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Abstract

In the Traveling Salesman Problem with Pickup and Delivery (TSPPD) a single vehicle
must serve a set of customer requests, each defined by an origin location where a load
must be picked up, and a destination location where the load must be delivered. The
problem consists of determining a shortest Hamiltonian cycle through all locations
while ensuring that the pickup of each request is performed before the corresponding
delivery. This paper addresses a variant of the TSPPD in which pickups and deliveries
must be performed according to a Last-In First-Out (LIFO) policy. We propose three
mathematical formulations for this problem and several families of valid inequalities
which are used within a branch-and-cut algorithm. Computational results performed
on test instances from the literature show that most instances with up to 17 requests
can be solved in less than 10 minutes, while the largest instance solved contains 25
requests.

Keywords: traveling salesman problem, pickup and delivery, LIFO, branch-and-cut.

1 Introduction

In the Traveling Salesman Problem with Pickup and Delivery (TSPPD) a single vehicle must
serve a set of customer requests, each defined by an origin location where a load must be
picked up, and a destination location where the load must be delivered. The problem consists
of determining a shortest Hamiltonian cycle through all locations while ensuring that the
pickup of any given request is performed before the corresponding delivery. The vehicle may
be capacitated or uncapacitated. The TSPPD has several practical applications in freight
and passenger transportation. It arises, for example, in urban courier service operations,
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†DISMI, Università di Modena e Reggio Emilia, Via Amendola 2, 42100 Reggio Emilia, Italy.
‡DEIOC, Universidad de La Laguna, 38271 La Laguna, Tenerife, Spain.

1



in less-than-truckload transportation, and in door-to-door transportation services for the
elderly and the disabled (see, e.g., Cordeau et al. [7]).

We address a variant of the TSPPD in which pickups and deliveries must be performed
in Last-In First-Out (LIFO) order. Under this condition, a load being picked up is always
placed at the rear of the vehicle, while a delivery can be performed only if the associated
load is currently at the rear. This problem is referred to as the TSPPD with LIFO Loading
(TSPPDL).

The TSPPDL arises naturally in the routing of vehicles that have a single access point
for the loading and unloading of freight. Avoiding load rearrangements is also particularly
important in the case of rear-loading vehicles transporting large, heavy or fragile items,
or hazardous materials. Another application arising in industrial contexts is the routing
of automated guided vehicles (AGVs) which typically use a stack to move items between
workstations.

Vehicle routing problems with pickup and delivery have been studied extensively. For
general surveys, we refer the reader to Cordeau et al. [7], Desaulniers et al. [8] and Savelsbergh
and Sol [28]. One of the most studied pickup and delivery problems is the TSPPD which,
because of its difficulty, has been solved mainly by means of heuristics. Notable exceptions are
the branch-and-bound approach of Kalantari et al. [17] and the branch-and-cut algorithms
of Ruland and Rodin [27] and Dumitrescu et al. [10].

The TSPPDL has, however, received far less attention. To the best of our knowledge, the
first mention of this problem was made by Ladany and Mehrez [18] who studied a real-life
delivery problem in Israel. These authors have provided a description of the problem but
no mathematical formulation. A similar problem was later investigated by Pacheco [25, 26]
who proposed a heuristic algorithm with Or-opt exchanges for the uncapacitated TSPPDL,
and reported results on randomly generated instances involving up to 120 requests. The
TSPPDL was also recently studied by Cassani [5] who developed greedy heuristics and a
variable neighborhood descent algorithm combining four types of exchanges. Results were
presented on instances with up to 100 customers. Finally, new exchange operators and a
variable neighborhood search heuristic were described by Carrabs et al. [4] who reported
results on instances with up to 375 requests.

Three exact algorithms have been proposed for the solution of the TSPPDL. All are
branch-and-bound methods that rely on relaxations of the TSP. The first one was developed
by Pacheco [23, 24] and is an adaptation of the TSPPD branch-and-bound approach of
Kalantari et al. [17] which is itself based on the branch-and-bound algorithm of Little et al.
[22] for the TSP. The second one was proposed by Cassani [5] and uses lower bounds based
on minimum spanning tree and assignment problem relaxations. The largest instances solved
by these methods contain 11 requests. Very recently, another branch-and-bound algorithm
was introduced by Carrabs et al. [3]. This algorithm uses additive lower bounds based
on assignment problem and shortest spanning r-arborescence problem relaxations. Several
filters are also applied at each node of the enumeration tree to eliminate arcs that cannot
belong to feasible solutions. This algorithm is capable of solving most instances with 15
requests and some instances with up to 21 requests.
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A related stream of research has addressed the scheduling of the execution of computer
programs, using LIFO stack storage structures. Volchenkov [29] showed that this problem
can be reduced to finding a planar layout in a given oriented graph. He proposed an algorithm
based on the enumeration of normal covering trees. This approach was later improved by
Levitin [20] through considerations on the permutation structures. Levitin and Abezgaouz
[21] pursued the work of Volchenkov [29] and Levitin [20] in a different context: the routing
of multiple-load AGVs for the distribution of raw materials or semi-manufactured products
to workstations in industrial plants. They considered the case of a single AGV operating
in a LIFO fashion and having infinite capacity. They formulated the conditions for the
existence of routes in which each workstation is visited once and the LIFO constraint is
satisfied. Finally, they proposed an algorithm for finding the shortest route and reported
computational results on randomly generated instances involving up to 50 requests.

A form of LIFO constraints has also been considered in the context of the capacitated
vehicle routing problem by Iori et al. [16] who studied the case where customer demands
consist of lots of two-dimensional weighted items. In this case, one must ensure the existence
for each vehicle route of a feasible placement of the items satisfying the last-in-first-out policy.
These authors have proposed a branch-and-cut algorithm in which the loading phase is solved
through a nested branch-and-bound search. Tabu search algorithms for this problem were
also described by Gendreau et al. [12, 13]. Finally, LIFO constraints were considered by
Xu et al. [30] in a practical pickup and delivery problem involving multiple vehicles, time
windows, and capacity constraints.

The remainder of the paper is organized as follows. The next section describes the
TSPPDL formally and investigates its underlying structure. Section 3 introduces three
mathematical formulations for the problem. The first one is derived from the classical two-
index model for the TSP, with additional inequalities imposing the LIFO constraints. The
next two formulations use different approaches which lead to stronger linear programming
relaxations. Valid inequalities that strengthen these formulations are then described in
Section 4. These inequalities are then used within a branch-and-cut algorithm which is
described in Section 5 and whose computational performance is studied in Section 6.

2 Problem Description

Let n denote the number of requests to be satisfied. The TSPPDL can be defined on a
complete directed graph G = (N, A) with node set N = {0, . . . , 2n + 1} and arc set A.
Nodes 0 and 2n + 1 represent the origin and destination depots (which may have the same
location) while subsets P = {1, . . . , n} and D = {n+1, . . . , 2n} represent pickup and delivery
nodes, respectively. Each request i is associated with a pickup node i and a delivery node
n + i. Each arc (i, j) ∈ A has a routing cost cij .

The TSPPDL consists of finding a minimum cost route starting from the origin depot 0,
visiting every node in P ∪D exactly once, and finishing at the destination depot 2n + 1. In
addition, this route must satisfy precedence and LIFO constraints. Precedence constraints
require that for any given request the pickup node of the request must be visited before
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the delivery node. LIFO constraints may be defined formally by considering a stack and
enforcing the following discipline:

a) when visiting a pickup node, the load being picked up is placed at the top of the stack;

b) visiting a delivery node is possible only if the load to be delivered is located at the top
of the stack.

The TSPPDL is clearly NP-hard since the well-known Asymmetric TSP (ATSP) can be
reduced to the TSPPDL by associating each ATSP customer i with two nodes i and n + i
and using a modified cost matrix (dij), where di,n+i = 0, dn+i,i = ∞, for all i ∈ P , and
dij = di,n+j = dn+i,n+j = ∞, dn+i,j = cij, for all i, j ∈ P, i 6= j.

