The Effects of an Anti-Corruption Campaign: Evidence from the 1992 Presidential Impeachment in Brazil

Rita Ramalho^{*} The World Bank

May 23, 2004

Abstract

Despite general agreement that corruption imposes substantial economic costs, there is little evidence on the success of anti-corruption campaigns. I exploit the 1992 presidential impeachment in Brazil to evaluate the impact of an anti-corruption drive on politically connected companies. Using an event study procedure, I establish that family-connected firms have on average significantly negative daily abnormal returns of 2 to 9 percentage points on dates when information damaging to the impeached president is released. Finally, even though the stock prices of family-connected firms fell initially, this decline was reversed entirely within a year of the episode. I conclude that the impeachment had limited success in reducing corruption.

Keywords: Corruption, Brazil, political connections, firm value.

JEL Codes: G12, G18, O12, O16, O54

^{*}I thank my thesis advisors: Abhijit Banerjee, Esther Duflo, and Simon Johnson for support and insightful suggestions. For helpful comments I thank Daron Acemoglu, Ray Fisman, Nada Mora, Antoinette Schoar, James Vickery and all the participants in the labor/development and econometrics lunches at MIT and in the Economic Growth and Development seminar at Harvard. A special thanks to Eustáquio Reis and other economists at IPEA, and the members of the business community in Brazil that I met during my trip to São Paulo and Rio de Janeiro. I am grateful to Kevin Cowan, Hoyt Beakley, and Emery Ventura from Economatica for providing the data. For financial support I thank the Fundação para a Ciência e a Tecnologia in Portugal, the MacArthur Network on the Effects of Inequality on Economic Performance, and the MIT Entrepreneurship Center. Corresponding address: Rita Ramalho, The World Bank, 1818 H St. NW, Washington DC 20433, rramalho@worldbank.org.

1 Introduction

Corruption is widely recognized to be detrimental to economic development and growth. Several economic studies have provided evidence of the adverse consequences of corruption (Mauro (1995)). Awareness of the harmful effects of corruption is widespread among international institutions. For instance, the World Bank has supported more than 600 anti-corruption programs since 1996. Nevertheless, the effectiveness of these programs has seldom been evaluated¹. Given the costs of corruption, it is essential to assess how effective anti-corruption campaigns are. This issue becomes more pressing in countries where corruption is widespread. This paper evaluates the long term effect of an anti-corruption campaign in Brazil, one of the most corrupt countries in the world².

In 1992, the Brazilian President Fernando Collor de Mello was impeached following accusations of corruption. The impeachment's goal was to purge political institutions of its most corrupt members. This is an example of an anti-corruption campaign promoted by democratic institutions. The whole country was engaged in the campaign and the perception was that this would be a fresh start for Brazil³. The question remains: To what extent was the impeachment effective in ridding Brazil of corruption?

Corruption flourished during Collor's presidency. According to the news press of the time, a bribe to the President's campaign manager (PC Farias) was essential in order to obtain a loan or get a state contract. The ability to obtain credit and procurement depended on political connections. This suggests that political connections can have a significant effect on a company's value.

The impeachment episode provides an excellent setting to study the gains from political connections and corruption for firms. First, the impeachment process was initiated by the President's bother, Pedro Collor de Mello, who accused the president and his campaign manager of corruption, using the Brazilian press to spread his story. The reasons that led to Pedro's accusation at this particular point in time were family matters and plausibly

¹The rare examples include: Di Tella and Schargrodsky (2003) and Yang (2002). The former analyzes the prices for basic inputs during an anti-corruption drive in public hospitals in Buenos Aires, Argentina. The latter studies how smugglers adapt to preshipment inspections of imports in the Philippines.

²Brazil's Corruption Perception Index (Transparency International) was 2.7 out of 10 (where 10 is the least corrupt). Brazil was number 37 out of 41 countries in 1996.

³The report from the Brazilian Parliamentary Inquiry that lead to the presidential impeachment states: "It is necessary to change political ethics. The Brazilian people are committed to this change" (translated from "É preciso mudar a ética do Poder. O povo brasileiro está comprometido com esta mudança.")

orthogonal to the performance of any of the publicly traded Brazilian companies. Therefore, the impeachment is likely to be an incident exogenous to the value of political connections. Second, I am able to clearly identify politically connected companies because many of these companies were owned by relatives of the president and others were explicitly named during a parliamentary investigation of Collor's campaign manager.

My analysis begins with an event study of companies' performance during the impeachment period. I compare connected and non-connected companies' stock market performance on several days when information related to the probability of Collor being removed from power was released. I compute the average abnormal returns during each of the events for each company and then aggregate them in several portfolios depending on the type of connection. I define two distinct measures of political connectedness: firms linked to the president by family or friendship ties ('family-connected' companies) and firms proven to be connected to the president in a parliamentary investigation ('other-connected' companies). I find that family-connected companies have on average daily abnormal returns 2 to 9 percentage points lower on bad event days. The impeachment has an immediate effect on family-connected firms. The evidence shows that the market in fact perceived the impeachment as affecting the value of those companies. This finding is in line with the results of Fisman (2001), who finds that the stock market valuation of firms owned by Suharto's relatives were affected by changes in Suharto's health.

This interpretation is reinforced by additional evidence: First, I show that the decline in family-connected companies' valuations did not simply reflect that the market recognized they were benefiting from the president's economic policies. Family-connected company valuations fell even relative to other firms in the same industries, who should have been affected similarly by Collor's economic policies. Second, I find that the stock prices of competitors of family-connected companies reacted positively to information about the impeachment. I show that competitors in industries with higher share of family-connected companies experienced positive abnormal returns, when adverse news about the president was released. This is further evidence that, in the short run, the market identified the impeachment as weakening the value of the political connections of the president's relatives and friends. The value of political connections decreases for these companies because their political network was destroyed and the government in power was no longer altruistic towards them.

Therefore, family-connected companies are worse off during the impeachment episode.

However, the other-connected companies, those identified in the parliamentary impeachment report, did not respond to the impeachment in a similar fashion. First, they did not suffer negative abnormal returns during the impeachment. Second, their competitors' stock prices did not react positively to damaging news about the president. Hence, the market did not foresee a decline in the value of these companies' political network. This result suggests that their political network extended far beyond Collor's administration. Additionally, these firms were not being favored more by this administration than they would be by future administrations. In fact, there is anecdotal evidence that these companies were favored by other administrations. For instance, in another parliamentary report concerning the budget investigation, at least one of the other-connected companies (Oderbrecht SA) was proven to be favored by state governors and congressmen. Nevertheless, the stock market value of the other-connected companies is on average lower than the market value of non-connected companies in the same industry throughout the 1990s. This difference in value can be attributed to market liberalization, which might have led to a reduction in corruption. However, if in fact there was a decrease in corruption it can not be attributed to the presidential impeachment. This result indicates that the driving force of corruption in Brazil is rent-seeking (Krueger (1974)) and not just cronyism.

Furthermore, in the long term the stock market valuations of family-connected companies were not damaged by the impeachment. In fact, after a decline in their value during 1992, these companies were able to recover to at least average performance in their industry by mid 1993. Accounting data is compatible with these results. I find no significant long term effect of the impeachment on companies' profitability or liquidity.

The overall evidence suggests that, in the long run, both family-connected and otherconnected companies were not adversely affected when compared to non-connected firms. These results shed doubt on the effectiveness of Collor's impeachment as a corruptionreducing policy. Family-connected companies might have created new connections. Alternatively, the gains from being connected once can be long lasting. In other words, familyconnected firms might have been able to recover due to the investment possibilities they had access to during Collor administration. The other-connected firms did not experience lower abnormal returns even during the impeachment episode. This result is consistent with these companies having a widespread network of political connections. Moreover, there is substantial evidence that even some of the family-connected companies were able to establish new political connections. For instance, one of the family-connected companies is owned by the family of a politician, friend of Collor, who was elected governor in the mid 1990s. Therefore, the lack of a long term effect can be explained by the persistence of corruption.

Is the immediate effect of the impeachment compatible with its long term effect? Why was the stock market unable to predict the recovery of family-connected firms? At the time of the impeachment process, there was no evidence that family-connected firms would be able to build new connections. Moreover, the long term effects of being connected once might not have been visible to the market immediately. With time it became clear that these firms were again linked to the people in power, or that the favors these companies enjoyed before were still fruitful. Therefore, the stock market could only predict a recovery in the value of these companies a few months after the impeachment process was over.

The empirical literature on corruption remains scant. However, there are two important contributions which this paper builds on. Fisman (2001) measures the value of political connections in Indonesia, using an event study procedure on news about President Suharto's health. Johnson and Mitton (2003) study political connections and capital controls in Malaysia during the Asian crisis. They find that capital controls benefit politically favored firms. In both these papers the change in the value of political connections was accidental. My paper is the first to study the effects of an explicit anti-corruption initiative. The present work is also the first to analyze the effects on competitors of connected firms and the long term consequences of the change in the value of political connections. I establish that the impeachment had an immediate effect on family-connected firms and their competitors. As in Fisman (2001) and Johnson and Mitton (2003), I find that family-connected firms react negatively to damaging news about the president. However, they provide no evidence about whether these effects persisted. In my paper, I show that in fact these effects disappeared after one year.

This paper exploits the results from the theoretical literature on corruption and rentseeking, for instance, Krueger (1974), Shleifer and Vishny (1993, 1994) and Banerjee (1997). This paper adds to the growing literature about the role of institutions in economic outcomes. In particular, my findings are in line with previous work about the persistence of institutions, such as Acemoglu, Johnson and Robinson (2001, 2002). Moreover, my work provides further evidence that institutions affect economic outcomes, specifically firms' performance. Important contributions to this literature are, for instance, La Porta et al. (1997, 1998) and Djankov et al. (2002). These authors show that institutional differences across countries can explain economic outcomes, such as market entry, prevalence of small investors, and external finance.

