
A Heuristic for the Multi-Satellite, Multi-Orbit and
Multi-User Management of Earth Observation Satellites

Nicola Bianchessi1, Jean-François Cordeau2, Jacques Desrosiers3,
Gilbert Laporte2∗ and Vincent Raymond2

1 Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano

Via Bramante, 65, I-26013 Crema (CR), Italy

bianchessi@dti.unimi.it

2 Canada Research Chair in Distribution Management and GERAD, HEC Montréal

3000, chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7

{cordeau,gilbert,vraymond}@crt.umontreal.ca

3 GERAD, HEC Montréal

3000, chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7

jacques.desrosiers@gerad.ca

December 2, 2005

Abstract

Earth observation satellites are platforms equipped with optical instruments that orbit
the Earth in order to take photographs of specific areas at the request of users. This
article is concerned with the management of several satellites performing multiple orbits
over a given planning horizon. It describes a tabu search heuristic for the problem of
selecting and scheduling the requests to be satisfied, under operational constraints. An
upper bounding procedure based on column generation is used to evaluate the quality
of the solutions. The results of extensive computational experiments performed on
data provided by the French Centre National d’Études Spatiales are reported.

Keywords: Earth observation satellites, multiple orbits, multiple users, tabu search
heuristic, column generation.

∗Corresponding author

1 Introduction

Earth observation satellites are platforms equipped with optical instruments that orbit the
Earth in order to take photographs of specific areas at the request of users. To each request
are associated a time window during which the photograph can be taken, and a potential
profit representing the value to the user of acquiring the photograph. Because the number of
requests typically exceeds what can feasibly be accommodated during a mission, the problem
consists of selecting and scheduling a subset of requests yielding the maximal profit, subject
to operational constraints.

The present article is concerned with the management of several satellites performing multi-
ple orbits over a given planning horizon. Because a given request can sometimes be satisfied
by several satellites in more than one of their orbits, the problem is not separable by satellite
or by orbit. Instead, planning must be performed simultaneously for all satellites and orbits
considered.

This problem is inspired from the PLEIADES constellation of satellites which is being
planned by the Centre National d’Études Spatiales (CNES) in France, and due to be launched
in 2008. In this system, satellites perform a cycle of orbits around the Earth over a period of
several days. Each orbit is phased out with respect to the preceding one and its trajectory is
cyclic in the sense that the satellite recovers its initial position after a predefined number of
orbits. Furthermore, a full cycle enables the satellite to view each area of the planet. During
the course of one particular orbit, a satellite can take several photographs by rotating itself
between consecutive shots.

The planning of the PLEIADES system first gave rise to the 2003 ROADEF Challenge
(Verfaillie et al., 2002a,b) in which teams were required to develop algorithms for the
management of a single satellite over a single orbit. Cordeau and Laporte (2005) de-
veloped a tabu search heuristic for this simplified problem and won the second prize in the
competition. Following the competition, we undertook to generalize this approach to the
case of multiple satellites and orbits. This work was initiated in collaboration with the CNES
which provided us with a description of planned operating conditions for the PLEIADES
system as well as more representative benchmark instances.

Problems related to Earth observation by satellites have received only limited attention in
the operational research literature. Some authors have studied the management of SPOT
satellites for which technical constraints restrict the time window of a photograph to a single
moment. As a result, scheduling constraints can be interpreted as mutual exclusions. Ben-
sana et al. (1999) have introduced large scale benchmark instances for the uncapacitated
and capacitated versions of the problem involving one satellite performing one or several
orbits (capacity refers here to the total information that can be recorded in the satellite).
Vasquez and Hao (2001, 2003) have presented a tabu search algorithm together with a
“logic-constrained” knapsack formulation, as well as some upper bounds for this problem.
The management of agile satellites similar to those used in the PLEIADES system has also
been investigated by Verfaillie and Lemâıtre (2001) and Lemâıtre et al. (2002). In
particular the latter authors have described dynamic programming, constraint programming

2

and local search methods. Finally, other studies on different variants of the satellite schedul-
ing problem have been performed, among others, by Gabrel and Murat (2003), Harrison
et al. (1999), Morris et al. (1997), Pemberton (2000) and Wolfe and Sorensen (2000).

The purpose of this paper is to describe the algorithm we have developed for the Multiple
Satellite and Multiple Orbit Problem (MSMOP), and to introduce upper bounds based on
column generation which can be used to assess the quality of the solutions produced by the
heuristic. We also report results on instances provided by the CNES. The remainder of the
paper is organized as follows. The next section formally defines the problem and introduces
some notation. Section 3 then describes the tabu search heuristic developed for the MSMOP.
This is followed by the column generation approach in Section 4, by computational results
in Section 5, and by conclusions in Section 6.

2 Problem Description

In the MSMOP, users can submit two types of requests: a target, i.e., a circle of limited
dimension, or a polygon which may cover a wide geographical area. Because of their size,
polygons cannot usually be photographed in a single shot and are therefore partitioned into
strips of equal width but possibly unequal lengths. For our purposes a target can be seen as
a polygon comprising a single strip.

The time required to photograph or acquire a strip is proportional to its length. To each
strip is also associated a time window during which the acquisition must be performed.
In the course of a single orbit, a satellite may be able to photograph several strips of the
same polygon by rotating the camera between consecutive shots. Multiple strips associated
with the same polygon must, however, be acquired consecutively, both in space and time.
Consecutiveness in space means that if multiple strips from the same polygon are acquired,
then these must be contiguous. Consecutiveness in time means that between the acquisitions
of two strips from a given polygon, the satellite cannot acquire a strip belonging to another
polygon. Some requests are mono while others are stereo. A mono request consists of a
single shot of each strip in the polygon. A stereo request consists of two shots of each strip
at different angles (and thus within different time windows). A strip from a stereo request
is considered to have been acquired only if its twin strip has been photographed.

