, we transcribe verbatim in an appendix (section 5.8) Nath

and Jones’ own presentation of the general jackknife principle.

The NJ procedure can be summarized as follows:

1. Partition the set A ∪ B into l subsets Si, for i = 1, . . . , l.

2. Obtain l estimates of the vector wi ∈ R
n, for i = 1, . . . , l by solving the LP

discrimination model corresponding to each of the sets
l⋃

i=1
i6=j

Si, i.e., deleting

one at a time each Si from the full dataset A∪ B.

3. Compute the mean ŵ of the wi vectors, and the jackknife estimate (cfr.

appendix 5.8) of the standard errors, σ. Note that each component of σ ∈ R
n

19The jackknife technique is related to other resampling methods, such as the bootstrap (see
[ET93], ch. 3).
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estimates the standard error of the mean coefficient ŵj corresponding to

feature j.

4. Consider the ratio
�

wj

σj
. By an argument presented in [CP77], it is supposed

to follow a t-distribution with l − 1 degrees of freedom. Retain the features

for which this statistic is significant and drop the others. Alternatively, rank

the features by their significance and take a certain number down the list.

5. Use the estimates ŵj corresponding to the retained features for prediction.

Note that the procedure is used simultaneously for the conceptually distinct

tasks of choosing the features and estimating the corresponding coefficients ŵj.

5.4.2 The Jackknife Revisited: What is really going on?

We will argue below that the general ideas behind the jackknife approach for

feature selection in LP based discrimination are quite effective. However, over 15

years after the original publication of the technique, a fresh perspective on the

subject is in order. In this section we discuss several issues around the jackknife

approach in what, in our view, amounts to a reinterpretation of the technique. We

first consider the double function of feature selection and estimation in NJ. We

then interpret the approach as a compromise in a bi-objective task, for which we

consider alternative formulations. Next, a discussion of the impact of unbalanced

classes is presented, along with our proposal for dealing with the problem. The

section ends with a summary of our version of the technique.

5.4.2.1 Feature selection vs. estimation

One should distinguish, within the original NJ framework, the combined func-

tions of feature selection and of estimation of (presumably robust) coefficients.

Instead of using the average coefficients ŵj as in NJ, one can apply the approach

strictly to feature selection. The ranking produced by the NJ algorithm can be

used to chose a subset of features, and then the model can be estimated for these

features, from the original training dataset, as opposed to using the average of the

Jackknife estimators. We compare the performance of these alternative approaches

in our datasets and, as shown below, find that coefficients for the features chosen

by a jackknife approach, estimated directly in the original model, outperform those

obtained within NJ.

This confirms in our view the relevance of the proposed distinction.



64

5.4.2.2 Bicriterion interpretation

It is known that, in general, a higher (absolute) value of the resulting ŵj need

not imply that the feature in question is more interesting (e.g., [Han97]). One

reason for this can be for example, that the features have very different scales. In

a sensible scorecard the coefficients would adjust for this fact, the absolute value

of those corresponding to features with larger scales being relatively smaller. We

argue, however, that if the features have been rescaled to the same range, as is the

case in common practice (and in our datasets), a ranking of features by absolute

value of the corresponding ŵj may be intuitively appealing.

We compare, for our datasets, the performance of a classifier estimated on the

full original set of features with one that only takes, for example, the first 100

ranked by |ŵj|, and confirm that the latter is superior.

On the other hand, consider the various coefficients wi
j obtained in the NJ

procedure for each feature j = 1, . . . , n when each subset Si is removed from the

training set, for i = 1, . . . , l. To the extent that l is relatively large, the removal

of the subsets Si should not dramatically change the structure of the problem.

It is thus intuitively plausible that the wi
j corresponding to features with highest

predictive power should have relatively small variation.

One would like therefore to choose features with higher |ŵj| and lower σj .