In section 2, I present the historical context of the impeachment episode. In section 3, I describe the data. In section 4, I describe my empirical strategy in detail and present the main results using stock market data. In section 5, the evidence from the accounting data is reported and interpreted. In section 6, I analyze market entry and market concentration. In section 7, I discuss alternative interpretations of my findings. Finally, section 8 concludes.

2 Historical Context

Fernando Collor de Mello was elected president of Brazil at the end of 1989. During his campaign he promised to end corruption in Brazil. However, during his presidency there were several corruption scandals involving his Cabinet members. Finally, in late May 1992, these accusations directly targeted the president. Collor de Mello was finally impeached in late September 1992.

The corruption accusations were first directed at PC Farias (Collor de Mello's campaign manager) and several Cabinet members. On March 30th 1992, the president asked for the resignations of all his ministers and assistants. The goal was to purge the government of corruption and improve the president's image. However, corruption allegations against the President's regime continued.

Several Brazilian newspapers and magazines claimed to have testimonies and other evidence that corroborated the accusations against Farias. However, this news only started affecting Collor directly in May 1992, when Pedro Collor de Mello, the President's brother, began a series of accusations linking the president with Farias' illegal businesses. This information led to a parliamentary investigation that ultimately resulted in Collor's impeachment and resignation in December 1992.

The investigation began May 27th 1992 and lasted until mid-August of the same year. It consisted of gathering evidence and interviewing witnesses. Most witnesses were individuals allegedly involved in the corruption scheme. The stock market reacted to the information disclosed in these interviews. In general the reaction was negative.

The information contained in physical proofs was disclosed gradually. These proofs

consisted mainly of checks written out to Farias' consulting company. This consulting company operated as a front for the corruption scheme. It provided services such as easier access to credit from state banks and access to state contracts. It was possible to identify which companies were directly involved in the corruption activities from the checks.

Most companies directly involved in corruption activities were already known to be connected to the president and his government. The Brazilian press is filled with colorful anecdotes about favoritism by the government towards certain companies⁴.

The impeachment episode was a turning point in Brazilian history. Collor de Mello was the first directly elected president in Brazil in three decades. The impeachment was an important test of a new democracy after a military dictatorship. The whole country was involved in the impeachment and reducing corruption. As a result, PC Farias was incarcerated and Collor de Mello was barred from public office for almost 10 years.

Even though the stock market reacted negatively to the impeachment episode, the Brazilian economy continued to perform in the same fashion as the two previous years. Marcilo Marques Moreira, the economy minister, managed to persuade American bankers and the IMF to help roll over Brazil's debt, lending it new money. Collor introduced economic reforms, although he did not always succeed. In particular, he began the privatization process that lasted throughout the 1990s and liberalized trade by significantly reducing tariffs.

Collor de Mello was replaced by his vice-president Itamar Franco, who had different political support. Mr. Franco was seen as an honest person. His political agenda was different from Collor's. At the beginning of the impeachment episode, it was not clear if he would continue Collor's economic policies. However by the time he replaced Collor, there were no doubts that he would promote the market liberalization begun by his predecessor.

⁴For instance, when VASP (São Paulo airline company) was privatized, Wagner Canhedo (the buyer) had inside information about VASP's fuel supply contracts, unknown to the other contestants. PC Farias was able to force the manager of Petrobras (state-owned oil company) to supply fuel at favorable terms to VASP. This supply was also conditional on Wagner Canhedo buying VASP. The information about this deal was leaked by the CEO of Petrobras who opposed the transaction.

Another example of favoritism was reported by *A Folha de São Paulo* (Brazilian newspaper), where a company owned by a few of Collor's high school classmates was able to get paid by the government much earlier than usual for the type of services it provided.

3 Data

I use three types of data to analyze the impeachment episode: company financial data (stock market data, balance sheet data, industry data), news and events about the Brazilian president, and connection data (names of companies and business groups which are connected to the president).

• Company financial data

I analyze only public companies⁵, even though some of the connected companies are not public and ideally I would want to have access to their balance sheets. However, information about non-public companies is not easily available. Non-public firms tend to be smaller. Thus, my analysis is restricted to the value of connections for large firms and may not extend to smaller firms.

All the companies in my data were operating in 2000. There is no bankruptcy among the companies I am analyzing. In other words, the firms in the earlier years in the sample do not disappear in later years.

Among public companies there are two sets: traded and non-traded ones. For the traded companies the data set I use has daily stock market prices as well as quarterly accounting information taken primarily from balance sheets. The stock market information comes from Economatica and Datastream. The source of the accounting data is Economatica and Bloomberg.

• Events related to President Collor

I collected news/events data using the Lexis Nexis database and Brazilian newspapers and magazines (Folha de São Paulo, Jornal do Brazil, Veja, IstoE). I searched on Lexis Nexis for "Collor" and "corruption" in the year 1992, obtaining 806 hits. I chose the events that were mentioned in more that one source, and mentioned by Brazilian researchers in my visit to Brazil. In particular, I paid more attention to news published in the Brazilian press. The Brazilian press was also the source of event duration. The list of events and their duration is presented in the appendix.

 $^{{}^{5}}$ In my data public companies include all the companies traded in the stock market and firms that have open balance sheets due to their ownership structure.

• Political connections

I assembled connection data using several books and news articles about the impeachment episode. including the CPI report about Collor's campaign manager prepared by the Brazilian parliament prior to the Presidential impeachment⁶. The set of connected companies includes all the companies proven to be connected to the president's campaign manager by the CPI report as well as companies owned by relatives and friends of the president. This set also includes the firms owned by the connected companies⁷. The ownership data is originally from the Emerging Markets database and Economatica.

From this data I constructed five mutually exclusive sets of firms. First is the set of connected companies ('other-connected' companies) identified in the CPI report that are not owned by relatives or friends of Collor's and are not state-owned⁸. This set of companies also includes the firms owned by the connected firms identified in the CPI report. Second is the set of firms owned by relatives or friends of Collor's and therefore not state-owned ('family-connected' companies). The companies in this set were not necessarily mentioned in the CPI report. Third is the set of connected companies that are state-owned. Fourth is the set of state-owned companies that, to the best of my knowledge, are not connected to the President. Finally the last set is that of the non-state-owned non-connected companies.

I separate the state-owned connected companies from the rest of the connected firms, because there are several reasons why they would behave differently. Those companies were used as providers of benefits to the connected companies. For instance, anecdotal evidence suggests that a way of benefiting connected companies was through state-owned banks that provided preferential terms in loans to those companies. So even though these firms were connected to the president, it is not clear that they benefited from his stay in power. In general, the effect on state-owned companies of a change in power is not obvious. The managers change when a new president takes charge. In a broad sense state-owned companies are always connected to whoever is in power.

 $^{^6{\}rm CPI}$ stands for Comissão Parlamentar de Inquérito, which translates to parliamentary committee of investigation.

⁷Those where the connected company is at least the third major stockholder.

⁸State owned companies are defined as those where the Brazilian states or federation are one of the two major shareholders.

3.1 Descriptive statistics

My data includes 241 stocks from 189 firms. Table 1 panel A.1 presents the descriptive statistics for the companies used in the stock market analysis. The sample includes 5 family-connected companies. These firms are not significantly different from non-state-owned non-connected firms, in terms of size, leverage, market beta, or price to book value. The other-connected firms are a larger set of 12 companies, but still not significantly different from non-state-from non-state-owned non-connected firms.

Table 1 panel A.2 presents the summary statistics for the accounting data used in the long term analysis. Table 1 panel B shows the firms' characteristics pre-impeachment. Both family-connected and other-connected firms have similar leverage and returns on assets as non-state-owned non-connected companies.

4 Evidence from the Stock Market

The impeachment episode provides an excellent natural experiment for assessing the impact of an anti-corruption drive on firms' stock prices. The impeachment was triggered by accusations made by the President's brother as a result of a family fight. Thus, it can be reasonably viewed as an exogenous event and not caused by changes in company performance. I can therefore use events surrounding the impeachment to plausibly identify the causal effect of changes in political connectedness on the value of connected companies in the short and in the long run. Consequently, I can infer the effectiveness of the impeachment as an anti-corruption campaign by looking at firms' stock market performance.

A second interesting feature of this episode is that it provides a reasonably good control group. I assume that if there was no corruption, connected companies' returns would evolve in a similar fashion to the non-connected ones after the impeachment. By controlling for firm characteristics, I remove the possibility that differences in stock returns would be driven by systematic differences in those characteristics for connected and non-connected firms.

4.1 Immediate Effect on Connected Companies' Returns

In this section I look at the immediate effect of the impeachment on connected and nonconnected companies. I take an event study approach. I identify several events over the period 1989-1992 which changed the president's probability of getting to power or staying in power. Therefore, these events could plausibly be expected to change the gains from being politically connected to the president. I then estimate the effect of these events on the stock market value of connected and non-connected companies. In other words, I compare the evolution of stock prices for companies associated with the President compared to the rest of the market. I separate the non-state-owned connected companies into two groups: family-connected firms and other-connected firms.

I expect connected companies' stock market value to decrease when damaging news about the president is released. Likewise, when good information about Collor is made public connected companies should react positively. The intensity of this reaction should depend on how unique these connections are. In other words, it is plausible to expect different effects on family-connected and other-connected companies.

