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Abstract

VERY PRELIMINARY DRAFT.
This paper studies networks of informal insurance, and builds a model of risk-

sharing which captures two basic characteristics. First, informal insurance is fun-
damentally bilateral, and rarely consists of an explicit arrangement across several
people. Second, insurance is often based on norms. In the model studied here, only
directly linked agents make transfers to each other, though they are aware of the
(aggregate) transfers each makes to others. A bilateral transfer arrangement be-
tween two linked agents is viewed as a norm determining agent consumptions given
their income realizations and the transfers made to or received from other agents.
Based on these bilateral transfer arrangements between all pairs of agents, a bilateral
insurance scheme is viewed as a fixed point of the resulting mapping.

With this setup as background, the paper then studies the stability of insurance
networks, explicitly recognizing the possibility that the lack of commitment may
destabilize insurance arrangements among the network. [These are the familiar self-
enforcement constraints much studied in the literature, though not for networks.]
We look at different punishment structures that determine the severance of links to
a deviant. The weakest punishment scheme is one in which individuals break direct
links only to agents who do not fulfill their obligations with respect to them. One
can strengthen such schemes by asking that individuals who are connected directly
to a deviant and are less than n links away from her victim, but not via the deviant,
to also break links with the deviant, where n can be made progressively larger to
capture wider information flows.

In such a framework, the density of links (as well as their specific placement in
the network) has important consequences for network stability. In the equal sharing
case, under strong punishment, we show that adding links always makes the network
more stable, and that all decomposable networks have the same stability properties.
However, when punishment is weaker, all fully decomposable networks continue to
have the same stability properties, but adding new links can destabilize the network.
Indeed, for high values of the discount factor, trees are the only stable network
structures under weak punishment.
JEL Classification Numbers: D85, D80, 012, Z13
Keywords: social networks, informal insurance.



1 Introduction

Informal risk-sharing arrangements exist in most developing countries – especially in

rural areas where credit and insurance markets are scarce. In order to face income

fluctuations due to a variety of exogenous factors, villagers enter into mutual insur-

ance schemes, whose institutional details may vary from country to country. These

institutions are often intertwined with the social networks of the community. It is

now widely recognized that social networks (based on kin, gender or occupation)

play a dominant role in the rural life of developing countries, and their neglect is a

recurring criticism of development projects and policies.

The objective of this paper is to develop a model of risk-sharing network in or-

der to explain the influence of social networks on informal insurance agreements

and to derive endogenously the architecture of self-insurance networks. Most of the

theoretical literature on mutual insurance schemes implicitly assumes either that in-

stitutions are based at the community level or among two individuals only. (Posner

(1980), Kimball (1988), Coate and Ravallion (1993), Kocherlakota (1996), Kletzer

and Wright (2000) and Ligon, Thomas and Worrall (2002)). Genicot and Ray (2003)

go one step further, and suppose that informal insurance schemes may be formed by

subgroups in the community. However, empirical evidence suggests that insurance

schemes may in fact be designed at an even more disaggregated level, that social

networks play an important role in the definition of mutual risk-sharing arrange-

ments, and that agents with higher levels of social capital typically benefit from

higher insurance possibilities. (See the studies by Fafchamps and Lund (2003) for

the Philippines, de Weerdt (2000) and Dercon and de Weerdt (2000) for Tanzania

and Murgai et al. (2002) for Pakistan).
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Informal insurance arrangements typically suffer from the absence of enforcement

by third parties. An individual agent cannot be forced to participate in the scheme

and pay the transfers he is called to make. As a result, stable mutual insurance

schemes must be self-enforcing. At no point must individuals called upon making a

transfer have incentive to deviate and not make the transfer given that they will be

punished by some sort of exclusion from the scheme in the future (and possibly other

social exclusions). At the community level, the papers mentioned above suppose that

a deviating agent is punished by being entirely barred from the scheme, and hence

will have to bear all the fluctuations in income after a deviation. Genicot and Ray

(2003) allow for group deviations, by which a subgroup of agents can still form a

smaller mutual insurance scheme after the deviation, and find (rather unexpectedly)

that this changes completely the picture, and that there is an upper bound on the

size of the group which can form informal insurance arrangements. In the context

of networks, the possibilities of punishment after a deviation are even more varied:

an agent could only be punished by those agents to whom he has not transferred

money, or by the entire community, or by any subset of agents in between.

In this paper, we study informal insurance networks, and builds a model of risk-

sharing which captures two features. First, informal insurance in networks essentially

results from a collection of bilateral arrangements rather than an explicit agreement

across several people. In the model network studied here, only directly linked agents

make transfers to each other, though they are aware of the (aggregate) transfers each

makes to others. Linked agents have information only on each other’s commitments,

but not necessarily on the overall insurance scheme of the community. This assump-

tion implies in particular that agents do not need to know the entire configuration

of the network. Second, insurance is often based on internalized norms regarding
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mutual help. A bilateral transfer arrangement between two linked agents is viewed

as a norm determining agent consumptions given their income realizations and the

transfers made to or received from other agents. Based on these bilateral transfer

arrangements between all pairs of agents, we define a bilateral insurance scheme as a

fixed point of the resulting mapping. Examples of risk-sharing norms include equal

sharing, in which each of a pair of linked agents receives the same consumption in all

states, and Nash bargaining, in which consumptions are allocated to maximize the

Nash product, given the outside options of each agent, which in turn is determined

in a recursive way.