A possible way to deal with this double criterion is to consider the ratio of the

two components; this is exactly what NJ does. In fact, the t-statistic is just a

monotonic transformation of
|
�

wj |

σj
. The experiments presented below show that, for

our datasets, this treatment of the bicriterion challenge outperforms the simple

ranking by |ŵj|.

An alternative way of dealing with the two criteria is to aggregate them linearly

and then rank them, in a function of the form α |ŵj | + βσj. We explore the

consequences of this approach on our databases, and find that the performance

is extremely similar to that of the NJ criterion. This result further supports our

interpretation of the NJ method as a way of dealing with a bicriterion compromise.

Consider a feature such that its ŵj are very close to zero. The ratio
|
�

wj |

σj
might,

nevertheless, be relatively large even if the feature is uninteresting. On the other

hand, one would tend to consider a coefficient that changes signs to be associated

with a bad candidate feature. The view that excessive variability is undesirable

and large absolute values are desirable suggests a heuristic rule to deal with this

issues: remove all variables whose mean coefficient estimates have absolute values
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too close to the precision of the solver, and also all variables whose coefficients

change signs. Our tests show this approach to be clearly beneficial, at least for the

case of our datasets.

Despite the common sense appeal of the bicriterion interpretation presented, as

well as its empirical validation on our dataset examples, it should be noted that

the problem at hand does not conform to the classic framework for the analysis of

multi-criteria decision-making (e.g., [KR76]). For example, the usual domination

relationships do not appear to apply.

5.4.2.3 Unbalanced classes

In many applications of practical interest the classes are unbalanced, in the sense

that many more observations exist of one than of the other. This is indeed the case

in credit scoring, and this issue has important implications for both the construction

and the assessment of classification models [Han05,HV03a,HV03b]. In the context

of the jackknife approach, if the classes are unbalanced, the random partition of

the original training data into the Si subsets can lead to some of the l models

being estimated on sets with dramatically different class proportions to the target

population priors. This will introduce a dimension of variability to the estimates

of wj that is unrelated to the relative predictive contribution of the features. As

mentioned above, the way we deal with this problem in our implementations is to

partition the sets A and B separately, and then randomly match pairs to create

the Si subsets.

5.4.2.4 Our approach summarized

In summary, our proposed adaptation of the jackknife approach to feature selec-

tion in LP based discrimination models has the following distinctive characteristics:

• Partition the original training set in a way that preserves the relative pro-

portions of the classes.

• Remove variables for which the coefficients wi
j change sign for i = 1, . . . , l, as

well as those with extremely small |ŵj|.

• Rank the variables by
|
�

wj |

σj
or other summary function of mean and disper-

sion20 of wi
j.

20The ranking obtained by
|
�

wj |
σj

will of course be the same as that of the t-statistic, but we
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• Choose the number of variables to keep by observing the generalization perfor-

mance of a range of values, or by exogenous, ad-hoc domain considerations21.

• Keep the selected subset of variables and use them to estimate the model on

the full training set (as opposed to using the jackknife estimates).

5.4.3 A Filter Benchmark

Considered only as a feature selection algorithm, the jackknife approach as

discussed above can be argued to belong to the family of wrappers, i.e., the features

are chosen considering explicitly the model that is ultimately used for prediction

(in this case, the LP program itself)22.

Consider a set of features selected by a wrapper method, built around a given

classifier. By construction, these features should be expected to perform better

than a set of features chosen by a filter method, when used with the classifier in

question. It would therefore not be surprising that the predictive accuracy of our

LP model, with the features selected with the jackknife approach, be higher than

if a subset of features chosen with a filter were used. We find, however, interesting

to study to what extent this expectation is confirmed in our datasets.

A recent paper [LS05] compares the performance of several feature selection

methods on a credit scoring problem, using the publicly available WEKA package23

We tried five common filter algorithms implemented in this software to rank the

features of our databases, and considered the best 100 of each list. We then tried

our LP model with these feature sets, comparing their cross validation performance.