As in the work of Pacheco [23, 24, 25, 26], Cassani [5] and Carrabs et al. [4], we focus
here on the uncapacitated case.

2.1 The structure of the TSPPDL

To investigate the structure of the problem, we first introduce the following definitions: a
PP arc is an arc (i, j) connecting two pickup nodes; a PD arc is an arc (i, n + i) connecting
a pickup node to a delivery node; a DP arc is an arc (n + i, j) connecting a delivery node to
a pickup node; a DD arc is an arc (n+ i, n+ j) connecting two delivery nodes. With respect
to PD arcs, one can first observe that no arc of the form (i, n + j) with j 6= i can be used in
a feasible solution. Moreover, for the connectivity of the solution, at least one PD arc must
be used.

Now consider the number of PD arcs in a feasible solution to the TSPPDL. The case
where exactly n PD arcs are used is known as the Full-Truck-Load Pickup and Delivery
Problem (see, e.g., Savelsbergh and Sol [28]) and can be reduced to an ATSP in which
each node represents a pickup and delivery pair. We now focus on the case where exactly
one PD arc is used. In this situation the problem reduces to an ATSP on a graph with n
nodes. Indeed, all pickups are performed before any of the deliveries, and the delivery nodes
are visited in the opposite order from the pickup nodes. The sequence of customers along
the route can then be read as a palindrome, i.e., the pickup and the delivery nodes form
a mirror structure with respect to the PD arc. This particular structure generalizes to the
case where more than one PD arc is used. In the general case the route will form a sequence
of nested palindromes (see Figure 1) such that removing each nested palindrome yields a
simple palindrome structure.

As mentioned in the introduction, the structure of graphs satisfying LIFO constraints
was first investigated by Volchenkov [29] for the problem of managing stack structures in
computers. Volchenkov showed that finding a feasible ordering of write (i.e., pickup) and
read (i.e., delivery) operations on a stack is equivalent to finding a planar representation of
a graph in which an edge is inserted between each pickup and delivery pair (see Figure 2).
This consideration directly applies to our problem: placing a pickup node j (resp. delivery
node n + j) between a node pair i, n + i, without placing the corresponding delivery node
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Figure 1: A sequence of nested palindromes.

n + j (resp. pickup node j) yields a violation of the LIFO constraint when trying to unload
the demand of request i (resp. request j). This is equivalent to having two crossing edges in
the graph of Figure 2.

cbn+de n+e0 a d 2n+1n+cf n+f n+an+b

Figure 2: Planar graph guaranteeing the LIFO constraints.

2.2 The number of feasible routes

Ruland and Rodin [27] have shown that for the TSPPD with n requests, the number Kn of
feasible routes is given by the following recursion:

K1 = 1 (1)

Kn = n(2n − 1)Kn−1 (n > 1). (2)

For the TSPPDL one can also determine the number of feasible routes through a recursive
formula. To this end, we first define an n-request feasible route structure as a sequence
containing n pickups and n deliveries in an order compatible with the LIFO constraints.
For example, with n = 2 only the following two route structures are feasible: (P,D,P,D)
and (P,P,D,D). For each n-request feasible route structure, there exist n! different TSPPDL
routes obtained by permuting the pickup nodes. Denote by f(n, m) the number of n-request
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feasible route structures starting with exactly m pickups. Then the total number of feasible
routes with n requests and starting with exactly m pickup nodes is n!f(n, m). Consequently,
the number of feasible TSPPDL solutions with n requests is

Ln = n!
n
∑

m=1

f(n, m), (3)

where the value of f(n, m) can be computed recursively as shown by the following result.

Proposition 1. The value of f(n, m) is given by the following recursion:

f(1, 1) = 1 (4)

f(n, m) =

n−1
∑

ℓ=m−1

f(n − 1, ℓ) (m = 1, . . . , n), (5)

where f(n, 0) = 0.

Proof. It is easy to see that f(1, 1) = 1. Suppose that the route starts with m pickups
and then performs a delivery. The request just completed can be removed from further
consideration. The vehicle then contains the first m − 1 pickups and there are two possible
ways to extend the route:

a) Perform a delivery: the number of ways to extend the route in this way is f(n−1, m−1)
because m− 1 pickups have been performed and the corresponding deliveries have not
yet been performed.

b) Perform one or more pickups. The number of ways to extend the route in this way is
∑n−1

ℓ=m f(n − 1, ℓ).

Hence

f(n, m) = f(n − 1, m − 1) +
n−1
∑

ℓ=m

f(n − 1, ℓ) =
n−1
∑

ℓ=m−1

f(n − 1, ℓ). �

Table 1 reports the number of feasible ATSP, TSPPD and TSPPDL solutions for different
values of n. For the ATSP, we indicate the number of feasible solutions in an instance
with 2n + 1 nodes (including the depot). Carrabs et al. [3] have proposed a different (but
equivalent) recursion for computing the number of feasible routes in the TSPPDL.

3 Mathematical Formulations

In this section we first recall a classical formulation for the TSPPD. We then introduce three
different formulations for the (uncapacitated) TSPPDL.

To formulate the TSPPD, we associate to each arc (i, j) ∈ A a binary variable xij

taking value 1 if and only if node j is visited immediately after node i. As usual, we define
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Table 1: The number of feasible solutions with n requests

n ATSP TSPPD TSPPDL
1 2 1 1
2 24 6 4
3 720 90 30
4 40,320 2,520 336
5 3,628,800 113,400 5,040
6 479,001,600 7,484,400 95,040
7 87,178,291,200 681,080,400 2,162,160
8 20,922,789,888,000 81,729,648,000 57,657,600

S̄ = N \S, x(S) =
∑

i,j∈S xij , x(δ+(S)) =
∑

i∈S,j 6∈S xij and x(δ−(S)) =
∑

i6∈S,j∈S xij . For any
node i ∈ N , let also x(i, S) =

∑

j∈S xij and x(S, i) =
∑

j∈S xji. We also define the collection
S of all node subsets S ⊂ N such that 0 ∈ S, 2n + 1 6∈ S and there exists a node i such that
i 6∈ S and n + i ∈ S.

Using this notation, the TSPPD can then be formulated as the following integer program:

(TSPPD) Minimize
∑

(i,j)∈A

cijxij (6)

subject to

x(δ+(i)) = 1 ∀i ∈ P ∪ D ∪ {0} (7)

x(δ−(i)) = 1 ∀i ∈ P ∪ D ∪ {2n + 1} (8)

x(S) ≤ |S| − 1 ∀S ⊆ P ∪ D, |S| ≥ 2 (9)

x(S) ≤ |S| − 2 ∀S ∈ S (10)

xij ∈ {0, 1} ∀(i, j) ∈ A. (11)

The objective function (6) minimizes the total routing cost. Constraints (7) and (8)
ensure that each pickup and delivery node is visited exactly once. Constraints (9) ensure
the connectivity of the solution while constraints (10) impose the precedence relationships
between pickups and deliveries. Precedence constraints (10) were introduced by Balas et al.
[2] in the context of the TSP with precedence constraints, and by Ruland and Rodin [27]
in the context of the TSPPD. Since the TSPPDL is a restriction of the TSPPD, these
constraints are also valid for the former problem.

The TSPPDL can be formulated by introducing additional sets of constraints in model
(6)-(11). We now describe three such sets of constraints, giving rise to as many different
formulations. The first two formulations require a polynomial number of additional variables
and constraints while the third one requires an exponential number of constraints but no
new variable.

