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Abstract

In the last decade, there has been an increasing body of research in dynamic vehicle routing

problems. This article surveys the subclass of those problems called dynamic pickup and

delivery problems, in which objects or people have to be collected and delivered in real

time. It discusses some general issues as well as solution strategies.
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1 Introduction

Pickup and delivery problems (PDPs) are a class of vehicle routing problems in which

objects or people have to be transported between an origin and a destination. They

can be classified into three different groups. The first group consists of many-to-many
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problems, in which any vertex can serve as a source or as a destination for any commodity.

An example of a many-to-many problem is the Swapping Problem (Anily and Hassin,

1992). In this problem, every vertex may initially contain an object of a known type of

commodity as well as a desired type of commodity. The problem consists of constructing

a route performing the pickups and deliveries of the objects in such a way that at the

end of the route, every vertex possesses an object of the desired type of commodity.

Problems in the second group are called one-to-many-to-one problems. In these problems

commodities are initially available at the depot and are destined to the customer vertices;

in addition, commodities available at the customers are destined to the depot. Finally, in

one-to-one problems, each commodity (which can be seen as a request) has a given origin

and a given destination. Problems of this type arise, for example, in courier operations

and door-to-door transportation services.

A routing problem is said to be static when all the input data of the problem are

known before routes are constructed. In a dynamic routing problem, some of the input

data are revealed or updated during the period of time in which operations take place.

In a dynamic pickup and delivery problem, the input data which are revealed over time

are generally the user requests. In contrast to what happens in a static problem, the

planning horizon of a dynamic problem may be unbounded. Therefore, a solution to a

dynamic problem cannot be a static output, but rather a solution strategy which, using

the revealed information, specifies which actions must be performed as time goes by.

Most studies of pickup and delivery problems have focused on the static case and

little work was done on the dynamic counterpart of the PDPs. One example of a dynamic

PDP appears in the transportation of handicapped and elderly people in urban areas. The

dynamic aspect in this problem, which is called the Dial-a-Ride Problem (DARP), comes

from the fact that transportation requests are sometimes received the same day they need

to be served. Another example arises in the same day transportation services of letters or

parcels performed by courier companies. In this problem, most requests are received on

their service day. These are two examples of dynamic one-to-one PDPs. We are not aware

of any studies related to dynamic many-to-many PDPs or dynamic one-to-many-to-one

PDPs.

In this paper we provide a general framework for dynamic one-to-one PDPs, we de-

scribe solution concepts and, without being exhaustive, we present the most relevant

literature on dynamic pickup and delivery problems. The paper is organized as follows.
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In Section 2 we present the framework itself we explain the actions that any system must

apply to solve them. General solution concepts for dynamic vehicle routing problems are

introduced in Section 3. Sections 4, 5, and 6 survey the Dynamic Stacker Crane Problem,

the Dynamic Vehicle Routing Problem with Pickups and Deliveries, and the Dynamic

Dial-a-Ride Problem, respectively. These problems are the dynamic counterparts of the

one-to-one static PDPs surveyed in Berbeglia et al. (2007). Finally, some conclusions are

provided in Section 7.

2 A framework for dynamic one-to-one pickup and

delivery problems

We now formalize the framework used for the study of dynamic pickup and delivery

problems. A request consists of a demand of a certain load for a transportation service

from an origin vertex to a destination vertex. The origin (destination) vertex of request

i is denoted by i+ (i−), and the load is denoted by di. Let R denote the set of potential

requests. Pickup and delivery problems are defined on a complete and directed graph

G = (V, A) with vertex set V = {0} ∪ {i+|i ∈ R} ∪ {i−|i ∈ R}, i.e., V contains the

origin and destination of all the requests, in addition to vertex 0 which represents the

depot. The arc set is defined as A = {(i, j) : i, j ∈ V, i 6= j}. Each arc (i, j) ∈ A has a

non-negative length or cost cij and a non-negative travel time tij. A route is a circuit over

some vertices, starting and finishing at the depot. The pickup and delivery vertices of a

request cannot be visited by different routes and the pickup vertex naturally precedes the

delivery vertex.

At each time instant t, each vehicle k ∈ K is either serving a vertex, waiting at a

vertex, or moving toward a vertex. In either of these cases, the request associated with

the vertex is known at time t.

The decisions that need to be taken can be divided into two classes of decision epochs :

(i) wait or go and (ii) accept or reject. A decision epoch of type wait or go occurs when a

vehicle finishes serving a vertex. Assuming the actual time is t, the system has to choose

between waiting at the vehicle’s current location or move toward a vertex whose request

is known at time t. If the decision wait has been chosen, a series of decision epochs of

type wait or go will be triggered one at each time step until the decision go has been

chosen specifying the next vertex to visit. Finally, throughout the time horizon, service
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requests are received. Such events trigger accept or reject decision epochs at which the

system has to decide whether or not to accept the request.