For this analysis to be valid, the stock market must somehow know which companies are connected to the President. Several of the corruption scandals involving connected firms were reported in the news before the impeachment episode. Also, the family-connected companies were easily identified by investors because there was enough information about who were the president's family members and friends and which firms they owned. The assumption that investors had access to this information seems therefore reasonable. I also assume that a weak form of market efficiency holds.⁹

This first analysis is similar to the work by Fisman (2001). I study the impact of news about the president on connected companies. I expand upon his work by examining the impact of the same set of news on the competitors of connected companies in the next subsection. Therefore, I can get a more detailed picture of the impeachment's impact on the stock market and how important political connections are for firms and their competitors.

Following the event study literature, I construct the abnormal returns for each event by company. The abnormal returns are defined as the estimated residual from regressing a company's returns on the market index. Hence, abnormal returns are the variation in returns that the market was not able to explain and therefore might be attributed to other factors such as political connections. The model is as follows (Campbell, Lo, Mackinlay (1997)):

$$R_{se} = \frac{P_{se} - P_{se-1}}{P_{se-1}}$$
(1)

⁹Weak form of efficiency: information about past stock prices is available to all investors.

$$R_{se} = \alpha + \sum_{k} \beta_{se+k} M_{e+k} + \varepsilon_{se}$$
⁽²⁾

$$E[\varepsilon_{se}] = 0 \qquad Var[\varepsilon_{se}] = \sigma_s^2$$

$$AR_{se} = R_{se} - \widehat{R_{se}} , \qquad (3)$$

here P_{se} is the stock market price in day *e* for company *s*, *R* is daily returns, *M* is the São Paulo stock exchange index (BOVESPA), and *AR* stands for daily abnormal returns. I use five lags and five leads of the market index in the market model equation, in order to minimize the infrequency of trade problem¹⁰. Equation (2) is estimated using the stock market returns from the last four months of 1991. I chose this period of time, because there was no major change in the stock market related to changes in political power. Hence, the market betas I estimate are not affected by political instability.

I then compute the average cumulative abnormal returns (ACAR) by event, and test if the securities of connected companies have different abnormal returns when compared to the securities of non-connected ones. Connected firms should react distinctively when news about the president is released. Being connected can be interpreted as an extra factor in explaining stock market returns. However, for that interpretation to be valid other variables should be accounted for, because there are several risk factors that may affect connected and non-connected firms' returns differently. Fama and French (1992) analyze several factors to explain stock market returns. Their factors include size, leverage, book-to-market equity and market beta. Therefore, in my analysis I include these factors as well as industry controls. The purpose is to control for the factors that can have a differential impact on the abnormal returns of connected and non-connected firms.

$$ACAR_{se} = \gamma + \sum_{j} \beta_j C_{js} + \sum_k \delta_k X_{sek} + \mu_{se} , \qquad (4)$$

 C_{js} is a dummy variable equal to one if the political connections of company s are of type C_j . C_1 is the set of connected companies that are not state owned and not owned by friends or relatives of the President, C_2 is the set of connected companies owned by family

¹⁰The frequency of trade in the São Paulo stock exchange was low for several stocks in the early 1990s. Therefore, the correlation between infrequently traded stocks and the contemporaneous market index, does not reflect the true market beta. I include five lags and leads of the stock market index, in order to better estimate beta.

and friends of the President, C_3 includes the state owned companies that were proven to be connected to the president, and C_4 is the set of state companies not known to be politically connected, s indexes stock and e indexes time (trading days). X is a set of factors that includes 30 industry dummies, size (measured by the log of total assets in early 1989), debt (measured by the ratio of current liabilities¹¹ to total assets in early 1989), book to market value (in early 1989), and monthly beta¹² (to control for stock volatility).

I study five events. The first event is the first round of elections in November 1989, which led to Collor de Mello's victory. This is good news for the connected companies and they should react positively. All the other events I consider are bad news. They take place during 1992 and refer to news released before and during the impeachment episode. The March 30^{th} event concerns a political episode where Collor asked for the resignation of all his Cabinet and it happened before the impeachment process started. All the following events were directly related to the impeachment¹³.

To capture the information available in non-event days, I use a different specification that includes all the stock market returns from 1989 to 1992. I join all the events in one unique regression, interacting each of the connection variables with the event variables.

$$ACAR_{se} = \gamma + \sum_{j} \beta_j C_{js} + \sum_{z} \rho_z E_{ze} + \sum_{j} \sum_{z} \psi_{zj} C_{js} * E_{ze} + \sum_{k} \delta_k X_{sek} + \sum_{k} \sum_{z} \varphi_{kz} X_{sek} * E_{ze} + \mu_{se} Y_{sek} + \sum_{j} \sum_{z} \psi_{zj} C_{js} * E_{ze} + \sum_{k} \delta_k X_{sek} + \sum_{k} \sum_{z} \varphi_{kz} X_{sek} + \sum_{j} \sum_{z} \psi_{zj} C_{js} + \sum_{j} \sum_{z} \psi_{zj} C_{js} + \sum_{k} \delta_k X_{sek} + \sum_{k} \sum_{z} \varphi_{kz} X_{sek} + \sum_{j} \sum_{z} \psi_{zj} C_{js} + \sum_{z} \psi_{zj} C_{j$$

where E_z is a dummy variable equal to 1 when event number z occurs.

Finally, I aggregate the events by type in order to summarize the immediate effect of the impeachment of firms' stock market returns. In this case, I use a difference in differences procedure to compare connected and non-connected companies on event and non-event days. I assume that connected and non-connected companies react similarly in non-event days after controlling for the factors mentioned above. I separate events into good and bad

¹¹Ideally I would use total liabilities. However, using total liabilities would imply losing too many observations. Brazilian companies do not report the item total liabilities. I have to compute it as the difference between "liabilities and equity" and "stockholders' equity". Given the lack of observations in these two items, the variable total liabilities has a significant number of missing values. Current liabilities are a good proxy for total liabilities since they account for 70% of total liabilities. Since Brazil experienced hyperinflantion in this period, it is reasonable to assume that most liabilities were of short duration (less than one year).

 $^{^{12}}$ I include the market beta even though I analyze abnormal returns, because this way I allow for beta to change over time.

¹³For more information on events and their during please refer to the appendix.

ones, to capture the different signs.

$$ACAR_{se} = \gamma + \sum_{j} \beta_{j}C_{js} + \gamma_{1}G_{e} + \gamma_{2}B_{e} + \sum_{j} \theta_{j}C_{js} * G_{e} + \sum_{j} \omega_{j}C_{js} * B_{e}$$
$$+ \sum_{k} \delta_{k}X_{sek} + \sum_{k} \phi_{k}X_{sek} * G_{e} + \sum_{k} \varkappa_{k}X_{sek} * B_{e} + \mu_{se} , \qquad (6)$$

where G is a dummy variable equal to 1 if a good event occurred and zero otherwise, and B is a dummy variable equal to 1 if a bad event occurred and zero otherwise. Since on average 36% of the stocks on a given day are not traded, I repeat this analysis using only stocks that were traded during the event period.

The results are presented in table 2. Columns (1) and (2) report the results for equation (4) by event. (The only difference is that the estimates in column (1) exclude the set of control variables X.) Both types of non-state-owned connected companies have on average higher abnormal daily returns during the election episode. In particular, the familyconnected companies' abnormal returns are 3.8 percentage points higher than non-connected companies per day. This estimate is significant at the 1% level. The average daily market return is less than 2% during the election event. Therefore, family-connected firms are performing much better than the market. Since the election event takes four days, these companies suffer an increase in their total abnormal returns of over 15 percentage points, while the market return was just 7%. The other-connected companies also have significantly higher abnormal returns during the election event, although the difference is much smaller. The total effect for the four days for these firms is less than 6 percentage points.

The family-connected companies have lower daily abnormal returns during bad events than non-state-owned non-connected companies. This difference ranges from 2 to 9 percentage points, except for the last event. For the other-connected companies this differences is around 0 to 2 percentage points and never statistically significant. The impact is larger for family-connected firms. In particular on May 27^{th} , family-connected have a drop of 9 percentage points (significant at the 5% level) and other-connected companies experience no significant change in their abnormal returns. During this event the market return is positive and above 7%.

The estimates for equation (5) are presented in column (3) of table 2. These results are in line with the previous findings. The following two columns report the estimates for equation (6). Family-connected companies do significantly better in good event days and significantly worse in bad event days. If we consider only firms that were actually traded during the events, the family-connected firms have lower daily abnormal returns by around 3 percentage points in bad event days¹⁴. The same set of firms has an increase of 3 to 4 percentage points in good event days¹⁵. The results for other-connected companies are smaller and less significant. In particular, there seems to be no significant decline in abnormal returns on bad event days for this set of firms.

In all the results presented above, the standard errors are corrected for correlation between securities of the same firm. This correction is done by using the cluster option in Stata. Additionally, I allow for observations to be correlated along the time dimension. In other words, I correct for first-order serially-correlation residuals in (5) and (6). The results do no change significantly with this last correction.

The evidence is indicative of a significant impact of the impeachment on family-connected companies. These firms experience a significant decline in their returns when compared to non-state-owned non-connected firms. However, the other-connected firms did not suffer a loss in returns during the impeachment episode. This indicates that the market perceived the impeachment as an anti-corruption campaign that would decrease the favors granted to family-connected firms, but would not be able destroy the political network of the other-connected companies.

Furthermore, evidence provided by other CPIs supports this interpretation. The Brazilian parliament created other committees (CPIs) to investigate several corruption allegations unrelated to the presidential impeachment. The reports that came out of these investigations prove that a few of the other-connected companies were connected to other politicians during and after Collor's administration.