Let R be the set of requests formulated by users and let T be the set of all orbits performed
by the satellites within the temporal horizon. To each orbit t ∈ T is associated a set Rt ⊆ R
of requests that can be totally or partially satisfied during the orbit. Of course, the sets Rt

are not mutually exclusive. A subset R ⊆ R of priority requests is also introduced to denote
requests that must be fully satisfied in the solution. Let N be the set of all strips, N t the
set of strips associated with requests in Rt and N , the set of strips originating from priority
requests. To each strip i ∈ N t are associated an acquisition duration di, a profit pi, and a
time window [ai, bi]. The time window of a strip corresponds to the interval during which the
strip lies within the field of view of the satellite for the particular orbit considered. Finally,
for each pair of strips i, j ∈ N t, let cij be the transition time between the end of strip i and
the beginning of strip j.

3

Because time windows are moderately large, there often exist several feasible orderings with
different total transition times for a given subset of strips. The problem thus consists not
only of selecting which strips to acquire, but also of determining their sequence and the time
at which each of them should be executed. Here we assume that the profit associated with a
partially acquired polygon is the fraction of the polygon’s surface being acquired, multiplied
by the profit associated with the full acquisition of the polygon.

Because the PLEIADES system will be co-funded by multiple users, a sophisticated system
will be used to share the satellite resources between the different users. This system follows
a three-phase allocation process. In phase A, priority requests will be selected through an
external procedure not described here. In phase B, requests from a subset of users will
then be selected by solving an optimization problem. In this phase, however, a limit will be
imposed on the total utilization of the satellites by each user. Finally, phase C will allocate
the remaining capacity of the satellites between all users, again through the solution of an
optimization problem.

Our algorithm addresses phases B and C of this process. In each of these phases, the ob-
jective function considered is the weighted sum of the normalized utilities associated with
the different users of the system. The utility of a user is defined as the sum of the profits
associated with the (possibly partially) satisfied requests of that user. This utility is normal-
ized by dividing it by the maximal utility that could be achieved for this user if it were the
only one to use the system. The latter value cannot be known exactly unless the MSMOP
is solved to optimality for this user, but it can nevertheless be approximated by means of a
heuristic. Let ui(s) be the utility of user i in solution s and let u∗i be the maximal utility
of user i. The normalized utility is then defined as u′i(s) = ui(s)/u

∗
i . A solution s can thus

be characterized by the utility vector u′(s) = (u′1(s), u
′
2(s), . . . , u

′
m(s)), where m denotes the

number of users in the system. The value of this solution is then given by

v(s) =
m∑

i=1

wiũi(s), (1)

where ũ(s) = (ũ1(s), ũ2(s), . . . , ũm(s)) is the vector of utilities sorted in increasing order, and
the weights wi are given by

wi =
αi−1

m−1∑
j=0

αj

,

with 0 < α ≤ 1.

Equation (1) is in fact called an ordered weighted average (see Yager, 1988) and is used
to ensure the fairness of the solution. Because of the way in which the vector of utilities is
sorted, this objective function tends to assign higher weights to the users with the smaller
utilities. For example, with m = 4 users, setting α = 0.5 will yield weights of 1/1.875,
0.5/1.875, 0.25/1.875 and 0.125/1.875, with the largest weight being assigned to the user
with the smallest utility in the given solution. Setting α = 1 will give equal weight to each
user whereas values of α close to 0 will give rise to a so-called lexicographic min-ordering or
leximin (Moulin, 1988; Ehrgott, 2000) objective. The leximin objective is similar to the

4

classical maximin objective. In case of equality between the mininum values, however, the
leximin will distinguish between solutions by repeatedly considering the next smallest term.
For example, the solutions (1, 1, 2, 3) and (1, 2, 2, 3) would be equivalent for the maximin
objective while the leximin would favour the second one. For an in-depth discussion of
equitable sharing of Earth observation satellite resources, we refer the reader to the work of
Bataille et al. (1999) and Lemâıtre et al. (1999, 2003).

In phase B, the limit imposed on the use of the system by each user is expressed in terms of
the total acquisition time (i.e., the sum of the acquisition times of the selected strips). This
limit is also imposed when computing the maximal utility u∗i of user i. To solve a phase B
problem, one must therefore proceed in two steps. First, the value u∗i of each user i must
be estimated while imposing an upper bound on the total acquisition time of the selected
strips for that user. Second, a multi-user problem must be solved in which the normalized
utilities that appear in the objective function (1) are computed with respect to the u∗i values
computed in the first step.

In phase C, no particular constraint is imposed on the use of the system by each user.
However, the maximal utility u∗i is multiplied by a weight qi (with 1 ≤ qi ≤ 100) when
normalizing the utility. In other words, the normalized utility of user i becomes u′i(s) =
ui(s)/(u

∗
i qi). This approach will tend to favour solutions in which the normalized utilities

of the users are proportional to the coefficients qi. Again, one must proceed in two steps
to solve the problem: first estimate the maximum utility u∗i , and then solve the multi-user
problem under the objective function (1).