7



To describe the first and second formulations (which can handle both the capacitated
and uncapacitated versions of the problem), we associate each node i ∈ N with a demand
parameter qi 6= 0, such that qi = −qn+i for i = 1, . . . , n. The demand qi is positive for
every pickup node i and is equal to −qi for the corresponding delivery node n + i. If the
problem is uncapacitated, one may simply set qi = 1, ∀i ∈ P and qi = −1, ∀i ∈ D. We
assume q0 = q2n+1 = 0. To each node i ∈ N , we also associate a continuous variable Qi

representing the load of the vehicle upon its departure from node i. Finally, we denote
the vehicle capacity by Q. Again, if the TSPPDL is uncapacitated, one may simply set
Q = n. Given this notation, LIFO constraints may be imposed through the following sets of
constraints:

Qj ≥ (Qi + qj)xij ∀(i, j) ∈ A (12)

Qn+i = Qi − qi ∀i ∈ P (13)

max{0, qi} ≤ Qi ≤ min{Q, Q + qi} ∀i ∈ N. (14)

We denote model (6)-(14) by (TSPPDL1). The consistency of the load variables Qi is
ensured through constraints (12), while constraints (13) enforce the LIFO policy. Finally
vehicle capacity is imposed through constraints (14). The following result demonstrates that
constraints (7)-(14) properly define the LIFO policy.

Proposition 2. Constraints (10)-(13) are satisfied if and only if the loading and unloading
operations satisfy the LIFO policy.

Proof. Consider first a solution in which loading and unloading satisfy the LIFO constraints.
It is clear that in such a solution, the load of the vehicle immediately after visiting node
n + i is equal to Qi − qi. Indeed, if a pickup node j is visited between nodes i and n + i,
then the corresponding delivery node must also be visited, and vice-versa. As a result, the
load of the vehicle upon arrival at node n + i is equal to its load upon departure from node
i and hence (13).

Now consider a solution satisfying constraints (12)-(14). In this case, the net amount
delivered between each pair i, n + i is equal to 0. Suppose that this solution does not satisfy
the LIFO constraints. Then, one can find a node pair i, n + i such that at least one pickup
node j is visited between i and n+ i but not the delivery node n+ j. Let i′, n+ i′ denote the
first node pair for which this condition is satisfied in the solution and let P̃ ⊂ P represent
the set of pickup nodes for which the delivery node is not visited between i′ and n + i′.
Define q(P̃ ) =

∑

j∈P̃ qj . Because the precedence constraints are satisfied, one cannot find a
delivery node n+j between i′ and n+ i′ if the corresponding pickup node j is not also visited
between i′ and n + i′. As a result, it follows that Qn+i = Qi − qi + q(P̃ ), a contradiction
because q(P̃ ) > 0 and constraints (13) are assumed to hold. �

Formulation (6)-(14) is non-linear because of constraints (12). However, these constraints
can be linearized as follows:

Qj ≥ Qi + qj − Wj(1 − xij) ∀i ∈ N, j ∈ N, (15)
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where Wj = min{Q, Q + qj}. Moreover, Desrochers and Laporte [9] have shown that the
inequalities (15) can be lifted by considering the reverse arc and imposing

Qj ≥ Qi + qj − Wj(1 − xij) + (Wj − qi − qj)xji ∀(i, j) ∈ A. (16)

Nevertheless, this formulation is likely to be weak because of the introduction of the Wj

constants which typically lead to poor linear programming relaxation lower bounds.
A different formulation can be obtained by dropping the Qi variables and associating

each arc (i, j) ∈ A with a continuous variable fij representing the load of the vehicle on that
arc. Then, constraints (12)-(14) are replaced with the following sets of linear constraints:

∑

j∈N

fij −
∑

j∈N

fji = qi ∀i ∈ P ∪ D (17)

∑

j∈N

fji −
∑

j∈N

fn+i,j = 0 ∀i ∈ P (18)

max{0, qi,−qj}xij ≤ fij ≤ min{Q, Q + qi, Q − qj}xij ∀(i, j) ∈ A. (19)

We denote the resulting formulation, (6)-(11) and (17)-(19), by (TSPPDL2). It is in fact
inspired from the one-commodity flow formulation for the vehicle routing problem initially
proposed by Gavish and Graves [11].

Formulations (TSPPDL1) and (TSPPDL2) both require the introduction of additional
variables in model (6)-(11). Following Gouveia [14] and Letchford and Salazar [19], it would
be possible to project out these continuous variables and obtain a formulation with only
the xij variables. However, the Benders cuts from this projection do not seem to show
a clear combinatorial structure, neither suggesting an efficient separation procedure nor
strengthening constraints. Instead, we obtain this formulation as follows. We define the
collection Ω of all subsets S ⊂ P ∪ D for which there is at least one request j such that
either j ∈ S and n + j 6∈ S or n + j ∈ S and j 6∈ S. Using these definitions, the LIFO policy
can be expressed in terms of the xij variables as shown by the following proposition.

Proposition 3. The LIFO policy can be imposed through the following constraints:

x(i, S) + x(S) + x(S, n + i) ≤ |S| ∀S ∈ Ω, ∀i, n + i 6∈ S, i ∈ P. (20)

Proof. Suppose that the LIFO policy is satisfied but that one of these constraints is violated.
Since x(S) ≤ |S| − 1 by constraints (9), this violation implies that x(i, S) = x(S, n + i) = 1
for a given set S ∈ Ω and node pair {i, n + i}. As a result, there is a path starting from i,
visiting every node in S and reaching n + i. But this is impossible because this path would
violate the LIFO policy. Suppose now that all constraints are satisfied but the LIFO policy
is not. This implies that between a given node pair {i, n + i}, the route visits a pickup node
j without visiting the delivery node n + j, or vice-versa. Hence, a constraint is violated for
the set S containing all nodes visited between i and n + i, a contradiction. �
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Using these inequalities, we finally obtain a third formulation for the uncapacitated case,
denoted by (TSPPDL3), containing only xij variables:

(TSPPDL3) Minimize
∑

i∈N

∑

j∈N

cijxij (21)

subject to

x(δ+(i)) = 1 ∀i ∈ P ∪ D ∪ {0} (22)

x(δ−(i)) = 1 ∀i ∈ P ∪ D ∪ {2n + 1} (23)

x(S) ≤ |S| − 1 ∀S ⊆ P ∪ D, |S| ≥ 2 (24)

x(S) ≤ |S| − 2 ∀S ∈ S (25)

x(i, S) + x(S) + x(S, n + i) ≤ |S| ∀S ∈ Ω, ∀i, n + i 6∈ S, i ∈ P (26)

xij ∈ {0, 1} ∀(i, j) ∈ A. (27)

4 Valid Inequalities

In this section, we describe several families of valid inequalities that can be added to the
three formulations introduced in the previous section in order to strengthen their linear
programming relaxation. We first describe known inequalities for the TSPPD and we then
introduce new inequalities that rely on the particular structure of the TSPPDL.

4.1 Known inequalities for the TSPPD

Since the TSPPDL is a restriction of the TSPPD, valid inequalities for the latter problem
are also valid for the former. We now describe three known families of valid inequalities for
the TSPPD: strengthened subtour elimination constraints and generalized order constraints.

The subtour elimination constraints (9) can be lifted in different ways by considering the
precedence relations between pickup i and delivery n + j. Let π(S) = {i ∈ P |n + i ∈ S}
and σ(S) = {n + i ∈ D|i ∈ S} denote the sets of predecessors and successors of a given
subset S ⊆ P ∪ D, respectively. Balas et al. [2] have introduced the following predecessor
and successor inequalities for the precedence-constrained ATSP:

x(S) +
∑

i∈S

∑

j∈S̄∩π(S)

xij +
∑

i∈S∩π(S)

∑

j∈S̄\π(S)

xij ≤ |S| − 1, (28)

x(S) +
∑

i∈S̄∩σ(S)

∑

j∈S

xij +
∑

i∈S̄\σ(S)

∑

j∈S∩σ(S)

xij ≤ |S| − 1. (29)

Cycle inequalities for the ATSP can be strengthened as explained by Grötschel and
Padberg [15]. For a given ordered set S = {i1, i2, . . . , ik} ⊆ N , with k ≥ 3, they proposed
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two families of valid inequalities, called D+
k and D−

k inequalities:

k−1
∑

h=1

xih,ih+1
+ xik ,i1 + 2

k−1
∑

h=2

xih,i1 +

k−1
∑

h=3

h−1
∑

l=2

xih,il ≤ k − 1, (30)

k−1
∑

h=1

xih,ih+1
+ xik ,i1 + 2

k
∑

h=3

xi1,ih +
k
∑

h=4

h−1
∑

l=3

xih,il ≤ k − 1. (31)