With this setup as background, the paper then studies the stability of insurance

networks, explicitly recognizing the possibility that the lack of commitment may

destabilize insurance arrangements among the network. Note that in the theoretical

literature on norms within groups of agents or institutions, two different modelling

approaches have been used. In the first one, as in this paper, institutions forms

first and agents abide by the norms of that group, which may make that group

unstable (Farrell and Scotchmer [1988], Hoff [1997]). Another possible approach

would be to require the norm to preserve the stability of the network or group (such

as in Dutta and Ray [1989]). However, evidence on informal insurance in traditional

village communities (see Platteau [2004]) suggest that social norms are pervasive and

relatively rigid so that traditional reciprocity networks can erode under the pressure

of market integration and new opportunities.

We assess the stability of insurance networks under different possible punishment

schemes that determine the severance of links to a deviant. The weakest punishment

is one in which only individuals with respect to whom a deviant did not fulfill her
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obligations break links with her, and the best (from the deviant’s viewpoint) stable

subnetwork forms. One can strengthen such schemes by asking that individuals who

are connected directly to a deviant and are n links away from her victim, but not via

the deviant, to also break links with the deviant, where n can be made progressively

larger to capture wider information flows. We call these punishment schemes n-

level gossips. Finally, in the strong punishment case, a deviating agent believes that

he will be excluded by the entire community, and receives after his deviation his

autarchic allocation, bearing all income fluctuations alone.

In monotonic insurance schemes, only the size of the components he belongs to

determines an individual’s payoff. Looking at the sustainability of networks with

monotonic insurance at high level of discount rate illustrates clearly the differences

between the punishment schemes. For values of δ close to 1, all network are stable

under strong punishment. In contrast, for weaker punishment schemes, the density

of links (as well as their specific placement in the network) weakens punishments

and has important consequences for network stability. In particular, for high values

of the discount factor trees are the only stable networks.

For lower values of the discount rate, assessing the stability of mutual insurance

schemes in the context of social networks is a difficult task. We do so assuming a

specific risk-sharing norm: equal sharing – by which all agents divide equally income

at every state. First, bilateral insurance schemes equalizing consumption across

every component of the network always exist. Second, our analysis highlights two

conflicting forces in the relation between the architecture of the network and the

stability of insurance schemes. As transfers can only flow along the links in the

network, in order to reduce agents’ incentives to deviate from the insurance scheme,
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one ought to minimize the amount of transfers going through any particular agent. In

particular, one could determine in any network the ”bottleneck” agent as the agent

who receives the highest amount of transfers in some state, and the enforcement

constraint faced by this bottleneck agent defines the stability of the entire network.

In the pessimistic beliefs case, this bottleneck effect is the only relevant feature of

the network. We show that there is a class of ”decomposable” trees (including stars

and lines) for which the bottleneck effect is identical, and hence stability conditions

are identical. Furthermore, the addition of new links can only relax the bottleneck

effect, as new links can be used to reroute transfers at every state. Hence, adding

links can only improve the stability of the network, and the complete network is

stable for lower values of the discount factor than any other network. For weaker

punishment schemes, a higher density in a network will have an ambiguous effect.

On the one hand, it reduces the bottleneck effects, thereby helping stability, but it

also reduces the potential punishment a deviant would suffer which hurts stability.

Under weak punishment, we show that the stability conditions are identical for all

fully decomposable trees (a class of trees including stars and lines).

2 Premises of the Model

We consider a community of n identical agents, indexed by i ∈ N ≡ {1, 2, ..., n}
At each period in time, agents receive a random income, ỹi which can take on two

values, yi = h with probability p and yi = l with probability (1− p) with h > l ≥ 0.

We let y denote the vector of income realizations for all the agents, and p(y) the

probability of income realization y. All agents are endowed with a utility function u

defined over consumption, which is smooth, strictly increasing and strictly concave,
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and have a common discount factor δ ∈ (0, 1). We suppose that there is no credit

market, and that consumption is perishable. Hence agents can only consume in

period t their total income from that period.

Let gN be the collection of all unordered pairs of agents in N . A social network

in the community is a subset g of gN , describing pairs of players who are directly

linked to each other. We let ij ∈ g denote the fact that community members i and

j are linked. The network gN is called the complete network, and the empty set

the empty network. Players who are connected in the network have the ability to

make transfers to each other. The presence of the network affects the players’ ability

to self-insure in two ways. First, we assume that transfers can only flow along the

links of the network. Two players i and j who are not connected cannot negotiate

any transfer. Second, we suppose that transfers are negotiated on a bilateral basis

between linked players.

A path P between agents i and j in network g is a sequence of agents i =

i0, i1, ..., im = j such that ikik+1 ∈ g for all k = 0, ..,m− 1. Two agents i and j are

connected in graph g if there exists a path between them. The graph is connected

if all players are connected. A component g′ of a graph g is a maximally connected

subgraph of g. The size of component g′ is the number of agents in the component.

The set of agents in component g′ is denoted N(g′).