The algorithms considered are ChiSquaredAttributeEval, GainRatioAttributeE-

val, InfoGainAttributeEval, ReliefFAttributeEval and SymmetricalUncertAttribut-

eEval. They are described in detail in [WF05]. We found that the χ2-criterion

stress the intuitive interpretation of the trade-off between |ŵj | and σj .
21Our point here is that defining some “significance threshold” and keeping variables that are

below it is meaningless from the bicriterion point of view.
22There is a slight conceptual abuse in this classification, because in the original definition

of a wrapper in [JKP94] and [KJ97] the combinatorial space of features is searched as subsets
of features are assessed by repeatedly querying the prediction algorithm as a “black box” or
oracle. In the case at hand, the resampling approach produces a ranking of features by repeatedly
computing the coefficients that correspond to all features. The space of subsets of features is
thus not explicitly explored. However, since the ranking is produced by repeatedly invoking the
induction algorithm itself, we believe that characterizing the jackknife approach as a wrapper is
appropriate for our discussion.

23Available at http://www.cs.waikato.ac.nz/ml/weka/ and discussed in the companion
book [WF05].
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of ChiSquaredAttributeEval outperformed by far the others; it is thus the one we

present in comparison to the Jackknife methods discussed above.

5.5 The Databases

Our databases were provided by two Latin American lenders, and are believed

to be representative of their portfolios24. The one to which we refer as the auto

problem corresponds to a car-loan portfolio, and we call the home problem a mort-

gage database. As is usually the case in Credit Scoring tasks, the features are

mostly applicant demographic information and characteristics of the loan contract.

Both datasets were processed according to common industry practices; our

work focuses on the final, classification task, and all of the results reported were

computed on the same input datasets. A few comments, however, are in order with

respect to the construction of the input columns.

All categorical and numerical fields were expanded into binary variables. This

transformation, common among practitioners, appears to have at least three advan-

tages. First, the discretization of numerical variables allows the linear discriminant

to capture potential non-linear effects. For instance, the effect of age on credit per-

formance is sometimes seen to be increasing for young applicants and decreasing

for the oldest groups. Second, the creation of new variables to capture cross-effects

between characteristics becomes straightforward; and third, as argued below in

the context of feature selection for LP-based discriminants, the fact that all vari-

ables are binary facilitates the task of comparing and interpreting the resulting

coefficients.

Following a common industry practice, the discretization of continuous vari-

ables25 was performed heuristically using the log-likelihood (or “weight of evi-

dence”) of the resulting variables as guideline ( [TEC02]). Although some more

formal approaches to this task have been proposed (e.g., [HA00,Gle04]), their prac-

tical applicability in industrial-size databases has not been documented.

In order to capture some (non-linear) cross effects between variables, additional

columns were generated by multiplying pairs of variables from different groups (e.g.,

age vs. marital status). Some knowledge discovery techniques that also combine

binary variables do so in an exhaustive or systematic manner (e.g., [ABH+03]). In

24In compliance with our confidentiality agreements, some of the information in this section is
deliberately vague.

25This process is known as “coarse classification of characteristics” in the Credit Scoring jargon.
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our case, as is usual in Credit Scoring practice, the cross products considered are

chosen somewhat arbitrarily, guided by domain knowledge.

The class label was constructed according to the performance of the loan over

a given period of time. For instance, on the auto database, the “bad” observations

correspond to loans that have been past due for over 60 days. This is unlike

some other empirical work in the credit classification literature, which is based

on databases where class belonging is determined by expert opinion, rather than

actual borrower behavior (e.g., [LS05,BKU02]).

The final auto database contains 19, 657 observations in 208 dimensions, with

about 4% of “bads”, while the home database consists of 10, 579 observations in

673 dimensions, with about 17% of “bads”.

5.6 Experimental Results

We now summarize the main results of our numerical experiments on the auto

and home databases. Although our databases are somehow independent, in that

they represent different product segments, come from different institutions and

where preprocessed somehow differently, the usual caveats with respect to any

generalization of our findings apply.