Cordeau [6] has shown that because of precedence constraints the latter inequalities can
be strengthened by considering the sets π(S) and σ(S) as in inequalities (28) and (29),
leading to:

k−1
∑

h=1

xih,ih+1
+ xik,i1 + 2

k−1
∑

h=2

xih,i1 +

k−1
∑

h=3

h−1
∑

l=2

xih,il +
∑

n+ip∈S̄∩σ(S)

xn+ip,i1 ≤ k − 1, (32)

k−1
∑

h=1

xih,ih+1
+ xik,i1 + 2

k
∑

h=3

xi1,ih +

k
∑

h=4

h−1
∑

l=3

xih,il +
∑

ip∈S̄∩π(S)

xi1,ip ≤ k − 1. (33)

Finally, let U1, . . . , Uk ⊂ P ∪ D be mutually disjoint subsets such that i1, . . . , ik ∈ P are
requests for which il, n+il+1 ∈ Ul for l = 1, . . . , k (where ik+1 = i1). The following precedence
cycle breaking inequalities were introduced by Balas et al. [2] for the precedence-constrained
TSP:

k
∑

l=1

x(Ul) ≤
k
∑

l=1

|Ul| − k − 1. (34)

Equivalent inequalities, called generalized order constraints were introduced by Ruland
and Rodin [27] for the undirected TSPPD.

Several other families of valid inequalities for the TSPPD have been described by Ruland
and Rodin [27] and by Dumitrescu et al. [10]. However, our experiments have shown that
they have a negligible impact in a branch-and-cut algorithm for the TSPPDL. In the next
section we thus introduce new inequalities that take advantage of the particular structure of
the problem.

4.2 New inequalities for the TSPPDL

We now describe three new families of inequalities for the TSPPDL. Throughout this section,
we denote by i ≺ j the fact that node i is a predecessor of node j in a route.

4.2.1 Incompatible predecessor and successor inequalities

For all i, j ∈ P , if xij = 1 in a feasible integer solution, then this solution must satisfy
0 ≺ i, j ≺ n + j ≺ n + i ≺ 2n + 1. Indeed, the successor of n + j is either n + i or a pickup
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node different from i. The set of possible successors to node n + j if arc (i, j) is used is thus
Sn+j(i, j) = {n + i} ∪ (P \ {i}). This leads to the following inequality.

Proposition 4. For each node pair i, j ∈ P with i 6= j, the following inequality is valid for
the TSPPDL:

xij +
∑

l 6∈Sn+j(i,j)

xn+j,l ≤ 1. (35)

Proof. First note that at most one outgoing arc from node n + j can be used in a solution.
Two cases must be considered. If xij = 1, then load j is placed on top of load i. Hence,
after visiting node n+ j the vehicle can only visit node n+ i or a pickup node different from
i. If instead the route uses an arc leaving node n + j and going either to i or to a delivery
node different from n+ i, then load i cannot have been placed directly below load j and thus
xij = 0. �

Similarly, for all i, j ∈ P , if xn+i,n+j = 1 is a feasible integer solution, then this solution
must satisfy 0 ≺ j ≺ i ≺ n + i, n + j ≺ 2n + 1. The set of possible predecessors of node i is
then Pi(n + i, n + j) = {j} ∪ (D \ {n + j}). This leads to the following inequality.

Proposition 5. For each node pair i, j ∈ P with i 6= j, the following inequality is valid for
the TSPPDL:

xn+i,n+j +
∑

l 6∈Pi(n+i,n+j)

xli ≤ 1. (36)

Proof. The proof is similar to that of Proposition 4 by interchanging pickups and deliveries.
�

4.2.2 Hamburger inequalities

As shown in Section 2.1, the LIFO requirements lead to some interesting properties on
the structure of feasible solutions. In particular consider the subset of arcs represented in
Figure 3. For all i, j ∈ P , one can see that using arc (i, j) implies that none of the remaining
arcs can be used: (n+i, j) enters node j, (n+j, i) leads to a subtour, and (n+i, n+j) results
in a violation of the LIFO constraint. In fact, all arcs in Figure 3 are pairwise incompatible.
As a result, the following inequality is valid for any i, j ∈ P with i 6= j:

xij + xn+i,n+j + xn+j,i + xn+i,j ≤ 1 ∀i, j ∈ P, i 6= j. (37)

When three or more requests are considered, a similar reasoning yields a new family of
inequalities.

Proposition 6. Consider an ordered subset of requests defined by the indices {i1, . . . , ik},
with k ≥ 3, and assume that the index is circular, i.e., ik+1 = i1, ik+2 = i2, . . . and i0 = ik,
i−1 = ik−1, . . . The following inequality is valid for the TSPPDL:

k
∑

h=1

(

xih,ih+1
+ xn+ih+1,ih + xn+ih,n+ih+1

)

≤ k − 1. (38)
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ji

n+in+j

Figure 3: Representation of valid inequality (37).

Inequalities (38) can in fact be lifted in two different ways, as shown by the following
proposition.

Proposition 7: Consider an ordered subset of requests defined by the indices {i1, . . . , ik},
with k ≥ 3, and assume that the index is circular, i.e., ik+1 = i1, ik+2 = i2, . . . and i0 = ik,
i−1 = ik−1, . . . The following inequalities are valid for the TSPPDL:

k
∑

h=1

(

xih,ih+1
+ xn+ih+1,ih + xn+ih,n+ih+1

+
h+k−2
∑

l=h+2

xil,ih

)

≤ k − 1, (39)

k
∑

h=1

(

xih,ih+1
+ xn+ih+1,ih + xn+ih,n+ih+1

+
h+k−2
∑

l=h+2

xn+ih,n+il

)

≤ k − 1. (40)

Proof. To prove (39) we first note that (38) can be rewritten as:

k
∑

h=1

(

xih−1,ih + xn+ih+1,ih + xn+ih,n+ih+1

)

≤ k − 1, (41)

since this only implies a translation of the circular index of xih,ih+1
to xih−1,ih. We now show

that (41) can be lifted as follows:

k
∑

h=1

(

xih−1,ih + xn+ih+1,ih + xn+ih,n+ih+1
+

h+k−2
∑

l=h+2

xil,ih

)

≤ k − 1. (42)

For a given index h, at most one of the arcs entering ih can belong to a feasible solution.
In addition, all of these arcs are incompatible with (n + ih, n + ih+1). Indeed this last arc
implies that in the stack, ih appears immediately on top of ih+1. As a result, the only
compatible PP arc entering ih would be (ih+1, ih), which does not belong to the summation.
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It is also obvious that the arcs (n + ih, n + ih+1) and (n + ih+1, ih) are incompatible as they
would violate the precedence constraint for request h. Hence, in any feasible solution, there
can be at most one arc from each group. Assume now that exactly one arc is selected from
each group. As for inequalities (38), one can check that these arcs impose a sequence of
operations that violates either the precedence or LIFO constraints. Finally, (42) can be
transformed into (39) by simply translating the indices of xih−1,ih to xih,ih+1

. The validity of
(40) is established by following a similar reasoning. �

Inequalities (39) and (40) are represented in Figures 4 and 5, respectively. We refer to
these inequalities as hamburger inequalities.

i i i

n+i n+i n+i n+i

i1 2 3 4

2 3 4 1

Figure 4: Hamburger inequality (39) with four requests.

i1 i 2
i

3 i
4

n+i
2

n+i 3 n+i
4

n+i1

Figure 5: Hamburger inequality (40) with four requests.
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4.2.3 Incompatible paths inequalities

Another family of inequalities can be derived from the classical infeasible path constraints.
For i, j ∈ P , let Pij be a path starting at node i, finishing at node j, and not containing
node n + i. Let also Pn+i,n+j be a path from n + i to n + j. For any path P , let also A(P )
denote the arc set of P . If a feasible integer solution uses all arcs in A(Pij) then i ≺ j. As a
result, n + j ≺ n + i, since, by the definition of Pij , n + i does not appear on Pij and must
consequently be a successor of n + j. Hence, not all arcs in A(Pn+i,n+j) can be used. This
observation proves the following proposition.