A dynamic one-to-one pickup and delivery algorithm consists of a system that decides

which actions to perform at decision epochs of type wait or go and accept or reject.

Typically, all the requests known in advance and all accepted requests must be served

by the given fleet of vehicles. The quality of such an algorithm can be measured by the

number or proportion of accepted requests, the total distance traveled by the vehicles,

and the time taken to decide whether or not to accept a request. Additional assumptions

and constraints on vehicle routes, such as time windows and maximum ride times may be

present depending on the application considered.

The literature on dynamic one-to-one pickup and delivery problems can be partitioned

into three different classes of problems. In the case where requests are for the transporta-

tion of objects and the vehicles can serve more than one request at a time, the problem

is typically called the dynamic vehicle routing problem with pickups and deliveries (Dy-

namic VRPPD). When the vehicles can only perform one request at a time (e.g., when

all requests have a load equal to the vehicle capacity), the problem is called the Dynamic

Stacker Crane Problem (Dynamic SCP). Finally, in the case where the transportation

requests consists of passengers the problem is called the Dynamic Dial-a-Ride Problem

(Dynamic DARP). It could be argued that this problem is the same as the Dynamic

VRPPD. However, the Dynamic DARP differs from the Dynamic VRPPD because of its

tight time windows and maximum ride time constraints which are generally imposed to

ensure a good quality of service to users.

3 General solution concepts

While this paper focuses on dynamic pickup and delivery problems, some of the so-

lution concepts and features also apply to dynamic vehicle routing problems in general.

In this section we discuss the following features: basic solution strategies, algorithmic

performance assessment, the use of information about future requests, vehicle diversion,

and the degree of dynamism. Some of these and others are also discussed in Psaraftis

(1988) and Ghiani et al. (2003).
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3.1 Basic solution strategies

As already stated, in dynamic problems, the information is gradually revealed over

time. A basic and commonly used strategy for solving a dynamic vehicle routing problem

is to adapt an algorithm that solves the static version of the problem. Two approaches

can be distinguished.

The first one consists of solving a static problem each time new information (such as a

new request or a cancellation) is revealed. Under such a strategy, the static algorithm may

need to be modified to ensure that its solution is feasible with respect to past decisions.

One important drawback of this strategy is that performing a complete reoptimization

every time new information is revealed may be too time consuming, and therefore inad-

equate for a real-time setting. The second approach, which is the one generally used, is

the following. The static algorithm is applied only once at the beginning of the planning

horizon to obtain an initial solution with the available information. When new informa-

tion is revealed, the current solution is updated with heuristic methods such as insertion

heuristics, deletion heuristics, and interchange moves, sometimes coupled with a local

search algorithm. These update mechanisms are generally sufficiently fast to be used in

real-time. In the intervals elapsed between the time instants at which new information is

revealed, some more robust optimization methods are sometimes applied to improve the

current solution.

3.2 Algorithmic performance assessment

There are several ways of assessing the performance of algorithms for an online (or dy-

namic) combinatorial optimization problem. One of these is competitive analysis (Borodin

and El-Yaniv, 2005). Consider a minimization problem P and let I denote the input set.

We denote by Opt(i) the cost value of an optimal solution for the instance i ∈ I. In

the online version of the problem P , the input is received in a real-time fashion and the

output must be produced online as well. Consider any online algorithm A for solving the

online version of problem P , and let A(i) be the cost value of the solution obtained by

A when given the instance i ∈ I. We say that the online algorithm A is c-competitive if

there is a constant α such that

A(i) ≤ c ·Opt(i) + α ∀i ∈ I.

Whenever α is equal to zero, the algorithm A is said to be strictly-c-competitive.
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Thus, competitive analysis offers a worst-case measure of performance. For example, an

online algorithm which is strictly-2-competitive guarantees that for every instance of the

problem, the value of the solution returned would never be more than twice the value of

the optimal solution of the static problem. Since it is generally hard to perform this type

of analysis for complex problems and algorithms, the literature on competitive analysis for

dynamic pickup and delivery problems focuses on very restricted cases. For instance, in

these studies demands are unitary and time windows are generally not present. It is worth

observing that stochastic information about the future is not considered in competitive

analysis. We review some of the most important studies on competitive analysis for pickup

and delivery problems in Section 5.1.

