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Abstract

Does medical technology developed in countries close to the technology frontier have a signif-
icant impact on health and income in countries distant from this frontier? This paper considers
a framework where lagging countries benefit from imports of embodied medical technology or
from the flow of ideas resulting from research and development done by countries at the frontier.
Using a cross-section of 73 importing countries, we show that medical technology diffusion is
an important contributor to improved health measured by life expectancy, male mortality and
infant mortality rates.
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1 Introduction

Is medical technology diffusion from countries performing Research and Development (R&D) im-

portant for health and income outcomes in non-R&D performing economies? A large body of

literature has studied the diffusion of technology embodied in capital goods (and used by the man-

ufacturing sector) from advanced R&D performing economies to the rest of the world. No study

has considered the diffusion of medical technology across the world. This should stand as a sur-

prise because the pharmaceutical industry is the single most R&D-intensive industry; no less so

than capital goods production.1 In this paper, we propose that similar to capital goods used in

manufacturing, medical goods such us pharmaceuticals or medical equipment used in the medical

sector, embody R&D induced technology. Moreover, R&D in the pharmaceutical industry is highly

concentrated in a small group of ten countries which are also the main exporters of these goods.

In sum, it is reasonable to expect an affirmative answer to the question posed at the beginning of

this paragraph, namely that advances in medical technology occur in a small group of developed

economies and diffuse to the rest of the world either embodied in medical exports or “disembodied”

in the form of flow of ideas.

Spending on R&D has been shown to boost productivity and economic growth not only in the

economies of countries carrying out the R&D but also in foreign economies benefitting from inter-

national R&D spillovers. There is a lengthy literature documenting the importance of international

R&D spillovers focusing exclusively on capital goods (see, e.g. Coe and Helpman (1995), Coe et al.

(1997), Keller (2002), and Savvides and Zachariadis (2003.) No one study, however, focuses on po-

tential welfare-enhancing benefits of medical R&D in technologically-advanced countries, in terms

of health and productivity in less advanced countries. We aim to fill this gap by exploring how

medically-related imports, including pharmaceuticals (e.g. vaccines and antibiotics) and medical

equipment (e.g. surgical instruments) from countries with advanced medical technologies impact

the health status in countries distant from the technology frontier.

Bourguignon and Morrisson (2002, p. 741) report that “Unlike income, world inequality in life

expectancy fell considerably after 1930, as improvement in world mean life expectancy accelerated.”

Fogel (1994, p. 388) points to a potential explanation for the acceleration of life expectancy

improvements when he points to “... the huge social investments made between 1870 and 1930,

1Lichtenberg and Virabhak (2002) also emphasize that pharmaceuticals are more R&D intensive than capital
equipment imports.
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whose payoffs were not counted as part of national income during the 1920’s and 1930’s even

though they produced a large stream of benefits during these decades” and adds that he “refer[s], of

course, to the social investment in biomedical research.” In this paper, we argue that R&D-induced

advances in medical technology in frontier countries systematically diffuse across the world and

are thus partly responsible for the considerable drop in world life expectancy inequality observed

during the twentieth century. Specifically, we examine the relation between medical R&D in ten

technologically advanced countries and health and economic outcomes in the rest of the world.

These countries benefit from foreign medical R&D even in the absence of domestic medical R&D

and the extent of these beneficial effects should depend, among other things, on medical imports.

In fact, if, similar to Caselli and Wilson (2002) and as shown by Eaton and Kortum (2001) in the

case of capital equipment, we consider that production of goods embodying medical technology is

concentrated in a small number of R&D-intensive countries while the rest of the world typically

imports these goods, then these imports can sufficiently capture the impact on the overall health

level in these countries. Alternatively, R&D carried out in advanced economies may have direct

spillover effects in terms of generating knowledge and ideas that can be used (in the case of capital

goods) by producers other than those carrying out the R&D. These producers may be located

within the borders of the country or across the border. This direct effect should be particularly

important in the case of providers of medical services, say physicians, who are likely to improve

their practice by utilizing ideas developed in frontier countries.

Our main hypothesis relates to the work of Kremer (2002, page 67) who argues about the

importance of modern medical technologies in allowing “tremendous improvements in health even

at low income levels.”2 Here, we will empirically assess this supposition by studying the role of

technology diffusion in determining health status, controlling for income levels and a variety of

health inputs. Our baseline model links health outcomes to medical technology flows embodied in

imports or directly via ideas. In our empirical analysis, we augment our baseline model to test the

robustness of the relationship between medical technology flows and health outcomes. For example,

it is well known that the richer an individual the greater the health inputs a person can afford and

healthier individuals are more productive. Therefore we would expect health status and the level

of per capita income to be closely interconnected (indeed the correlation coefficient between per

2Kremer (2002, page 67) offers a convincing example supportive of the technology diffusion story, regarding life
expectancy in Vietnam ”of 69 years despite a per capita income that according to official statistics is less than
one-tenth that of the United States in 1900, which had a 47-year life expectancy.”
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capita income and life expectancy in our data is 0.77). Our empirical strategy takes account of

this interconnection, first, by including income per capita as a determinant of life expectancy and,

second, by including a variety of health inputs through which income per capita might indirectly

affect life expectancy. Thus, we consider calorie intake per person, the number of physicians per

thousand persons, female illiteracy rates, and access to an improved water source. In addition

to these, we attempt to control for geographic and climatic conditions by including a measure of

proximity to the tropics. This measure is closely related to the exogenous rate of disease arrival in

the theoretical model described in the next section.

The remainder of the paper is organized as follows. Section 2 describes a simple theoretical

model that links medical imports and endogenous life expectancy and serves to motivate our em-

pirical analysis. Section 3 discusses our novel dataset on medical imports and takes a first look at

the correlations between medical imports and alternative indicators of health. Section 4 presents

our empirical analysis and reports our main results. Section 5 concludes.

2 A simple model of endogenous health

In this section we provide a theoretical justification for our main hypothesis relating medical imports

to health and income. We construct a simple model in which the medical imports-health relationship

emerges as an equilibrium outcome from optimal decisions by a representative agent. The novel

feature of the model is that health is determined endogenously, whereas in most existing models it

is exogenously given. We consider this unsatisfactory because the consumption of medical products

has substantially contributed to increased longevity (see e.g. Easterly 1996, Lichtenberg 2002), and

this consumption is the agents’ decision.

Figure 1 summarizes our hypothesis regarding medical technology diffusion. R&D in advanced

countries creates medical technology which then diffuses to other countries and impacts health

status in two ways: either embodied in medical exports to those countries or through the direct

transfer of knowledge and ideas. R&D expenditure in advanced countries’ pharmaceutical and

other health-related industries serve to enhance the technology content of specific medical products

which can then imported by less advanced countries. These products improve the health status

of the workforce, as documented by Shaw, Horrace, and Vogel (2002) for developed economies.

Alternatively, medical R&D in advanced countries diffuses via the flow of ideas to less advanced
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Figure 1: Illustration of baseline theoretical relationship

Medical R&D in
Frontier Countries

Health Technology
Embodied in Medical 

Exports

Health/Income Status in 
Importing Countries

economies and translating in improved health of the recipients’ population.

In what follows, we present a model of health-products consumption and endogenous life ex-

pectancy. To keep the model as simple as possible, we assume no domestic production of medical

products or domestic medical R&D. Domestic agents take the frontier level of medical technology

as given, and choose between medical products that will enhance their life expectancy (and their

future utility) and consumption goods that enhance their utility instantaneously. This trade-off

between health and consumption goods (and therefore future vs. present consumption) is the main

innovation of the model.

2.1 Economic environment

The economy is populated by a constant number of identical agents. A representative agent has

a finite life expectancy with probability qt of being alive at period t. The probability of survival

is endogenous and depends on individual consumption decisions of health products. Formally we

assume that

qt+1 = B
Mt[
j=1

hγjt(1 + gv)
−t, 0 < q < 1, A > 0, γ ∈ (0, 1),
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where B is an exogenous parameter (reflecting e.g. genes, habits, geography), Mt is the number

of health products at period t, hjt is the amount of health product j at period t, γ is the share of

medical product j in total health consumption and gv is the exogenous arrival of new illnesses and

virus mutations that reduce the probability of survival. When an agent dies, she is immediately

replaced by a new born that inherits all assets (at) accumulated by the deceased. For simplicity,

we assume that the size of the population is constant over time and we normalize it to unity.

2.2 Household problem

Using a recursive structure the household problem can be stated as follows:

V (at) = max
{ct}∞t=0

∞[
t=0

ρt

 t\
j=1

qj

u(ct) = max{ct}
{u(ct) + ρqt+1V (at+1)} (1)

s.t. : wt + rtat = ct +
Mt[
j=1

pjthjt + (at+1 − at)

qt+1 = γ1

Mt[
j=0

hγ2jt (1 + gv)
−t

where {at, wt,Mt, pjt}∞t=0 are given.

V is a value function, c is per capita consumption, ρ is the discount factor, w is wage, r is rent,

and pjt is the price of health product j at time t.

Optimality implies the following first-order conditions:

u�(ct) = ρqt+1(1 + rt+1)u
�(ct+1) (2)

∂qt+1
∂hjt

V (at+1) =
ρBγhγ−1jt

(1 + gv)t
V (at+1) = pjt u

�(ct). (3)

Using equations (1) and (3) yields the Euler equation

(1 + rt+1)

qt+1
q
(j)
t+1

 = 1

pjt

�
u(ct+1)

u�(ct)

�
+
pjt+1
pjt

qt+1
q
(j)
t+2

 , (4)

where q
(j)
t+1 is the first derivative of qt+1 with respect to hjt−1. Notice that the only difference

between Euler equation (4) and the standard neoclassical Euler equation is the appearance of the

probability of survival (q). Put differently, if we set q = 1 (the assumption made in the neoclassical

model) then equation (4) is reduced to the standard Euler equation.
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2.3 Consumption good production medical R&D

In our model, the only good that provides utility to consumers is manufactured with a Cobb-Douglas

intensive production technology (given that Lt = 1)

yt = k
α
t A

1−α
t ,

where y is output per capita, k is capital per capita, A is a labor-augmenting productivity parameter

that grows exogenously at rate gA, and α is the capital share. Assuming a competivive market it

is straight forward to show that wages and rents are given respectively by

wt = (1− α)yt

rt = α
yt
kt
− δ.