Proposition 10: Consider two requests i, j ∈ P . For any path Pij = (k1, . . . , kp) with
k1 = i, kp = j and kh 6= n + i, 2 ≤ h ≤ p − 1, and any path Pn+i,n+j = (l1, . . . , lq) with
l1 = n + i and lq = n + j, the following inequality is valid for the TSPPDL:

p−1
∑

h=1

xkh,kh+1
+

q−1
∑

h=1

xlh,lh+1
≤ |A(Pij)| + |A(Pn+i,n+j)| − 1. (43)

These inequalities can in fact be lifted by following the strengthening of infeasible path
constraints into tournament inequalities introduced by Ascheuer et al. [1]. This idea leads
to the following form:

p−1
∑

h=1

p
∑

r=h+1

xkh,kr
+

q−1
∑

h=1

q
∑

r=h+1

xlh,lr ≤ |A(Pij)| + |A(Pn+i,n+j)| − 1. (44)

5 Branch-and-Cut Algorithm

The formulations presented in Section 3 and the valid inequalities introduced in Section 4
are used within a branch-and-cut algorithm which we now describe in detail.

5.1 Preprocessing and cut pool

As noted earlier, no delivery node n+ j can be the direct successor of a pick-up node i when
j 6= i. As a result, arcs of the form (i, n + j) with i 6= j can be removed from the graph.

Before starting the algorithm, we add the following set of inequalities to the models.
Because there is a quadratic number of inequalities (35) and (36), these are all introduced into
the cut pool. Similarly, we include all subtour elimination constraints (9) with |S| = 2 as well
as all constraints (37) whose number is also quadratic. We also add to the model the simple
predecessor and successor inequalities, obtained by setting S equal to {i, j}, {i, n + j} and
{i, n+i, j} in (28), and to {n+i, n+j}, {i, n+j} and {i, n+i, n+j} in (29). Finally, we include
simple cases of the strengthened D+

h and D−
h inequalities: xn+i,j + xji + xi,n+i + xn+j,n+i ≤ 2

and xi,n+i + xn+i,n+j + xn+j,i + xi,j ≤ 2.
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5.2 Separation procedures

In our branch-and-cut algorithm, we use exact separation procedures for subtour elimination
constraints (9), precedence constraints (10) and LIFO constraints (26). The first two groups
of constraints are required to ensure feasibility in all three formulations, while the third group
of constraints is necessary for formulation (TSPPDL3). For the separation of inequalities
(28)-(29),(32)-(34), (39),(40) and (43), however, we use heuristics.

5.2.1 Exact separation procedures

Constraints (9) are separated exactly in the classical way. Given a (fractional) solution x∗,
we create a supporting graph G∗ = (N, A∗), where an arc (i, j) ∈ A∗ has capacity equal
to x∗

ij . We then solve a max-flow problem on G∗, from 0 to each pickup i, and from each
delivery n + i to 2n + 1 (i = 1, . . . , n).

Constraints (10) are separated exactly for each i ∈ P in the following way:

1. create the supporting graph G∗;

2. connect 0 to n + i and i to 2n + 1 (i = 1, . . . , n) with arcs of capacity 2;

3. solve the max-flow problem from 0 to 2n + 1 and obtain a set S∗ containing 0 (note
that by construction i 6∈ S∗ and n + i ∈ S∗). If the max-flow value is smaller than 2,
then S∗ defines a violated inequality (10).

In addition to generating violated inequalities of the form (10), we also consider another
form of precedence constraints introduced by Balas et al. [2]:

x(n + i, S) + x(S) + x(S, i) ≤ |S| ∀S ⊂ N, ∀i ∈ P : i 6∈ S, n + i 6∈ S. (45)

Note that inequalities (45) are equivalent to the following inequalities:

x(δ+(S)) + x(n + i, S̄) + x(S̄, i) ≥ 2. (46)

Inequalities (46) are separated exactly for each i ∈ P in the following way:

1. create the supporting graph G∗;

2. insert in G∗ a dummy node 2n + 2, and connect 2n + 2 to every node k ∈ N with an
arc of capacity xn+i,k + xk,i (k = 1, . . . , 2n);

3. increase the capacity of the arcs (2n + 1, i), (0, i) and (n + i, i) to 2;

4. solve the max-flow problem from 2n+2 to i and obtain a set S∗ such that 2n+2 ∈ S∗

(note that by construction i 6∈ S∗, n + i 6∈ S∗, 0 6∈ S∗, 2n + 1 6∈ S∗). If the max-flow
value is smaller than 2, then S∗ defines a violated inequality (46).
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Finally, we show how to separate inequalities (26) which are equivalent to:

x(δ+(S)) + x(i, S̄) + x(S̄, n + i) ≥ 2. (47)

For each pair of nodes i, j ∈ P we need to perform two searches. First, we need to check
all sets S such that i 6∈ S, n + i 6∈ S, j ∈ S and n + j 6∈ S. Second, we need to check all sets
S such i 6∈ S, n + i 6∈ S, j 6∈ S and n + j ∈ S. Here we describe how to perform the first
search, which means that the procedure searches for a set S with j inside and i, n + i, n + j
outside. The other search is performed in an equivalent way:

1. create the supporting graph G∗;

2. increase the capacity of arcs (j, k) by the value x∗
ik + x∗

k,n+i (k = 1, . . . , 2n);

3. define the capacity of the arcs (i, n + i), (n + i, i), (i, n + j) and (n + j, i) equal to 2;

4. solve the max-flow problem from j to i and obtain a set S∗ such that j ∈ S∗ (and
note that by construction i 6∈ S∗, n + i 6∈ S∗ and n + j 6∈ S∗). If the max-flow value is
smaller than 2, then S∗ defines a violated inequality (47) with S∗ ∈ Ω.

5.2.2 Heuristic separation procedures

In order to separate inequalities (28) and (29) we use a tabu search heuristic, denoted TS1,
derived from the one proposed by Cordeau [6]. Given a subset of customers S (initialized
with a randomly chosen customer), we compute all possible moves obtained by 1) deleting
a customer from S or 2) inserting a customer in S. Among the possible moves we choose
the one leading to the maximum value of the left-hand side of (28) or of (29), minus |S|. As
soon as a violated inequality has been identified, it is added to the model. When a node is
inserted (resp. deleted) in S, its deletion (resp. insertion) is declared tabu for θ1 iterations.
The algorithm is run twice, for the separation of (28) and (29), and every time is is halted
when γ1 iterations have been performed or a maximum number of cuts has been added to
the model.

We have considered five intervals for θ1: max{5, n/10}, max{5, 2n/10}, max{5, 3n/10},
max{4, n/10} and max{3, n/10}. The performance of the heuristic is not really sensitive to
the value of this parameter but we found that the first interval produced the best results on
average. Similarly, γ1 = 25 proved to be slightly better than 10, 20, 30, 40, 50 and 100.

Note that TS1 works on non-ordered subsets of customers, while inequalities (32), (33),
(34), (39) and (40) are based on ordered sequences of customers. For this reason we separate
these families of inequalities by means of a more elaborate tabu search algorithm (TS2).

Given an ordered sequence of customers S, TS2 computes all the moves obtained by 1)
deleting one of the customers in S, 2) switching the positions of two customers in S, or 3)
inserting a new customer in a given position in S. As in TS1, we also choose the move leading
the maximum value of the left-hand side of the inequality being separated, minus |S|. We
have implemented the tabu list as a set of couples (i, j), where i = −1 means that customer
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j is inserted in S, j = −1 means that i is removed from S, and i, j ≥ 0 implies that the
positions in S of the two vertices i and j are exchanged. When a move (i, j) is performed, the
opposite move (j, i) is forbidden for γ2 iterations. The algorithm is halted after γ2 iterations
or after having added a maximum number of cuts to the model. We run TS2 three times,
for the separation of (32), (33) and (34), respectively. We also run it a fourth time for the
separation of (39) and (40). In this last case, TS2 looks for the maximization of the common
part of the left hand sides of the two inequalities, minus |S|.