Many articles presenting an algorithm for a dynamic PDP assess the algorithm’s per-

formance using a less strict analysis. For example, in Mitrović-Minić et al. (2004), the

authors have analyzed the performance of a dynamic algorithm over a finite subset of

the input instances I. That is, they have shown how far away solutions returned by the

dynamic algorithm are with respect to their associated static problems on a fixed (and

finite) set of instances. The authors have used a measure called the value of information

for evaluating their dynamic algorithms. Given an instance i, an algorithm A for the

dynamic problem and an algorithm As which is a static version of the algorithm A for

the static problem, the value of information under A is defined as (A(i) − As(i))/A(i).

Another way used to evaluate different algorithms for dynamic PDPs is by comparing

their relative performance.

3.3 Anticipation of future requests

In many dynamic PDPs and in dynamic vehicle routing problems in general, some

information about future requests is known as a probability distribution. For example,

the incoming requests may follow a specific Poisson distribution (see, e.g., Swihart and

Papastavrou, 1999). Because of the problem complexity, the exact probability distribution

of future events is not always known but can be approximated through the use of historical

data (Van Hentenryck and Bent, 2004; Hvattum et al., 2006, 2007). These dynamic PDPs

in which some information about future request is known are called dynamic and stochastic

PDPs. Although studies on dynamic and stochastic PDPs are very scarce, there has been

in the last few years an increasing effort to determine how stochastic information can be

exploited to improve the performance of dynamic strategies for dynamic vehicle routing
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problems. Van Hentenryck and Bent (2004) present a general framework for solving online

(dynamic) stochastic combinatorial optimization problems based on scenario sampling

with applications to vehicle routing. This method requires two main black-boxes: (i) an

optimization algorithm for the static problem, and (ii) a procedure capable of producing

a sample of the future events. The authors then propose a family of algorithms that

solve online combinatorial optimization problems by iteratively solving a series of static

problems obtained by the use of the sampling black-box and integrating the results.

The knowledge that future requests will arrive can also be used as follows. Consider

a dynamic PDP whose objective is to minimize the total distance traveled by the vehi-

cles. Assume we have an algorithm for solving this problem which is an adaptation of

an algorithm for the static version of the problem. Every time a new request arrives,

the current solution is updated either by an efficient insertion method or by complete

re-optimization. Will the updating procedure also try to minimize the total distance

traveled? If it is known that no more requests will arrive, the answer is yes. However,

when it is known that new requests will come, it may be worth modifying this objective.

For instance, it may be preferable to emphasize the minimization of the distance traveled

in the near future since the route will most probably change in the long term with the

arrival of new requests. Mitrović-Minić et al. (2004) have considered the short term ob-

jective of minimizing route length and a long term objective of maximizing the slack time,

thus favoring the accommodation of future requests. The modification of the objective

function for the updating algorithms is an interesting research topic and it is recurrent in

many studies of dynamic PDPs (see, e.g., Savelsbergh and Sol, 1998 and Gutenschwager

et al., 2004).

Yet another way of taking future requests into account in dynamic PDPs is the use

of waiting strategies. Given a vehicle route r = (v1, . . . , vk), a waiting strategy consists

of determining how much time the vehicle will wait at each of the vertices of r before

resuming its route. In a dynamic context it may sometimes be beneficial to wait at some

vertices in anticipation of future requests and thus reduce the overall traveled distance

or maximize the probability of serving a request. Similarly, a buffering strategy consists

of holding a request for a while before assigning it to a vehicle route. Alternatively, the

vehicle could move to another location from which future requests could easily be reached,

for example a median computed on the basis of the locations and frequencies of the past

requests. Theoretical and experimental results on different problems have shown the
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importance of waiting strategies (Mitrović-Minić and Laporte, 2004; Branke et al., 2005;

Ichoua et al., 2006; Thomas, 2007). Recently, Pureza and Laporte (2008) have shown the

advantages of waiting and buffering strategies in an uncapacitated dynamic pickup and

delivery problem.

3.4 Vehicle diversion

Most algorithms for dynamic PDPs in particular and for vehicle routing problems in

general cannot divert a vehicle from its current destination. The allowance of vehicle

diversion makes the driver operations more complex. However, given the arrival of new

requests this may be beneficial. The incorporation of diversion in an algorithm brings also

some technical difficulties such as how the distances are calculated as well as the problem

of estimating the time allocated for the optimization procedure. Ichoua et al. (2000)

have studied the latter issue and have devised a diversion algorithm for a dynamic vehicle

routing problem. The authors have modified a tabu search algorithm for an uncapacitated

dynamic pickup and delivery problem by allowing vehicle diversion whenever a new request

arrives. Experimental results have shown that the modified algorithm was able to reduce

the number of unserved customers and the total distance traveled when compared to the

original heuristic. Diversion strategies were also evaluated in a Dynamic Stacker Crane

Problem studied by Regan et al. (1998).