Finally, in both phases B and C, priority requests must be satisfied in all solutions and will
therefore be taken into account both in the evaluation of the maximal utility and in the
solution of the multi-user problems.

3 Tabu Search Heuristic

Our tabu search heuristic for the MSMOP is partly based on the method previously developed
by Cordeau and Laporte (2005) for the single satellite, single orbit case, but the problem
studied in this paper is different in several respects:

1. we now consider several satellites with multiple orbits per satellite;

2. priority requests are now considered as an input;

3. consecutiveness constraints are now imposed on strips from a polygon;

4. the objective function now maximizes a function related to the utility of multiple users;

5. the objective function is now linear with respect to the proportion of the polygon’s
area being acquired (instead of being piecewise-linear convex);

6. only one direction of acquisition is now considered for each strip instead of two (forward
and backward).

5

The proposed tabu search heuristic explores the solution space by moving at each iteration
from the current solution s, defined as sequences of strips to acquire in each orbit, to the best
solution in its neighbourhood M(s). Since this rule allows the solution to deteriorate between
two successive iterations, we have implemented an anti-cycling mechanism which attributes
a tabu status to any solution possessing some attributes of recently visited solutions. An
important feature of our algorithm is the possibility of exploring infeasible solutions during
the search. In particular, time window constraints are relaxed and their violations are added
as penalties to the objective function.

3.1 Initial solution construction

An initial solution is constructed by sequentially inserting all priority requests. When a
priority request can be performed in several different orbits, the orbit to which the request
is assigned is randomly selected. As a result, this solution may turn out to be infeasible
with respect to the time window or utilization constraints, even though the set of priority
requests is known to be feasible. Feasibility will then be recovered through iterations of the
tabu search heuristic.

3.2 Relaxation mechanism

The value of solution s is defined as f(s) = v(s) − βw(s), where v(s) is the objective
function value defined by (1), and w(s) is the total time window violations in solution s.
The parameter β is initially set equal to 1 and self-adjusts during the course of the search to
allow a mix of feasible and infeasible solutions. More precisely, at each iteration the value
of β is multiplied by 1 + δ, with δ ≥ 0, if the current solution is infeasible and divided by
1 + δ otherwise. In our implementation, the value of δ is randomly selected at each iteration
in the interval [0, 1].

When satellite utilization constraints are imposed (in phase B), these constraints are also
relaxed and their violations are penalized in a similar fashion: a term γd(s) is added to the
objective function where d(s) is the total violation and γ is again a self-adjusting parameter.

3.3 Neighbourhood structure

At each iteration, the following six types of moves are considered for all strips to define the
neighbourhood M(s) of the current solution s:

1. insert a mono strip i in the solution;

2. remove a mono strip i from the solution;

3. insert twin strips i and j in the solution;

4. remove twin strips i and j from the solution;

6

5. move a mono strip i from orbit k to orbit l;

6. move twin strips i and j from orbit k to orbit l.

Each of these moves maintains feasibility with respect to all constraints, except for time
window and utilization constraints. Recall that if multiple strips from a given polygon are
acquired in a solution, then these strips must be contiguous in the polygon and they must be
acquired consecutively in the solution. To ensure that these constraints are satisfied at all
time, a simple feasibility checking procedure is applied to each potential move, and infeasible
moves are discarded. In addition, because priority constraints must be part of the solution,
they can never be removed through exchanges of type 2 or 4. They can, however, be moved
from one orbit to another through exchanges of type 5 or 6.

When inserting a mono strip in the solution, the position of this strip is chosen so as to
maximize the value of f(s), taking into account the increase in the violations of time windows
and utilization constraints. This is accomplished by performing a simple insertion, i.e., the
ordering of the strips already in the solution remains unchanged. Even though solutions
violating time windows are allowed during the search, computation times are reduced by
considering the insertion of a strip between two successive strips only if it is possible to
satisfy the time windows of all three strips with this sequence. Of course, the time windows
of the strips that follow may become violated after performing the insertion.

When handling twin strips, the first strip is inserted in its best possible position and, keeping
this position fixed, the second strip is then inserted in its best position. Treating each of the
two strips as the first yields two different ways of performing these operations, and both are
evaluated to identify the best insertion.

To evaluate the impact of a move, the time variables associated with some of the strips
already in the solution must be recomputed in order to measure the total impact on time
window violations. Furthermore, the impact of the move on the objective function must be
evaluated. Computing this value is non-trivial because the objective function depends on
the normalized utilities of all the users, sorted in increasing order. As a result, the correct
computation of the impact of a move on the objective function value requires i) evaluating
the utility of the user affected by the move; ii) sorting the normalized utilities to reflect this
new value, and iii) evaluating the objective function (1).

To prevent cycling, tabu tenures are imposed on solution attributes. Whenever a strip is
removed from the solution, its reinsertion is forbidden for θ iterations, where the value of θ
is drawn randomly from the interval [0,

√
|N |] and rounded to the nearest integer. Through

an aspiration criterion, the tabu status of a strip can, however, be revoked if that would
allow the search process to reach a solution of larger profit than that of the best solution
found in which this strip was present.