For TS2, we found it convenient to initialize S with a random triplet of customers. Only
sequences with up to 4n/10 customers are taken into consideration during the search process.
This value proved to be better than n/10, 2n/10, 3n/10 and 5n/10. Similarly to TS1, we
found it convenient to set θ2 = max{5, n/10}. The maximum number of iterations was
finally set to γ2 = 50, a value preferred to 10, 20, 25, 30, 40, 60, 70 and 100.

For what concerns constraints (43), we decided to separate them by means of a series
of constructive heuristics. The first simple greedy heuristic (P1) takes into consideration
paths of length at most four. For each couple of pickups i and j (i ∈ N, j ∈ N, j 6= i) P1
tries to construct a path Pi,j by considering the sequences of the forms (i, j), (i, h, j) and
(i, h, n + h, j) (h ∈ N, h 6= i, h 6= j). If a path satisfying

∑

(h,k)∈Pij
xhk > |Pij| − 1 is found,

then P1 checks the corresponding path Pn+i,n+j. Also in this case the paths considered have
length at most four, with the forms (n+ i, n+j), (n+ i, n+h, n+j) and (n+ i, h, n+h, n+j)
(h ∈ N, h 6= i, h 6= j). If a violation of (43) is found the corresponding cut is added to the
model; otherwise a more complex heuristic (P2) is executed.

Heuristic P2 constructs a path Pij by choosing a vertex i and linking it to the vertex j
such that xij has the highest value among the variables leaving i (breaking ties by decreasing
value of j). Then the path is possibly extended in the same way, by finding the highest value
variable xjk and connecting j to k (forming Pik) and so on. As soon as a pickup, say j,
is found in the path, then a possible violation is searched by checking the corresponding
path Pn+i,n+j. This is done by first considering the value of xn+i,n+j. Then, if no violation
is found, Pn+i,n+j is extended by considering the vertex maximizing the x flow between i
and j. This extension of Pn+i,n+j is reiterated until 1)

∑

(h,k)∈Pij
xhk +

∑

(h,k)∈Pn+i,n+j
xhk

≤ |Pij| + |Pn+i,n+j| − 1 or 2) a maximum path length maxpl is reached. For each value of i,
the Pij path extension is halted whenever 1) i is linked to n + i, 2)

∑

(h,k)∈Pij
xhk ≤ |Pij| − 1

or 3) a maximum path length maxpl is reached.
Finally, a similar heuristic (P3) is used. It first constructs the Pn+i,n+j path, in the same

way as in P2, and then checks Pij for possible violations. More elaborated heuristics did not
produce significant improvements in the solution quality. After a preliminary setting maxpl
was set to min{n, 20}.

6 Computational Results

Our branch-and-cut algorithm was coded in C and run on a Pentium IV 3 GHz, using
CPLEX 10.0 as ILP solver. The tests were executed on the instances introduced by Carrabs
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et al. [3], by considering up to 25 requests (52 nodes), leading to a total of 45 instances.
To reduce the CPU time spent by the separation procedures, at each node of the branch-

and-cut tree we stop looking for violated valid inequalities after 8 violated inequalities have
been added to the model. This value was chosen experimentally by performing sensitivity
analyses on our set of test instances.

Table 2 presents the root-node lower bounds obtained for the three models presented
in the previous sections. The names of the original TSP instances used to produce valid
TSPPDL instances are given in column Graph. In column n we give the number of requests
and in column UB we report the best upper bound that we obtained for each instance.

Our algorithm takes as an initial upper bound the value obtained by the VNS heuristic
of Carrabs et al. [4]. These upper bounds are identical to the ones in Column UB, except
for three cases where our algorithm could improve the solution found by the heuristic. In
particular, for instances nrw1379 with n = 17, att532 with n = 25 and ts225 with n = 25,
we obtained solutions with cost 3644 (versus 3652), 11478 (versus 11484) and 54386 (versus
54629), respectively.

The values in the remaining columns are given as percentage gaps between the lower
bound obtained by a model and UB, computed as 100(UB − LB)/UB. In particular we
report the percentage gap obtained by each of the plain formulations TSPPDL1, TSPPDL2
and TSPPDL3. For TSPPDL3 we also report the percentage gaps obtained by adding one
family of inequalities at a time to the plain formulation (e.g., column (35,36) reports the
value obtained with formulation TSPPDL3 plus constraints (35) and (36)). The three plain
formulations present similar percentage gaps, with TSPPDL3 obtaining a slightly better
average value (11.58%). This value is consistently improved by the quadratic families of
inequalities (35) and (36) which together lead to a gap of 5.28%. Smaller improvements are
obtained by considering the other inequalities, with the generalized order constraints (34)
being the least effective family, leading to no significant improvement.

In Table 3 we evaluate the marginal contributions of each family of inequalities on the
root node lower bound for TSPPDL3. In column Full we give the percentage gap of the lower
bound obtained by TSPPDL3 with the separation of all families. In the successive columns
we remove from the full formulation one family of inequalities (e.g., column (35,36) gives
the values obtained by removing constraints (35) and (36)). It can be noted that TSPPDL3
yields a good average percentage gap of 4.73% from UB. This gap increases to 10.01% when
(35) and (36) are removed. A smaller but still significant increase is obtained when the other
families of constraints are removed. It is worth noting that the majority of instances with
nine requests are solved at the root node by the complete model.

In both Tables 2 and 3, one can note some cases in which adding (resp. removing) a valid
inequality deteriorates (resp. improves) the lower bounds. This behavior is explained by the
automatic cut generation and problem reduction routines internal to CPLEX.

Finally we report in Table 4 the complete results obtained with the full formulation
TSPPDL3. Because of the poor performance of constraints (34), these were not included in
the model. The algorithm was allowed to run for one hour. In column %gap we report the
percentage gap between the best lower bound found and UB, computed as in the previous
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Table 2: Root-node lower bounds for the three models.