Unless otherwise indicated, the references to the jackknife procedure refer to

our variation of it, as summarized in ¶5.4.2.4.

5.6.1 Structure of LP model: including a margin term

In figures 5.2 and 5.3 we compare the performance of our implementation of the

LSVM to the baseline RLP model. Although the effect is less clearcut for the auto

than for the home database, we believe there is some evidence that the addition of

the margin term to the objective function indeed improves generalization.
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Figure 5.2: RLP vs. LSVM in the home problem
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Figure 5.3: RLP vs. LSVM in the auto problem
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5.6.2 Removal of obviously bad candidates

Figure 5.4 compares the performance of a model that includes all the features

to one that is estimated after having removed all the variables that either change

sign or have systematically small values in the various jackknife estimates. We

believe there is some evidence that this step does improve performance.
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Figure 5.4: Effect of removing coefficients that change sign or are always extremely
small: auto dataset.

5.6.3 Source of coefficient estimates

We compare the performance of the coefficients obtained under the criterion

used in the original NJ setting (i.e., the proper jackknife estimates), to those ob-

tained under our proposed approach of using the jackknife only as a pure feature

selection procedure and then estimating the parameters on the full training set.

Figures 5.5 and 5.6 show the results for both sets. Although the difference

appears to be neglegible for the auto data, we find support for our preference for

these coefficients in the home example.
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Figure 5.5: Jackknife vs. LSVM coefficients in the home problem
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Figure 5.6: Jackknife vs. LSVM coefficients in the auto problem
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5.6.4 Superiority to filters

We compared our LP model using the best 100 variables as ranked by the

WEKA χ2 filter, to the best 100 as ranked by the baseline jackknife. Figure 5.7

shows the result for the auto problem; the home database produced a similar plot.
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Figure 5.7: Features selected by the jacknife vs. χ2-criterion in the auto problem

As mentioned above, this was the best performing filter in the set of five common

algorithms tested. We confirm that a jackknife approach, perhaps unsurprisingly,

easily outperforms it.

5.6.5 Single versus double criterion

Recall that the jackknife method produces l estimates for each of the scorecard

coefficients wj , and that these estimates are used to rank features, as discussed

in ¶5.4.2. In figure 5.8 we compare the performance of three approaches to rank

features:

• absmeans : Decreasing absolute value of the mean ŵi
j of the jackknife esti-

mates

• absmeans/std : Decreasing ratio of the absolute value of the mean of the

jackknife estimates to their standard deviation, i.e.,
|
�

wj |

σj
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• linear : Decreasing value of a linear combination26, α |ŵj|+βσj, of the absolute

value of the mean ŵi
j of the jackknife estimates and their standard deviation

σj , i.e., the alternative way to deal with the bicriterion problem discussed in

¶5.4.2.2

The horizontal axis shows the number of variables retained, ranging from 40 to

300, from the ordered list produced by each criterion. The vertical axis measures

the slice70-90 statistic (cfr. section 5.3) obtained for each method. Recall that a

lower value corresponds to a better classifier.

The ranking obtained by considering only the means is clearly dominated by the

others. Also note that, although the NJ criterion does better than the alternative

linear formulation for 40 variables, the performance is virtually identical beyond

60 variables.
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Figure 5.8: slice70-90 as function of number of variables retained (home problem)

5.7 Conclusions

We explore the problem of feature selection in a linear programming approach

to building a scorecard. We report numerical experiments on two real credit data-

bases.

26We set the arbitrary scaling parameters α = 1 and β = .25
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The model we use is the Linear Support Vector Machine (LSVM). We find

LSVM’s performance to be superior (for our data) to that of the model known

as Robust Linear Programming, its predecessor within the family of double-plane

classifiers.

We revisit an approach introduced by Nath and Jones in 1988, based on the

jackknife principle. We propose some improvements in the implementation of their

ideas, and show their potential to improve performance:

• remove variables that change sign or have average values near the solver’s

precision,

• preserve class proportions in the jackknife samples, and

• use the jackknife strictly as a feature selection method, and estimate indepen-

dently the scorecard coefficients (as opposed to using the jackknife estimates).