The evidence is consistent with the idea that family-connected firms were favored by the president for altruistic reasons, while the other-connected firms paid directly for the benefits that they received. The stock market value of family-connected companies decrease due to the impeachment for two reasons. First, they lost their political connections. Second, now to get the same political favors they would have to pay more than before because the new government is no longer altruistic towards these family-connected companies. In contrast, the other-connected companies were not affected by the impeachment because they are

 $^{^{14}\}mathrm{This}$ estimate is significant at the 1% level.

 $^{^{15}\}mathrm{This}$ estimate is significant at the 1% level.

connected to other politicians that provide the same favors at the 'market price' as the impeached president did before.

4.2 Immediate Effect on Competitors' Returns

If political connections are an important factor in doing business in Brazil, the competitors of connected firms should also be affected by news about the president. The competitors who are not connected to the president, are affected by the performance of other companies in their markets. When the performance of those other firms depends on political connections, competitors are indirectly affected by political events. Therefore, the competitors' reaction to news about the president provides further information about the impeachment's impact on the business norm in Brazil.

In this section, I investigate how competitors react to news about the president. In particular, I test whether changes in the stock price of competitors are correlated with the initial market share of connected companies in each industry. My hypothesis is that on bad event days the stock price of competitors increases and this change is proportional to the market share of connected companies. In industries where connected companies are predominant, non-connected companies should react more to events involving the president than in industries where connected firms are inexistent.

On good event days the share price of competitors can react positively or negatively because there are two opposing effects. The only good event I am considering is the election event. This event led to a change in economic policies as well as a change in the individuals in government. Therefore, if the competitors of connected companies are favored by the change in economic policies proposed by Collor, their stock price should increase. However, if being connected to the president has value beyond the economic policies he promotes, then the share price of competitors should decrease during the election event. How the stock price of competitors reacts is ambiguous and depends on which effect dominates. On bad event days the policy effect is marginal because Itamar Franco (who replaced Collor) promoted the same type of economic policies.

I define competitors as non-connected and non-state-owned companies. All the regressions are now restricted to this sample. In my analysis I control for industry, size, debt, book to market value and market beta as before. I separate the connected companies into two mutually exclusive sets: other-connected and family-connected. I compute their market share as the ratio of their stock market value to the total stock market value for their industries. I then evaluate the effect of the impeachment on competitors using a procedure similar to the event study. I evaluate the abnormal returns defined in the previous section and calculate their daily averages per event. Finally, I estimate the following specification.

$$CCAR_{se} = \gamma + \beta_1 MSC_s + \beta_2 MSF_s + \gamma_1 G_e + \gamma_2 G_e * MSC_s + \gamma_3 G_e * MSF_s + \gamma_4 B_e + \gamma_5 B_e * MSC_s + \gamma_6 B_e * MSF_s + \sum_k \delta_k X_{sek} + \mu_{se} , \qquad (7)$$

where CCAR is the average cumulative abnormal returns for competitors, the market share for other-connected companies is defined as $MSC_s = \frac{\sum\limits_{s \in I} marketvalue|connect=1}}{\sum\limits_{s \in I} marketvalue}$ where company s is in market I, and similarly the market share for family-connected companies is defined as $MSF_s = \frac{\sum\limits_{s \in I} marketvalue|family=1}}{\sum\limits_{s \in I} marketvalue}$. Here I use two definitions of market: first the market is limited to an industry, second the market is confined to a particular region¹⁶ and industry.

If political connections are an important factor for the stock market performance of competitors of family-connected companies, γ_6 is expected to be positive. The sign of γ_3 is a priori ambiguous. Given that there is evidence that the other-connected companies were not affected by the impeachment, the political events during that episode are not expected to be a relevant issue for the competitors of those firms.

Column (1) of table 3 presents the results for the competitors analysis where market is defined by industry. The estimates indicate that the competitors of family-connected companies experienced an increase in their share price returns when damaging news about Collor de Mello were made public. Competitors of family-connected companies seemed to be favored by the impeachment, although this estimate is not statistically significant.

The estimates using the second definition of market are presented in column (2) of table 3. Including regional controls in defining market leads to smaller effects on daily returns. Competitors of family-connected firms are better off during the impeachment. In a market where the share of family-connected companies is 50%, competitors' returns increase 0.4 percentage points every day that harmful news about the president is made public. The estimate for γ_6 is significant at the 10% level.

The other-connected firms' coefficients have the opposite sign. In markets where connected companies are more prevalent, their competitors tend to react in the same direction.

¹⁶A region is defined by telephone area codes.

These results reinforce my earlier interpretation that these companies remain connected all the time, independently of who is in power. Hence, their competitors do not react to the impeachment in a positive way. Therefore, these results are not surprising. The competitors of other-connected companies experience a rise in their abnormal returns during the election event. If in fact the elections' result conveys information about future policies, this finding suggests that the other-connected companies as well as their competitors benefited from Collor's economic policies defined in his platform.

The competitors analysis provides evidence that the immediate impact of the impeachment was not negligible. In fact, family-connected firms and their competitors' stock market returns were affected, suggesting that investors incorporate political connections and corruption in their valuation of companies. The impeachment was effective in decreasing the value of connections in the very short term, for the family-connected companies, but not for the other-connected firms. However, what happened to family-connected companies in the long run?

4.3 Medium and Long Run Effects

Finally, I look at stock market data to evaluate firms' performance beyond the immediate term. I investigate how the stock market reacted in the years following the impeachment. In a first inspection of the data I compare averages of log of stock market¹⁷ value for three sets of companies: family-connected, other-connected, and non-state-owned non-connected.

Graph 1 presents evidence that family-connected have lower normalized stock market value during most of 1992, which is consistent with the event study analysis. However, by mid 1993 these firms start recovering and by the end of 1993 there is no clear difference between family-connected and non-connected companies. The data suggests that there was a short run effect but no long term effect. In the same graph is visible that the otherconnected companies have lower normalized stock market value than the non-connected companies throughout the 1990s. The average of other-connected companies' normalized stock market value is below the non-connected companies average value before and after the impeachment.

In order to obtain a more accurate estimate of the difference in the normalized stock

¹⁷The log of stock market value is normalized by the its value on Dec 1^{st} 1989 (before Collor administration began). Therefore the variable I examine is the growth rate of stock market value starting from Dec 1^{st} 1989.

market value between non-connected and family-connected firms, I construct a portfolio of non-connected firms that matches the family-connected companies' portfolio by industry¹⁸.

Graph 2 reports the normalized stock market value for family-connected and non-stateowned non-connected companies matched by industry. It shows clear evidence of recovery by family-connected companies, after a year and a half of troubled times. First, familyconnected firms have slightly lower normalized stock market value before Collor takes power. Second, during the Collor presidency before the impeachment episode, family-connected and non-state-owned non-connected companies behave quite similarly. Third, the familyconnected firms experience a significant decrease in their normalized stock market values when compared to non-connected firms during the impeachment episode and the following months. Fourth, however, these companies recover quite fast and even perform better than non-connected companies.

This graph suggests that being connected was good for these companies even though the politician they were connected to was barred from public office. By 1994, familyconnected companies were better off than in 1989, before Collor was elected. This evidence is consistent with the fact that family-connected companies might have been able to build new connections or that the favors these companies enjoyed might have long lasting effects. The impact of the impeachment as anti-corruption campaign in the long term is questionable.

To further inspect these results, I analyze the buy and hold abnormal returns (BHAR) and the average cumulative abnormal returns (ACAR) over the long term. BHAR measures the extra return an investor obtains by acquiring a security or portfolio at time a and selling it at time e.

$$BHAR_{se} = \prod_{t \in (a,e)} (1+R_{st}) - \prod_{t \in (a,e)} (1+E[R_{st}]) , \qquad (8)$$

where $E[R_{st}]$ is the expected return of security s, which can be measured by the market index return, or the average return for the companies operating in the same industry as security s. While ACAR measures the average daily abnormal return from a to e. These two measures are correlated, but answer two different questions. The long term event study

¹⁸First, I compute the average growth rate for non-connected firms by industry. Then I build a portfolio of industry averages such that it has the same industry composition as the set of family-connected companies. In this manner, I obtain a portfolio of non-connected companies that is comparable with the portfolio family-connected firms.

literature (Lyon, Barber, Tsai (1999)) prefers BHAR over ACAR because BHAR mimic the investor's experience better. I present both measures because the biases they face tend to have opposite signs. Therefore, most likely the true effect is in between the two measures. I estimate the following equations, which are quite similar to the ones presented before in the short term event study. However, here the abnormal returns are averaged over a longer period of time.

$$BHAR_{se} = \gamma + \sum_{j} \beta_j C_{js} + \sum_k \delta_k X_{sek} + \mu_{se}$$
(9)

$$ACAR_{se} = \gamma + \sum_{j} \beta_j C_{js} + \sum_k \delta_k X_{sek} + \mu_{se}$$
(10)

The results are presented in tables 4a (for equation 9) and 4b (for equation 10). The estimates presented in columns 1 to 3 of table 4a support the previous conclusions from Graph 2. Family-connected firms experience significantly lower returns from early 1992 to the end of 1993. However, these firms do not have significantly different returns from early 1992 to late 1994. Therefore by the end of 1994, all the loss in returns due to the impeachment was recovered. Columns 1 to 3 of table 4b provide similar evidence. The impeachment had a negative effect on family-connected companies' returns in 1992, but no effect in the long term. The fact that both measures (BHAR and ACAR) indicate the same conclusion decreases the concerns one might have about the biases associated with these measures in the long term.