3.5 Degree of dynamism

In some dynamic PDPs more information about the future is known than in others.

For instance, in long distance full truckload services the future is better known than in

taxi cab services. Lund et al. (1996) have defined the degree of dynamism of a dynamic

vehicle routing instance as the ratio between the number of dynamic requests and the

total number of requests. Later, Larsen (2001) have defined another measure, called

the effective degree of dynamism which takes into account how long in advance dynamic

requests are known. Consider a planning horizon that starts at time 0 and finishes at

time T . Let R be the set of requests, and let ti and li denote the time that request i ∈ R

is known and the latest time request i ∈ R can be served, respectively. The value ti is

sometimes called the disclosure date and it is equal to zero for any static request. The
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effective degree of dynamism (edod) is defined as

edod =
1

|R|
∑
i∈R

T − (li − ti)

T
.

Observe that 0 ≤edod ≤ 1, and the larger the edod, the “more dynamic” the instance

is. Jaillet and Wagner (2006) have quantified the value of the advanced information given

by disclosure dates on a new problem they introduced as the Online TSP with Disclosure

Dates. Experimental analyses on the value of knowing requests in advance was also

performed by Tjokroamidjojo et al. (2006) for a version of the Dynamic Stacker Crane

Problem. We now survey the literature on some specific PDPs.

4 The dynamic stacker crane problem

In the Dynamic Stacker Crane Problem (Dynamic SCP), each request has to be trans-

ported directly from its pickup location to its delivery location. The restriction that only

one request can be handled at a time by a vehicle is generally due to capacity. This

problem takes its name from the practical problem of managing crane operations.

The main application of the Dynamic SCP is the problem of operating a trucking

fleet to move full truckloads between pickup and delivery locations. For this reason the

Dynamic SCP is also called the Dynamic Full Truckload Pickup and Delivery Problem.

The problem is dynamic because customer requests arrive continuously during operations.

The problem involves a planning horizon of several days and generally, around half of the

requests received are for same day pickups. For a recent survey of dynamic models for

these problems see Powell et al. (2007).

In Powell (1987), a methodology is proposed to model and solve a dynamic SCP

encountered in the full truckload carrier industry. In his model, the planning area is

divided into regions. Several data are assumed to be available, including the probability

distribution of the requests between every pair of regions for each of the days of the

planning horizon and the average net revenue per request. The problem is represented

as a network flow problem where each node represents a region served on a specific day.

The arc set consists of two types of arcs. Type I arcs represent deterministic information

about known requests and empty moves while Type II arcs, referred to as stochastic arcs,

are used to estimate the value of sending an additional vehicle to a specific region at

a specific time. In Powell et al. (1988), an extension of this network representation is
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applied to the maximization of profits of the commercial transport division of a carrier in

the United States with more than 5800 trailers. The model, which was run four times a

day, was able to increase the company’s annual profit by 2.5 million US dollars.

Another real-time multi-vehicle truckload pickup and delivery problem in which no

stochastic information is considered is presented by Yang et al. (1998). In this problem,

each request has a time window during which a pickup must take place if the request is

accepted. The authors have modeled the static problem as an integer linear program.

To handle the dynamic component, the static problem is solved many times in a rolling-

horizon framework. In their paper, the authors provide a comparison between the strategy

of solving the static MIP every time a new request arrives and other less time consuming

strategies which limit the size of the solution space. Computational results on instances

with four vehicles have shown that while the strategy of solving the static MIP outper-

formed all the others, some simple strategies produced similar results while requiring

much less computational effort.

A similar problem was studied by Yang et al. (2004). In this problem, requests also can

be rejected and it is permitted to serve a request beyond its time window by incurring a

penalty. The authors have compared three rolling-horizon algorithms considered in Yang

et al. (1998), as well as two reoptimization policies. The first consists of optimizing the

MIP of the static problem every time a new request arrives. The second policy operates

in the same way as the first, except that it uses and assumes some knowledge about the

probability distribution of incoming requests, such as the expected distance between two

random points obtained from the future pickup and delivery locations. The best results

were obtained by the second policy, which proved to be between 1 to 5 percent superior to

the first policy without an increase in the computational time in a series of computational

tests on instances with 10 vehicles and 1000 requests.

A study aimed at quantifying the value of knowing the requests in advance was carried

out by Tjokroamidjojo et al. (2006). The authors considered a full truckload problem

with an horizon of 20 days, soft time windows and the possibility of rejecting requests.