A cycle in network g is a sequence of m ≥ 3 distinct agents such that i =

i0, i1, ..., im = i and ikik+1 ∈ g for all k = 0, ..,m − 1. A graph is acyclic if it does

not contain any cycle. An acyclic connected graph is called a tree. Clearly, there

exists a unique path between two agents i and j in a tree. Furthermore, any tree of

size m contains exactly m− 1 links, and if g is a tree, then any subgraph g\ij is not
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connected.

Two special trees will play a prominent role in the analysis. A star is a graph

such that there exists an agent i such that ij ∈ g for all j ∈ N(g)\i. Agent i is called

the center of the star, and all other agents the periphery. A line is a tree such that

there exists an ordering of the agents in N(g), i1, ...., im such that ikik+1 ∈ g for all

k = 1, ..., m− 1.

3 Equilibrium Concept

3.1 Bilateral Transfers

As motivated and discussed in the Introduction, we focus on the theme that insurance

arrangements within social networks are based on bilateral arrangements. We model

the bilateral transfers between two agents i and j connected in the network in the

following way. Let Ni(g) and Nj(g) denote the sets of direct neighbors of i and j

in network g. Let xik denote a transfer to i from k ∈ Ni(g)\j, with the convention

that a positive transfer means a payment from k to i. Similarly, define xjk for

any k ∈ Nj(g)\i. Let y be a realization of the income profile. Define a state

θ = {yi, {xik}k∈Ni(g)\j , yj , {xjk}k∈Nj(g)\i}. Our objective is to determine, for any

state θ, the bilateral transfer between players i and j, denoted xij(θ).

In order to determine this transfer scheme, we shall adopt different norms on the

behavior of agents. The idea is that agents internalize norms of behavior practised

in the community. Our objective is not to endogenize this norm, but rather to study

different plausible norms, and in particular to contrast the results obtained under

different assumptions. The stability in terms of incentive constraints of the network
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under a norm will determine the social networks that we expect to observe given the

norms in place.

Two examples of such norms are:

Equal Sharing

Under equal sharing, the transfer between i and j is chosen to equalize consumption

of the agents in all states. In other words, for all θ,

yi +
∑

k∈Ni(g)\j
xik + xij(θ) = yj +

∑

k∈Nj(g)\i
xjk − xij(θ) (1)

Nash Bargaining

Let vi and vj denote the disagreement points of agents i and j. These disagreement

points can be defined in different ways, but are taken as exogenous here. Let p(θ)

denote the probability distribution over states θ. In the Nash bargaining norm,

transfers will be computed to maximize the Nash product of ex ante utilities. Let

xij denote the vector of transfers for all θ,

xij = arg max


∑

θ

p(θ)u(yi +
∑

k∈Ni(g)\j
xik + xij(θ))− vi





∑

θ

p(θ)u(yj +
∑

k∈Nj(g)\i
xjk − xij(θ))− vj


 . (2)

It is important to note that the informational requirements to compute the trans-

fers are minimal: a state θ only consists of the income realizations of the two agents,

and the vector of transfers that they are supposed to make and receive to other

agents. In order to compute transfers, agents do not need to know the entire vector

of income realizations, nor the transfers to other agents in the network.
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3.2 Multilateral Insurance Schemes

We now move from the definition of bilateral transfers to multilateral insurance

schemes for all the agents. Instead of taking the vector of payments to other

agents as exogenous, we know determine, for any vector of income realizations,

y = (y1, y2, ..., yn), the vector of transfers for all agents, tij(y). An insurance

scheme τ specifies a vector of transfers for each realization of incomes satisfying: (i)

tij(y) = −tji(y), (i) there exists a state y such that tij(y) 6= 0, and (iii) tij(y) = 0

if ij /∈ g. We let vi(τ) denote the expected utility of agent i under the insurance

scheme τ .

We now compute equilibrium insurance schemes, called bilateral insurance schemes.

These transfers emerge as the fixed point of a simple mapping. Consider a pair of

linked players, ij and define a vector of transfers tij(y)) for all possible realizations

of y as a function of the transfers for other linked pairs of players, t−ij . Formally,

define

tij(y, t−ij) = xij(y, {tik}k∈Ni(g)\j , {tjk}k∈Nj(g)\i)

where xij(θ) is the bilateral transfer defined above.

Now consider a mapping Υ(t), associating to each vector of transfers for all linked

pairs, the transfer tij(y, t−ij):

Υ(t) = ×ij∈gtij(y, t−ij)

Definition 1 A bilateral insurance scheme for a network is a fixed point of the

mapping Υy(t).
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Finally, one property of some bilateral insurance scheme will prove useful. A bilateral

insurance scheme is said to be monotonic if for any two connected networks g and

g′ such that i ∈ g, g′ and then vi(g) < (=, >)vi(g′) ⇔ |g| < (=, >)|g′| .

4 Enforcement Constraints

The preceding definitions associate to each network g an insurance scheme for all

the community members. These insurance schemes can only be enforced if every

agent has an incentive to pay the transfer he is required to make. In a network

setting, an agent could choose to renege on some – but not all – the transfers he is

required to make. In words, he may choose to sever some links, and keep other links

in the network. Furthermore, the consequences of a deviation cannot be ascertained

unambiguously. If an agent chooses to sever some but not all links, what will the

reaction of the community be? The community could choose to isolate the agent, or

not. Our definitions of enforcement constraints will take into account these different

possibilities.