In Graph 3, I present the normalized stock market value for the other-connected companies and non-connected companies matched by industry. The other-connected firms have lower normalized market value throughout the 1990s. The difference between otherconnected and non-connected companies' market value is not larger in the years right after the impeachment. In fact, the estimates presented in columns 1 to 3 of tables 4a and b show that the impeachment did not have a negative impact on the other-connected companies. The other-connected companies seem to be the worst ones in their sectors before and after the impeachment. The increase in the difference between other-connected and non-connected companies' market value can plausibly be attributed to market liberalization. The other-connected companies were probably adversely affected by this economic policy for two reasons. First, these companies operate in industries affected by market liberalization, such as Banks, Petro Chemical and Steel Plant. Second, these companies are connected because they probably need political connections to operate as well as the rest of the market. Market liberalization tends to decrease the value of political connections. Therefore, other-connected companies are harmed by market liberalization. However, this does not imply that the impeachment led to a decrease in the value of political connections and hence corruption.

To test if market liberalization can explain the performance of other-connected companies, I analyze the effects that trade liberalization policies had on the stock market returns of other-connected companies. At the end of June 1990, both the Brazilian government and the US government announced a set of measures that would dramatically affect international trade rules. The Brazilian government made known at that time a program of trade liberalization that was implemented in the following years. In order the analyze the effect of these policies on connected companies, I reestimate equations (9) and (10) using a different staring point (July 2^{nd} 1990).

The results from columns 4 and 5 of table 4a suggest that trade liberalization had a negative impact on other-connected companies, both in 1990 and 1991. The fact that trade liberalization had a differential impact on the other-connected companies suggests that liberalization policies can lead to reduction in corruption.

4.3.1 Persistence of corruption

To further investigate the persistence of corruption in Brazil, I analyze the performance of a set of firms plausibly connected to Itamar Franco, the politician that replaced Collor in the presidency. Itamar Franco was Collor's vice president. He was in power from 1990 to 1994, the first two years as vice president and then as president. Itamar Franco comes from the state of Minas Gerais, contrary to most important Brazilian politicians. Therefore, it is plausible to assume that firms based in that state do not have significant connections to power in Brasilia. Itamar's presidency was their chance to extract rents from the central power.

Graph 4 shows the normalized stock market value for companies in Minas Gerais and a portfolio of non-state-owned non-connected firms matched by industry. Companies in Minas Gerais and non-connected companies perform quite similar before 1990. After mid 1990, firms from Minas Gerais perform better. In particular, during 1991 and 1992 the difference in normalized market value is around 50 percentage points. Afterwards the difference is not as astonishing but still noticeable until mid 1994. At this point in time, election campaigning for the new presidency started and Lula da Silva had the lead for a short period of time. Then given the success of the Plan Real, Fernando Henrique Cardoso was the poll's leader and ultimately the elections' winner. Fernando Henrique was Itamar's finance minister and supported by him. Therefore, the politicians in power through the 1990s were connected to Itamar Franco and his presidency. This can explain the persistence in higher normalized stock market value for firms from Itamar's state. These findings are indicative of persistence of corruption in Brazil.

There is no evidence of a long lasting effect of the impeachment on connected companies' stock market value. Even the family-connected companies that experience negative abnormal returns during the impeachment process are not affected in the long run. The otherconnected companies were immune the impeachment episode in the short and long term. These results shed doubt on the effectiveness of the impeachment in reducing corruption. If there was in fact a reduction in corruption it cannot be attributed to the impeachment. It was probably caused by other factors that occurred before, such as market liberalization, in particular trade liberalization. Therefore, and anti-corruption campaign targeted at one politician or a small set of politicians is less likely to be effective over time. In contrast, a campaign, such as trade liberalization, that decreases the incentives for bribery permanently is more likely to accomplish corruption reduction.

5 Evidence from Accounting Data

Accounting data can provide further information about firms' performance in the medium and long run. In this section, I assess if evidence using data on firm profitability and liquidity is compatible with the stock market findings from the previous section. Accounting data can give insights about the mechanisms behind the stock market evolution and how different levels of political connections lead to distinctive stock market valuations.

I check what happened to those companies with strong political connections after the impeachment episode. I look at long term measures of performance, based on financial statement data to see whether these companies jumped to a lower trend or recovered. In particular, I test whether family-connected companies recovered as suggested by the stock market evidence. I also check whether other-connected companies' performance is affected by the impeachment or if their performance is constant throughout the 1990s as the stock market results indicate.

5.1 Long term performance measures

My empirical strategy for the financial statement data analysis is to use a difference in difference estimation procedure to assess the long lasting effects of the impeachment. In particular, I compare connected and non-connected companies before and after impeachment and during Collor administration. I use the following specification.

$$LTP_{te} = \gamma + \sum_{j} \beta_{j}C_{js} + \psi_{0}post_{t} + \sum_{j} \psi_{j}C_{js} * post_{t} + \lambda_{0}Collor_{t} + \sum_{j} \lambda_{j}C_{js} * Collor_{t} + \sum_{g} \tau_{g} * W_{g} + \mu_{se} , \qquad (11)$$

where *post* is a dummy variable equal to 1 after 1992, *Collor* is a dummy variable equal to 1 in 1990 to 1992, and LTP is a long term performance measure computed using quarterly balance sheet data. W is a set of control variables that includes industry and year dummies, as well as interactions between these two variables.

I analyze two ratios¹⁹: profit margin and current ratio. Profit margin is defined as the ratio of net income to net sales. This accounting ratio is a measure of profitability. Current ratio is defined as current assets divided by current liabilities. The current ratio is a measure of liquidity, i.e., it assesses whether a firm has enough currents assets to cover its liabilities with up to one year maturity. The inverse of current ratio measures leverage in the short term. In Brazil current liabilities are a large proportion of total liabilities. Thus, the current ratio is informative about how leveraged a firm is. There is anecdotal evidence that connected companies had easier access to credit and therefore were more leveraged.

I start by estimating equation (11) using data from 1986 to 1994. The stock market evidence suggested that family-connected companies recovered by the end of 1993. If there was any effect of the impeachment episode it should appear in the years right after the im-

¹⁹The choice of long term performance measures is constrained by the quality of data. During the early 1990s, Brazil had a hyperinflation leading to large measurement error in accounting data. This error still persists even though all the data is in US dollars. To minimize the error, I use accounting ratios as performance measures. These ratios should be less affected by inflation, since both the denominator and the numerator are measured in the same year currency.

peachment. However, given that the political favors obtained during Collor administration can have long lasting effects, family-connected companies might not have lower profitability and leverage right after the impeachment.

In order to infer what was in fact the medium term effect, I examine what happened to connected companies two years after the impeachment. The results are presented in columns (3) and (4) of table 5. Family-connected companies were more profitable in the two years after the impeachment. This result appears to contradict the findings from the stock market analysis. During 1992 and most of 1993, the market predicted that these companies would be less profitable in the future. However, the accounting data does not indicate a worsening in performance in the medium term. Being connected once can have long lasting effect and therefore family-connected firms' profitability did not go down.

I reestimate equation (11) using all the data available (from 1986 to 2000), with the purpose of analyzing the long term effect. One can observe from inspecting table 5 columns (1) and (2) that there is no clear evidence that family-connected firms behave differently when compared to other firms after the impeachment. Although, their current ratio is lower after the impeachment. This table provides evidence that family-connected firms were better off during Collor presidency. They experienced a significantly higher profit margin and lower current ratio. Lower liquidity is usually a bad sign for firms. However, in the present case the lower current ratio can be explained by easier access to credit. This finding is consistent with family-connected firms obtaining more credit due to political connections and not due to performance.

The gains in profitability that these firms obtained while Collor was in office disappeared after the impeachment. Therefore, the family-connected companies experience similar levels of profitability before Collor administration and after the impeachment. However, these firms are able to maintain a higher leverage after the impeachment. Overall the performance of family-connected companies, if anything, is better after 1990 than it was before. This finding is present in accounting data as well as stock market data.

On the whole my findings are consistent with the previous evidence from the stock market. Family-connected companies recovered rapidly after the impeachment episode and no long term consequences remained. I conjecture that these companies built new connections and that connections can have a long term effect even after they cease to exist. The otherconnected companies were not affected by the impeachment. Their lower performance is caused by factors prior to the impeachment, such as market liberalization. Again this result appears both in accounting and in stock market data. Overall, there is no clear indication that the impeachment led to a significant reduction in corruption.

6 Conclusion

I conclude from the stock market and accounting data that there was no significant reduction in corruption after Collor administration. The key pieces of evidence are the following: First, the other-connected companies were never significantly affected by the impeachment. Even though these companies were proven to have bribed Collor's campaign manager, their stock market values did not significantly decrease due to the impeachment episode. Furthermore, although these companies experienced positive abnormal returns during the election event, their competitors' stock returns also increased during the election event, suggesting that the policy change was favorable to both connected and non-connected companies. In other words, the stock market reacted to the policy change as opposed to the connection change. I see this evidence as suggesting that corruption did not go down due to the impeachment. The only companies that were affected were the ones in the unique position of having family connections to the president. The remaining companies could always switch the allegiance to whom was in power since the favors they got did not depend on family ties.

Second, the companies from Itamar Franco's state increased their stock market value during his stay in office as vice-president and as president. Afterwards, the stock market value of these companies was higher when compared to firms in the same industry. What this suggest is that there was no overall decline in the value of political connections and therefore corruption. Only the connections to Collor decreased in value.

Third, the family-connected firms recovered from the impeachment episode. Their stock market value increased at least to their industry average stock market valuation. Their profit margin was not significantly different after the impeachment than before Collor administration. These companies were more profitable and were able to borrow more during Collor administration when compared to the late 1980s. This advantage in leverage did not disappear after the impeachment. One plausible explanation for these findings is that family-connected companies were able to rebuilt their political connections. Another alternative explanation is that a short term access to preferential treatment can have long lasting effects, even if corruption decreases in the long term. The evidence about the otherconnected companies as well as the companies from Itamar's state suggest that corruption persisted. However, who benefits from it might have changed.