Instance TSPPDL1 TSPPDL2 TSPPDL3
Graph n UB Plain Plain Plain (35,36) (45) (28,29) (32,33) (34) (39,40) (44)
a280 9 402 11.94 10.45 9.20 0.00 8.21 8.71 9.20 9.20 8.96 8.96
att532 9 4250 5.98 5.91 5.79 0.00 5.67 4.49 5.67 5.53 4.42 5.69
brd14051 9 4555 4.08 3.97 3.14 0.00 3.16 2.72 2.94 3.12 2.59 3.14
d15112 9 76203 5.66 5.93 5.84 0.00 5.72 5.37 5.70 5.85 4.68 5.41
d18512 9 4446 3.46 3.44 3.24 0.00 3.24 2.54 3.35 3.44 3.04 3.26
fnl4461 9 1866 1.07 0.75 0.38 0.00 0.32 0.00 0.32 0.38 0.00 0.00
nrw1379 9 2691 5.09 2.08 2.56 0.00 1.60 1.60 1.60 2.56 1.52 1.60
pr1002 9 12947 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ts225 9 21000 11.90 8.33 9.52 4.76 11.90 10.71 11.31 11.11 10.77 9.52
a280 13 505 14.26 13.07 12.28 4.36 11.68 7.72 10.89 12.28 10.30 13.86
att532 13 5800 6.72 6.84 6.83 2.02 6.83 5.24 6.93 6.83 5.86 6.52
brd14051 13 4936 9.50 10.58 9.46 1.48 9.22 9.04 9.14 9.46 8.35 9.06
d15112 13 93158 11.39 11.34 11.32 5.95 11.32 10.88 11.34 11.45 10.49 11.10
d18512 13 4704 7.87 7.84 7.55 3.89 7.57 7.27 7.63 7.57 7.48 7.57
fnl4461 13 2483 15.18 14.90 14.34 7.53 14.34 13.89 14.22 14.46 13.69 14.18
nrw1379 13 3366 15.54 15.63 14.80 7.04 13.58 12.09 14.80 13.81 13.28 14.26
pr1002 13 15566 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ts225 13 32395 8.46 8.30 7.45 3.20 7.45 7.51 7.32 7.56 7.37 7.51
a280 17 647 11.44 11.90 10.51 4.02 11.44 7.26 9.74 11.44 10.05 11.44
att532 17 6361 8.50 8.74 8.63 3.99 8.63 8.32 8.66 8.73 7.84 8.38
brd14051 17 5196 11.91 11.91 11.61 1.50 11.47 10.74 11.30 11.59 9.82 11.61
d15112 17 115554 15.06 15.38 16.10 5.16 15.93 16.12 16.14 16.19 15.47 16.21
d18512 17 5186 13.38 13.25 12.57 6.63 12.55 12.15 12.46 12.53 12.50 12.57
fnl4461 17 2852 15.60 15.50 15.04 6.14 15.04 15.32 15.15 15.15 14.31 15.15
nrw1379 17 3644 15.53 15.26 15.09 8.95 14.87 14.16 15.12 15.12 13.86 14.38
pr1002 17 17564 1.66 1.67 1.59 0.00 0.47 0.00 0.19 1.09 1.05 1.59
ts225 17 36703 7.37 7.41 7.41 4.60 7.39 5.43 7.26 7.41 6.56 7.37
a280 21 752 11.17 12.23 11.04 5.19 11.04 6.52 10.24 10.37 9.97 11.57
att532 21 10714 8.57 8.86 8.89 4.26 8.89 8.55 8.81 8.71 7.22 8.63
brd14051 21 5719 17.10 17.05 16.84 6.52 16.75 16.49 16.79 16.66 15.79 16.72
d15112 21 128798 18.87 18.80 19.18 7.59 19.06 18.82 19.14 19.19 18.45 19.16
d18512 21 5634 16.08 15.50 15.03 6.28 15.00 14.39 14.98 15.14 15.18 15.09
fnl4461 21 3269 19.30 19.46 19.33 9.91 19.33 19.30 19.24 19.36 19.03 19.21
nrw1379 21 4282 19.92 19.83 19.52 9.95 19.34 19.59 19.59 19.64 18.99 19.29
pr1002 21 20173 3.20 3.18 2.75 1.47 2.52 1.16 2.58 2.70 2.60 2.68
ts225 21 43082 13.35 13.25 12.61 7.17 12.10 9.12 11.77 13.13 10.66 12.61
a280 25 845 11.24 12.07 11.83 4.73 10.65 7.10 9.94 11.60 8.28 11.36
att532 25 11478 8.67 8.84 8.85 4.42 8.89 8.76 8.89 8.83 7.45 8.47
brd14051 25 7539 34.69 34.55 34.35 22.56 34.33 34.20 34.35 34.37 33.44 34.18
d15112 25 143654 21.93 22.23 22.08 8.80 22.03 21.37 22.00 22.06 21.57 22.05
d18512 25 7291 32.94 32.57 32.12 21.85 32.09 31.64 32.12 32.15 32.26 32.14
fnl4461 25 3860 24.84 24.84 24.66 14.17 24.72 24.48 24.72 24.64 24.59 24.56
nrw1379 25 4836 20.35 20.35 20.37 10.05 20.29 20.29 20.37 20.37 19.77 20.20
pr1002 25 22774 4.12 4.23 3.96 2.31 3.71 2.90 3.63 3.92 3.66 3.90
ts225 25 54386 15.87 15.96 15.44 9.25 15.14 12.66 13.84 15.18 12.87 15.46
Average 12.02 11.87 11.58 5.28 11.45 10.59 11.36 11.60 10.80 11.50
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Table 3: Root-node lower bounds for model 3.

Instance TSPPDL3
Graph n UB Full (35,36) (45) (28,29) (32,33) (34) (39,40) (44)
a280 9 402 1.74 9.45 1.74 0.00 1.99 1.49 0.00 0.00
att532 9 4250 0.00 3.25 0.00 0.00 0.00 0.00 0.00 0.00
brd14051 9 4555 0.00 1.19 0.00 0.00 0.00 0.00 0.00 0.00
d15112 9 76203 0.00 4.01 0.00 0.00 0.00 0.00 0.00 0.00
d18512 9 4446 0.00 2.14 0.00 0.00 0.00 0.00 0.00 0.00
fnl4461 9 1866 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
nrw1379 9 2691 0.00 1.45 0.00 0.00 0.00 0.00 0.00 0.00
pr1002 9 12947 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ts225 9 21000 4.76 9.82 4.76 4.76 4.76 4.76 4.76 4.76
a280 13 505 0.00 7.72 0.99 1.98 0.00 0.00 0.00 0.59
att532 13 5800 0.33 4.26 1.10 1.60 1.55 1.22 0.00 1.31
brd14051 13 4936 1.76 7.41 1.76 1.99 1.70 1.54 1.50 1.76
d15112 13 93158 5.54 10.17 5.54 6.06 5.58 5.49 5.69 5.78
d18512 13 4704 3.44 7.25 3.44 3.87 3.49 3.51 3.51 3.44
fnl4461 13 2483 7.29 13.45 7.29 7.45 7.65 7.65 7.73 7.29
nrw1379 13 3366 6.00 12.33 6.00 6.12 5.73 5.56 5.44 5.88
pr1002 13 15566 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ts225 13 32395 3.09 7.35 3.63 3.09 3.09 3.09 4.24 4.18
a280 17 647 2.94 7.26 2.78 3.40 4.17 2.94 2.63 2.94
att532 17 6361 3.84 6.84 3.95 3.84 2.44 2.70 3.27 3.84
brd14051 17 5196 1.40 9.22 1.42 1.42 1.35 1.44 1.17 1.40
d15112 17 115554 4.66 14.46 4.66 5.15 4.96 4.87 4.90 4.67
d18512 17 5186 6.54 11.96 6.54 6.40 6.56 6.54 6.58 6.54
fnl4461 17 2852 6.45 14.10 6.45 6.45 6.66 6.42 6.42 6.45
nrw1379 17 3644 7.85 13.47 8.26 8.18 7.85 7.96 7.96 7.85
pr1002 17 17564 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ts225 17 36703 3.42 4.56 3.38 4.58 3.62 3.41 3.42 3.44
a280 21 752 2.66 7.31 2.93 3.86 3.06 3.59 2.93 2.66
att532 21 10714 3.39 6.85 3.38 3.69 3.36 3.53 3.55 3.35
brd14051 21 5719 6.15 15.65 6.22 6.21 6.17 6.14 6.12 6.15
d15112 21 128798 7.09 17.65 7.06 7.11 7.30 6.92 6.90 6.91
d18512 21 5634 6.27 14.27 6.32 6.39 6.35 6.39 6.35 6.35
fnl4461 21 3269 9.70 18.75 9.73 9.70 9.79 9.67 9.70 9.54
nrw1379 21 4282 8.97 18.82 8.94 8.97 9.22 8.97 9.41 8.97
pr1002 21 20173 0.00 1.31 0.00 0.57 0.00 0.00 0.00 0.00
ts225 21 43082 5.31 9.03 5.45 7.35 5.80 5.95 5.98 5.91
a280 25 845 3.55 7.10 3.20 3.67 3.31 2.84 2.60 3.79
att532 25 11478 4.12 7.07 4.11 4.15 4.14 4.14 4.11 4.19
brd14051 25 7539 22.59 33.25 22.58 22.55 22.54 22.50 22.47 22.48
d15112 25 143654 8.47 20.60 8.33 8.33 8.54 8.31 8.22 8.45
d18512 25 7291 21.37 31.48 21.37 21.46 21.62 21.59 21.42 21.37
fnl4461 25 3860 13.91 24.25 13.83 14.07 13.78 14.02 13.70 13.83
nrw1379 25 4836 9.68 19.67 9.80 9.62 9.82 9.47 9.82 9.47
pr1002 25 22774 0.16 2.56 0.87 1.61 1.44 1.19 0.16 1.23
ts225 25 54386 8.59 11.49 8.75 8.79 7.95 8.61 8.13 8.59
Average 4.73 10.01 4.81 4.99 4.83 4.76 4.68 4.79
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tables. In column Nodes we give the number of nodes in the enumeration tree, while in
column User we report the number of violated inequalities added to the model (excluding
those automatically added by CPLEX). In column Secs we give the CPU time in seconds
required by the algorithm.