In order to build our concept of stable networks, we use a recursive definition. For

the empty graph, define

v∗i (∅) = pu(h) + (1− p)u(l)

to be the expected utility of an agent living in autarchy. Furthermore, the empty

graph is clearly stable, as no transfer is required in the graph. For any other graph

g, let v∗i (g) denote the expected utility of player i in graph g,

v∗i (g) =
∑
y

p(y)u(yi +
∑

ij∈g

tij(y)).
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Next, consider a graph g and suppose that the set of stable subgraphs of g has been

defined.

Consider a player i and any subset of players S ⊆ Ni(g) to which i is linked in

network g. For any realization y, by abiding to the insurance scheme, agent i obtains

an expected payoff (in present value terms) of

(1− δ)u(yi +
∑

j∈Ni(g))

tij(y)) + δv∗i (g)

We consider different levels of punishment which translate into different expected

payoffs for an agent i who would renege on a subset S ⊂ Ni of links. In the strong

punishment case, a deviating agent is excluded from all insurance networks. In

contrast, under weak punishment, a deviating agent is only excluded by the agents

he deviated on and the best stable subnetwork will form. In the q-level gossip, a

deviator is excluded by his victim and by all individuals who are connected directly

to a deviant and are less than q links away from her victim, but not via the deviant.

The idea being here that information regarding a deviant travels along the network

itself.

Formally, let Γi(g, S) denote the set of subgraphs of g\{ij|j ∈ S}. Recursively, we

can define the set of stable networks in Γi(g, S), denoted Γ∗i (g, S) as follows.

Let i’ s expected continuation utility from deviating on a subset S ⊂ Ni of his

neighbors be:

Strong Punishment

Let vp
i (g, S) = maxg′∈Γ∗i (g,Ni) v∗i (g

′)

Weak Punishment

Let vo
i (g, S) = maxg′∈Γ∗i (g,S) v∗i (g

′)
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q-level Gossip

Let vq
i (g, S) = maxg′∈Γ∗i (g,Sq

i ) v∗i (g
′) where Sq

i is the set of all k ∈ Ni such that there

is a path pjk ≡
(
j = j0, j1, ..., jm = k

)
for some j ∈ S of length m < q such that

i /∈ pjk.1

Hence, the payoff of reneging on a subset of links can be written, in per-period terms,

as

(1− δ)u(yi +
∑

j∈{Ni(g)\S}
tij(y)) + δvk

i (g, S))

for k ∈ {o, p}.

Definition 2 A network g is stable if for every player i, every realization y and

every S ⊆ Ni(g),

(1−δ)u(yi+
∑

j∈{Ni(g)\S}
tij(y))+δvk

i (g, S)) ≤ (1−δ)u(yi+
∑

j∈Ni(g))

tij(y))+δv∗i (g) (3)

for k = p (strong punishment) or k = o (weak punishment) or k = q (q-level gossip).

The first part of the definition indicates that, in a stable network, all links are

used in the insurance scheme. This is justified by the fact that if links are costly to

maintain, keeping unused links cannot be a rational decision. Furthermore, absent

this requirement, any supergraph of a stable graph is stable, and the characterization

of stable graphs becomes less crisp. The second requirement builds on a recursive

definition of stability, and explicitly takes into account the fact that community

members could choose to renege on any subset of links.

1Clearly, S ⊆ Sq
i .

13



5 Sustainability for High Discount Factors

Looking at the sustainability of networks with monotonic insurance at high level of

discount rate illustrates very clearly the differences between the punishment schemes.

For values of δ close to 1, all network are stable under strong punishment. In contrast,

for weaker punishment schemes, the density of links weakens punishments and has

important consequences for network stability. In particular, for high values of the

discount factor trees are the only stable networks.

5.1 Weak Punishment

Proposition 1 For δ ∼ 1, an insurance network with a monotonic bilateral insur-

ance scheme is sustainable under weak punishment iff it is a tree.

Proof. To establish this result, the following preliminary lemma is useful.

Lemma 1 Let g be a stable network connecting k agents with a monotonic bilateral

insurance scheme. Then any supergraph g′ of g connecting k agents is unstable.

Proof. Suppose by contradiction that g′ is stable. Let ij be a link in g′\g. By

definition, there exists a realization of the state y for which there exists a nonzero

transfer tij(y). Suppose without loss of generality tij < 0. Consider a deviation

by which player i refuses to make the transfer tji and let ti(y) denote the rest of

the transfers he receives. Clearly, g ∈ Γ(g, {j}) and by assumption g is stable so

g ∈ Γ∗(g, {j}). Now, given that g and g′ both connect the same number k of agents,

v∗i (g) = v∗i (g
′). This establishes that,

(1− δ)ui(yi + ti(y) + tij(y)) + δv∗i (g
′) < (1− δ)ui(yi + ti(y)) + δv∗i (g)
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contradicting the fact that g′ is stable.

The preceding Lemma shows that if a tree of size k is stable, no supergraph of

this tree can be stable. The next lemma proves that any tree is stable for discount

rates close to 1.