For the reasons stated above, it is very likely that no significant reduction in corruption occurred due to the impeachment. However, there might be other explanations consistent with the results that do not imply persistence in corruption. In this section, I provide arguments that support my story over alternative accounts of the same facts.

The fact that family-connected firms recovered after the impeachment might not imply that corruption persisted. Another possibility is that there was a change in system which made political connections unnecessary. This still leaves open the issue of why these companies initially fell behind and then caught up. Furthermore, it can not explain why the other-connected companies were not affected by the impeachment. If in fact there was a change in the system, the other-connected companies would be negatively affected, because their whole connection's network would collapse. This alternative explanation is also not coherent with the fact that the companies from Itamar's state do better while and after he his in power.

Explanations where family-connected companies were persecuted during and right after the impeachment process do not fit anecdotal evidence. None of the companies proven or suspected to be connected to Collor was formally prosecuted as a result of this process. Moreover, the fact that the other-connected companies, those proven in the CPI report to have paid bribes to PC Farias, do not experience negative abnormal returns during the impeachment episode indicates that companies are not persecuted for being politically connected. In any case, this story does not imply a reduction in corruption.

My findings are not consistent with explanations where bribes and political connections are ineffective. The fact that family-connected companies experience negative abnormal returns during the impeachment episode indicates that political connections do have value. Consequently, political connections must be effective in providing political favors to these companies.

The alternative explanations where corruption ceases to be an important factor for Brazilian companies as a result of the impeachment tend to be discarded by the findings in the previous sections. The evidence suggests that corruption persists, even though the companies and politicians benefiting from it might have changed.

7 Appendix - Event Description

- November 16th 1989, First round of elections (includes Nov 16, 17, 20, and 21)
- March 30th 1992, Collor changes the ministers in his cabinet (includes Mar 30 and 31)
- May 18th 1992, Collor's brother makes the accusation (includes May 18, 19 and 20)
- May 27th 1992, CPI starts
- June 29th 1992, Collor's chauffeur's interview is made public with information about the link between PC Farias and the president. (includes June 25, 26, 29, 30 and July 1st)

References

- Acemoglu, Daron, Simon Johnson, James Robinson, and Yunyong Thaicharoen (2002), "Institutional Causes, Macroeconomic Symptoms: Volatility, Crises and Growth" (National Bureau of Economic Research, Working paper No. 9191).
- [2] Acemoglu, Daron, Simon Johnson, and James Robinson (2001), "The Colonial Origins of Comparative Development: an Empirical Investigation", American Economic Review, 91, 1369-1401.
- [3] Banerjee, Abhijit V. (1997), "A Theory of Misgovernance", Quarterly Journal of Economics, 112, 1289-1332.
- [4] Barber, Brad M. and John D. Lyon (1997), "Detecting Long-Run Abnormal Stock Returns: The Empirical Power and Specification of Test Statistics", *Journal of Financial Economics*, 43, 341-72.
- [5] Lyon, John D., Brad M. Barber, and Chih-Ling Tsai (1999), "Improved Methods for Tests of Long-Run Abnormal Stock Returns", *Journal of Finance*, 54, 165-201.
- [6] Câmara dos Deputados (2000), "CPI RECURSOS DO FINOR", (Brazil: http://www.camara.gov.br/Internet/comissao/default.asp).
- [7] Câmara dos Deputados (2001a), "CPI BANESPA", (Brazil: http://www.camara.gov.br/Internet/comissao/default.asp).
- [8] Câmara dos Deputados (2001b), "CPI OBRAS INACABADAS", (Brazil: http://www.camara.gov.br/Internet/comissao/default.asp).
- [9] Campbell, John Y. Andrew Lo, and A. Craig MacKinlay (1997), "The Econometrics of Financial Markets", (Princeton, NJ: Princeton University Press).
- [10] Chevalier, Judith A. (1995), "Capital Structure and Product-Market Competition: Empirical Evidence from the Supermarket Industry", *American Economic Review*, 85, 415-35.
- [11] Conti, Mário Sergio (1999), "Notícias do Planalto a Imprensa e Fernando Collor", (Brasil: Companhia das Letras).

- [12] Dimson, Elroy (1979), "Risk Measurement when Shares are Subject to Infrequent Trading", Journal of Financial Economics, 7, 197-226.
- [13] Di Tella, Rafael and Ernesto Schargrodsky (2003), "The Role of Wages and Auditing during a Crackdown on Corruption in the City of Buenos Aires", *Journal of Law and Economics*, 46, 269-292.
- [14] Djankov, Simeon, Rafael La Porta, Florencio Lopez-de-Silanes, and Andrei Shleifer (2002), "The Regulation of Entry", *Quarterly Journal of Economics*, **117**, 1-37.
- [15] Faccio, Mara (2002), "Politically-connected frirms: Can they squeeze the State?", (University of Notre Dame, Mendoza College of Business, mimeo).
- [16] Fama, E., L. Fisher, M. Jensen, and R. Roll (1969), "The Adjustment of Stock Prices to New Information", *International Economic Review*, 10, 1-21.
- [17] Fama, E. and K. French, (1992) "The Cross-Section of Expected Stock Returns", Journal of Finance, 47, 427-65.
- [18] Fisman, Raymond (2001), "Estimating the Value of Political Connections", American Economic Review, 91, 1095-1102.
- [19] Formiga, Marcone (1992), "República dos Deslumbrados", (Brazil: Editora Brasiliense).
- [20] Giannotti, Vito, (1993), "Collor, a CUT e a Pizza", (Brazil: Editora Pagina Aberta).
- [21] Glaeser, Edward L., José Scheinkman, and Andrei Shleifer (2002), "The Injustice of Inequality", (National Bureau of Economic Research, Working Paper No. 9150).
- [22] Jayachandran, Seema, (2002) "The Jeffords Effect", (Harvard University, mimeo).
- [23] Johnson, Simon, and Todd Mitton, (2003) "Cronyism and Capital Controls: Evidence from Malaysia", Journal of Financial Economics, 67, 351-382.
- [24] Jose, Emiliano, (1996) "Imprensa e Poder ligações perigosas", (Sao Paulo, Brazil: Editora da Universidade Federal da Bahia).

- [25] Kaufmann, Daniel and Shang-Jin Wei, (1999) "Does "Grease Money" Speed Up the Wheels of Commerce?", (National Bureau of Economic Research, Working Paper No. 7093).
- [26] Krieger, Gustavo, Luiz António Novaes, and Tales Faria, (1992) "Todos os Sócios do Presidente", (Brazil: Editora Página Aberta Ltda, 3rd edition).
- [27] Krueger, Anne O. (1974), "The Political Economy of the Rent-Seeking Society", American Economic Review, 63, 291-303.
- [28] La Porta, Rafael Florencio Lopez-de-Silanes, Andrei Shleifer, and Robert W. Vishny (1997), "Legal Determinants of External Finance", *Journal of Finance*, **52**, 1131-50.
- [29] La Porta, Rafael Florencio Lopez-de-Silanes, Andrei Shleifer, and Robert W. Vishny, (1998) "Law and Finance", *Journal of Political Economy*, **106**, 1113-55.
- [30] Mauro, Paolo (1995), "Corruption and Growth", Quartely Journal of Economics, 110, 681-712.
- [31] Mello, Pedro Collor (1993), "Passando a limpo a trajetoria de um farsante", (Brazil: Editora Record).
- [32] Mendes, João Batista Petersen (1992), "A CPI do PC e os crimes do poder", (Brazil: Foglio Editora).
- [33] Morck, Randall, David Stangeland and Bernard Yeung (2000), "Inherited Wealth, Corporate Control, and Economic Growth?", (In Concentrated Corporate Ownership. Randall Morck, ed. National Bureau of Economic Research Conference Volume, Chicago, University of Chicago Press).
- [34] Neto (1995), "O Impeachment da Televisao como se cassa um presidente", (Brazil: Diadorim).
- [35] Neumanne, Jose, (1992), "A República na Lama uma tragédia brasileira", (Brazil: Geracao Editorial).
- [36] Rosenn, Keith S. and Richard Downes (1999), "Corruption and Political Reform in Brazil: The impact of Collor's impeachment", (Coral Gables, Fla: North-South Center Press).

- [37] Scholes, Myron and Joseph Williams (1977), "Estimating Betas from Nonsynchronous Data", Journal of Financial Economics, 5, 309-27.
- [38] Shleifer, Andrei, K. Murphy and R. Vishny (1993), "Why Is Rent-Seeking so Costly to Growth?", American Economic Review Papers and Proceedings, 83, 409-14.
- [39] Shleifer, Andrei and R. W. Vishny (1993), "Corruption", Quarterly Journal of Economics, 108, 599-617.
- [40] Shleifer, Andrei and R. W. Vishny (1994), "Politicians and Firms", Quarterly Journal of Economics, 109, 995-1025.
- [41] Sitónio (1992), "Collor a Raposa do Planalto", (Brazil: Editora Anita Garibaldi).
- [42] Yang, Dean (2002) "How Easily Do Lawbreakers Adapt to Increased Enforcement? Philippine Smugglers' Responses to a Common Customs Reform", (Harvard University, mimeo).