All instances with up to 17 requests are solved to optimality within about one minute,
with the exception of instance d18512 with n = 17, which requires almost 13 minutes. Eight
of the larger-size instances are not solved to optimality. For these instances, the percentage
gap can be large, reaching a maximum of about 20%. The size of the enumeration tree
exceeds only once 15000 nodes. The number of cuts added increases with the difficulty of
the instance, being on average around 1500 per instance.

In summary, TSPPDL3 solves to optimality 37 out of 45 instances in less than one CPU
hour, with an average percentage gap of 1.39%. Allowing larger CPU times allows the
algorithm to solve all instances with up to 21 requests. In particular, for instances d15112,
d18512 and nrw1379, the solutions of value 128798, 5634 and 4282 are proven to be optimal
in 6135.92, 11717.19 and 11663.13 secs., respectively. No proof of optimality could however
be obtained for the instances with 25 requests that were unsolved after one hour. In the
same CPU time limit of one hour, TSPPDL1 and TSPPDL2 display worse computational
behavior.

In Table 4 we also show the effectiveness of the separation procedures described in Section
5.2 by comparing TSPPDL3 with a reduced version of the model in which we do not include
inequalities (45), (28,29), (32,33), (39–40) and (44) (remember that (34) was not included
in TSPPDL3 either). This reduced version of the model is named TSPPDL3* and namely
consists of (21)–(27), plus (35,36). One can observe that removing the other inequalities
leads to a reduction in the number of instances solved to optimality (eight instead of ten),
to a worse average gap (1.63% versus 1.39%) and to a larger average CPU time (992 seconds
versus 835 seconds).

We finally compare the two variants of our algorithm with the recent branch-and-bound
algorithm of Carrabs et al. [3]. This algorithm is identified as B&B in the last column of
Table 4. It was run on a 2.4 GHz AMD Opteron 250 processor, with a time limit of three
hours. In this time limit the branch-and-bound fails in solving one instance with n = 17, six
instances with n = 21 and all instances with n = 25. On the instances that could be solved
to optimality by both algorithms, the branch-and-cut is usually much faster.

7 Conclusions

We have formulated and solved a combinatorial optimization problem derived from the
TSPPD by performing pickups and deliveries according to a LIFO policy. We have presented
the first known ILP models for the TSPPDL. We have improved the linear relaxations of
these models by applying valid inequalities from the literature and proposing new ones. We
have assessed the behavior of the models and of the inequalities by solving instances from
the literature. The branch-and-cut algorithm could solve to optimality all instances with up
to 36 nodes, as well as a number of larger instances.
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Table 4: Summary of computational results over 45 instances.

Instance TSPPDL3 TSPPDL3* B&B [3]
Graph n UB %gap Nodes User Secs %gap Nodes User Secs Secs

a280 9 402 0.00 4 48 0.89 0.00 0 23 0.30 0.02
att532 9 4250 0.00 0 13 0.09 0.00 0 11 0.03 0.03
brd14051 9 4555 0.00 0 8 0.03 0.00 0 11 0.03 1.22
d15112 9 76203 0.00 0 35 0.27 0.00 0 18 0.16 0.10
d18512 9 4446 0.00 0 75 0.31 0.00 0 17 0.13 0.04
fnl4461 9 1866 0.00 0 34 0.14 0.00 0 16 0.06 0.01
nrw1379 9 2691 0.00 0 0 0.03 0.00 0 0 0.02 0.05
pr1002 9 12947 0.00 0 41 0.13 0.00 0 8 0.02 0.01
ts225 9 21000 0.00 6 90 0.38 0.00 8 38 0.14 0.03
a280 13 505 0.00 1 85 1.53 0.00 15 44 1.25 1.00
att532 13 5800 0.00 7 62 1.70 0.00 12 47 0.69 6.95
brd14051 13 4936 0.00 15 120 2.30 0.00 8 24 0.73 149.00
d15112 13 93158 0.00 187 402 12.61 0.00 327 247 7.20 15.82
d18512 13 4704 0.00 139 410 11.28 0.00 217 239 6.83 141.47
fnl4461 13 2483 0.00 262 373 12.83 0.00 361 173 5.78 3.56
nrw1379 13 3366 0.00 56 217 6.27 0.00 1792 576 25.63 311.32
pr1002 13 15566 0.00 0 74 0.33 0.00 0 38 0.13 0.43
ts225 13 32395 0.00 13 155 1.95 0.00 25 67 1.19 5.32
a280 17 647 0.00 22 203 8.17 0.00 40 61 4.17 24.42
att532 17 6361 0.00 64 273 11.20 0.00 143 311 7.98 1671.03
brd14051 17 5196 0.00 29 89 8.36 0.00 38 105 3.95 4958.67
d15112 17 115554 0.00 437 628 46.16 0.00 623 413 23.20 1935.22
d18512 17 5186 0.00 5254 2621 731.30 0.00 10696 2555 984.09 9252.33
fnl4461 17 2852 0.00 310 399 31.38 0.00 427 243 15.80 178.50
nrw1379 17 3644 0.00 537 849 66.78 0.00 22180 3382 1678.97 > 10800
pr1002 17 17564 0.00 0 133 0.89 0.00 0 80 0.52 28.75
ts225 17 36703 0.00 38 237 9.27 0.00 43 174 5.09 149.39
a280 21 752 0.00 28 228 16.03 0.00 131 138 12.55 3918.54
att532 21 10714 0.00 544 973 122.84 0.00 20818 4266 2069.36 > 10800
brd14051 21 5719 0.00 4200 2797 898.53 0.00 14725 3611 1993.53 > 10800
d15112 21 128798 1.80 12591 6106 > 3600 2.38 17435 4358 > 3600 > 10800
d18512 21 5634 2.01 11241 4550 > 3600 0.80 17738 3838 > 3600 > 10800
fnl4461 21 3269 0.00 16284 3014 2634.72 0.00 19180 1731 1694.34 > 10800
nrw1379 21 4282 1.63 10522 4566 > 3600 6.45 14642 5334 > 3600 > 10800
pr1002 21 20173 0.00 0 193 4.84 0.00 19 154 6.28 2435.54
ts225 21 43082 0.00 298 676 56.11 0.00 849 673 56.45 6120.99
a280 25 845 0.00 40 229 33.27 0.00 154 144 23.92 > 10800
att532 25 11478 0.00 2065 1638 582.91 1.31 15517 5140 > 3600 > 10800
brd14051 25 7539 20.10 6697 8600 > 3600 20.52 9083 7489 > 3600 > 10800
d15112 25 143654 4.18 9188 4721 > 3600 5.42 12208 4267 > 3600 > 10800
d18512 25 7291 18.94 5173 7904 > 3600 18.87 6149 7416 > 3600 > 10800
fnl4461 25 3860 9.66 8532 4813 > 3600 8.68 12674 4087 > 3600 > 10800
nrw1379 25 4836 4.20 6409 5764 > 3600 6.64 9263 5774 > 3600 > 10800
pr1002 25 22774 0.00 16 344 26.02 0.00 138 339 27.23 > 10800
ts225 25 54386 0.00 10758 3454 3413.11 2.34 15363 5444 > 3600 > 10800
Average 21424 1.39 2488 1517 1.63 4956 1625 992.47
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