In this study, no stochastic information about future requests is considered. The solution

strategy consists of solving a static MIP every time a new request becomes known. The

different policies are characterized by two parameters (τ, T ). The parameter τ represents

how many days in advance requests are known, while the parameter T represents how

many days in advance assignment decisions are made. Results obtained from a set of 20
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instances with 50 requests and 10 or 50 cities have shown that policies (3, 1), (5, 1), (5, 3)

performed significantly better than the policies (1, 1), (3, 3), (5, 5). In particular, policy

(5, 3) performed almost as well as in the case where requests were known at the beginning

of the operations.

An agent-based approach for a version of the Dynamic SCP was developed by Mes et al.

(2007). These authors have studied a problem, inspired from an automated transportation

network using AGVs, with soft time window constraints and in which requests cannot be

rejected. An agent-based model attempts to model complex phenomena using a set of

individual agents with specific tasks and goals. The authors conceived four types of agents:

vehicle agents, fleet agents, job agents and shipper agents. For every new request, a job

agent starts an auction asking all vehicle agents to bid only once. The bid consists of a

price, an expected departure time and an expected arrival time. Finally the job agent

chooses a bid using the Vickrey mechanism, in which the request is assigned to the highest

bidder but at the price of the second highest bidder. Simulation experiments on instances

with 20 AGVs and 20 locations showed that the agent-based approach behaved generally

better than simple scheduling heuristics.

A complex Dynamic SCP arising from a real-world dispatching problem of an electric

monorail system was studied by Gutenschwager et al. (2004). The authors have developed

a tabu search and a simulated annealing heuristic capable of responding to strong real-

time requirements. The solution strategy consists of solving a static problem several times

without using stochastic information about future requests. The objective of the static

problem was modified to improve the overall performance of the online problem. The

application of the proposed algorithms has reduced the number of electric monorail load

carriers from 24 to 22 as well as the average and maximum number of simultaneous open

transportation requests.

5 The dynamic vehicle routing problem with pickups

and deliveries

In the Dynamic Vehicle Routing Problem with Pickups and Deliveries (Dynamic VRPPD)

vehicles can serve more than one request at the same time. In this type of problem, re-

quests are placed for the transportation of objects (e.g., letters, loads, parcels, etc.).

Generally, when time windows are present, they are not tight. In many of these prob-
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lems, there are no capacity constraints. An example of a dynamic VRPPD is encountered

by express courier companies located in many cities. These companies usually receive

hundreds or thousands of dynamic requests in the same day. Requests consist carrying

letters or parcels from a pickup point to a delivery point. The first part of this section is

dedicated to a review of competitive analysis studies of PDPs. The main problem studied

in this area is a simple PDP called the Online Dial-a-Ride Problem (OlDARP). Despite

its close name resemblance with the dynamic DARP, the OlDARP does not consider con-

straints for minimizing user inconvenience which are present in the DARP such as time

windows and maximum ride times. For this reason, we believe it makes sense to review

the OlDARP in this section rather than in the section on the Dynamic DARP (Section 6).

The second part of this section surveys heuristic algorithms for more complex problems

which better model the real world.

5.1 Competitive analysis studies

In this section we present some of the most relevant competitive analysis studies on

dynamic vehicle routing problems with pickups and deliveries. For a recent survey on

competitive analysis studies in the area of vehicle routing the reader is refer to Jaillet and

Wagner (2008). As already stated, the main problem studied in this field is the Online

Dial-a-Ride Problem (OlDARP). In this problem, a request has a load of one unit and

consists of a source point and a destination point in a metric space. A server (vehicle)

with capacity Q starting at an origin point serves a request by performing the pickup at

the source point and then delivering it at the destination point. Requests arrive online

while the server is traveling, and they can be served at any time after the disclosure date

(also called the release date). The objective consists of minimizing some function over

the time at which deliveries are done.

Feuerstein and Stougie (2001) have studied the OlDARP with two different objectives:

the minimization of the time the last destination is served (makespan) and the minimiza-

tion of the sum of completion times (latency). For the OlDARP with the makespan

minimization objective, the authors have first shown that any deterministic algorithm

must have a competitive ratio of at least 2, independently of the server capacity Q. They

later presented a simple 2.5-competitive algorithm called DLT (for Don’t Listen while

Traveling), which works as follows: Once the server is at the origin at time t, it follows

an optimal tour which serves all the requests not yet served (and received up to time t)
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and it goes back to the origin. The authors have then presented a more sophisticated

2-competitive algorithm for the case where Q = ∞. For the OlDARP with the objec-

tive of minimizing the latency, the authors have proved that any algorithm must have a

competitive ratio of at least 1 +
√

2.