Table 1 Descriptive Statistics						
	Family	Other	State	State Non-	Non-Connected	
	Connected	Connect	Connected	Connected		
Panel A Descriptive St	atistics- Averages	s and Standa	rd Deviations			
A.1 Stock Market						
Size	12.684	13.795	16.660	15.263	12.853	
	(0.735)	(1.358)	(1.882)	(1.372)	(1.351)	
Leverage	0.214	0.281	0.317	0.311	0.236	
	(0.184)	(0.293)	(0.271)	(0.191)	(0.180)	
Price to Book Value	1.113	0.856	0.825	0.397	0.890	
	(0.562)	(0.728)	(1.000)	(0.519)	(1.010)	
Beta	0.564	0.557	0.794	0.872	0.635	
	(0.416)	(0.507)	(0.332)	(0.706)	(0.391)	
N stocks	5	15	11	33	177	
N companies	5	12	8	13	151	
A.2 Accounting Data						
Net Income	3245	-1114	108943	46699	6080	
	(26883)	(37578)	(265546)	(264289)	(37678)	
Total Assets	288731	561385	6761188	4730639	445642	
	(189435)	(642600)	(12000000)	(11200000)	(1232830)	
Returns on Assets	0.012	-0.014	0.016	-0.004	0.002	
	(0.081)	(0.140)	(0.052)	(0.065)	(0.115)	
Profit Margin	0.238	-0.139	0.062	0.008	0.021	
0	(0.852)	(0.776)	(0.223)	(0.406)	(0.560)	
Current Ratio	0.798	1.054	1.181	0.891	1.457	
	(0.575)	(0.844)	(0.629)	(0.663)	(0.872)	
Asset Turnover	0.384	0.366	0.461	0.231	0.520	
	(0.388)	(0.395)	(0.826)	(0.211)	(0.479)	
Current Liabilities/	0.265	0.264	0.213	0.216	0.319	
Total Assets	(0.194)	(0.206)	(0.125)	(0.171)	(0.339)	
N Firms	4	14	15	41	175	
N Obs	111	469	495	1212	6250	

Panel B Firms Characteristics and Correlations Pre-Impeachment (1990, 1991)

Dependent Variable	Retu	rn on Assets	• `	Le	everage	
Family Connected	-0.039	-0.040	-0.044	0.068	0.055	0.048
	(0.035)	(0.036)	(0.042)	(0.048)	(0.041)	(0.041)
Other Connected	-0.024	-0.024	-0.040	0.041	0.032	0.032
	(0.026)	(0.027)	(0.033)	(0.040)	(0.038)	(0.040)
Firm Size		0.007	0.008		-0.012	-0.010
		(0.005)	(0.006)		(0.012)	(0.012)
Return on Assets					-0.363**	-0.375**
					(0.113)	(0.130)
Firm Growth			0.002		. ,	-0.070**
			(0.013)			(0.016)
N Obs	1223	1223	912	1223	1223	912
R-squared	0.14	0.14	0.16	0.45	0.48	0.49

Notes: Panel A reports averages and standard deviations in parenteses. Panel B presents OLS estimations for firm correlations before the impeachment. In these regressions, Industry dummies are included. Standard errors are clustered by company. Return on assets is profits divided by total assets. Leverage is defined as the ratio of current liabilities to total assets. Firm Size is the log of total assets and firm growth is the growth rate of total assets. Profit margin is defined as the ratio of net income to net sales. Current ratio is defined as current assets divided by current liabilities. Asset Turnover is defined as net sales divided by total assets. *** means significant at 1% level, ** at 5% level, and * at 10% level

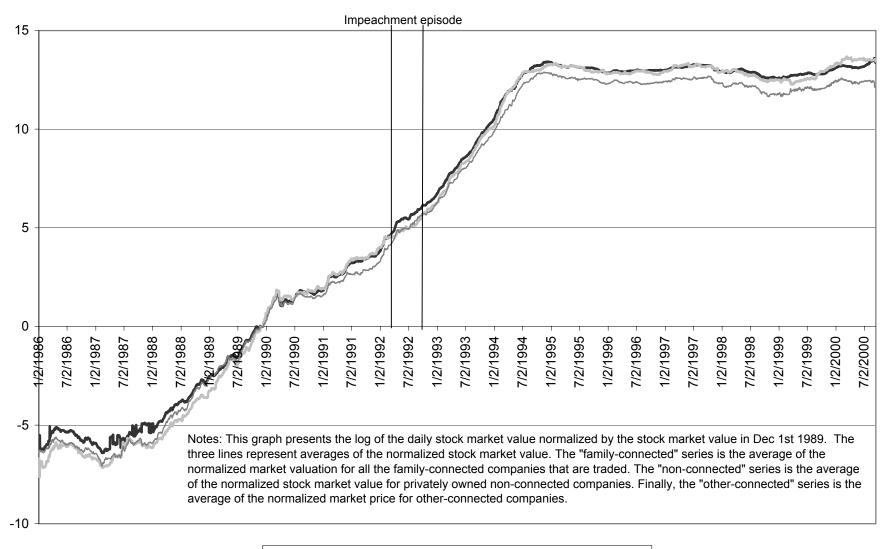

		I able 2	Market Mod	el		
Dependent Va	ariable =					
Abnormal Ret		(1)	(2)	(3)	(4)	(5)
family connec	cted*event good				0.0399***	0.0292***
					(0.0090)	(0.0089)
family connec	cted*event bad				-0.0191***	-0.0299***
					(0.0057)	(0.0077)
other connect	*event good				0.0131*	0.0142**
					(0.0068)	(0.0071)
other connect	*event bad				0.0004	0.0027
					(0.0042)	(0.0046)
	Nov 16 1989	0.0212***	0.0382***	0.0399***		
		(0.0067)	(0.0099)	(0.0090)		
	Mar 30 1992	-0.0432***	-0.0396	-0.0379*		
family		(0.0129)	(0.0247)	(0.0219)		
connected	May 18 1992	-0.0066	-0.0166	-0.0149		
*event		(0.0100)	(0.0145)	(0.0123)		
event	May 27 1992	-0.0480**	-0.0918**	-0.0901***		
		(0.0203)	(0.0368)	(0.0332)		
	Jun 29 1992	-0.0043	-0.0013	0.0004		
		(0.0035)	(0.0055)	(0.0053)		
	Nov 16 1989	0.0118	0.0140*	0.0131*		
		(0.0084)	(0.0078)	(0.0068)		
	Mar 30 1992	-0.0061	0.0004	-0.0004		
other		(0.0090)	(0.0107)	(0.0099)		
connected	May 18 1992	0.0028	0.0136	0.0128		
*event		(0.0105)	(0.0118)	(0.0104)		
event	May 27 1992	-0.0111	-0.0179	-0.0187		
		(0.0205)	(0.0266)	(0.0241)		
	Jun 29 1992	-0.0047	-0.0020	-0.0029		
		(0.0046)	(0.0052)	(0.0045)		
family connect	eted			-0.0017*	-0.0017*	0.0088***
				(0.0009)	(0.0009)	(0.0033)
other connect				0.0009	0.0009	-0.0003
				(0.0006)	(0.0006)	(0.0014)
Controls Inclu	ıded	No	Yes	Yes	Yes	Yes
Restricted to		No	No	No	No	Yes
Event Dummi	ies & Interactions	No	No	Yes	Yes	Yes
Observations		218 to 229	165 to 190	146291	146291	93057
R-squared		0.01 to 0.03	0.20 to 0.27	0.0018	0.0013	0.0033
Clusters		184 to 192	141 to 163	165	165	165

Table 2 Market Model

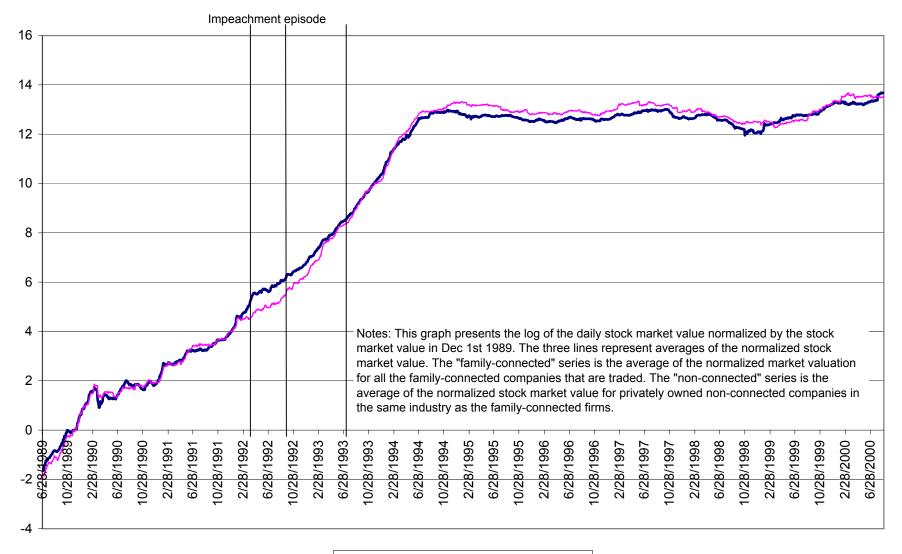
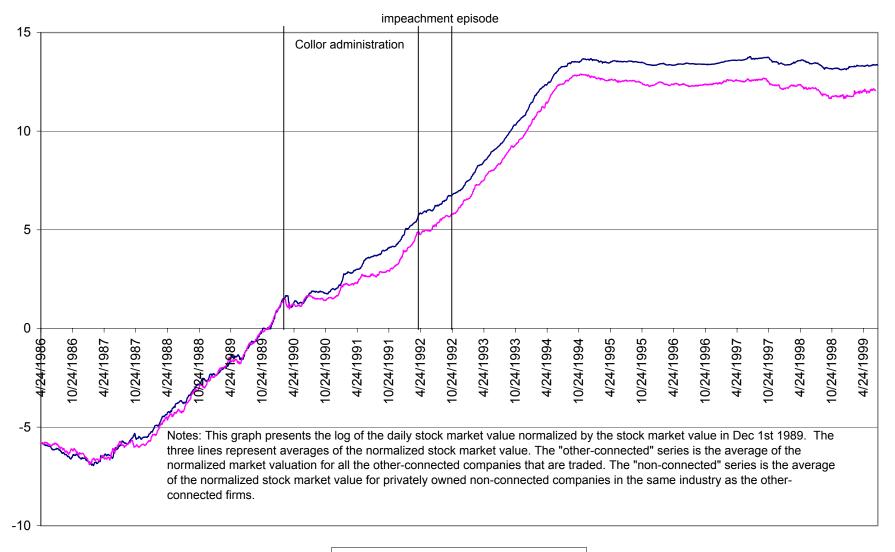
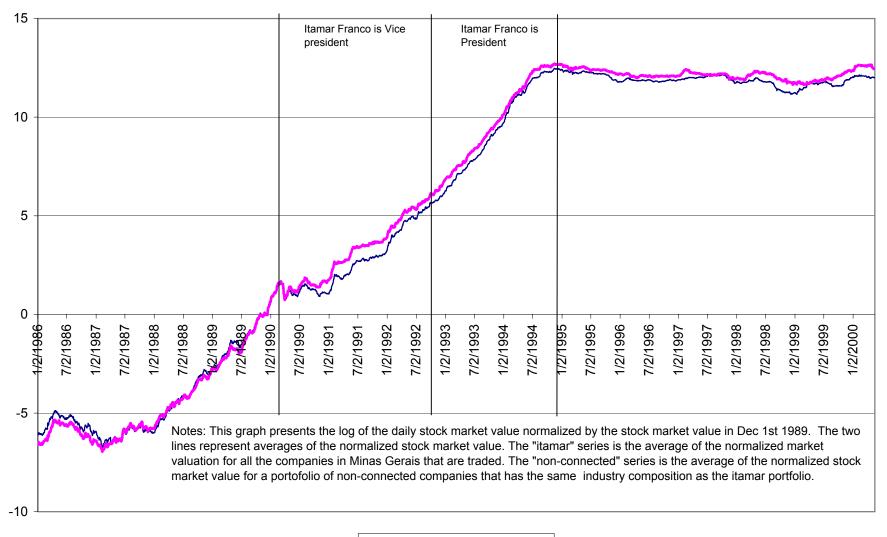