7

3.4 Diversification mechanisms

The algorithm uses three diversification mechanisms to ensure a broad exploration of the
search space. The first is a continuous diversification scheme now common to several tabu
search implementations. Let s denote the current solution. When evaluating the members
of M(s), any solution s̄ ∈ M(s) such that f(s̄) ≤ f(s) is penalized by a factor proportional
to the frequency of its distinguishing strips and a scaling factor. More precisely, let ρk be
the number of iterations during which strip k has been part of the solution since the start
of the search process and let η be the total number of iterations performed. Here, the
distinguishing strips refer to those, if any, that would be added to s to obtain s̄. Hence, if
moving from solution s to solution s̄ requires the insertion of strip k in the sequence, then
a penalty q(s̄) = λ v(s̄) ρk/η is subtracted from f(s̄). The penalty is thus the product of
three terms: a control parameter λ, the objective function value v(s̄), and the proportion
of iterations during which strip k has been part of the solution, ρk/η. The presence of the
objective function value ensures that the penalties are scaled appropriately with respect to
total solution cost. The parameter λ, equal to log10(|N |) in our implementation, controls the
intensity of the diversification. These penalties drive the search process toward less explored
regions of the search space whenever a local optimum is reached.

The second diversification mechanism perturbs the solution under certain circumstances. If
the best known solution has not improved for 100µ iterations, where µ is the number of
times the perturbation mechanism has been applied since the last improvement, then the
search stops and restarts from the best known solution s∗. However, solution s∗ is perturbed
by removing a proportion π = 0.1 × min{µ, 10} of randomly selected strips. When a strip
from a stereo request is selected for removal, its twin strip is also removed. The reinsertion
of these strips is then declared tabu for θ iterations. The value of µ is initially set equal to
1 and is reset to 1 whenever a new best solution has been identified.

Finally, the algorithm uses false starts to avoid being trapped in a poor local optimum
because of the moves performed in the first few iterations. Specifically, the tabu search
procedure is run three times for 100 ln(|N |) iterations, and the best solution identified during
these runs is used as the starting solution for the main search.

3.5 Intensification mechanisms

To intensify the search around promising solutions, the algorithm alternates between two
modes: global search and orbit search. In global search all six types of exchanges are
considered whereas in orbit search, the neighbourhood is limited to the first four types.
In the latter case, it is thus impossible to move a strip from one orbit to another. As a
result, the problem decomposes by orbit and each one can be optimized independently of
the others. The alternation between the two modes depends on the CPU time elapsed since
the beginning of the search. If a total of φ units of CPU time are allowed for the search, then
global search is performed for 0.3φ units, followed by 0.2φ units of orbit search and, finally,
0.5φ units during which the search switches between the two modes at a periodic interval of
0.1φ. Finally, false starts are used only the first time global search is performed.

8

Every 100 iterations, a rescheduling of the strips in the solution is also performed in the
hope of improving feasibility. Each strip currently in the solution is removed from its orbit
and reinserted in its best position (in the same orbit) in order to minimize w(s). To this
end, the strip is temporarily inserted in every possible position in the sequence and the total
increase of time window violations that result from the insertion is computed. When a strip
can be inserted in several locations with the same effect on w(s), the insertion position is
chosen arbitrarily among these locations. Again, these exchanges maintain feasibility of all
constraints except time windows.

4 Upper Bounds through Column Generation

We now present a column generation approach that can be used to maximize the utility of
a single user, i.e., to determine the value of u∗i in the phase B and C problems. To this
end, we reformulate the problem as a set partitioning model in which each variable (column)
represents a set of strips acquired during one orbit of one satellite. Of course, these variables
must take the value 0 or 1 in any feasible solution. The column generation algorithm should
thus be embedded within a branch-and-bound search to obtain feasible integer solutions.
The resulting approach is commonly called branch-and-price (see, e.g., Barnhart et al.,
1998; Desaulniers et al., 1998). Of course, solving the problem optimally through branch-
and-price is likely to be very time consuming for large instances. However, solving only
the linear programming relaxation of the set partitioning formulation will provide an upper
bound u̇∗i on the true maximal utility u∗i of user i. This is the approach we have adopted
here.

The formulation that we use is inspired from the unified framework for vehicle routing and
scheduling problems described by Desaulniers et al. (1998). We thus decompose the
problem into a set partitioning master problem and a set of subproblems, one for each orbit.
According to this framework, a strip and an orbit can be seen, respectively, as a task and a
commodity.

For each orbit t, we define a directed graph Gt = (V t, At), where V t and At denote the
sets of nodes and arcs, respectively. In the set V t = N t ∪ {ot, dt}, N t contains a node for
each strip that can be acquired during the orbit and ot and dt represent the source and sink
nodes for orbit t. Each arc (i, j) is characterized by a profit pij = pi and a positive duration
tij = di + cij (with pot = dot = 0).

Several graph reductions are possible. First, all arcs that do not satisfy the feasibility
condition ai + tij ≤ bj can be removed from the graph since this implies that strip j cannot
be acquired after strip i. Because of the way in which two twin strips i and j must be
acquired, there is always a single sequence in which the acquisitions can be performed: either
i must precede j, or j must precede i. Hence, the following reductions can be performed by
considering intermediate nodes. Consider a couple of nodes i and j (i, j ∈ N t) representing
twin strips and a third node k ∈ N t. If arcs (i, j) and (i, k) are in At but arc (k, j) has been
deleted, then one can also delete arc (i, k) since there cannot be a path in Gt containing all
three nodes. In the same way if arcs (i, j) and (k, j) exist but arc (i, k) has been deleted,

9

then one can also delete (k, j). Finally if all three arcs (i, j), (i, k) and (k, j) exist but
ai + tik + tkj > bj, then both (i, k) and (k, j) can be deleted.