Three online algorithms (REPLAN, IGNORE and SMARTSTART) were proposed

by Ascheuer et al. (2000) for the OlDARP in which Q = 1 and the objective is to

minimize the makespan. In the algorithm REPLAN, when a new request is received,

the server completes the carried request (if there is one), and then replans an optimal

tour considering all the yet unserved requests. The authors have proved that REPLAN

is 2.5-competitive. The algorithm IGNORE is the same as the DLT presented in the

last paragraph and was independently proved to be 2.5-competitive. Finally, the authors

have shown that the more sophisticated algorithm SMARTSTART is 2-competitive. The

algorithm SMARTSTART, which was extended to handle a server with any capacity, is

thus optimal since it closes the gap with respect to the lower bound.

Hauptmeier et al. (2000) have studied the online algorithms REPLAN and IGNORE

in a continuously operating environment, i.e., an environment in which the time horizon is

not bounded and where requests arrive indefinitely. Clearly, the objective of minimizing

the makespan or the latency are inadequate since both will always be infinite. Thus, they

have considered the objectives of maximal and average flow time. The flow time of a

request under a solution s is the difference between its completion time using solution s

and its release time. The authors have then shown that, under a clearly defined reasonable

load restriction, there is a bound for the maximal and average flow time in the algorithm

IGNORE, but no bound exists in the case of the algorithm REPLAN. This result is in

contrast with the property proved by Ascheuer et al. (2000) that both algorithms have

the same competitive ratio for the OlDARP.

Lipmann et al. (2004) have studied a modified version of the OlDARP called the

OlDARP under incomplete ride information in which at the release date of a request,

only the pickup point is revealed. The information about the delivery point is available

when the pickup operation is performed. There are some applications in which this model

is more realistic than the OlDARP such as, for example, the problem of scheduling an

elevator. For the case in which preemption is allowed (i.e., the server is allowed to preempt

any ride at any point and proceed later) the authors have proved that any deterministic

algorithm for their problem must have a competitive ratio of at least 3. In addition, they
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have presented an algorithm called SNIFFER which preempts rides only at the pickup

point (just to learn the delivery point) which is 3-competitive and thus optimal. For

the case in which the server is not allowed to preempt, different lower bounds on the

competitive ratio of any deterministic algorithm were proved, depending on the server

capacity.

5.2 Heuristics

One of the few analytical studies for a dynamic and stochastic VRPPD was carried

out by Swihart and Papastavrou (1999). The authors considered the problem of routing

a single vehicle to serve incoming transportation requests arriving according to a Poisson

process. Pickup and delivery locations are independent and uniformly distributed over

a convex region with an Euclidean metric. The objective is to minimize the expected

time during which requests remain in the system. Bounds on the performance of some

proposed routing policies are presented both for the unit-capacity vehicle and for the

multi-capacity vehicle. In the same vein, Waisanen et al. (2008) have studied two versions

of the uncapacitated multiple vehicle case of this problem. In the first version, when a

request arrives only the pickup location is known and the delivery location is received

when the vehicle performs the pickup. In the second version, which is the most common,

the pickup and the delivery locations are available when the request is received. For both

versions, the authors have derived a lower bound on the objective for any control policy

and have presented a control policy achieving the lower bound within a constant factor.

Waisanen et al. (2009) have extended some of these results for dynamic multi-stage vehicle

routing problems in which a request requires service at more than two locations.

An optimization based algorithm for a real-world dynamic multi vehicle VRPPD was

proposed by Savelsbergh and Sol (1998). It captures standard constraints as well as prob-

lem specific features such as vehicles with special characteristics and different capacities,

time windows, and working period restrictions. The optimization has to be performed

over an horizon of several days and the objective is to minimize the driver’s pay which

depends on many factors such as the distance traveled and the number of nights away

from home. The authors decompose the problem into a series of static problems with the

a subset of the known requests over a rolling-horizon framework. Each static problem

is solved by means of a branch-and-price based heuristic. The objective function for the

static problem was modified to improve the overall performance of the algorithm in the
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dynamic environment. The algorithm was tested over a 10-day real-life instance with

more than 200 active requests at any time. When there were large numbers of requests,

the solution given by the algorithm outperformed the one produced by planners.