Notes: Column (1) and (2) include 5 regressions each: one per each event. All regressions include state connected and nonconnected dummies. The control variables are: 30 industry dummies, log of total assets, leverage, price to book value, and beta. Event good is a dummy variable equal to 1 if good news about the president was released. Event bad is a dummy variable equal to 1 if damaging news about the president was released. The regression in column (3) includes 5 event dummies and interactions between those dummies and the control variables. The regressions in columns (4) and (5) include event good and event bad dummies as well as the interactions between those and the control variables. The standard errors in parenteses are corrected by clustering the observations by company.*** means significant at 1% level, ** at 5% level, and * at 10% level.

Table 3 Competitors				
Dependent Variable =	Abnormal Returns			
	(1)	(2)		
Share Family Connected*Event Good	0.0055	-0.0053		
	(0.0133)	(0.0051)		
Share Family Connected*Event Bad	0.0150	0.0081*		
	(0.0142)	(0.0051)		
Share Family Connected	0.0000	0.0060***		
	(0.0000)	(0.0009)		
Share Other Connected*Event Good	0.0126**	0.0060		
	(0.0057)	(0.0052)		
Share Other Connected*Event Bad	-0.0043	-0.0036		
	(0.0038)	(0.0034)		
Share Other Connected	0.0020***	0.0056**		
	(0.0007)	(0.0026)		
Event Good	-0.0023	-0.0006		
	(0.0021)	(0.0022)		
Event Bad	0.0062***	0.0026		
	(0.0019)	(0.0019)		
Geographical dummies	No	Yes		
Observations	114335	114335		
R-squared	0.03	0.03		
Clusters	131	131		


Notes: All regressions include 30 industry dummies, log of total assets, leverage, price to book value, and beta. The regressions in the first 2 columns also include the Brazilian market index as a control. The standard errors are corrected by clustering the observations by company. Share family connected (other connected) is defined as the market value of family connected (other connected) companies divided by the total market value of the industry. Event good is a dummy variable equal to 1 if good news about the president was released. Event bad is a dummy variable equal to 1 if damaging news about the president was released. *** means significant at 1% level, ** at 5% level, and * at 10% level.


Graph 1 Normalized stock market value

Graph 2 Normalized stock market value matched by industry for family-connected companies

Graph 3 Normalized stock market value matched by industry for other-connected companies

Graph 4 Normalized stock market value of companies in Minas Gerais

	Т	able 4a Medium	and Long Term - S	tock Market Dat	a		
Dependent Variable =	Buy and Hold Abnormal Returns						
	1/2/1992 to	From 1/2/1992	From 1/2/1992 to	From 7/2/1990	From 7/2/1990	From 1/2/1992 to	From 1/2/1992
	12/30/1992	to 12/30/1993	12/30/1994	to 12/28/1990	to 12/30/1991	12/30/1992	to 12/30/1993
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Family Connected	-14.4709*	-847.6134**	-7,120.4413	-0.5058	-2.6684	-13.9220	-6,800.7103
	(8.2599)	(353.4309)	(6,032.9691)	(0.7916)	(4.1774)	(8.5455)	(5,964.2926)
Other Connected	1.4065	44.1806	141.3954	-0.7241***	-18.6517***	1.9568	461.9662
	(4.6598)	(202.9363)	(3,329.3636)	(0.1620)	(6.9784)	(4.5805)	(3,414.2061)
Itamar						7.5413	4,393.2747
						(6.9505)	(11,074.7508)
Observations	193	193	193	190	190	193	193
R-squared	0.2169	0.2715	0.2756	0.4716	0.7580	0.2188	0.2760
Clusters	167	167	167	164	164	167	167

Notes: All regressions include 30 industry dummies, log of total assets, leverage, and price to book value. Itamar is adummy variable equal to 1 if the company is from Minas Gerais (Itamar's home state), zero otherwise. The standard errors are corrected by clustering the observations by company. *** means significant at 1% level, ** at 5% level, and * at 10% level.

	T	able 4b Medium	and Long Term - S	tock Market Dat	a		
Dependent Variable =	Cumulative Abnormal Returns						
	From						
	1/2/1992 to	From 1/2/1992	From 1/2/1992 to	From 7/2/1990	From 7/2/1990	From 1/2/1992 to	From 1/2/1992
	12/30/1992	to 12/30/1993	12/30/1994	to 12/28/1990	to 12/30/1991	12/30/1992	to 12/30/1993
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Family Connected	-1.0990*	-1.2455	-0.8169	-0.0930	-1.1931*	-0.9253	-0.4109
	(0.6599)	(0.9310)	(1.5581)	(0.5517)	(0.6048)	(0.7176)	(1.3985)
Other Connected	0.7905	1.0932	2.4210	-0.2717	0.5554	0.9418	2.7748
	(0.6152)	(1.0797)	(1.8761)	(0.2959)	(0.6807)	(0.6382)	(1.9514)
Itamar						2.3378	5.4653
						(2.1384)	(5.7817)
Observations	202	202	202	192	202	202	202
R-squared	0.2292	0.2398	0.2359	0.3072	0.2736	0.2384	0.2432
Clusters	171	171	171	166	171	171	171

AL M. P. Ct.

Notes: All regressions include 30 industry dummies, log of total assets, leverage, and price to book value. Itamar is adummy variable equal to 1 if the company is from Minas Gerais (Itamar's home state), zero otherwise. The standard errors are corrected by clustering the observations by company. *** means significant at 1% level, ** at 5% level, and * at 10% level.

Table 5 Long & Medium term								
	1986-2000							
Dependent Variable	Profit Margin	Current Ratio	Profit Margin	Current Ratio				
	(1)	(2)	(3)	(4)				
Family Connected	-0.0460	-0.4389***	-0.0460	-0.4389***				
	(0.1575)	(0.1316)	(0.1583)	(0.1323)				
Family Connected*Collor	0.3421*	-0.6736**	0.3421*	-0.6736**				
	(0.1924)	(0.2715)	(0.1935)	(0.2730)				
Family Connected* Post	0.0528	-0.5611*	0.3461**	-0.7599***				
	(0.1283)	(0.2961)	(0.1346)	(0.2536)				
Other Connected	0.0286	-0.3317	0.0286	-0.3317				
	(0.0489)	(0.2223)	(0.0492)	(0.2235)				
Other Connected*Collor	-0.1366	-0.0239	-0.1366	-0.0239				
	(0.1192)	(0.1521)	(0.1199)	(0.1529)				
Other Connected*Post	-0.2419*	-0.1452	-0.1892*	-0.2966				
	(0.1419)	(0.2516)	(0.1093)	(0.2798)				
Collor	-0.3106	-0.2320	-0.3106	-0.2320				
	(0.2239)	(0.4037)	(0.2252)	(0.4059)				
Post	0.3725	-0.3578	-0.0399	-0.4016				
	(0.5199)	(0.4075)	(0.0578)	(0.2992)				
Observations	8469	8469	4358	4358				
R-squared	0.19	0.28	0.19	0.36				
Clusters	245	245	202	202				

Table 5 Long & Medium term

Note: Standard error are clustered at the company level. 30 Industries dummies and year dummies are included, as well as year and industry interactions. Collor is dummy variable equal to 1 in 1990, 1991, and 1992, zero otherwise. Post is a binary variable equal to 1 after 1992, zero otherwise. Leverage is defined as the ratio between current liabilities and total assets. Profit margin is defined as the ratio of net income to net sales. Current ratio is defined as current assets divided by current liabilities. *** means significant at 1% level, ** at 5% level, and * at 10% level.