For each commodity (orbit) t ∈ T , let Ωt be the set of feasible paths from ot to dt in Gt, and
let rt

ω denote the profit of path ω ∈ Ωt. This profit corresponds to the sum of the profits
associated with the individual strips belonging to the path. Let also θt

ω be a binary variable
taking the value 1 if and only if ω ∈ Ωt is selected for orbit t in the solution. Finally for
each path ω ∈ Ωt, each commodity t ∈ T and each strip i ∈ N , define a binary parameter
at

iω equal to 1 if strip i is covered by path ω.

To handle the twin strip constraints without adding constraints to the problem we introduce
for each orbit t ∈ T an “artificial orbit” t′ ∈ T ′ characterized by a graph Gt′ = (V t′ , At′).
The node set N t′ contains a node for each strip that is not related to a priority request and
can be acquired during orbit t. The arc set At′ contains the arc (ot′ , dt′) and a pair of arcs
(ot′ , i), (i, dt′) for each node i ∈ N t′ . Finally, if i and j are nodes in N t′ representing twin
strips, we delete from At′ the arcs (ot′ , j) and (i, dt′) and introduce the arc (i, j). As a result,
either both i and j will be covered in a path from Ωt′ , or they will both be covered in a path
from Ωt.

The problem for a given user can then be formulated as follows:

maximize
∑
t∈T

∑
ω∈Ωt

rt
ωθt

ω (2)

subject to
∑
t∈T

∑
ω∈Ωt

at
iωθt

ω = 1 ∀i ∈ N (3)∑
t∈T

∑
ω∈Ωt

at
iωθt

ω +
∑
t∈T ′

∑
ω∈Ωt

at
iωθt

ω = 1 ∀i ∈ N \N (4)∑
ω∈Ωt

θt
ω = 1 ∀t ∈ T (5)

θt
ω ≥ 0 and integer ∀ω ∈ Ωt, ∀t ∈ T ∪ T ′. (6)

Constraints (3) and (4) ensure that each strip from a priority request is acquired and that
all strips are acquired at most once. Constraints (5) ensure that a feasible path is assigned
to each orbit. The LP relaxation of this formulation can be solved by a column genera-
tion algorithm in which positive reduced cost columns are generated by solving a resource
constrained shortest path problem.

Let P t be the set of polygons that can be acquired during orbit t. To handle the polygon
constraints, we first change the structure of the graph Gt = (V t, At) as follows. For each
polygon p ∈ P t, the nodes {i1, ..., in} associated with strips belonging to p are duplicated
by creating nodes {i′1, ..., i′n} which are linked to the original ones with arcs (i′k, ik) for k =
1, . . . , n. If j is a node associated with a strip not belonging to the considered polygon, then
arcs of the form (j, ik) are replaced by arcs (j, i′k) for k = 1, . . . , n (i.e., incoming arcs of the
nodes {i1, ..., in} become incoming arcs of the nodes {i′1, ..., i′n}). Furthermore, all arcs that
connect nodes of {i1, . . . , in} corresponding to non-contiguous strips are deleted. Finally, let
et

pω be an integer parameter representing the number of times that an arc of the form (j, ik)

10

from polygon p is used in path ω. Polygon constraints can be imposed through the following
inequalities which are added to the master problem:∑

ω∈Ωt

et
pωθt

ω ≤ 1 ∀p ∈ P. (7)

Finally, the constraint on the total utilization time imposed in phase B instances can be
expressed as follows: ∑

t∈T

∑
ω∈Ωt

dt
ωθt

ω ≤ L, (8)

where L denotes the allowed time and dt
ω is the sum of the acquisition times of the strips

acquired in path ω.

5 Computational Results

To assess the quality of the heuristics, computational experiments were performed on 13
data sets provided by the CNES. Each set considers two satellites performing 12 or 13 orbits
in a 24 hour time horizon. Four users, identified by the digits 1, . . . , 4. are considered in
each set.

We first summarize in Table 1 the main characteristics of the instances. This table contains
52 lines and each line provides the statistics for one data set and one user. In this table,
|T | is the total number of relevant orbits for the given user, |R| is the number of requests
formulated by that user, and |N | is the number of strips in these requests (with |R| and |N |
indicating the number of priority requests and strips, respectively). The remaining three
columns indicate the number of twin strips (TS), the number of polygon requests (PR), and
the number of strips belonging to these polygon requests (SPR). Instances for users 1 and 2
are the largest ones with an average number of strips exceeding 2000 and 1500, respectively.
In these instances, twin strips represent more than 50% of all strips. Polygon requests also
constitute an important part of all requests. Instances for users 3 and 4 are much smaller
with just over 150 strips, on average.

Since the tabu search heuristic relies on a number of parameters whose values must be set by
the user, we have first performed a sensitivity analysis for the most important parameters:
λ which controls the intensity of the continuous diversification, and π which controls the
fraction of requests which are removed from the solution when it is perturbed. The heuristic
is rather insensitive to the values of these parameters but it consistenly yielded good results
on all instances when setting λ = log10 |N | and π = min{µ, 10}, where µ is the number of
time the perturbation mechanism has been applied since the last improvement. We have
thus used these settings in all remaining experiments.