Since we are only interested in the experiences of those countries that import medical goods, we

do not model medical R&D production that takes place in a few industrialized countries.3

2.4 Characterization of the aggregate economy

We are now ready to study the aggregate economy that is characterized by the following system of

seven equations (S1-S7):

u�(ct) = ρqt+1(1 + rt+1)u
�(ct+1) (S1)

∂qt+1
∂hjt

V (at+1) =
ρBγhγ−1jt

(1 + gv)t
V qt+1; at = kt (S2)

qt+1 = B
Mt[
j=1

hγjt(1 + gv)
−t (S3)

Yt = kαt A
1−α
t (S4)

it = kt+1 − kt(1− δ) (S5)

yt = ct + it +Mtht; (S6)

wt = (1− α)yt; rt = α
yt
kt
− δ, (S7)

where δ is capital depreciation rate. Equations (S1)-(S2) are the two first-order conditions obtained

from the household optimization problem. Equation (S3) is the survival probability equation, (S4)

3Modeling medical R&D production can be done by allowing a law of motion for health products (Mj). Even
though interesting it is beyond the scope of this paper and is left for future research.
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is the aggregate production function and (S5) is the law of motion of capital. Equation (S6) is the

expenditure equation where, in addition to consumption and physical capital, agents spend part of

their income on medical products (Mtht). Finally, equation (S7) shows input prices determined by

competitive conditions.

2.5 Steady-state

Assuming a standard constant-rate-of-risk-aversion utility function, u(ct) = c
1−σ
t /(1−σ), the model

yields the Euler equation for consumption goods as

(1 + gA) = [ρq
∗(1 + r∗)]1/σ ,

and the Euler equation for health products as

c∗t
M∗
t

=
1− σ

γ2

�
r∗ − gA
1 + gA

�
h∗,

where σ is the inverse of the intertemporal elasticity of substitution, ∗ denotes the steady state,

and − denotes a constant value. The probability of survival can then be derived as

q∗ =
BM∗ (h∗)γ

1 + gv
. (5)

Equation (5) shows that in the steady state, the probability of survival, q, is positively related

to the consumption of imported medical products, Mhγ (the product of the variety times the

amount of medical products scaled by the parameter γ2). In addition, the probability of survival is

shown to be negatively related to the rate of virus growth rate which is consistent with evidence.

Equation (5) establishes the relationship between medical imports and health status and motivates

the empirical investigation of the next section.4

3 Data description

In this section, we describe the data set we have assembled to test our main hypotheses. Subse-

quently, we take a first look at the relationship between imports and health with simple scatter

plots. We focus on three different measures of health status: life expectancy, male mortality and

infant mortality.

4An appendix that shows the algebraic derivation of the all equations in the model is available from the authors
upon request.
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We employ three main sources of data. First, the OECD International Trade by Commodity

database (ITCS) contains medical-related exports (in thousand current $US) from each of Belgium,

France, Germany, Italy, Japan, the Netherlands, Sweden, Switzerland, the U.K., and the U.S. from

1961 to 2001. Initially, we consider the sum of the following pharmaceutical, medical, and health-

related categories of imports from SITC Revision 2.

Table 1: Categories of imported medical products used in estimation

Medical & Pharmaceutical Products Electric Apparatus for Medical Purposes
Medical Instruments & Appliances Optical Goods
Insecticides, Hyg. & Pharm. Articles of Rubber Laboratory, Hyg. & Pharm. Glassware
Medical, Dental, Surg. or Vet. Furniture Orthopaedic Appl., Surg. Belts & the like

Notes: Medical and Pharmaceutical Products include, among other things, the following categories:
Antibiotics, Antisera and Microbial Vaccines, and Medicaments Containing Antibiotics and Derivatives
Thereof. For more information on medical product categories see the Appendix.

We also consider separately the sum of two categories as a measure of medical capital and

equipment: Electric Apparatus for Medical Purposes and Medical Instruments & Appliances. We

use Manufacturing sector and Chemicals industry price deflators from the 1998 OECD Intersectoral

Database (ISDB 1998) to deflate imports in current dollars into constant 1990 $US. We construct a

measure of real medical imports per capita by deflating imports in current dollars by the appropriate

price deflator and by dividing by total population in thousands.5

Second, we use the ANBERD 2001 database for pharmaceutical R&D in eight technologically

advanced countries (France, Germany, Italy, Japan, the Netherlands, Sweden, U.K., and U.S.)

from 1973 to 1997. Specifically, we use the R&D expenditures in current PPP dollars series for the

SIC Revision 2 category “Drugs and Medicines”.6 We deflate this using Chemicals industry price

deflators from the 1998 OECD ISDB database. The implied R&D stock for each importing country

is constructed by multiplying R&D in constant US dollars of each source country by the value share

of exports of that source country over the total of medical exports by all major pharmaceutical

exporters we have R&D data for. These include eight of the ten source countries, with the exception

5We use the price deflator of the Chemicals industry for pharmaceuticals and the Manufacturing sector price
deflator for other types of medical imports.

6R&D spending on other medical products is only available at an aggregate level that includes a broad set of non-
medical categories such us Electric Machinery excluding Communications Equipment, and Professional Goods, which
would be rather imperfect matches for R&D on Electric apparatus for medical purposes and for Medical instruments
and appliances respectively.
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of Belgium and Switzerland for which we have no R&D data. That is,

PHARD =
8[
c=1

PHAEXc
8S
c=1

PHAEXc

× CRDc,

where PHAEXc is pharmaceuticals exports in current $US by source country c, and CRDc is

pharmaceuticals R&D expenditures in constant $US by that source country.7

Third, we use a number of health output and health input data from the World Development

Indicators (WDI) 2002 database. These include life expectancy at birth, infant mortality per

thousand live births, male mortality per thousand male adults, and physicians per thousand people.

We also obtained total population, and GDP per capita in PPP dollars from the same database.

In addition to this we use calorie intake data from the Food and Agriculture Organization (FAO)

database. We also obtained data on Latitude for each of the countries in our sample. We were able

to put together all the above series for 83 countries, including the ten frontier source countries,

for the period 1961 to 1995. The great majority of these series, including life expectancy, infant

mortality, male mortality, calorie intake, and physicians are not available annually.

The scatter plots of the relationship between medical imports and health are in Figure 2.

The first panel shows a positive correlation between medical imports and life expectancy (the

correlation coefficient is 0.71). The correlation between imports and health is robust to the choice

of health indicator: the other two panels show scatter plots between medical imports and male

mortality/infant mortality rates (the correlation coefficients are -0.73 and -0.79, respectively). In

the next section we examine systematically the health-medical imports relationship.

4 Empirical Results

4.1 Preliminary Evidence

Our main goal is to explore the relation between medical imports embodying foreign R&D-induced

technology and health status. We begin with the cross-sectional relationship between medical

imports and health during our sample period (1961-1995). We measure health status by three

indicators: average life expectancy at birth (LIFE), infant mortality (INFANT) and male mortality

7This R&D measure which is similar to the one used in the technology diffusion literature, has little cross-sectional
variation by construction. It only varies across different importing countries to the degree that one country imports
more from a more R&D intensive source country (say from the US) rather than a less R&D intensive country (say
Italy.)
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Figure 2: Scatter plots between measures of health and medical imports

Notes: The correlation between medical imports and life expectancy, male mortality and infant
mortality are, 0.71, -0.73 and -0.79, respectively.
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(MALE) rates per 1000 persons. In Table 1 we report unconditional correlations for a cross-section

of 73 countries.8 All variables are in natural logs.

Health status has a strong relation with per capita pharmaceutical imports (PHAIM) in Table 1:

the correlation between PHAIM and the three health indicators is 0.65, -0.74 and -0.68, respectively.

We also consider a more general measure of medical-related imports (MEDIM) that includes, in

addition to pharmaceuticals, imports of medical equipment and other broadly defined medical

imports. The respective correlations with life expectancy, infant mortality, and male mortality

are now stronger: 0.71, -0.79, and -0.73. Finally, we consider a measure of imports of medical

capital and equipment (MCAPIM) by summing SITC categories 774 (electric apparatus for medical

purposes) and 872 (medical instruments and appliances). The correlation between MCAPIM and

life expectancy, infant mortality, and male mortality rates are even higher: 0.83, -0.88 , and -0.83.

One might argue that, to a large extent, the high correlations between imports and health

outcomes are due to the positive effect of per capita income on both variables. For example, the

correlation of GDP per capita with LIFE is 0.77 and with MEDIM is 0.81. In the next section, we

control for this by including the exogenous component of per capita income and we also include

a number of health inputs through which income affects health outcomes. Table 4.1 shows that

health inputs, such as calorie intake per person (CAL), the number of physicians per thousand

people (PHYSI), and access to an improved water source (WATER) are also strongly correlated

with life expectancy (correlation coefficients of 0.79, 0.90, 0.79 respectively). We also consider the

rate of female illiteracy (percentage of females aged 15 to 24 that are illiterate or ILLIT); this is

strongly correlated with life expectancy (-0.82). Moreover, proximity to the tropics (TROP) has

a negative correlation with life expectancy (-0.49). In the empirical model we include all these

variables as potential determinants of life expectancy.

Our main hypothesis is that medical imports embody foreign health technologies developed

through R&D in the advanced countries. To investigate this we relate pharmaceutical and other

medical imports (MEDIM, MCAPIM and PHAIM) to health advancements in importing countries.

