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Today’s Talk

• The problem:
– Linear discrimination criteria
– Misclassification minimization

• Our approach:
– Decomposition
– VNS

• Numerical Results
– Benchmarks
– Acceleration of exact solution
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Linear Discrimination
Two sets of points, A (o) and B (+), in Euclidean space Rn

Criteria to minimize on training set

• (minus) Likelihoods
– Logit

– Probit

• Ratio of variances:
– Fisher’s LDA

• Deviations from central score:
– Quadratic

– Absolute
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Criteria to minimize on training set

• Distance to plane of misclassified 

points:

–L1 Manhattan

–L2 Euclidean

–L� Max

–Lp other arbitrary p
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• Distance to plane of misclassified 

points:

–L1 Manhattan

–L2 Euclidean

–L� Max

–Lp other arbitrary p

Criteria to minimize on training set

2n linear programs

non convex quadratic

MIP with n binary variables

heuristic
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Criteria to minimize on training set

– Sometimes referred to as the L0-norm

– Several exact and heuristic approaches in 
the literature 
• Many exact solutions proposed are 

problematic 

– Liittschwager & Wang (1978)
• Perhaps the first correct formulation

Number of misclassified points

Linear Discrimination
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Misclassification minimization

– MIP with at least k binary variables
• k is the number of points!

• (Decomposition and other tricks aside)

– NP-Complete

– Interesting heuristics in the literature
• Not all scale up gracefully

Exact solution is difficult

Today’s Talk

• The problem:
– Linear discrimination criteria
– Misclassification minimization

• Our approach:
– Decomposition
– VNS

• Numerical Results
– Benchmarks
– Acceleration of exact solution
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Solution approach

FIX A 
DIRECTION

FIND 
OPTIMAL 
POSITION

SEARCH 
SPACE OF 

DIRECTIONS
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Solution Approach
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The 
decomposition:
• fix a direction
• project points 
into ray
• find best 
position for 
plane
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Solution approach

FIX A 
DIRECTION

FIND 
OPTIMAL 
POSITION

SEARCH 
SPACE OF 

DIRECTIONS
VNS

Variable Neighborhood Search

Key ideas:
– Exploit valuable information in local minima

– Random perturbations increasingly “far” from 
incumbent solution

problem dependent

Ingredients:
– Local descent method

– Distance and 
neighborhoods on solution 
space
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Variable Neighborhood Search

Implementation:

– Local descent 
method

– Distance and 
neighborhoods on 
solution space

Downhill simplex method 
of (Nelder and Mead 1965)

Difference of embedded 
in space of angles

Today’s Talk

• The problem:
– Linear discrimination criteria
– Misclassification minimization

• Our approach:
– Decomposition
– VNS

• Numerical Results
– Benchmarks
– Acceleration of exact solution
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Numerical results:
it’s fast …

86,158

Numerical results:
scales up gracefully …

VNScount: artificial sets on 6 dimensions
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Numerical results:
it’s not always accurate!

full set accuracy
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Numerical results:
but really not that bad … 
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Numerical results:
… and it generalizes well 
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Numerical results:
acceleration of exact solution 

savings in CPU tim e
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Conclusions

• Fast alternative to exact L0 solution

• Good generalization properties

• Seems competitive with alternative 
linear discriminants

• Scales well to large number of 
observations

• It might be worth a try!