For each data set, we have then performed a time-constrained optimization (phase B) for
users 1 and 2. In this phase, user 1 was allowed 750 seconds of satellite utilization and user

11

Table 1: Characteristics of the test instances

|T | |R| |R| |N | |N | TS PR SPR
16950 1 24 850 25 1788 26 1284 268 905
16950 2 25 688 25 1610 26 1114 244 968
16950 3 4 81 25 110 26 28 15 30
16950 4 2 38 25 46 26 2 3 10
16951 1 24 852 29 1764 31 1272 256 862
16951 2 24 680 29 1555 31 1110 235 912
16951 3 4 84 29 112 31 28 14 28
16951 4 3 42 29 50 31 4 2 8
16952 1 24 826 28 1704 29 1226 247 823
16952 2 25 637 28 1464 29 1060 225 869
16952 3 4 105 28 149 29 38 24 49
16952 4 3 35 28 37 29 2 1 2
16953 1 26 1272 26 2124 27 1188 240 807
16953 2 25 647 26 1483 27 1040 229 886
16953 3 5 107 26 157 27 48 25 51
16953 4 3 47 26 61 27 10 8 17
16954 1 26 1331 26 2230 27 1222 265 887
16954 2 24 678 26 1637 27 1164 254 1024
16954 3 5 106 26 154 27 46 24 49
16954 4 3 50 26 69 27 16 9 20
16955 1 26 1386 25 2298 26 1252 269 894
16955 2 25 712 25 1705 26 1150 262 1065
16955 3 5 109 25 156 26 46 23 47
16955 4 3 54 25 80 26 20 10 26
16956 1 26 1409 25 2314 26 1270 254 845
16956 2 26 705 25 1677 26 1172 258 1026
16956 3 5 98 25 137 26 34 21 43
16956 4 3 61 25 87 26 20 11 27
16957 1 26 1408 25 2314 26 1262 254 856
16957 2 25 695 25 1610 26 1122 245 955
16957 3 4 71 25 96 26 24 13 26
16957 4 3 61 25 89 26 24 10 26
16958 1 26 1398 30 2278 31 1224 244 820
16958 2 25 660 30 1521 31 1116 234 901
16958 3 4 97 30 131 31 32 18 36
16958 4 3 51 30 66 31 10 6 16
16959 1 26 1318 26 2148 27 1166 230 773
16959 2 25 644 26 1472 27 1046 233 882
16959 3 4 107 26 155 27 44 25 51
16959 4 3 50 26 63 27 10 8 16
16960 1 26 1289 27 2175 29 1238 251 848
16960 2 25 655 27 1567 29 1146 242 967
16960 3 5 108 27 161 29 54 25 51
16960 4 2 48 27 67 29 18 8 18
16961 1 26 1339 25 2240 26 1242 262 882
16961 2 24 686 25 1645 26 1132 258 1024
16961 3 5 109 25 158 26 46 25 51
16961 4 3 52 25 75 26 16 10 25
16962 1 25 1396 25 2295 26 1246 259 862
16962 2 24 709 25 1712 26 1176 270 1074
16962 3 5 107 25 151 26 40 23 47
16962 4 3 59 25 85 26 22 10 25

12

2 was allowed 600 seconds. The tabu search heuristic was first executed for 10 minutes on
a 2.53 GHz Pentium 4 processor with the requests of each individual user to estimate the
maximal utility u∗i . It was then run for 60 minutes on the full problem. The results of these
experiments are reported in Table 2. We indicate, for each data set, the estimate û∗i of the
maximal utility of each user i, the utility ui(s) of this user in the final solution s, and the
normalized utility u′i(s). For all data sets, the value of α in the objective function is set
equal to 0.001. As a result, the value of the objective function is very close to that of the
smallest normalized utility. One can see from these results that the utility of a user in the
final solution is close to the estimation of the maximal utility û∗i : the normalized utilities
all exceed 0.92. Furthermore, the difference between the utilities of the two users are very
small and often below 1%. We also indicate in Table 2 the value of an upper bound u̇∗i
computed by column generation. This bound was obtained by solving the LP relaxation of
model (1)-(8) with a maximum CPU time of 24 hours. For user 1, the solution process was
often stopped before reaching optimality. However, the reported values should be close to
the true LP values since the rate of improvement was usually very small when the algorithm
was stopped. Considering that the value u̇∗i is an upper bound on the LP relaxation of the
problem (which is itself an upper bound on the optimal integer solution value), one may
conclude, by comparing the u̇∗i and û∗i values, that the heuristic properly evaluates the true
maximal utility of a user. This result can probably be explained by both the strength of
the upper bounds provided by the LP relaxation of the set partitioning formulation, and the
quality of the heuristic.

We have then performed the unconstrained optimization (phase C) for all users. Here, the
values qi used in the computation of the normalized utilities are q1 = 40, q2 = 40, q3 = 10 and
q4 = 10. In Table 3 we again report the estimate û∗i of the maximum utility computed with
the tabu search heuristic. The table also shows the utility ui(s) of user i in the final solution
s as well as the normalized utility u′i(s). Again, the tabu search heuristic was executed for 10
minutes to estimate the maximal utility of each user and for 60 minutes on the full problem.
Recall that the computation of the normalized utility in this phase involves a large multiplier
in the denominator, which yields small values. From these results, one can see that for users
3 and 4, the lower and upper bounds on the true maximal utility are very close. For users
1 and 2, the gap is larger but it is nevertheless below 3% for most instances. In this phase,
there usually exists a significant difference between the maximal utility of a user and the
utility ui(s) achieved when considering all users concurrently. This is explained by the fact
that the maximal utility is computed without imposing any limit on the use of the satellites
by a given user. Finally, one can also observe that the normalized utilities of the users with
a small utility (and thus a large weight in the objective function) are usually very close.
For all instances, the difference between the normalized utilities of users 1 and 2 is at most
0.00003.