A complementary hypothesis is that health technologies developed in advanced economies diffuse

to the rest of the world in the form of ideas, not necessarily embodied in physical imports. One

8We exclude the ten countries (Belgium, France, Germany, Italy, Japan, Netherlands, United Kingdom, United
States, Switzerland and Sweden) with a substantial domestic pharmaceutical sector (effectively, the top ten pharam-
ceutical exporting nations) in order to focus on health status in countries that depend on imports of foreign medical
technology.
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can think of medical methods and practices that, once developed in advanced economies, filter to

the rest of the world. In order to evaluate this, for each importing country we construct a measure

of medical R&D stock as the import-weighted sum of foreign (source-country) R&D expenditures

(PHARD).9 The implicit assumption is that a non-R&D performing country’s stock of health

knowledge or technology is implied by the health technology stock of the countries it trades with

(in the form of medical imports); consequently greater trade intensity with countries that perform

large amounts of medical R&D will increase a country’s health technology stock. Table 1 shows that

PHARD is also correlated with health outcomes but less so than the physical imports measures:

the correlation between PHARD and life expectancy is 0.31.

4.2 Baseline Cross-Section Estimation Results

In this section we present our baseline cross-sectional results. In subsequent sections, we examine

the robustness of these results to subsamples that are obtained by using the Hansen (2000) en-

dogenous splitting methodology. In addition to splitting our whole sample, we also examine the

robustness of our baseline results to considering panel estimation and therefore adding the time

dimension to our analysis.

The correlations in Table 2 provide only suggestive evidence regarding the relationship between

pharmaceutical and other medical imports and health status. In this section we control for a variety

of determinants of health status in order to test systematically the link between imports of health

technology (embodied either in medical imports or flowing across borders via ideas) and health

status. For example, as mentioned previously, the positive correlation between medical imports

and health outcomes could be due to the positive effect of per capita income on both variables.

Consequently, in the regression model we control for initial income per capita and also include a

number of health inputs through which income affects health outcomes. In order to control for

per capita income, we include the exogenous component of income per person as a determinant of

health status. This is because of the endogeneity between income and health status. We obtain

the exogenous component of income as that part of income explained in a regression of income

per capita on social infrastructure (GADP). Social infrastructure is the measure assumed by Hall

and Jones (1999) to be the main determinant of per capita income across a wide cross section of

economies. GADP is an index of government anti-diversion policies and measures the role of the

9The exact definition of PHARD was given in the previous section
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Table 2: Unconditional cross-sectional correlations across 68 countries

MEDIM MCAPIM PHAIM PHARD TROP CAL PHYSI ILLIT WATER LIFE IN

MEDIM 1
MCAPIM 0.95 1
PHAIM 0.99 0.92 1
PHARD -0.03 0.11 -0.08 1
TROP -0.46 -0.51 -0.42 0.02 1
CAL 0.78 0.85 0.74 -0.03 -0.55 1
PHYSI 0.71 0.83 0.65 0.31 -0.59 0.82 1
ILLIT -0.53 -0.70 -0.47 -0.43 0.28 -0.67 -0.71 1
WATER 0.68 0.77 0.64 0.17 -0.48 0.73 0.78 -0.56 1
LIFE 0.71 0.83 0.65 0.31 -0.49 0.79 0.90 -0.82 0.79 1
INFANT -0.79 -0.88 -0.74 -0.10 0.49 -0.85 -0.81 0.89 -0.73 -0.89
MALE -0.73 -0.83 -0.68 -0.22 0.56 -0.81 -0.89 0.73 -0.73 -0.94
INC 0.81 0.86 0.77 0.17 -0.53 0.77 0.80 -0.59 0.69 0.77

Notes: All variables are in natural logarithms. Complete data is available for 68 countries. MEDIM is aggregate medical imports in con
defined in the data section of the paper , MCAPIM is imports of medical machinery and equimpment in constant $US per person, P
imports in constant $US per person (category 54 of the OECD ITCS data described as Medicinal and pharmaceutical products,) PH
specific pharmaceutical -industry 3522- R&D in millions of constant dollars implied by R&D of source country multiplied by import sha
in total medical imports from 8 source counries for which R&D data are available, TROP is tropical proximity defined as the inverse
latitude, CAL is total calories per person, PHYSI is number of physicians per thousand people, ILLIT is Illiteracy rate as a percenta
24, WATER is percentage of population with access to Improved water source, LIFE is life expectancy, INFANT is infant mortality,
and INC is GDP per capita in constant $US in 1961.
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government in preventing rent-seeking and other non-wealth creating activities as well as the role of

government as a possible diverter of private wealth. We believe that GADP determines per capita

income but is itself not determined by health status, or equivalently, it is exogenous to health.

GADP enters positively and significantly as a determinant of per capita income (with an estimated

coefficient of 2.88 and t-statistic = 8.12) and explains 46 percent of the overall variation.

Our main measure of health is life expectancy; this is the measure used by most studies on health

in developing economies.10 Initially, our main indicator of medical technology imports is MEDIM.

All variables are considered in natural logs so our estimates can be interpreted as health elasticities.

We report elasticities from the baseline specification in the first panel of Table 3. In addition to the

baseline specification, we look at two alternative measures of medical imports: medical capital and

equipment (MCAPIM) in the second panel of Table 3 and pharmaceutical imports alone (PHAIM)

in the third panel of Table 3. In Tables 4 and 5 we consider two alternative measures of health

outcomes, male mortality and infant mortality, respectively.

The estimates reported in the first panel of Table 3 support the existence of an embodied

medical technology link via imports of medical products in the first place. Also we find evidence

for a disembodied flow of medical technology via the direct flow of ideas in the second instance.

The estimate of MEDIM is positive and significant in all specifications11 and so is that of PHARD

in models 2 and 5. The elasticity of life expectancy with respect to medical imports ranges from a

high of 0.056 to a low of 0.012 across the various specifications in the table. We conclude that an

increase in medical imports by 10 percent results in an increase in life expectancy by between 0.12

and 0.56 percent. While these elasticities may seem low we note that a 10 percent increase in per

capita income is associated with an increase in life expectancy of 0.4 to 1.4 percent. The elasticity

of medical imports is consistently about one third that of per capita income. Our results indicate

that a 10 percent increase in income per capita will have an equivalent impact on life expectancy

as a 30 percent increase in medical imports. While the former increase may be difficult to envisage,

at least in the short run, the second increase is not beyond the bounds of policy even in the short

term.

The elasticity of life expectancy with respect to pharmaceutical R&D ranges from a high of 0.16

10It should be noted that the correlation between the three indicators of health status is large. While we focus on
life expectancy, we will also discuss the implications of medical imports on the other two indicators of health status
and highlight possible differences between the three measures.
11The exception is Model (5) where the estimate of medical imports is marginally insignificant (p-value = 0.134).
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Table 3: Cross-country life expectancy regressions
Specif. 1 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

MEDIM .0558∗
(3.68)

.0537∗
(3.92)

.0499∗
(3.91)

.0288∗∗
(2.05)

.01231
(1.59)

.0158∗∗
(1.99)

.0144∗∗∗
(1.88)

INC .1362∗
(3.97)

.1463∗
(4.28)

.1351∗
(4.31)

.0825∗
(2.51)

.0671∗
(3.08)

.0367
(1.35)

.0318
(1.18)

PHARD – .1602∗
(5.53)

.1597∗
(5.67)

.1596∗
(6.01)

.0615∗
(2.55)

.0347
(1.05)

.0330
(1.02)

TROP – – −.0214∗∗
(−2.07)

−.0076
(−0.93)

.0133∗∗∗
(1.92)

.0069
(1.05)

.0073
(1.11)

CAL – – – .4727∗
(4.14)

.1057
(1.07)

.0246
(0.24)

.0208
(0.20)

PHYSI – – – – .0867∗
(6.74)

.0659∗
(4.06)

.0634∗
(3.78)

ILLIT – – – – – −.0369∗
(−2.95)

−.0374∗
(−3.01)

WATER – – – – – – .0172
(0.64)

Adj. R2 58.8 70.5 71.5 76.4 83.9 86.2 86.0
Obs. 72 72 72 70 70 59 59

Specif. 2 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

MCAPIM .0814∗
(5.99)

.0682∗
(5.38)

.0643
(5.16)

∗ .0419∗
(2.67)

.0169∗∗∗
(1.72)

.0200∗∗
(2.07)

.0191∗∗
(1.96)

INC .0621∗∗∗
(1.86)

.0937∗
(2.74)

.0894∗
(2.80)

.0630∗∗∗
(1.79)

.0604∗
(2.75)

.0355
(1.35)

.0342
(1.29)

PHARD – .1237∗
(4.65)

.1261∗
(4.78)

.1393∗
(5.05)

.0556∗∗
(2.34)

.0282
(0.91)

.0279
(0.91)

TROP – – −.01592
(−1.61)

−.0048
(−0.60)

.0139∗∗
(2.03)

.0082
(1.23)

.0084
(1.25)

CAL – – – .3968∗
(3.28)

.0873
(0.85)

−.0004
(−0.004)

−.0012
(−0.01)

PHYSI – – – – .0848∗
(6.65)

.0659∗
(4.11)

.0652∗
(3.89)

ILLIT – – – – – −.0349∗
(−2.74)

−.0352∗
(−2.75)

WATER – – – – – – .0068
(0.26)

Adj. R2 68.9 75.2 75.5 78.2 84.7 86.8 86.6
Obs. 73 73 73 71 71 60 60

Specif. 3 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

PHAIM .0433∗
(2.79)

.0463∗
(3.23)

.0431∗
(3.21)

.0235∗∗∗
(1.68)

.0100
(1.41)

3 .0135∗∗∗
(1.80)

.0127∗∗∗
(1.74)

INC .1695∗
(4.75)

.1674∗
(4.87)

.1546∗
(4.89)

.0940∗
(2.89)

.0714∗
(3.36)

.0457∗∗∗
(1.68)

.0430∗∗∗
(1.58)

PHARD – .1748∗
(6.28)

.1741∗
(6.39)

.1694∗
(6.59)

.0636∗
(2.62)

.0399
(1.19)

.0390
(1.19)

TROP – – −.0224∗∗
(−2.06)

−.0078
(−0.95)

.0136∗∗∗
(1.96)

.0077
(1.15)

.0079
(1.20)

CAL – – – .4879∗
(4.29)

.1039
(1.05)

.0201
(0.19)

.0171
(0.16)

PHYSI – – – – .0884∗
(7.00)

.0683∗
(4.23)

.0668∗
(4.01)

ILLIT – – – – – −.0361∗
(−2.89)

−.0364∗
(−2.91)

WATER – – – – – – .0108
(0.41)

Adj. R2 56.7 70.5 71.5 76.9 84.6 86.8 86.5
Obs. 73 73 73 71 71 60 60

Notes: * p-value <0.01, ** p-value<0.05, *** p value<0.10, 1p-value = 0.118, 2p-value = 0.11, 3p-value = 0.165.