Lemma 2 For any tree with a monotonic bilateral insurance scheme, there exists δ

such that the tree is stable for δ ≥ δ

Proof. Consider a tree g of size k. For g to be stable, it must be that for all players

i, every realization y and every S ⊆ Ni(g),

(1− δ)


u(yi +

∑

j∈{Ni(g)\S}
tij(y))− u(yi +

∑

j∈Ni(g))

tij(y))


 ≤ δ (v∗i (g)vo

i (g, S))) .

(4)

By definition, removing a link from a tree strictly increases the number of compo-

nents. From this and from the monotonicity of the bilateral insurance scheme, it

follows that vo
i (g, S) < v∗i (g) for any non empty subset S ⊆ Ni(g). Hence, when

δ > 0 the right-hand side is strictly positive. Since the left hand side in (4) tend to

0 when δ → 1, there exists δ such that g is stable for δ ≥ δ.

From Lemma 1 and Lemma 2, we conclude that trees are sable and are the only

stable networks for high values of the discount factor.

5.2 Gossips

We say that a graph g is connected of degree q if for all ij ∈ g the graph formed by

removing from g the links along all paths i, i1, ., ik, .., im−1, j of size m ≤ q between

i and j has strictly more components than g.
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Note that all trees are connected of degree 1, and that is a graph os connected of

degree q, it is connected of degree q′ for all q′ ≥ q.

Proposition 2 For δ ∼ 1, a network with monotonic bilateral insurance is sustain-

able under q-level gossip iff it is connected of degree q.

Proof. [Sufficiency] Consider a network g connected of degree q. Under q-level

gossip, if i deviates on any subset S ⊆ Ni(g) all agents in Sq
i breaks their ties with

i. Since g is connected of degree q, g′ = g \ Sq
i has more components than g and

therefore, by monotonicity, v∗i (g) − vk
i (g, S) > 0. Since (1 − δ) → 0 as δ → 1, all

incentive constraints (3) are satisfied for sufficiently high values of δ and g is stable.

[Necessity] Suppose that a network g of size n is stable but is not connected

of degree q. Then there exist agents i and j with ij ∈ g such that the graph g̃ formed

by removing from g the links along the paths of size q or less between i and j is still

connected. Since g has a bilateral insurance scheme, there is a realization of y for

which there is a nonzero transfer tij(y). Without loss of generality, suppose that

tij < 0.

Let Sq
i be the set of all k ∈ Ni such that there is a path pjk ≡

(
j = j0, j1, ..., jm = k

)

for some j ∈ S of length m < q such that i /∈ pjk; and let g′′ = g \ Sq
i . Since

g̃ ⊆ g′′, g′′ is connected. To be sure, there exists a subnetwork g′ ⊆ g′′ of size n that

is connected of degree q. Using the sufficiency part of the proof, we know that for

high values of δ g′ is stable, such that g′ ∈ Γ∗(g, {j}). Moreover, v∗i (g
′) = v∗i (g) by

monotonicity.

To complete the proof of necessity, it suffices to consider i’s incentive constraint (3)
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not to renege on this transfer tji:

(1− δ)ui(yi + ti(y)) + δv∗i (g
′) ≤ (1− δ)ui(yi + ti(y) + tij(y)) + δv∗i (g)

where ti(y) denote the sum of the net transfers received by i from all other agents

than j. Clearly, this constraint is violated and this contradict the stability of g.

Clearly, a network of size n is connected of n − 1. Hence, a simple consequence of

Proposition 2 is that for ∞-level gossip, every network is sustainable.

5.3 Strong Punishment

Now, it is trivial to show that under strong punishment every network with mono-

tonic bilateral insurance is sustainable.

Proposition 3 For δ ∼ 1, all networks are sustainable under strong punishment.

Proof. To be sure, the worst possible stable network for any player is the empty

network. Take a network g with monotonic bilateral insurance. In the case of

pessimistic beliefs, the continuation value vp
i (g, S) = v∗i (∅) independently of the

graph g and of the subset S. It follows that, by monotonicity, v∗i (g)− vp
i (g, S) > 0.

Since (1− δ) → 0 as δ → 1, all incentive constraints (3) are satisfied for sufficiently

high values of δ and g is stable.

6 Threshold Discount Factors

To study the threshold discount factors at which some insurance network are stable,

we need to precise the norm that we are studying. In the remaining of the paper we

will study the stability of risk-sharing network that do follow an equal-sharing norm.
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6.1 Equal Sharing Norms: Existence of a Bilateral Insurance Schemes.

If community members adopt the equal sharing norm, bilateral transfers are easily

computed as:

xij =
yj − yi +

∑
k∈Nj(g)\i xjk −

∑
k∈Ni(g)\j xik

2
.

This transfer scheme clearly exists and is ex post Pareto efficient. Furthermore, it

results in an equal consumption for all agents belonging to the same component of

the social network. It is easy to show that, for this particular definition of bilateral

transfers, bilateral insurance schemes always exist.

Proposition 4 For the equal sharing norm, bilateral insurance schemes always ex-

ist.