6 Conclusions

We have considered the Multiple Satellite and Multiple Orbit Problem, which consists of
selecting and scheduling requests with the aim of maximizing the total utility associated with

13

Table 2: Results on phase B instances

Instance u̇∗
i û∗

i ui(s) u′
i(s)

16950 1 3805223404.2 3767992300 3609293167 0.95788
16950 2 3300098874.6 3211262510 3071674027 0.95653
16951 1 3744713939.5 3705839270 3562169010 0.96123
16951 2 3310306815.1 3264970158 3144754273 0.96318
16952 1 3628348154.8 3607404960 3424899787 0.94941
16952 2 3378020344.1 3315387600 3122056060 0.94169
16953 1 3640794101.2 3607518450 3352385807 0.92928
16953 2 3496010922.8 3437097170 3185268955 0.92673
16954 1 3824463515.6 3785693880 3600660870 0.95112
16954 2 3714752867.9 3659962180 3429036736 0.93691
16955 1 3813543894.8 3775211230 3577474600 0.94762
16955 2 3706782423.7 3629722570 3475516450 0.95752
16956 1 3786328424.2 3763423030 3617069480 0.96111
16956 2 3567789302.6 3463522270 3332601000 0.96220
16957 1 3630315249.6 3571726490 3426302090 0.95928
16957 2 3475485107.3 3367949820 3245502186 0.96364
16958 1 3599806509.2 3528185090 3393748870 0.96190
16958 2 3310679570.2 3244964180 3122502100 0.96226
16959 1 3591576836.1 3545725890 3348409600 0.94435
16959 2 3348676556.0 3273139990 3077852180 0.94034
16960 1 3774322817.8 3705166030 3485119880 0.94061
16960 2 3783371342.7 3670826820 3392853280 0.92428
16961 1 3834729713.3 3777339880 3658476260 0.96853
16961 2 3625005495.4 3538572480 3442668090 0.97290
16962 1 3819718271.3 3818995360 3677728640 0.96301
16962 2 3554436120.6 3465608200 3358266150 0.96903

the selected requests under operational constraints. A tabu search heuristic was developed
and upper bounds on the profit were derived by means of a column generation techniques.
Tests performed on large scale instances provided by the CNES suggest that the proposed
heuristic yields near-optimal solutions.

Acknowledgements

We thank Jean-Michel Lachiver of the French Centre National d’Études Spatiales for his
valuable contribution to this study. This work was partially supported by the Canadian
Natural Science and Engineering Research Council under grants 227837-04, 6815-04 and
OGP0039682. We are also thankful to two anonymous referees.

14

Table 3: Results on phase C instances

Instance u̇∗
i û∗

i ui(s) u′
i(s)

16950 1 8121434414.40 7921269380 5794265244 0.01829
16950 2 8519725566.33 8307825750 6074941556 0.01828
16950 3 1148040470.00 1143215000 216675200 0.01895
16950 4 460304200.00 460304200 126474500 0.02748
16951 1 8299202107.50 8142567589 5950002479 0.01827
16951 2 8521161500.06 8307970310 6070364420 0.01827
16951 3 1162619900.00 1162619900 236034500 0.02030
16951 4 432417350.00 432417350 83638850 0.01934
16952 1 8120025507.10 8072741767 6083873787 0.01884
16952 2 8334727139.47 8187730922 6176835994 0.01886
16952 3 1450018375.00 1448856900 322637850 0.02227
16952 4 201099900.00 201099900 96330450 0.04790
16953 1 10688895474.30 10517114800 7398039770 0.01759
16953 2 8050833594.00 7941764820 5590262230 0.01760
16953 3 1645170525.00 1638592300 300537800 0.01834
16953 4 454393137.50 453712550 83607000 0.01843
16954 1 11181438393.00 10964766610 7882419570 0.01797
16954 2 8767285963.40 8627522850 6202799590 0.01797
16954 3 1626248245.00 1581862300 296253800 0.01873
16954 4 502219480.00 500463800 124630000 0.02507
16955 1 11227212010.60 10965313340 7892586240 0.01799
16955 2 9307786704.70 9162273460 6598211680 0.01800
16955 3 1583466041.35 1561031550 285777750 0.01831
16955 4 730112125.00 727084100 163303300 0.02246
16956 1 11141678306.70 10913704640 7755558920 0.01777
16956 2 9111973423.27 8952492378 6352532918 0.01774
16956 3 1419425350.00 1419425350 258220700 0.01819
16956 4 741393060.21 737224100 132656300 0.01808
16957 1 11321455323.30 11036306720 7799680740 0.01767
16957 2 8972665281.66 8744696924 6175159114 0.01765
16957 3 918296683.33 916173400 190520750 0.02080
16957 4 706337350.00 706321900 134500800 0.01924
16958 1 11045919087.20 10771721876 7666688497 0.01779
16958 2 8290378662.40 8133205239 5780656980 0.01777
16958 3 1255131200.00 1255131200 235841150 0.01879
16958 4 534143750.00 534143750 160855750 0.02975
16959 1 10785093906.10 10569211897 7322514210 0.01732
16959 2 7695890218.20 7544282880 5227410050 0.01732
16959 3 1569000650.00 1556985000 270817800 0.01739
16959 4 473587600.00 473587600 91669650 0.01936
16960 1 10943618893.70 10785717007 7663478717 0.01776
16960 2 8772225328.02 8632661360 6133195690 0.01776
16960 3 1658119175.00 1645067000 403266000 0.02451
16960 4 339828650.00 339828650 60129500 0.01787
16961 1 11251155019.10 10969531510 7960693080 0.01814
16961 2 8930314251.43 8807377840 6380489300 0.01811
16961 3 1649541270.20 1624832200 306900100 0.01889
16961 4 682521083.33 676261250 122533850 0.01847
16962 1 11160184506.10 10903136180 7814246450 0.01792
16962 2 9228142163.32 9051374719 6485421340 0.01791
16962 3 1576907010.00 1573619000 350635350 0.02228
16962 4 705670500.00 696441700 203346200 0.02935

15

References

C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh and P.H.
Vance. “Branch-and-Price: Column Generation for Solving Integer Programs.” Opera-
tions Research, 46:316–329 (1998).