We offer an intuitive reinterpretation of the ideas behind the jackknife proce-

dure, exposing it as the solution to a bicriterion problem: the jackknife estimates of

interesting variables should have higher absolute mean values and lower variance.

This interpretation suggests the idea of exploring other heuristics to rank fea-

tures. We try a linear combination of mean absolute value and variance, and show

that it performs almost identically to the original jackknife procedure.



75

5.8 Appendix: The general jackknife principle

We here transcribe verbatim an excerpt from the appendix of [NJ88], where the

general principle of the jackknife on which they base their method is presented:

Suppose a random sample of size n is obtained by observing the variable
X on each of the sampled units yielding X1, X2, . . . , Xn. Partition
the sample into k (k is selected by the researcher) subsets of size Mi

(i = 1, 2, ..., k) and denote the subsets S1, S2, . . . , Sk. Suppose θ′ is an
estimate of the parameter θ using the complete sample and θ′i is the
estimate obtained after the ith subset Si of size Mi is deleted from the
complete sample. The jackknife estimate of the standard error of θ′ is:

Sθ′ =

[(
k − 1

k

) k∑

i=1

(
θ′i − θ′

)2
] 1

2

where

θ′ =
1

k

k∑

i=1

θ′i

is the mean of the k estimates obtained by deleting one subset at a
time. The estimate Sθ′ is known to be a robust estimate of the true
standard error of θ′.

Note the subtle differences in notation with respect to the conventions adopted in

our exposition. For example, we reserve n for the dimension of the space of the

problem (and use l for the number of subsets in the partition of the dataset), and

m and k for the cardinality of sets A and B. To avoid confusion with the sets Si,

we refer to the jackknife estimate of the standard error as σ instead of Sθ′ .
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Linear discriminants are an important pillar in the theory and practice of automatic

classification. Since their appearance in academic literature almost 60 years ago, a

considerable corpus of research has focused on them from the perspectives of various

disciplines, including statistics, computer science and operations research. This

thesis approaches some issues in binary linear discrimination with the application

of two optimization techniques: a modern metaheuristic framework and classical

linear programming.

It is common to visualize the discriminant as a hyperplane in the Euclidean

space of features, and the training set containing the two classes of objects to

be separated as points in this space. As in most cases of practical interest the

classes are not linearly separable, the hyperplane is chosen to minimize some error

criterion.

The first such criterion we consider is the minimization of the sum of Lp-norm

distances of misclassified points to the plane. For truly arbitrary, integer or frac-

tional, values of p, no general exact solution is known. We successfully apply the

Variable Neighborhood Search (VNS) heuristic framework to this problem. The

solutions found are reasonably accurate, and scale very well to large problems. We

explore, on a set of real-life, publicly available databases, the generalization con-

sequences of the choice of p. We find that the choice of the norm does matter,

but in a case dependent way. The practical implication of this result is that, if

for whatever reason Lp-norm minimization is the criterion of choice for a linear

discrimination task, a range of values of p should be considered.

Exact solutions can be obtained in the case of the “Manhattan” (p = 1), Euclid-

ean (p = 2) and Max (p =∞) distances. We present a Mixed Integer Programming

(MIP) formulation for the L∞-norm and explore empirically the use of the bounds

obtained by our VNS implementation to accelerate exact solutions of L2-norm and

L∞-norm problems, both of which are difficult in large instances. We conclude

that the use of our bounds is not worthwhile in small problems that can be solved

exactly in little time, but that very significant time savings can be achieved in

larger instances.

The next criterion we consider is the minimization of the number of misclassified

points. The exact solution of this problem leads to large MIP models that are often

difficult to solve. We propose and test an improvement to a classic formulation,
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i.e., provide tighter constraints, and conclude that, for a number of problems, it

reduces significantly the exact solution time.