Proof. The proof is constructive. For a fixed network g we exhibit a vector of

transfers resulting in equal consumption across all agents belonging to the same

component in g. To this end, let g′ be a component of g of size |g′|. Let yg′ denote

the aggregate income in component g′. We construct a vector of bilateral transfers

satisfying:

yi +
∑

k∈Ni(g)\i
tik =

yg′

|g′| (5)

for all i ∈ g′ and all vectors of income realization yg′ . For any vector of income

realization, partition the set of nodes of g′ into two subsets B and G corresponding

to the players with bad and good shocks respectively. For any node i in G and j

in B, consider a path from i to j in g′. [The existence of this path is guaranteed

because g′ is connected.] For this path P = i, i1, ., ik, .., im−1, j define transfers
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τikik1 = −(h− l)/|g′|. Let

tij =
∑

P |ij∈P

τij .

It is easy to check that this transfer scheme equalizes consumptions of all agents

inside a component.

Finally, notice that the equal sharing insurance scheme is monotonic.

6.2 Stability with Strong Punishment

Bottleneck Agents. To be sure, the worst possible stable network for any player

is the empty network. In the case of pessimistic beliefs, the continuation value

vp
i (g, S) = vi(∅) is independent of the graph g, of the agent i, and of the subset S.

Since furthermore consumption is equalized across all agents in a component, in any

component g′ of size m, and any state y with k good realizations,

yi + tiNi(y) =
kh + (n− k)l

m

for all i in g′and v∗i (g) can easily be computed, by summing over all states. We

thus conclude that, for all agents i, j belonging to the same component g′ of g,

vp
i (g, S) = vp

j (g, S), yi + tiNi(y) = yj + tjNj (y) and v∗i (g) = v∗j (g). Hence, for a given

income realization, the only element differentiating incentives of different agents in

a component is the maximal benefit an agent can obtain by reneging on his current

transfers,

max
S⊆Ni

(yi + tiS(y))

In order to check the stability of a graph, we thus need to check, component by

component, and for every vector of income realization, the incentives of the agent
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for which maxS⊆Ni(yi − tiS(y)) is maximal. As this agent will always be an agent

who receives transfers from many other agents, we call him the bottleneck of the

transfer scheme.

In order to gain intuition about bottleneck agents, consider two different trees –

a star and a line with four agents. Figure 1 illustrates for different state realizations

(indexed by the number of good and high states) the bottleneck agents.

Figure 1: Bottleneck Agents.

In the star, not surprisingly, when the number of good states is greater than two, the

bottleneck is the center of the star, which is called to make the maximal transfers.

Similarly, in the line, the bottleneck agent is always one of the two central agents.
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What is more surprising is that the constraints faced by the bottleneck agents is the

same in the two graphs. For any k good realizations, the bottleneck agent receives

transfer from k − 1 agents both in the star and the line, and her maximal deviation

payoff is given by

h +
(k − 1)(n− k)(h− l)

n

in both graphs.

The next result shows that this is not an accident: for a large class of trees, the

maximal deviation payoffs will be equal so that stability conditions are identical.

Decomposable Trees. We define a subnetwork originating at i as a subgraph g′

of a tree g satisfying the following conditions:

1. i ∈ N(g′)

2. For any j, k 6= i. If jk ∈ g and j ∈ N(g′) then k ∈ N(g′)

A node i is said to be critical of degree k if there exists a subnetwork of size k

originating at i.

A connected network g of size m is decomposable if for any k = 1, ...., m − 1, there

exists a critical node i of degree k.

Let δ(g) denote the minimal value of the discount factor for which graph g is stable.

Proposition 5 For any two decomposable networks g and g′, δ(g) = δ(g′).

Proof. Consider a realization with k good shocks. Let i be a critical node of degree

k. We claim that the tightest constraint is obtained for node i when all agents in

the subnetwork of size k originating at i receive a high shock. In that case,

yi + tiS = h +
(k − 1)(n− k)(h− l)

n
.
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Clearly, (k−1)(n−k)(h−l)
n is the highest possible transfer paid by all other players. The

only other candidate would be a player with a low shock who receives exactly k

transfers. But then

yi + tiS = l +
k(n− k)(h− l)

n
< h +

(k − 1)(n− k)(h− l)
n

for k ≥ 1. Hence, for any realization with k good shocks, the tightest constraint will

be the same in any decomposable network. To compute δ, one needs to compute the

value of k which results in the tightest constraint, i.e. to solve the problem:

max
k

u(h +
(k − 1)(n− k)(h− l)

n
)− u(

kh + (n− k)l
n

). (6)

The solution k∗ of this problem depends on the utility function. Once k∗ is known,

the threshold value δ(g) can easily be computed, and is denoted by δt.

Proposition 6 Suppose that g is a network which is not decomposable, then δ(g) ≤
δt.

Proof. Let k∗ be the solution to the maximization problem (6). If the network g

has a critical node of degree k then clearly δ(g) = δt. Otherwise, if g does not have a

critical node of degree k, the highest transfer received by any agent in a realization

with k∗ good shocks must satisfy

yi + tiS < h +
(k − 1)(n− k)(h− l)

n

and δ(g) < δt.

Proposition 7 Consider two graphs g and g′ with the same components and g ⊂ g′.

Then δ(g) ≥ δ(g′).
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Proof. Consider the binding constraint in graph g. Let y be the corresponding

realization of the shock, and i the agent whose constraint is binding. Compute a

transfer scheme for graph g′ as follows. For any y′ 6= y, t(y′) is the same for the two

graphs. For y, one may be able to relax the transfer constraint, by using additional

links. In other words, if new links permit a rerouting of the transfers to bypass i, i′s

constraint will necessarily be relaxed.