Heteroskedasticity-consistent standard errors are used in constructing t-statistics.
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for models (2) and (3) to a (statistically insignificant) low of 0.03 in model (7). We note that this

elasticity is robust across models (2)-(4) but is more than halved once we account for the number

of physicians in model (5). Greater availability of physicians is one of the main means through

which the ideas channel operates and the number of physicians captures in part this channel. This

may account for the reduction in the value of the estimate of PHARD in models (5) to (7).

As mentioned, per capita income has a positive impact on health outcomes in Table 3. Never-

theless, once we control for calories intake and physicians in model (5), the magnitude of income’s

impact on life expectancy falls by half; this suggests that income affects life expectancy largely

via its impact on food consumption and medical care. When we also account for female illiteracy,

then the estimated coefficient for the impact of income is reduced to 0.037, less than one third of

its original value, and becomes statistically insignificant. Per capita income is probably the most

commonly suggested explanation for differences in health status across countries: as we saw in

Table 2 and in models (1)-(3) in panel A of Table 3, initial per capita income levels are indeed

highly correlated with life expectancy. We suggest that this strong relation can be explained in

large part once we account for the level of health inputs, such us calorie intake, physicians, and

education, through which income affects life expectancy.

Proximity to the tropics (TROP) is introduced in model (3) to control for the exogenous rate

of disease arrival: it has a negative effect on life expectancy and an estimated elasticity of -0.02.

In models (4) and (5) we introduce two other health inputs: food consumption and medical care

availability. We measure these by calorie intake (CAL) and the number of physicians per thousand

people (PHYSI). As expected, both have a strong positive impact on life expectancy. The elasticity

of calorie intake is the largest among all explanatory variables (0.473 in model 4); the estimate of

calorie intake decreases and becomes insignificant once we account for physicians, illiteracy, and

access to improved waters source in models (5) to (7). The elasticity with respect to physicians in

model (5) is 0.087 and decreases to 0.063, but remains strongly significant, even after we control

for female illiteracy and safe water access in model (7).

In model (6), illiteracy of young women has a significant impact on life expectancy with an

estimated elasticity of -0.037. One of the most oft-cited propositions in the development literature

is the link between female literacy and health. We find strong evidence to support this proposition.

We note that when we include ILLIT the sample is reduced by eleven observations. We note that

the estimated elasticity of life expectancy with respect to imports is higher (and is now statistically
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Table 4: Cross-country male mortality regressions
Specif. 1 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

MEDIM −.1376∗
(−4.49)

−.1343
(−4.63)

∗ −.1173∗
(−5.19)

−.0644∗∗
(−2.33)

−.0351
(−1.41)

1 −.04022
(−1.44)

−.04533
(−1.65)

INC −.2665∗
(−3.68)

−.2869∗
(−3.84)

−.2475∗
(−3.88)

−.0957
(−1.31)

−.0735
(−1.14)

−.0593
(−0.69)

−.0761
(−0.87)

PHARD – −.2649∗
(−3.75)

−.2703∗
(−4.03)

−.2592
(−4.01)

∗ −.0624
(−0.96)

−.0014
(−0.01)

−.0071
(−0.07)

TROP – – .0981∗
(3.71)

.0632∗
(2.98)

.0199
(1.11)

.0266
(1.25)

.0276
(1.27)

CAL – – – −1.192∗
(−4.67)

−.3912
(−1.43)

−.2322
(−0.77)

−.2488
(−0.81)

PHYSI – – – – −.1741∗
(−5.03)

−.1545∗
(−3.19)

−.1639∗
(−3.34)

ILLIT – – – – – .0515
(1.31)

.0498
(1.27)

WATER – – – – – – .0649
(0.85)

Adj. R2 58.3 64.6 69.7 74.7 80.7 75.9 75.6
Obs. 70 70 70 68 68 57 57

Specif. 2 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

MCAPIM −.1890∗
(−6.85)

−.1719∗
(−6.25)

−.1514∗
(−6.92)

−.1002∗
(−3.25)

−.0556∗∗
(−1.98)

−.0621∗∗∗
(−1.93)

−.0732∗∗
(−2.29)

INC −.1025
(−1.53)

.1459∗∗
(−2.08)

−.1317∗∗
(−2.23)

−.0417
(−0.58)

−.0407
(−0.65)

−.0344
(−0.44)

−.0481
(−0.63)

PHARD – −.1634∗
(−2.59)

−.1815∗
(−3.02)

−.2031∗
(−3.24)

−.0402
(−0.65)

.0249
(0.27)

.0236
(0.25)

TROP – – .0853∗
(3.64)

.0581∗
(2.94)

.0204
(1.19)

.0268
(1.28)

.0284
(1.34)

CAL – – – −.9807∗
(−3.63)

−.3402
(−1.24)

−.1617
(−0.55)

−.1746
(−0.59)

PHYSI – – – – −.1626∗
(−4.82)

−.1457∗
(−3.04)

−.1555∗
(−3.24)

ILLIT – – – – – .0472
(1.19)

.0445
(1.13)

WATER – – – – – – .0845
(1.28)

Adj. R2 68.4 70.4 74.0 76.7 81.6 77.1 77.1
Obs. 71 71 71 69 69 58 58

Specif. 3 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

PHAIM −.1149∗
(−3.92)

−.1201∗
(−4.32)

−.1051∗
(−4.86)

−.0569∗∗
(−2.27)

−.03384
(−1.57)

−.03945
(−1.64)

−.0441∗∗∗
(−1.91)

INC −.3249∗
(−4.66)

−.3255∗
(−4.66)

−.2802∗
(−4.73)

−.1108
(−1.61)

−.0753
(−1.24)

−.0640
(−0.79)

−.0785
(−0.98)

PHARD – −.2923∗
(−4.39)

−.2958∗
(−4.65)

−.2745∗
(−4.49)

−.0672
(−1.05)

−.0083
(−0.09)

−.0132
(−0.13)

TROP – – .1005∗
(3.67)

.0647∗
(3.02)

.0212
(1.19)

.0278
(1.32)

.0291
(1.35)

CAL – – – −1.213∗
(−4.78)

−.3954
(−1.47)

−.2299
(−0.77)

−.2511
(−0.83)

PHYSI – – – – −.1738∗
(−5.27)

−.1544∗
(−3.36)

−.1636∗
(−3.50)

ILLIT – – – – – .0515
(1.33)

.0501
(1.30)

WATER – – – – – – .0657
(0.88)

Adj. R2 56.8 64.7 69.9 75.2 81.3 76.8 76.6
Obs. 71 71 71 69 69 58 58

Notes: * p-value <0.01, ** p-value<0.05, *** p value<0.10, 1p-value = 0.164, 2p-value = 0.157, 3p-value = 0.105,
4p-value = 0.122, 5p-value = 0.107. Heteroskedasticity-consistent standard errors are used in constructing t-statistics.
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significant) compared to the estimated coefficient in Model (5). Interestingly, a comparison of the

correlation between imports and health status for this smaller sample shows that the unconditional

correlations are lower in the smaller sample of model (6).12 This suggests that the higher estimates

for the impact of imports on health status in model (6) are not due to sample specificity, but rather

due to the inclusion of a previously omitted but important determinant of health status. Model

(6) explains about 86 percent of the cross-sectional variation in life expectancy when accounting

for medical technology spillovers in the form of medical imports and pharmaceutical R&D, geog-

raphy and climate in the form of tropical proximity, income per capita, and health inputs such as

calorie intake and physician availability, and the fraction of young females without a basic level of

education.

Adding access to an improved water source (WATER) in model (7) does not improve the fit of

our regression nor does it have a big effect on our estimated coefficients for the impact of medical

technology on life expectancy. Moreover, WATER is not estimated to be a significant determinant

of health when we control for a variety of other health inputs. However, when we include WATER

in a specification with only medical imports and income on the right-hand-side, then the estimated

coefficient forWATER (not reported in the Tables) is 0.189 and strongly significant beyond the one

percent level of significance. In fact, when we do not include total calories, physicians, illiteracy

rates, and distance to tropics, WATER always enters as a strong and significant determinant of

health outcomes (life expectancy, infant mortality, or male mortality rates) along with medical

imports and income. This suggests that WATER is highly collinear with other health inputs13

such us calorie intake and physicians so that it loses its significance when these are included in the

specification.