N. Bataille, M. Lemâıtre and G. Verfaillie. “Efficiency and fairness when sharing
the use of a satellite.” In Proceedings of the 5th International Symposium on Artificial
Intelligence, Robotics and Automation in Space, pages 465–470, Noordwijk (1999).

E. Bensana, M. Lemâıtre, and G. Verfaillie. “Earth observation satellite manage-
ment.” Constraints , 4:293–299 (1999).

J.-F. Cordeau and G. Laporte. “Maximizing the Value of an Earth Observation Satel-
lite Orbit.” Journal of the Operational Research Society , 56:962–968 (2005).

G. Desaulniers, J. Desrosiers, I. Ioachim, M.M. Solomon, F. Soumis and D. Vil-
leneuve. “A Unified Framework for Deterministic Time Constrained Vehicle Routing and
Crew Scheduling Problems.” In T.G. Crainic and G. Laporte, editors, Fleet Management
and Logistics , pages 57–93. Kluwer, Norwell, MA, 1998.

M. Ehrgott. Multicriteria Optimization, Lecture Notes in Economics and Mathematical
Systems Volumne 491 . Springer, New York, 2000.

V. Gabrel and C. Murat. “Mathematical Programming for Earth Observation Satellite
Mission Planning.” In T. Ciriani, G. Fasano, S. Gliozzi and R. Tadei, editors, Operations
Research in Space and Air , chapter 7. Kluwer, Boston, 2003.

S.A. Harrison, M.S. Philpott and M.E. Price. “Task Scheduling for Satellite Based
Imagery.” In Proceedings of the 18th Workshop of the UK Planning and Scheduling Special
Interest Group, pages 64–78, University of Salford, UK (1999).

M. Lemâıtre, G. Verfaillie and N. Bataille. “Exploiting a Common Property Re-
source under a Fairness Constraint: a Case Study.” In Proceedings of the 16th International
Joint Conference on Artificial Intelligence (IJCAI-99), pages 206–211, Stockholm (1999).

M. Lemâıtre, G. Verfaillie, H. Fargier, J. Lang, N. Bataille and J.-M.
Lachiver. “Equitable Allocation of Earth Observing Satellites Resources.” In Pro-
ceedings on the 5th ONERA-DLR Aerospace Symposium (ODAS’03), Toulouse (2003).

M. Lemâıtre, G. Verfaillie, F. Jouhaud, J.-M. Lachiver and N. Bataille. “Se-
lecting and scheduling observations of agile satellites.” Aerospace Science and Technology ,
6:367–381 (2002).

R.A. Morris, J.L. Bresina and S.M. Rodgers. “Automatic Generation of Heuristics
for Scheduling.” In M. Pollack, editor, Proceedings of the 15th International Joint Con-
ference on Artificial Intelligence, pages 1260–1266, Nagoya. Morgan Kaufmann (1997).

16

H. Moulin. Axioms of Cooperative Decision Making . Cambridge University Press, Cam-
bridge, MA, 1988.

J. Pemberton. “Towards Scheduling Over-constrained Remote-sensing Satellites.” In Proc.
of the 2nd NASA International Workshop on Planning and Scheduling for Space, pages
84–89, San Francisco (2000).

M. Vasquez and J.-K. Hao. “A “Logic-constrained” knapsack formulation and a tabu
algorithm for the daily photograph scheduling of an Earth observation satellite.” Compu-
tational Optimization and Applications , 20:137–157 (2001).

M. Vasquez and J.-K. Hao. “Upper bounds for the SPOT 5 daily photograph scheduling
problem.” Journal of Combinatorial Optimization, 7:87–103 (2003).

G. Verfaillie and M. Lemâıtre. “Selecting and Scheduling Observations for Agile
Satellites: Some Lessons from the Constraint Reasoning Community Point of View.” In
T. Walsh, editor, Principles and Practice of Constraint Programming (CP-2001), pages
670–684, Paphos, Cyprus (2001).

G. Verfaillie, M. Lemâıtre, N. Bataille and J.-M. Lachiver. “Management of the
mission of Earth observation satellites. Challenge description.” Technical report, Centre
National d’Études Spatiales, France, 2002a.

G. Verfaillie, M. Lemâıtre, N. Bataille and J.-M. Lachiver. “Management of
the mission of Earth observation satellites. Informal description of the global problem.”
Technical report, Centre National d’Études Spatiales, France, 2002b.

W.J. Wolfe and S.E. Sorensen. “Three scheduling algorithms applied to the Earth
observing systems domain.” Management Science, 46:148–168 (2000).

R. Yager. “On ordered weighted averaging aggregation operators in multicriteria decision
making.” IEEE Transactions on Systems, Man and Cybernetics , 18:183–190 (1988).

17