While very simple, Proposition 7 illustrates a very powerful fact. If agents hold

pessimistic beliefs, the addition of new links will always result in more stable graphs,

as new links relax the constraint of the bottleneck agent. As a consequence, for any

connected graph g, δ(g) ≥ δ(gc) where gc is the complete graph. Examples can easily

be provided to show that this inequality may be strict.

In a complete graph, no transfer is ever mediated. This implies that the binding

constraint for an agent is whether to keep her income when it receives a high shock

or not. In other words, the maximal deviation is given by

u(h)− u(
kh + (n− k)l

n
)

This expression is clearly maximized when k = 1 so the constraint becomes

(1− δ)u(h) + δv∗(1) ≤ (1− δ)u(
h + (n− 1)l

n
) + δv∗(n)

where

v∗(1) = pu(h) + (1− p)u(l)

v∗(n) =
n∑

k=0

(
n
m

)
pk(1− p)n−ku(

kh + (n− k)l
n

).

It is important to note that this remark does not show that the complete graph

is the easiest graph to sustain. The inequality is only true among connected graphs
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and disconnected graphs, with smaller components, may be easier to sustain. In

fact, there is no obvious reason why the enforcement constrained faced by community

members should be monotonic in the number of agents in a component. The following

example computes these enforcement constraints (and the resulting threshold value

δ(g)) for complete graphs as a function of the size of the graph. It appears that the

threshold value is non monotonic in the size of the graph.

Example 1 Utility functions are given by U(c) = 2c1/2 , l = 0, h = 1 and the

probabilities are given by p = 0.2.

We compute

δ =
1− (1/n)1/2

1− (1/n)1/2 − 0.2 +
∑n

k=0

(
n
k

)
0.2k0.8n−k(k/n)1/2

Figure 2 pictures δ as a function of n for n ∈ {1, ..., 100}.

Dense Networks. In this section we show that dense networks have no bottleneck

agent and have the same stability condition as complete networks.

Proposition 8 For a graph g of size n and of density n−2 or more [all nodes have

at least n− 2 links], there is no bottleneck agent, and δ(g) = δ(gN ).

Proof. To establish this claim, we show that, although we are not in a complete

graph, no transfer is ever mediated whenever there are more than one low and more

than one high, and that in the latter cases the transit are not a problem.

Assume that we have a realization with k highs. Index all the highs from 1 to k

and all the lows from 1 to n− k.
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Figure 2: An Illustration of Example 1.

If every high are connected to all lows then no transfer is ever mediated and we are

done. So clearly missing links between highs and lows are the worse. Note that in the

complete graph m = n− 1. This means that in a graph of density n− 2 individuals

are missing at most one link. To be sure, we want to consider the case in which as

many possible missing links are between highs and lows.

First, assume that 1 < k < n
2 , that is there are less highs than lows. Let’s distribute

these links in a way that maximizes the number of highs and lows not linked with

each other. Take the k highs and let them be each linked to the first k lows but one

in the following way: the first low is not linked to the first high, the second low is
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not linked to the second high,... and so on until the kth high not linked to the kth

low. Now, among the first k lows we have give them all their links, but we still have

n − 2k lows and each of these must be linked to all the highs (since the highs are

already missing one link each).

Now we want to show that all transfers can be distributed without transit. Let t1

be the transfer that each high gives to the last n− 2k lows and let t2 be the transfer

that each h gives to all but one of the first k lows. We know that each low must

receive k
n(h − l) and that each high must give k

n(h − l). With our transfers, the

last n − 2k lows receive kt1 such that t1 = 1
n(h − l) and the first k lows receive

(k− 1)t2 such that t2 = k
(k−1)n(h− l). Since each high gives (k− 1)t2 + (n− 2k)t1 =

k
(n(h − l) + n−2k

n (h − l) = n−k
n (h − l) we see that all transfers can be done without

transit.

If k = 1 then one low could not be linked to any of the highs. However, we

can show that the constraint for an agent with a low income receiving all possible

transfers

(1− δ)[u(l +
n− 1

n
(h− l))− u(

h + (n− 1)
n

)] ≤ δ[v∗(n)− v∗(1)]

is always less binding than the constraint for the one individual with a high income

giving the full transfer

(1− δ)[u(h)− u(
h + (n− 1)

n
)] ≤ δ[v∗(n)− v∗(1)] (7)

since

u(h)− u(
h + (n− 1)l

n
) ≥ u(l +

n− 1
n

(h− l))− u(
h + (n− 1)

n
).

Turn to the case where n − 1 > k ≥ n
2 , that is there are at least as many highs

than lows. Link all the n − k lows to each but one of the first n − k highs in the
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following way: for i ∈ {1, ...n − k}, the ith low is linked to all high with index in

{1, 2..n− k} \ i. Now the 2k− n remaining highs have to be linked to all lows (since

the lows already have one missing link).