The results are similar when, in the second panel of Table 3, we consider imports of medical

capital and equipment (MCAMIM) rather than aggregate medical imports. It is interesting to note

thatMCAPIM has an even stronger positive (and statistically significant) impact on life expectancy

than MEDIM, with elasticity estimates ranging from a high of 0.081 to a low of 0.017. Moreover,

the direct impact of pharmaceutical R&D on life expectancy remains positive and significant,

12Specifically, the correlations of MEDIM, MEDCAPIM, and PHAIM with life expectancy are 0.65, 0.81 and 0.58
for the smaller sample compared to 0.71, 0.83 and 0.65 for the larger sample. Similarly with male mortality they
are -0.64, -0.79 and -0.59 for the smaller sample compared to -0.73, -0.83, -0.68, respectively, for the larger sample.
Finally, the correlations with infant mortality are -0.66, -0.80 and -0.59 for the smaller sample compared to -0.79,
-0.88, and -0.74, for the larger sample.
13Indeed, the correlation of WATER with CAL and PHYSICIANS is 73 and 78 percent respectively.
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Table 5: Cross-country infant mortality regressions
Specif. 1 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

MEDIM −.2176∗
(−5.69)

−.2134∗
(−5.99)

−.2135∗
(−5.82)

−.1665∗
(−3.51)

−.1331∗
(−3.52)

−.0846∗∗
(−2.43)

−.0826∗∗
(−2.28)

INC −.8511∗
(−9.32)

−.8705∗
(−9.17)

−.8708∗
(−9.36)

−.7814∗
(−5.85)

−.7502∗
(−6.39)

−.1838∗∗∗
(−1.68)

−.1765
(−1.57)

PHARD – −.3092∗
(−3.17)

−.3092∗
(−3.15)

−.3109∗
(−3.22)

−.1119
(−0.97)

.0145
(0.12)

.0170
(0.14)

TROP – – −.0006
(−0.01)

−.0236
(−0.52)

−.0659
(−1.31)

−.0476
(−1.45)

−.0482
(−1.48)

CAL – – – −.9012
(−1.51)

−.1567
(−.25)

−.0048
(−0.01)

.0009
(0.001)

PHYSI – – – – −.1759∗
(−2.78)

−.0851
(−1.30)

−.0814
(−1.24)

ILLIT – – – – – .2645∗
(6.05)

.2653∗
(6.06)

WATER – – – – – – −.0259
(−.29)

Adj. R2 80.0 82.2 81.9 82.1 83.6 84.4 84.1
Obs. 72 72 72 70 70 59 59

Specif. 2 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

MCAPIM −.2704∗
(−7.99)

−.2535∗
(−7.36)

−.2579∗
(−6.98)

−.2214∗
(−3.82)

−.1779∗
(−3.48)

−.1008∗∗
(−2.38)

−.1009∗
(−2.11)

INC −.6487∗
(−7.25)

−.6893∗
(−7.48)

−.6943∗
(−7.58)

−.6615∗
(−5.34)

−.6569∗
(−5.89)

−.1527
(−1.49)

−.1528
(−1.47)

PHARD – −.1589∗∗∗
(−1.73)

−.1562∗∗∗
(−1.68)

−.1783∗∗∗
(−1.82)

−.0324
(−0.27)

.0660
(0.55)

.0659
(0.55)

TROP – – −.0182
(−0.46)

−.0327
(−0.74)

−.0652
(−1.34)

−.0508
(−1.55)

−.0508
(−1.57)

CAL – – – −.5883
(−0.94)

−.0489
(−0.07)

.0899
(0.18)

.0898
(0.17)

PHYSI – – – – −.1478
(−2.41)

∗∗ −.0827
(−1.28)

−.0827
(−1.27)

ILLIT – – – – – .2597∗
(5.83)

.2597∗
(5.85)

WATER – – – – – – .0004
(0.005)

Adj. R2 83.8 84.2 84.0 83.4 84.3 84.8 84.5
Obs. 73 73 73 71 71 60 60

Specif. 3 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

PHAIM −.1819∗
(−4.49)

−.1879∗
(−5.04)

−.1872∗
(−4.89)

−.1417∗
(−3.09)

−.1139∗
(−3.30)

−.0704∗∗
(−2.19)

−.0689∗∗
(−2.06)

INC −.9404∗
(−9.89)

−.9361∗
(−9.68)

−.9330∗
(−9.91)

−.8137∗
(−6.07)

−.7672∗
(−6.61)

−.2049∗∗∗
(−1.92)

−.2000∗∗∗
(−1.86)

PHARD – −.3509∗
(−3.70)

−.3508∗
(−3.69)

−.3402∗
(−3.63)

−.1231
(−1.06)

.0039
(0.03)

.0057
(0.05)

TROP – – .0054
(0.12)

−.0178
(−0.39)

−.0616
(−1.24)

−.0478
(−1.47)

−.0483
(−1.49)

CAL – – – −0.9895∗∗∗
(−1.67)

−.2015
(−0.32)

−.0104
(−0.02)

−.0052
(−0.01)

PHYSI – – – – −.1814∗
(−2.88)

−.0934
(−1.44)

−.0907
(−1.39)

ILLIT – – – – – .2648∗
(6.15)

.2652∗
(6.16)

WATER – – – – – – −.0192
(−0.22)

Adj. R2 79.0 81.8 81.6 82.2 83.8 84.7 84.4
Obs. 73 73 73 71 71 60 60

Notes: * p-value <0.01, ** p-value<0.05, *** p value<0.10. Heteroskedasticity-consistent standard errors are used in

constructing t-statistics.
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but is now smaller than the specification with MEDIM, ranging from a high of 0.126 to a low

(and statistically insignificant) estimate of 0.028. If imports of medical capital and equipment

embody foreign R&D induced medical technologies to a greater degree than some of the other

import categories included in the more aggregate measure, this should then reduce the potential of

spuriously attributing embodied R&D spillovers to direct flows of ideas as measured by the R&D

stock variable (PHARD).

Finally, the results are similar but somewhat weaker for the embodied technological spillovers

hypothesis when, in the third panel of Table 3, we utilize pharmaceutical imports alone (PHAIM).

Elasticities of life expectancy with respect to pharmaceutical imports range from a high of 0.046 to a

low of 0.01 (marginally statistically insignificant p-value = 0.165). At the same time, pharmaceutical

R&D now plays a more important role with elasticities ranging from a high of 0.175 to a (statistically

insignificant) low of 0.039.

We explore the relation between foreign medical technology and health outcomes further in

Tables 4 and 5, where instead of life expectancy we measure health by male mortality rates and

infant mortality rates, respectively. Compared to the estimates for life expectancy, the results

for male mortality rates and infant mortality rates present both similarities and some interesting

differences.

Model (2) of Table 4 shows that the elasticity of male mortality with respect to medical im-

ports is about twice that of the life expectancy elasticity. The estimate of this elasticity becomes

(marginally) insignificant once we control for the number of physicians or female illiteracy. The

estimated elasticity of male mortality rates with respect to pharmaceutical R&D is also about

twice as high as that for life expectancy. Once again, the estimated impact diminishes and is no

longer statistically significant once we account for physicians or the illiteracy rate. As mentioned

previously, the number of physicians also captures in part the flow of ideas and thus acts to reduce

the estimated impact of our other measure of this channel. Proximity to the tropics increases male

mortality rates in model 3, but this effect is no longer significant when we allow for the number of

physicians or for female illiteracy. Calorie intake per person has a strong negative impact on male

mortality rates with an elasticity of -1.192 in model (4); it is more than twice as large as for life

expectancy.14 The elasticity of male mortality rates with respect to physicians, is relatively high:

-0.17 in model (5) and -0.15 in model (6.) The (absolute) values of these elasticities are more than

14Once more, it is not significant once we control for physicians or illiteracy.
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two times greater than the elasticity of life expectancy. Illiteracy of young women has no statisti-

cally significant effect on male mortality. We conjecture that the main impact of female illiteracy on

health is through infant mortality (as will be discussed presently). Finally, the estimated elasticity

of male mortality with respect to income per person ranges from -0.287 in model (2) to -0.059 and

statistically insignificant in model (6).

In Table 5, we report estimates for the impact of medical technology and other health inputs on

infant mortality rates. In model (2) the (absolute) value of the elasticity of infant mortality rates

with respect to medical imports is about four times the life expectancy elasticity and about two

times the male mortality elasticity. Infant mortality (absolute) elasticities range from a maximum

of -0.218 to a minimum -0.085. The estimated elasticity of infant mortality rates with respect to

pharmaceutical R&D is -0.31 in models (2) to (4), but becomes insignificant once we introduce the

number of physicians in model (5). Proximity to the tropics does not seem to have any impact on

infant mortality rates, and neither does Calories per person. The elasticity of infant mortality rates

with respect to physicians is -0.17. As argued before, illiteracy among young women has a (strong)

significant effect on infant mortality rates: in model (6), a 10 percent increase in female illiteracy

is associated with a 2.7 percent increase in infant mortality. Increases in per capita income have

the greatest impact on infant mortality: the estimated elasticity of infant mortality with respect to

per capita income is several times higher than that for life expectancy or male mortality. We also

note that whereas per capita income is significant in all models, about 75 percent of its impact goes

away as soon as we control for female illiteracy rates, suggesting that the latter largely accounts

for the impact of income on infant mortality rates.

4.3 Robustness Analysis

We start our sensitivity analyses of the results by considering first the robustness of our results to

different subsamples of countries. Subsequently, we expand our cross-sectional estimation to panel

estimation taking advantage of the time dimension in the data.

4.3.1 Endogenous Subsample Splitting

Unlike numerous other studies that trivially split the data into subsamples, here we follow Hansen

(2000) to search for endogenously determined subsamples in the data. Hansen (2000) develops

a statistical theory of threshold estimation in the linear regression context that allows for cross-
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section observations. Least squares estimation is considered, and an asymptotic distribution theory

for the regression estimates is developed. The main advantage of Hansen’s methodology over the

regression-tree model (i.e. Durlauf and Johnson (1995)) is that it is based on an asymptotic

distribution theory that can formally test the statistical significance of regimes selected by the

data.15

We choose Model 5 of the cross-sectional analysis as our baseline regression equation. The

reason for selecting Model 5 out of the seven models considered above is twofold: First, it allows

for a large number of observations and regressors. Second, it is generally the model with the least

pronounced effect of medical imports — our key explanatory variable — on health as measured by life

expectancy (see Table 1). In particular, we search for endogenously determined subsamples in the

data by using our three proxies for imported medical technology (MEDIM, MCAPIM, PHAIM) as

potential threshold variables. The entire exercise involves nine variations of Model 5 (three panels,

in each of Tables 3-5) using as threshold variable the one used as a regressor in the particular

regression considered (for example if we consider Model 5 in the top panel of Table 3, we also use

MEDIM as our potential threshold variable). To save space and since the results are qualitatively

similar for the three dependent variables proxing for health (life expectancy, male mortality and

infant mortality), in what follows we present results using only life expectancy as the depended

variables (as in the three panels of Table 3).16 That is we consider three variations of Model 5, with

life expectancy as the dependent variable, in which MEDIM, MCAPIM, PHAIM are the regressors

(and potential threshold variables), respectively. We have also applied this threshold methodology

using Model 6 and results are reported in Figure A1 and Table A2.