We adapt and implement the VNS framework to find heuristic solutions for

the misclassification minimization problem. We find that it is fast, and that the

solutions it finds generalize reasonably well as compared with some other linear

classifiers.

An important family of linear discrimination models adopts as criterion the

minimization of a measure of deviation of misclassified points to the plane, which

are not necessarily distances. The final part of the thesis explores the issue of

feature selection in the context of a model belonging to this family. Our work is

centered on a case study of two real-life credit databases.

We study a feature selection method based on the jackknife principle, which

was introduced to the literature over 15 years ago specifically in the context of the

construction of discriminants by linear programming. We suggest and test some

improvements to this method, and conclude that they are useful, at least for the

case of our datasets.

We also propose a reinterpretation of this method as implicitly dealing with a

bicriterion problem, and show that consideration of only one of the two criteria

in question dramatically reduces the classification performance. Our interpreta-

tion suggests alternative formulations, and a potential for wider application of the

underlying ideas.

A number of avenues for further research can be derived from the work reported

in this thesis. Some salient examples are:

• Improving the performance of the VNS implementation, e.g., by adapting

alternative local descent modules, more suitable for problems in relatively

higher dimensions;

• Applying the heuristic bounds and solutions to the acceleration of exact so-

lution of the misclassification minimization problem; and,

• Exploring alternative approaches to the implicit bicriterion challenge in the

jackknife approach to feature selection



APPENDIX: DATA SET DETAILS

This appendix describes the databases used in chapters 1, 2 and 3. We considered

the instances from the UCI Machine Learning Repository [DNM98] which either

have only two classes or could be readily converted into a binary classification

problem. We then retained those with very few or no categorical variables.

Cancer refers to the Wisconsin Breast Cancer database. Rows with missing

attributes were deleted.

Pima refers to the Pima Indians Diabetes database.

For the Echocardiogram problem, all instances with missing labels were deleted,

and missing attributes were replaced by the corresponding class means.

For the Glass database the two classes considered were window versus non-

window sources.

Housing refers to the Boston Housing database.

In the Hepatitis database, all observations with more than 6 missing attributes

were deleted, as were columns 16 and 18, which had too many missing entries.

Missing observations were then replaced with column means (if continuous) or

modes. Column 3 trivially separates the set, and was also removed.

Musicant’s NDC generator [Mus98] is a matlab program. It locates randomly a

given number of centers, assigns them to one of two classes by splitting the set with

a randomly generated plane, and then produces multivariate normal observations

from these centers, using a randomly generated covariance matrix. This approach

provides some more generality than one might have with other common practices.

Note, however, that even within the class of normally distributed problems, some

reasonable, interesting configurations (such as having a small cluster centered on

the “wrong” side of the plane) are not spanned by NDC. These limitations are

inevitable in any exercise with artificial data, and we feel that replicability is facil-

itated with the use of a publicly available generator. The number of centers was

made to be equal to the dimension of the problem and the dispersion parameter

nExpandFactor was fixed at 15.

The Sym2k and Sym6d series, used for larger L∞-norm instances, were con-

structed by fixing arbitrary centers, assigning one half of the points to each of

them (Sym stands for symmetric) and generating independent columns from a

normal distribution for each of them. The first center was fixed at the origin and

the second one was set along the ray defined by a vector of ones of the appropriate
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dimension, at a distance adjusted as to keep the L1-norm full set fit at about 89%.

This criterion to approximate and control the difficulty of the problem was used

because of the relative ease of obtaining the exact L1-norm solution.

Unless otherwise noted, all databases were linearly standardized to the range

[0, 1].

The UCI files are available at:

http://www.hec.ca/pages/alejandro.karam/data

The NDC and SYM files are rather large, but are available upon request to

alejandro.karam@hec.ca.
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hood search for the maximum clique. Discrete Applied Mathematics,

145(1):117–125, 2004.



87

[Hua98] Zhexue Huang. Extensions to the k-means algorithm for clustering

large data sets with categorical values. Data Mining and Knowledge

Discovery, 2(3):283–304, 1998.