We can show that all transfers can be distributed without transit. Let t1 be the

transfer that the first n−k highs give the n−k−1 lows to whom they are linked and

let t2 be the transfer that the remaining 2k−n highs gives to all the lows. We know

that each low must receive k
n(h− l) and that each high must give k

n(h− l). With our

transfers, the first n− k highs each give (n− k− 1)t1 such that t1 = n−k
n(n−k−1)(h− l)

and the last 2k − n highs give (n − k)t2 such that t2 = 1
n(h − l). This implies that

each low receives (2k−n)t2 +(n−k−1)t1 = (2k−n) 1
n(h− l)+ n−k

n (h− l) = k
n(h− l).

Therefore, all transfers can be done without transit.

Finally, we should look at the case were k = n− 1, that is there is only one low.

In the worse case, this low will be connected to all but one of the highs. Since the

degree of this high is n−2, he must be connected to all other highs. This implies that

the larger transfer that a high could receive is 1
n(n−2)(h− l) such that the constraint

for a contact point is

u(h +
1

n(n− 2)
(h− l))− u(h− 1

n
(h− l)) ≤ δ

1− δ
[v∗(n)− v∗(1)].

Compare this with the incentive constraint (7) for a high when he is the only one to

have received a good shock and we see that the latter constraint is stricter as

u(h)− u(
h + (n− 1)l

n
) ≥ u(h +

1
n(n− 2)

(h− l))− u(h− 1
n

(h− l)).

We conclude that networks of density n − 2 or more have no bottleneck agent.

Therefore, as for the complete graph, the incentive constraint (7) is the hardest to

satisfied and δ(g) = δ(gN ).
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6.3 Stability with Optimistic Beliefs

When agents hold optimistic beliefs, the incentives to deviate are clearly larger than

when they hold pessimistic beliefs, and insurance networks are harder to sustain.

Our first result shows that again there is a family of networks (including stars and

lines) for which the tightest incentive constraints are identical. As the argument

relies on a recursive computation of stable networks, the property needed to show

this equivalence is not decomposability but full decomposability – every subgraph of

the graph must be decomposable.

Proposition 9 Consider two fully decomposable networks g and g′ connecting the

same number of players, then δ(g) = δ(g′).

Proof. The proof is by induction on the size of the network, denoted n. If n = 2, the

statement is clearly true, as there is only one graph connecting two players. Suppose

that the statement is true for m = 2, ..., n − 1. By definition, any subnetwork of

a fully decomposable network is also fully decomposable. Hence, by the induction

hypothesis, the threshold value of the discount factor only depends on the size of

the network, and we let δ(m) denote the value of this discount factor. Furthermore,

because the norm is an equal sharing norm, the continuation value of player i in a

graph g only depends on the size of the graph, and hence we write v∗i (g) = v∗(m)

where m is the size of graph g. Clearly, v∗ is increasing in m. We also define

t(δ,m) = max{t ≤ m, δ ≥ δ(t)} the largest stable subgraph of size smaller or equal

to m and w(δ,m) = v∗(t(δ,m)).
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Now consider a fully decomposable network of size n. Pick any k = 1, 2, ..., n−1.

Let δ be fixed. Suppose that a player plans to sever links to n− k players. Then,

max
g′∈Γ∗(S)

v∗(g′) = w(δ, k).

Because the network is decomposable, the tightest constraint will be experienced by

an agent who is critical of degree k, receives a high shock and keeps the transfer of

k − 1 other agents. Hence, the relevant constraint for stability is given by

(1− δ)u(h +
(k − 1)(n− k)(h− l)

n
) + δw(δ, k) ≤ (1− δ)u(

kh + (n− k)l
n

) + δv∗(n).

This constraint is clearly the same for all decomposable networks showing that δ(g) =

δ(g′) for any two fully decomposable networks. The exact value of δ is given by

min{δ| δ

1− δ
[v∗(n)−w(δ, k)] ≥ [u(h+

(k − 1)(n− k)(h− l)
n

)−u(
kh + (n− k)l

n
)]∀k = 1, ...n−1}

It is clear that δ exists, but the computation of the exact value of δ typically requires

an algorithm.

Proposition 9 shows that Proposition 5 can be extended to the case of optimistic

beliefs, and that the threshold value of the discount factor is identical for a large

family of networks including stars and lines. As opposed to the case of pessimistic

beliefs, the addition of new links typically does not result in a more stable insurance

network. We saw that for high values of the discount factor trees are the only

stable networks . In particular, the complete graph fails to be stable when agents

hold optimistic beliefs, whereas it is the easiest graph to sustain when players hold

pessimistic beliefs. For lower values of the discount factor, when trees cease to be

stable, denser networks can reemerge as stable outcomes. This is illustrated in the

following example with three agents.
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Example 2 The following parameters are set through the example: l = 0 and h = 1,

and individuals are assumed to have utilities U(c) = 2c1/2. In Figure 3, stable

networks are computed for the entire range of discount factors δ for values of p equal

to 0.2 in the upper part of the graph, then for p = 0.5 in the lower part.

Figure 3: An Illustration of Example 2.

Figure 3 for instance shows that stability is a complex object to check for. When for

δ = .8 the complete graph is the only stable graph. Thereafter, for δ = .9, a line

of two is stable and the gain enjoyed by the former is large enough to render the

complete graph unstable. Then, for values of δ of 0.91, the complete graph regains

its stability. Yet, the fall is inevitable: for high values of δ only trees are stable, in
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line with our previous results.
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