A rolling-horizon based algorithm for a dynamic uncapacitated VRPPD with time-

windows was developed by Mitrović-Minić and Laporte (2004). The problem studied

by these authors was motivated by the routing and scheduling problem faced by courier

companies making pickup and delivery of letters and small parcels in the same day. The

objective is to serve all requests while minimizing the total distance traveled. Each of the

static problems solved is optimized with a two-phase heuristic. The first phase consists of

a cheapest insertion procedure while the second one consists of a tabu search algorithm

similar to that of Gendreau et al. (2006). Although no probability distribution about

incoming requests is considered, different waiting strategies were developed. Through

a series of computational tests, the authors showed that the total traveled distance was

reduced when an advanced waiting strategy was used, instead of no waiting at all. Similar

results about the benefits of waiting were analytically proved by Branke et al. (2005) for

a simplified problem.

Mitrović-Minić et al. (2004) have extended the previous algorithm by incorporating a

double-horizon objective. Routes are evaluated by a short term objective of minimizing

route length and a long term objective of having greater slack time to insert new requests.

The basic idea is that it is not important to minimize the route length over a long horizon of

time since it is expected that new requests will arrive and routes will have to be modified.

This double-horizon approach performed better than the single horizon strategy on a

series of computational tests carried out on instances based on data collected from two

courier companies located in Vancouver, Canada.

Another tabu search algorithm for the same problem was proposed by Gendreau et al.

(2006) and uses a neighborhood structure based on ejection chains. No stochastic infor-

mation about incoming requests is assumed. An adaptive memory is used to dynamically

maintain a set of good quality solutions consistent with the current vehicle trajectories. In

order to quickly produce at least one solution of high quality when a new request arrives,

the request is inserted into each solution of the adaptive memory through a cheapest inser-

tion procedure. The best solution is selected after applying a fast local search procedure

based on ejection chains. The adaptive memory is also updated upon service completion

at a customer location. As long as there are no incoming requests and no services are
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completed, the tabu search heuristic keeps running in an attempt to improve the routes

in the adaptive memory. In the tabu procedure, a master-slave parallelization scheme is

used to speed up the search. The tabu search algorithm outperformed simpler insertion

methods on a set of daily instances with up to 33 requests per hour.

Sáez et al. (2008) have developed an adaptive predictive control algorithm for a ca-

pacitated dynamic VRPPD, based on genetic algorithms and fuzzy clustering. In their

problem, time windows are not present and the objective function takes into account the

waiting and travel time for the requests, as well as the idle travel time of the vehicles. The

authors have used a hybrid adaptive predictive control (HAPC) scheme based on state

space variables to model the problem. The objective takes into account future requests

through the use of probabilities calculated from historical data, using a fuzzy clustering

method. The HAPC is optimized by means of a genetic algorithm. Computational tests

on a 120-request instance under a heterogeneous distribution have shown that the algo-

rithm performs up to 22 percent better when it takes into account future requests instead

of the myopic strategy that only takes into account the received requests.

Recently, Ghiani et al. (2009) have proposed algorithms for an uncapacitated Dynamic

VRPPD arising in same-day courier services. In their model, each request i has associated

a non-decreasing and convex function fi(t), which expresses the inconvenience cost of

performing the delivery at time t. Following the ideas of Van Hentenryck and Bent (2004),

the authors evaluate potential solutions using an objective function that takes future

requests into account through sampling. To reduce the computation times, sampling is

only done under a short-term horizon. In the first algorithm, called anticipatory insertion

procedure, solutions incorporating the incoming request are constructed using a simple

insertion method. A local search scheme based on simple moves is used for the second

algorithm called anticipatory local search. In a series of computational tests with up to

600 requests, both algorithms have outperformed by 11 to 69 percent the corresponding

reactive algorithm which does not use sampling. Results also showed a non-significant

improvement of the anticipatory local search with respect to the anticipatory insertion

procedure.

16



6 The dynamic dial-a-ride problem

In the Dynamic DARP, requests consist of users that need to be transported from an

origin to a destination. Generally, these problems contain several constraints which control

user inconvenience. Examples of such constraints are tight time windows and maximum

ride times. The main application of the DARP is the transportation of handicapped and

elderly people in cities. Models and algorithms for the static and the dynamic versions of

the DARP were surveyed by Cordeau and Laporte (2007).

One of the first studies on the Dynamic DARP was carried out by Psaraftis (1980)

who considered the single vehicle case. In this problem, users wish to be serviced as soon

as possible and the objective is to minimize a weighted combination of total service time

and user dissatisfaction. First, an exact O(n23n) dynamic programming algorithm was

presented for the static case. For the dynamic case, when a new request arrives the static

instance is updated and reoptimized by fixing the partial route already done. Due to the

computational complexity of the static algorithm, only small instances can be solved.