Since Hansen’s statistical theory allows for one threshold for each threshold variable, we proceed

using the heteroskedasticity-consistent Lagrange Multiplier test for a threshold developed by Hansen

(1996). First, we consider Model 5 with MEDIM as the regressor and potential threshold variable.

It is shown that the threshold model using MEDIM is significant with p-value of 0.06, indicating

that there exists a sample split based on medical imports. The top panel in Figure 3 presents the

normalized likelihood ratio sequence LR∗n(γ) statistic as a function of the output threshold. The

least-squares estimate γ is the value that minimizes the function LR∗n(γ) which occurs at γ̂ = 1.79.

The asymptotic 95% critical value (7.35) is shown by the dotted line and where it crosses LR∗n(γ)
15For a detailed discussion of the statistical theory for threshold estimation in linear regressions, see Hansen (2000)

and more recently Canner and Hansen (2004).
16The rest of the results using Model 5 are available from the authors upon request.
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Figure 3: Likelihood ratio statistics as a function of threshold variables
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Table 6: Regression trees obtained using thresohold estimation

70

27

# of 
countries

Threshold: MEDIM

Split1.79

# of
countries

Terminal Node Non terminal Node

Threshold: MCAPIM Threshold: PHAIM

43

71

41

Split
MCAPIM

-0.72

30

71

27

Split
PHAIM

1.42

44

MEDIM

<=1.79

>1.79

<=-0.72

>-0.72

<= 1.42

>1.42

displays the confidence set [0.24, 2.31]. TheMEDIM threshold variable divides our full sample of 70

countries into a low-literacy group (below 1.79) with 43 countries and a high-literacy group (above

1.79.) with 27 countries.

Second, we consider MCAPIM as a threshold variable. We find that the threshold model

using MCAPIM is highly significant with p-value of 0.002, pointing to strong evidence of a split

based on medical capital imports. The middle panel in Figure 3 panel B presents the normalized

likelihood ratio statistic as a function of theMCAPIM. The point estimate for the literacy threshold

is γ̂ = −0.72 with the 95% confidence interval [−0.84,−0.36]. The MCAPIM variable splits the

entire sample of 71 countries into two subsamples; the low importing sample (below −0.72) with
30 countries, and the high importing sample (above −0.72) with 41 countries.

Finally, PHAIM is considered as a threshold variable. The bootstrap test statistic for this

variable is also significant with p-value of 0.039. In particular, γ̂ = 1.42 with the 95% confidence

interval [1.08, 1.95] and the entire sample of 71 countries can be split into two subsamples with 44

countries (above 1.42) and 27 countries (below 1.42). The bottom panel in Figure 3 presents the

normalized likelihood ratio statistic as a function of the PHAIM.
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Table 7: List of countries in subsamples

Thresh.: MEDIM Thresh.: MCAPIM Thresh.: PHAIM
Sub. 1

(Low Imp.)
Sub. 2

(High Imp.)
Sub. 1

(Low Imp.)
Sub. 2

(High Imp.)
Sub. 1

(Low Imp.)
Sub. 2

(High Imp.)

Angola Angola Algeria Angola Algeria
Argentina Australia Bangladesh Argentina Argentina Australia
Bangladesh Austria Bolivia Australia Bangladesh Austria
Bolivia Canada Cameroon Austria Bolivia Cameroon
Brazil Costa Rica China Brazil Brazil Canada
Cameroon Cote D’Ivoire Cote D’Ivoire Canada Chile Costa Rica
Chile Cyprus Ethiopia Chile China Cote D’Ivoire
China Denmark Ghana Colombia Colombia Cyprus
Colombia Ecuador Haiti Costa Rica Egypt Denmark
Egypt Finland India Cyprus El Salvador Ecuador
El Salvador Greece Indonesia Denmark Ethiopia Finland
Ethiopia Iceland Kenya Ecuador Ghana Greece
Ghana Iran Madagascar Egypt Guatemala Iceland
Guatemala Ireland Malawi El Salvador Haiti Iran
Haiti Israel Mali Finland Honduras Ireland
Honduras Jamaica Mozambique Greece India Israel
India Jordan Myanmar Guatemala Indonesia Jamaica
Indonesia Korea Nigeria Honduras Kenya Jordan
Kenya Mauritius Pakistan Iceland Korea Mauritius
Madagascar New Zealand Philippines Iran Madagascar New Zealand
Malawi Norway Rwanda Ireland Malawi Norway
Malaysia Panama Senegal Israel Malaysia Panama
Mexico Portugal Sierra Leone Jamaica Mali Portugal
Morocco Spain Sri Lanka Jordan Mexico Spain
Mozambique Tunisia Sudan Korea Morocco Tunisia
Myanmar Uruguay Tanzania Malaysia Mozambique Uruguay
Nigeria Venezuela Uganda Mauritius Myanmar Venezuela
Pakistan Zaire Mexico Nigeria
Paraguay Zambia Morocco Pakistan
Peru Zimbabwe New Zealand Paraguay
Philippines Norway Peru
Rwanda Panama Philippines
Senegal Paraguay Rwanda
Sierra Leone Peru Senegal
Sri Lanka Portugal Sierra Leone
Sudan Spain Sri Lanka
Tanzania Thailand Sudan
Thailand Tunisia Tanzania
Turkey Turkey Thailand
Uganda Uruguay Turkey
Zaire Venezuela Uganda
Zambia Zaire
Zimbabwe Zambia

Zimbabwe

(43) (27) (30) (41) (44) (27)
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Table 8: Subsample regressions

Specif. Thresh.: MEDIM Thresh.: MCAPIM Thresh.: PHAIM
Sub. 1

(Low Imp.)
Sub. 2

(High Imp.)
Sub. 1

(Low Imp.)
Sub. 2

(High Imp.)
Sub. 1

(Low Imp.)
Sub. 2

(High Imp.)

IMPORTS −.0024
(−.21)

.0187∗∗∗
(1.82)

−.0087
(−.50)

.0458∗
(3.15)

−.0072
(−.68)

.01241
(1.42)

INC .1101∗
(3.34)

.0228
(1.07)

.0853∗
(2.43)

.0399∗∗
(2.05)

.0998∗
(3.27)

.0241
(1.09)

PHARD .1568∗
(3.27)

.05261∗∗∗
(2.02)

.2224∗
(3.31)

.0150
(.73)

.1587∗
(3.42)

.0616∗∗
(2.21)

TROP .0169∗∗
(1.98)

−.02869∗∗∗
(−1.91)

.0188∗∗
(2.14)

.0141
(.99)

.0179∗∗
(2.11)

−.0325∗∗
(−2.22)

CAL .2719∗∗
(2.27)

−.1425
(−1.18)

.4384∗∗
(2.13)

.0505
(.60)

.2778∗∗
(2.48)

−.1194
(−1.06)

PHYSI .0505∗∗
(2.57)

.0920∗
(6.87)

.0545∗∗
(2.75)

.0333∗∗∗
(1.87)

.0518∗
(2.80)

.0943∗
(8.35)

Adj. R2 70.9 86.5 53.7 76.2 73.4 90.6
Obs. 43 27 30 41 44 27

Notes: Life expectancy is the dependent variable. * p-value <0.01, ** p-value<0.05, *** p value<0.10,
1p-value = 0.170. Heteroskedasticity-consistent standarderrors are used in constructing t-statistics.

Figure 3 presents regression tree diagrams that illustrate our threshold estimation results ob-

tained under the three regressions using MEDIM, MCAPIM, PHAIM respectively. Non-terminal

nodes are illustrated by squares whereas terminal nodes are illustrated by circles. The numbers

inside the squares and circles show the number of countries in each node. The point estimates

for each threshold variable are presented on the rays connecting the nodes. Table 6 presents the

countries in the three pairs of subsamples, respective to the three models. These results suggest

that regardless of medical import proxy there is evidence of a split in the data.

4.3.2 Subsample regression results

Next, we turn attention to estimation of the regression coefficients of the three variations of Model

5 for the two identified regimes. Table 8 presents these coefficient estimates.

Notice that estimates for virtually all regressors considered vary extensively in magnitude and

significance in each pair of subsamples for each of the three variations of Model 5. More importantly,

the subsample estimates reveal that the effect of medical imports on life expectancy (see estimates

in row 3 of Table 8) is particularly pronounced in the subsample with high medical imports (Sub-

sample 2), whereas in the subsamples with low medical imports (Subsample 1) the relationship is

insignificant. In the model using MEDIM as a threshold variable (see rows 2-3 of Table 4), it is
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shown that the coefficient estimates for MEDIM is −0.002 and insignificant in Subsample 1, and
0.019 and significant at the 10% level in Subsample 2. Similarly, in the model using MCAPIM as

a threshold variable (rows 4-5 of Table 8), it is shown that the coefficient estimates for MCAPIM

is −0.009 and insignificant in Subsample 1, and 0.046 and significant at the 1% level in Subsample

2. Finally, in the model using PHAIM as a threshold (rows 6-7 of Table 8) it is shown that the

relevant variable coefficient estimates are −0.007 and insignificant in Subsample 1, whereas 0.012
but significant only at the 17% level.