[HV03a] D. J. Hand and V. Vinciotti. Choosing k for two-class nearest neigh-

bour classifiers with unbalanced classes. Pattern Recognition Letters,

24(9-10):1555–1562, 2003. JUN.

[HV03b] D. J. Hand and V. Vinciotti. Scorecard construction with unbalanced

class sizes. Journal of the Iranian Statistical Society, 2(2):189 – 205,

2003.

[ILO03] ILOG, S.A. ILOG CPLEX Callable Library 9.0 Reference Manual,

2003.

[JKP94] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the

subset selection problem. In International Conference on Machine

Learning, pages 121–129, 1994.

[Joa94] D. N. Joanes. Reject inference applied to logistic regression for credit

scoring. Journal of Mathematics Applied in Business & Industry, 5:35–

43, 1994.

[JS90] E. A. Joachimsthaler and A. Stam. Mathematical programming

approaches for the classification problem in two-group discriminant

analysis. Multivariate Behavioral Research, 25(4):427–454, 1990.

[KE90] G. J. Koehler and S. S. Erenguc. Minimizing misclassifications in

linear discriminant analys. Decision Sciences, 21(1):63, 1990.

[Ken61] M.G. Kendall. A Course in the Geometry of n Dimensions. Charles

Griffin, London, 1961.

[KJ97] R. Kohavi and G. H. John. Wrappers for feature subset selection.

Artificial Intelligence, 97(1-2):273–324, 1997.

[Koe89a] G. J. Koehler. Characterization of unacceptable solutions in lp dis-

crimination. Decision Sciences, 20(2):239, 1989.

[Koe89b] G. J. Koehler. Unacceptable solutions and the hybrid discriminant

model. Decision Sciences, 20(4):844, 1989.



88

[Koe90] G. J. Koehler. Considerations for mathematical programming mod-

els in discriminant analysis. Managerial and Decision Economics,

11(4):227–234, 1990.

[Koe91] G. J. Koehler. Improper linear discriminant classifiers. European

Journal of Operational Research, 50(2):188–198, 1991.

[KR76] R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Pref-

erences and value tradeoffs. J. Wiley, New York, 1976.

[KS04] Y. S. Kim and S. Y. Sohn. Managing loan customers using misclassi-

fication patterns of credit scoring model. Expert Systems with Appli-

cations, 26(4):567–573, 2004. MAY.

[LCM96] K. F. Lam, E. U. Choo, and J. W. Moy. Minimizing deviations from

the group mean: A new linear programming approach for the two-

group classification problem. European Journal of Operational Re-

search, 88(2):358–367, 1996.

[Liu02] Y. Liu. A framework of data mining application process for credit

scoring. Technical report 01/2002, Institut für Wirtschaftsinformatik,

Universität Göttingen, 2002.

[LO90] C. K. Lee and J. K. Ord. Discriminant analysis using least absolute

deviations. Decision Sciences, 21(1):86, 1990.

[LS05] Y. Liu and M. Schumann. Data mining feature selection for credit

scoring. Journal of the Operational Research Society, S(advance online

publication):1–10, 2005.

[LW78] J. M. Liittschwager and C. Wang. Integer programming solution of a

classification problem. Management Science (pre-1986), 24(14):1515–

1525, 1978.

[Man65] O.L. Mangasarian. Linear and nonlinear separation of patterns by

linear programming. Operations Research, 13:444–452, 1965.

[Man97] O.L. Mangasarian. Mathematical programming in data mining. Data

Mining and Knowledge Discovery, 1(2):183–201, 1997.



89

[Man99] O.L. Mangasarian. Arbitrary-norm separating plane. Operations Re-

search Letters, 24(1–2):15–23, 1999.

[Mel97] E. Melachrinoudis. An analytical solution to the minimum Lp-norm

of a hyperplane. Journal of Mathematical Analysis and Applications,

211:172–179, 1997.
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