Madsen et al. (1995) have presented an algorithm for a real-life multi-vehicle dynamic

DARP consisting of up to 300 daily requests for the transportation of elderly and handi-

capped people in Copenhagen. The problem had many constraints such as time windows,

multi-dimensional capacity restrictions, customer priorities and a heterogeneous vehicle

fleet. Many objectives taking into account user satisfaction and service costs were consid-

ered through the use of weight parameters. When a new request arrives, it is inserted in

a current route using an efficient insertion algorithm based on that of Jaw et al. (1986).

Computational results on real-life instances with up to 300 requests and 24 vehicles have

shown that the algorithm was fast enough to be used in a dynamic context and that it is

capable of producing good quality solutions.

Horn (2002) have developed a software for demand-responsive passenger services such

as taxis and variable route buses. His problem includes time window restrictions for

the dynamic requests, capacity constraints and booking cancellations. The insertion of

new requests is done through a minimum cost insertion scheme which is supplemented

by a local search procedure executed periodically. The author has developed a heuristic

for strategically relocating the idle vehicles, taking into account future request patterns.

Computational experiments were carried out based on data from a taxi company in Gold

Coast, Australia. Results from the tested instances, which had around 4200 requests and

220 taxis in a 24 hour period, have shown that the proposed software performs well on
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dynamic instances of large size.

A parallel algorithm for the Dynamic DARP was developed by Attanasio et al. (2004).

At the start of the planning horizon, a static solution is constructed based on the known

requests using a tabu search algorithm. When a new request arrives, each of the parallel

threads inserts the request randomly in the current solution and runs the tabu search for

obtaining a feasible solution. If a feasible solution is found, the request is accepted and a

post-optimization phase is executed. Computational results with different parallelization

strategies are reported on instances with up to 144 requests.

An algorithm for a dynamic DARP was developed by Coslovich et al. (2006). In

this problem, a driver might unexpectedly receive a trip demand by a person located at

a stop and must decide quickly whether to accept it or not. The algorithm maintains

a repository of feasible solutions that are compatible with the partial routes already

performed. When a new request arrives, an efficient insertion algorithm attempts to

insert it in at least one of the solutions in the repository. The request is accepted only

if the insertion algorithm succeeds. Once the new request is accepted, the repository

of feasible solutions is updated. This procedure is executed while the vehicle is moving

between two locations and therefore response time requirements are not tight. Capacity

constraints are not considered. Computational results on artificial instances with up to

50 requests are reported.

Beaudry et al. (2009) have developed a two-phase algorithm for solving a complex

dynamic DARP arising in the transportation of patients in hospitals. This problem con-

tains several constraints such as requests with different degrees of urgency and equipment

requirements, multiple modes of patient transportation, and soft time windows. New

requests are inserted using a fast insertion scheme able to satisfy the real-time require-

ments. The second phase consists of a tabu search which attempts to improve the current

solution. The algorithm succeeded in reducing the waiting times for patients while using

fewer vehicles in computational experiments on real data from a German hospital.

Finally, Xiang et al. (2008) have studied a sophisticated Dynamic DARP in which

travel and service times have a stochastic component. In addition, there may be no-shows

or cancellations and vehicles may be stuck into traffic jams or breakdowns. New requests

are inserted into the established routes by means of a local search procedure based on

simple inter-trip moves. The local search was complemented with a diversification strategy

that uses a secondary objective measuring the idle time of the vehicles. The algorithm
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was tested on several simulated instances and involving up to 610 requests.

Recently, Cordeau et al. (2007) have presented the Dial-a-Flight Problem in which the

objective is to model and optimize on-demand air charter services that are provided by

around 3000 companies in the United States. In this problem, requests generally consist

of multiple pickup and delivery pairs and strict rules over the service are imposed. The

authors discuss these and other differences with respect to the DARP, and some solution

approaches are presented.

7 Conclusions

The volume of research on dynamic pickup and delivery problems has increased signif-

icantly over the last decade. In particular, useful general concepts such as basic solution

strategies, algorithmic performance assessment, and the use of information about future

requests have been put forward in recent years. Dynamic PDPs are rooted in real-world

applications and, thanks to faster algorithms and efficient real-time communication tech-

nologies, solutions can be now realistically implemented in practice.

There still remain, however, a number of interesting questions worthy of investigation.

An example is the problem of computing an optimal waiting strategy (see Section 3.3)

taking into account the request probability distribution. Another research topic concerns

the modification of the objective function under a rolling-horizon algorithm, which can,

in some cases, yield good results. We also expect to see in the near future more studies

on policy analysis, and lower bounds for more complex dynamic and stochastic pickup

and delivery problems. Finally, another potential area of research is the study of dynamic

many-to-many and one-to-many-to-one PDPs which have not yet received significant at-

tention.
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