In summary, these results reveal a new important insight in the relationship between medical

imports and health; namely that only countries over a threshold of medical imports can reap of

the benefits of existing medical technologies in terms of improved health. Subsequently, this result

is of particular interest to policy makers concerned with this issue and it is worth their careful

consideration

4.3.3 Panel Estimation

[This model needs more work in explaining the results] In addition to checking the ro-

bustness of our baseline results to alternative subsamples, we try to explore the time dimension of

our data using panel estimation. In particular, we divide our sample period into four subperiods

corresponding to 1961-1969, 1970-1979, 1980-1989 and 1990-1995. The unconditional correlations

for the panel are for the most part strikingly similar to the cross-sectional correlations in Table

1. For example, the correlations between medical imports and our three measures of health status

are 0.66 (life expectancy), -0.76 (infant mortality), and -0.69 (male mortality), compared to the

respective correlations of 0.71, -0.79, and -0.73 in the cross-section. The same goes for the correla-

tions between our three measures of health status and each of our other two measures of imports.

A notable exception relates to the correlations between health status and pharmaceutical R&D:

they are much higher than for the cross section.17 We report the unconditional panel correlations

below and undertake a more careful examination of the relationship between health status with our

measures of technological diffusion and other health inputs next.

Table 9 report estimates of the relationship between medical technology diffusion (and other

health inputs) and health status measured by life expectancy, male mortality rates, and infant

17The panel correlations are 0.52, -0.50, and -0.45 for life expectancy, infant mortality, and male mortality respec-
tively, compared to 0.31, -0.10, and -0.22 in the cross-section.
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Table 9: Panel regressions

.

LIFE/MEDIM LIFE/MCAPIM LIFE/PHAIM

Specif. Model 1 Model 4 Model 7 Model 1 Model 4 Model 7 Model 1 Model 4 Model 7

IMP. .0494∗
(6.67)

.0221∗
(2.57)

.0123∗∗
(2.39)

.0703∗
(10.22)

.0336∗
(3.92)

.0148∗∗
(2.12)

.0411∗
(5.66)

.0188∗∗
(2.23)

.0127∗
(2.70)

INC .1308∗
(8.05)

.0886∗
(5.17)

.0255∗∗
(2.07)

.0784∗
(5.10)

.0704∗
(3.84)

.0225∗∗∗
(1.87)

.1444∗
(9.01)

.0908∗
(5.43)

.0252∗∗
(2.07)

PHARD – .1535∗
(10.11)

.0607∗
(3.52)

– .1351∗
(9.16)

.0527∗
(3.14)

– .1584∗
(10.20)

.0645∗
(3.74)

CAL – .4180∗
(7.34)

.1313∗
(2.60)

– .3584∗
(6.29)

.1199∗∗
(2.33)

– .4287∗
(7.58)

.1318∗
(2.64)

PHYSI – – .0441∗
(4.88)

– – .0435∗
(4.64)

– – .0437∗
(4.89)

ILLIT – – −.0316∗
(−4.79)

– – −.0308∗
(−4.57)

– – −.0316∗
(−4.85)

WATER – – .0139
(.99)

– – .0127
(0.89)

– – .0131
(0.94)

Adj. R2 59.4 74.8 84.2 67.2 75.9 84.2 57.3 74.4 84.3
Obs. 283 209 153 283 209 153 285 210 154

MALE/MEDIM MALE/MCAPIM MALE/PHAIM

Specif. Model 1 Model 4 Model 7 Model 1 Model 4 Model 7 Model 1 Model 4 Model 7

IMP. −.1299∗
(−7.47)

−.0549∗∗
(−2.31)

−.0227
(−1.06)

−.1692∗
(−10.73)

−.0829∗
(−3.39)

−.03141
(−1.27)

−.1119∗
(−6.34)

−.0469∗∗
(−2.04)

−.0234
(−1.19)

INC −.2696∗
(−6.95)

−.2003∗∗
(−4.66)

−.0881∗∗
(−2.06)

−.1576∗
(−4.30)

−.1556∗
(−3.34)

−.0809∗∗∗
(−1.92)

−.3004∗
(−7.81)

−.2042∗
(−4.96)

−.0822∗∗
(−1.97)

PHARD – −.2962∗
(−7.39)

−.0465
(−0.69)

– −.2497∗
(−6.17)

−.0309
(−0.49)

– −.3078∗∗
(−7.65)

−.0529
(−0.78)

CAL – −1.016∗
(−6.47)

−.2837
(−1.55)

– −.8668∗
(−5.45)

−.2555
(−1.37)

– −1.047∗
(−6.63)

−.2802
(−1.54)

PHYSI – – −.1612∗
(−5.90)

– – −.1588∗
(−5.78)

– – −.1610∗
(−5.95)

ILLIT – – .0336
(1.53)

– – .0315
(1.40)

– – .0343
(1.57)

WATER – – −.0439
(−1.06)

– – −.0397
(−0.97)

– – .0529
(−0.78)

Adj. R2 59.7 71.9 74.8 66.9 73.2 76.4 57.5 71.6 74.8
Obs. 267 199 144 267 199 144 269 200 145

INFANT/MEDIM INFANT/MCAPIM INFANT/PHAIM

Specif. Model 1 Model 4 Model 7 Model 1 Model 4 Model 7 Model 1 Model 4 Model 7

IMP. −.2746∗
(−9.83)

−.2139∗
(−5.75)

−.1238∗
(−5.29)

−.3301∗
(−14.05)

−.2745∗
(−7.23)

−.1369∗
(−4.43)

−.2405∗
(−8.49)

−.1859∗
(−4.93)

−.1131∗
(−5.33)

INC −.6639∗
(−10.75)

−.5971∗
(−6.89)

−.0893
(−1.57)

−.4794∗
(−8.20)

−.4736∗
(−5.52)

−.0613
(−1.12)

−.7258∗
(−11.73)

−.6272∗
(−7.24)

−.0993∗∗∗
(−1.77)

PHARD – −.3371∗
(−5.03)

−.0719
(−0.96)

– −.1876∗
(−2.82)

.0081
(0.11)

– −.3806∗
(−5.51)

−.0937
(−1.25)

CAL – −1.064∗
(−3.39)

−.2784
(−1.09)

– −.7387∗∗
(−2.26)

−.1876
(−0.71)

– −1.156∗
(−3.71)

−.3084
(−1.23)

PHYSI – – −.0372
(−1.05)

– – −.0355
(−0.96)

– – −.0385
(−1.10)

ILLIT – – .2918∗
(11.68)

– – .2863∗
(11.45)

– – .2929∗
(11.79)

WATER – – .0132
(0.27)

– – .0193
(0.39)

– – .0078
(0.17)

Adj. R2 77.6 80.7 85.2 81.8 82.2 84.8 75.8 79.9 85.2
Obs. 285 210 154 285 210 154 287 211 155

Notes: * p-value <0.01, ** p-value<0.05, *** p value<0.10, 1p-value = 0.208. Heteroskedasticity-consistent standard errors are used
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mortality rates respectively. The table includes three panels: one for each of three measures of

health output. We consider all health inputs utilized in our cross-sectional analysis, with the

exception of tropical proximity since that measure is inherently cross-sectional.18 In all models,

we control for income per capita using the exogenous component of income as discussed in the

previous section. We also control for the presence of global exogenous shocks specific to each

decade by introducing time-specific dummy variables. AA look at the baseline model in the first

column of Table 9 reveals that the estimated coefficients are very close to those for the cross section.

The results in Models 1, 4 and 7 of Table 6 support the embodied medical technology diffusion

hypothesis with the estimated coefficients usually quite close to those in the cross section. Model

7 is less supportive of the embodied medical technology diffusion hypothesis when we consider

male mortality rates, with coefficients being positive but insignificant at conventional levels of

significance. On the other hand, pharmaceutical R&D enters positively for Model 4 providing

additional support for the disembodied technological diffusion hypothesis. Additional health inputs

such as calorie intake, physician availability, and female illiteracy are always significant determinants

of life expectancy as is income per capita. The estimates in Table 9 for the impact of medical

technology and other health inputs on male mortality rates tell a similar story as for life expectancy.

Finally, the estimates for the impact of medical technology on infant mortality rates in Table 9

are much more supportive of the embodied technology diffusion hypothesis with the estimated

coefficients for the impact of medical imports statistically significant for all four models and all

three panels.

5 Conclusion

While a great deal has been written about the beneficial effects of international R&D spillovers

from capital goods for both developed and developing economies, there has been no research to

uncover any benefits from spillovers of medical technology. Our main hypothesis is that medical

technologies resulting from R&D in advanced economies operating close to the medical frontier

benefit, not only the countries originating these technologies, but also other nations, in terms of

enhanced health status and productivity. The extent of these benefits is captured by direct imports

of goods embodying these technologies or in terms of ideas flowing from the originators of R&D to

18Including it leaves other estimated coefficients virtually unchanged, while TROP itself is usually insignificant.
Moreover, the adjusted R2 for the specifications with TROP included is usually lower.
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the rest of the world. The extent of these benefits depends on the amount of medical goods imported

by each recipient nation, in the first instance, and by the size of medical R&D expenditures in the

source countries a recipient country trades more intensively with, in the second instance.

In this paper we present a simple endogenous model of medical technology imports where

individuals can influence their probability of survival by the amount of spending on imported

medical goods. We test this model for a cross section of 73 economies that rely on imports of

foreign medical technology. In our main regression model we introduce a number of additional

health inputs to ascertain the importance of medical imports independent of these inputs. Our

main message is that imports of medical goods are a significant determinant of health status in

non-R&D performing economies. We also find strong evidence for the hypothesis that R&D diffuses

from the originator nations to recipients in the form of ideas and that this diffusion is related to

the intensity of trade between the recipient and each of the nations that perform medical R&D. As

demands for more resources directed at controlling communicable diseases in developing economies

are being voiced, our evidence points to the beneficial effect that efforts directed at increasing

medical imports will have on health outcomes in developing economies.
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Appendix

Table A1: Mean Values of Data from the 73 Country Sample

Country Code Life Male Infant Med. Med.Cap. Pharm.
Exp. Mort. Mort. Imp. Imp. Imp.

Algeria DZA 4.064 5.541 4.648 2.509 0.290 2.318
Angola AGO 3.691 6.316 5.086 1.151 -1.099 0.918
Argentina ARG 4.231 5.325 3.679 1.729 0.358 1.221
Australia AUS 4.301 5.158 2.569 3.468 2.186 2.862
Austria AUT 4.285 5.249 2.876 4.383 2.767 3.898
Bangladesh BGD 3.871 6.069 4.793 -0.857 -3.130 -1.200
Bolivia BOL 3.930 5.971 4.819 0.879 -0.721 0.455
Brazil BRA 4.116 5.478 4.311 0.891 -0.369 0.301
Cameroon CMR 3.872 6.247 4.711 1.700 -1.152 1.422
Canada CAN 4.315 5.073 2.623 3.676 2.614 2.794
Chile CHL 4.202 5.535 3.679 1.772 0.596 1.058
China CHN 4.145 5.772 4.142 -1.655 -2.548 -2.963
Colombia COL 4.157 5.541 4.003 1.198 -0.204 0.622
Costa Rica CRI 4.253 5.174 3.584 2.552 0.975 1.949
C. D’Ivoire CIV 3.839 6.160 4.795 2.044 -0.931 1.849
Cyprus CYP 4.297 5.036 2.920 3.608 1.583 3.212
Denmark DEN 4.305 5.041 2.408 4.291 2.613 3.800
Ecuador ECU 4.118 5.503 4.380 1.903 0.171 1.447
Egypt EGY 4.010 5.597 4.820 1.438 -0.409 0.815
El Salvador SLV 4.076 5.796 4.448 1.794 -0.019 1.287
Ethiopia ETH 3.723 6.162 5.009 -0.702 -2.616 -1.206
Finland FIN 4.286 5.418 2.192 3.836 2.309 3.387
Ghana GHA 3.953 6.057 4.574 1.078 -1.277 0.796
Greece GRC 4.308 4.970 3.064 3.375 1.507 2.981
Guatemala GTM 4.014 6.036 4.459 1.736 -0.442 1.076
Haiti HTI 3.900 5.971 4.866 0.559 -1.820 0.214
Honduras HND 4.048 5.753 4.424 1.607 -0.364 1.171
Iceland ICE 4.333 4.942 2.285 4.026 2.377 3.587
India IND 3.968 5.721 4.691 -1.688 -2.712 -2.384
Indonesia IDN 3.969 6.068 4.569 -0.519 -2.096 -1.085
Iran IRN 4.044 5.339 4.649 2.041 0.136 1.574
Iraq IRQ 4.059 5.623 4.554 2.179 0.327 1.808
Ireland IRL 4.288 5.113 2.717 4.615 2.856 4.240
Israel ISR 4.290 4.941 2.895 3.573 2.334 2.912
Jamaica JAM 4.247 5.286 3.686 2.115 0.222 1.734
Jordan JOR 4.213 5.322 3.751 2.855 1.109 2.465
Kenya KEN 3.958 6.102 4.466 0.857 -1.439 0.515

Notes: The sources for these data are World Development Indicators (WDI, 2002), and OECD International Trade
by Commodity (ITCS) databases. Summary statistics for the rest of the data used in this paper are available from
the authors upon request.
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Table A1: Mean Values of Data from the 73 Country Sample cont.

Country Code Life Male Infant Med. Med. Cap. Pharm.
Exp. Mort. Mort. Imp. Imp. Imp.

Korea, Rep. KOR 4.159 5.761 3.571 1.864 0.894 0.958
Madagascar MDG 3.877 5.937 4.890 0.796 -1.917 0.505
Malawi MWI 3.742 6.168 5.127 -0.475 -2.216 -0.965
Malaysia MYS 4.185 5.659 3.577 1.677 0.243 1.060
Mali MLI 3.710 6.222 5.165 – -1.722 0.305
Mauritius MUS 4.176 5.565 3.699 2.471 0.267 2.060
Mexico MEX 4.177 5.476 4.080 1.551 0.478 0.853
Moroco MAR 4.669 5.701 4.030 1.299 -0.649 0.918
Mozambique MOZ 3.746 6.203 5.071 0.136 -2.376 -0.307
Myanmar MMR 3.920 5.951 4.768 -0.838 -2.988 -1.295
New Zealand NZL 4.291 5.190 2.643 3.418 1.749 3.027
Nigeria NGA 3.808 6.289 4.791 0.796 -1.541 0.485
Norway NOR 4.325 4.998 2.347 4.037 2.516 3.559
Pakistan PAK 3.971 5.764 4.873 0.393 -1.673 -0.097
Panama PAN 4.222 5.319 3.680 4.175 1.597 4.013
Paraguay PRY 4.197 5.343 3.873 1.246 -0.216 0.418
Peru PER 4.066 5.759 4.480 1.330 -0.515 0.958
Philippines PHI 4.101 5.874 4.210 0.624 -1.249 0.210
Portugal PRT 4.259 5.197 3.563 3.151 1.170 2.849
Rwanda RWA 3.773 6.236 4.909 -0.033 -1.726 -0.401
Senegal SEN 3.789 6.357 4.781 1.658 -1.015 1.420
Sierra Leone SLE 3.544 6.345 5.274 0.731 -1.626 0.476
Singapore SGP 4.257 5.387 2.699 4.198 2.866 3.286
Spain ESP 4.310 5.069 2.966 2.958 1.541 2.395
Sri Lanka LKA 4.197 5.292 3.644 0.238 -1.712 -0.222
Sudan SDN 3.840 6.289 4.837 1.179 -2.054 0.379
Tanzania TZA 3.856 6.221 4.796 0.207 -2.213 -0.196
Thailand THA 4.124 5.712 4.048 1.157 -0.451 0.653
Tunisia TUN 4.124 5.543 4.383 2.433 0.351 2.198
Turkey TUR 4.093 – 4.656 1.231 -0.145 0.564
Uganda UGA 3.862 6.207 4.726 -0.265 -2.214 -0.734
Uruguay URY 4.252 5.197 3.575 2.079 0.460 1.606
Venezuela VEN 4.206 5.429 3.753 2.315 0.965 1.773
Zaire ZAR 3.856 – 4.777 -0.485 -2.858 -0.726
Zambia ZMB 3.858 6.249 4.680 1.016 -0.844 0.656
Zimbabwe ZWE 3.954 6.072 4.394 0.473 -1.092 -0.083

Notes: The sources for these data are World Development Indicators (WDI, 2002), and OECD International Trade
by Commodity (ITCS) databases. Summary statistics for the rest of the data used in this paper are available from
the authors upon request.
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Figure A1: Regression trees obtained using thresohold estimation (using Model 6)
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Table A2: Subsample regressions (using Model 6)

Specif. 1,2,3 Thresh.: MEDIM Thresh.: MCAPIM Thresh.: PHAIM
Sub. 1

(Low Imp.)
Sub. 2

(High Imp.)
Sub. 1

(Low Imp.)
Sub. 2

(High Imp.)
Sub. 1

(Low Imp.)
Sub. 2

(High Imp.)

IMPORTS −.0007
(−0.08)

.0414∗
(3.03)

.0041
(0.29)

.0647∗
(3.91)

.0067
(0.68)

.0437∗
(3.54)

INC .0352
(1.15)

.0625
(1.57)

.0258
(1.05)

.0243
(0.75)

−.0117
(−0.48)

.1484∗
(3.59)

PHARD .0415
(0.85)

.0545
(0.96)

.0549
(1.34)

.0234
(0.66)

−.0112
(−0.23)

.1044∗
(3.11)

TROP .0061
(0.92)

−.0282
(−1.65)

.0158∗
(2.84)

.0130
(0.93)

.0212∗∗
(2.47)

−.0091
(−0.73)

CAL .1860
(1.47)

−.1489
(−0.89)

−.0875
(−0.65)

.1581∗∗∗
(1.76)

−.3557∗∗∗
(−1.96)

−.0256
(−0.21)

PHYSI .0475∗
(2.76)

.0666∗∗
(2.19)

.0766∗
(5.57)

−.0067
(−0.27)

.1064∗
(6.18)

.0534∗∗
(2.47)

ILLIT −.0744∗
(−3.99)

.0125
(−0.79)

−.0800∗
(−3.58)

−.0243
(−1.65)

−.0935∗
(−4.23)

.0057
(−0.44)

Adj. R2 83.3 80.6 84.5 77.1 91.4 86.5
Obs. 37 22 27 33 21 39

Notes: Life expectancy is the dependent variable. * p-value <0.01, ** p-value<0.05, *** p value<0.10.

Heteroskedasticity-consistent standarderrors are used in constructing t-statistics.
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Table A3: Unconditional panel correlations across 68 countries

MEDIM MCAPIM PHAIM PHARD TROP CAL PHYSI ILLIT WATER LIFE IN

MEDIM 1
MCAPIM 0.94 1
PHAIM 0.99 0.89 1
PHARD 0.12 0.36 0.06 1
TROP -0.43 -0.46 -0.40 -0.05 1
CAL 0.73 0.80 0.68 0.19 -0.51 1
PHYSI 0.67 0.79 0.61 0.49 -0.55 0.76 1
ILLIT -0.56 -0.72 -0.49 -0.47 0.27 -0.63 -0.72 1
WATER 0.59 0.70 0.56 0.46 -0.42 0.64 0.69 -0.54 1
LIFE 0.66 0.80 0.59 0.52 -0.46 0.77 0.88 -0.80 0.72 1
INFANT -0.76 -0.87 -0.70 -0.50 0.45 -0.81 -0.81 0.89 -0.68 -0.88
MALE -0.69 -0.80 -0.63 -0.45 0.53 -0.77 -0.88 0.73 -0.69 -0.92
INC 0.59 0.66 0.56 0.05 -0.44 0.71 0.64 -0.59 0.69 0.66

Notes: All variables are in natural logarithms. Complete data is available for 68 countries. and four sub-periods 1961-1969, 1970-1979, 1
For the definition of variables see Table 1 in the main text.


