
A Large Neighbourhood Search Heuristic for the

Aircraft and Passenger Recovery Problem

Serge Bisaillon∗ Jean-François Cordeau† Gilbert Laporte†

Federico Pasin‡

April 22, 2010

Abstract

This paper introduces a large neighbourhood search heuristic for an airline recovery

problem combining fleet assignment, aircraft routing and passenger assignment. Given

an initial schedule, a list of disruptions, and a recovery period, the problem consists

in constructing aircraft routes and passenger itineraries for the recovery period that

allow the resumption of regular operations and minimize operating costs and impacts

on passengers. The heuristic alternates between construction, repair and improvement

phases, which iteratively destroy and repair parts of the solution. The aim of the

first two phases is to produce an initial solution that satisfies a set of operational

and functional constraints. The third phase then attempts to identify an improved

solution by considering large schedule changes while retaining feasibility. The whole

process is iterated by including some randomness in the construction phase so as to

diversify the search. This work was initiated in the context of the 2009 ROADEF

Challenge, a competition organized jointly by the French Operational Research and

Decision Analysis Society and the Spanish firm Amadeus S.A.S., in which our team

won the first prize.

Keywords: airline recovery, fleet assignment, aircraft routing, passenger itineraries,

large neighbourhood search.

∗Université de Montréal and CIRRELT, Case postale 6079, succursale Centre-Ville, Montréal, Canada

H3C 3J7
†HEC Montréal and CIRRELT, 3000, chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7
‡HEC Montréal, 3000, chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2A7

1 Introduction

The operations of commercial passenger airlines are normally planned long in advance by
following a sequential process. First, a flight schedule is created based on passenger demand
forecasts and available resources. Next, an aircraft type is assigned to each scheduled flight
by solving a fleet assignment problem. The objective of this problem is to maximize revenues
or profits while taking aircraft availability into account. For each aircraft type, an aircraft
routing problem is then solved to determine the sequence of flights to be flown by each
individual aircraft. The resulting aircraft rotations must cover each flight exactly once and
satisfy a number of operational constraints such as regular maintenance checks. Given the
aircraft rotations, the airline then constructs anonymous crew pairings that usually last
between one and four days. A crew pairing is a sequence of work and rest periods satisfying
applicable work rules. These crew pairings are finally grouped together to form personalized
monthly schedules which are assigned to specific crew members by solving a crew bidding or
a crew rostering problem.

Despite careful planning, normal operations are often disrupted by unforeseen events. Several
times a week, flights are for example delayed or cancelled because of mechanical failures,
airport congestion, security problems, or bad weather. Rosenberger et al. [19] report that
75% of perturbations are caused by meteorological conditions. The economic impact of
disruptions is also considerable. Ball et al. [4] quote a study of the Air Transport Association
which reports that delays cost customers and airlines about $65 billion in 2000. When
perturbations occur, airlines must react quickly to recover and minimize their impact. The
widespread use of hub-and-spoke networks means that a disruption at a hub airport can
have far-reaching effects. Of course, any change to the schedule may have repercussions on
the aircraft fleet utilization, on the crew, and on the passengers. Despite these interactions,
recovery decisions are typically made sequentially by reassigning aircraft first, followed by
crew and passengers. Treating the problem sequentially simplifies decision making but may
also lead to poor solutions. There is therefore an increasing interest in the industry for
developing approaches that integrate various aspects of the recovery problem.

The purpose of this paper is to introduce a large neighbourhood search heuristic for an
airline recovery problem combining fleet assignment, aircraft routing and passenger routing.
Given an initial schedule, a list of disruptions, and a recovery period, the problem consists
in constructing aircraft routes and passenger itineraries for the recovery period that allow
the resumption of normal operations as quickly as possible while minimizing operating costs
and impacts on passengers. To this end, flights may be intentionally cancelled or delayed,
new flights may be added to the schedule, and the assignment of aircraft to flights may
be changed. A large number of operational constraints must be taken into account when
rescheduling flights and rerouting aircraft. These include seating capacities, maintenance
requirements, airport capacities, minimum turn-around times, etc. In addition, functional
constraints restrict how the passengers affected by schedule changes can be accommodated
on new or existing flights.

2

This work was initiated in the context of the 2009 ROADEF Challenge, a competition
organized jointly by the French Operational Research and Decision Analysis Society and the
Spanish firm Amadeus S.A.S., in which our team won the first prize. The problem solved as
part of this competition was defined by Palpant et al. [17] and a website presenting the data
sets and results is available at http://challenge.roadef.org/.

Several approaches have been proposed to separately address either the aircraft recovery
problem (see, e.g., Argüello et al. [3], Cao and Kanafani [6, 7], Jarrah et al. [9], Rakshit et
al. [18], Rosenberger et al. [19], Teodorović and Guberinić [25] and Thengvall et al. [26]) or
the crew recovery problem (see, e.g., Abdelghany et al. [1], Lettovsky et al. [11], Medard and
Sawhney [15], Nissen and Haase [16], Stojković et al. [23], Stojković and Soumis [22] and
Yu et al. [27]). Algorithms for the aircraft recovery problem are typically based on network
flow models that are solved either with branch-and-bound or decomposition methods. Cao et
al. [6, 7] model this problem as a quadratic program which they solve heuristically by means of
linearizations, while Rosenberger et al. [19] model the problem as a set partitioning problem.
Argüello et al. [3] have developed a greedy randomized adaptive search procedure (GRASP)
for this problem. The crew recovery problem is usually modelled as a set partitioning problem
solved by branch-and-bound or by branch-and-price. The passenger recovery problem has
been solved by means of network flow techniques by Bratu and Barnhart [5] and by integer
non-linear programming by Zhang et and Hansen [28]. Some authors (Abdelghany et al. [2],
Luo and Yu [12], Stojković et al. [24]) have solved the joint aircraft and crew recovery
problem. All models are large-scale mixed or pure integer linear programs which are solved
by heuristics [2, 12] or by network flow techniques [24].

To our knowledge, only Bratu and Barnhart [5] have developed models to solve the joint
aircraft recovery and passenger reassignment problem. These models consider an estimate
of passenger delay and disruption costs, and allow flights to be delayed or cancelled. While
they do not recover disrupted crews, they use approximations based on reserve crews. These
models were run within a simulation framework with data provided by a major U.S. airline.

A number of solution approaches have also been designed for the specific problem introduced
in the 2009 ROADEF Challenge. Those proposed by the nine teams that qualified for the
final are briefly described on the website http://challenge.roadef.org/. Some of these
approaches rely on the solution of mixed-integer programs by general purpose solvers, some
are based on minimum cost flow models, whereas others use mathematical decomposition
methods.

Among the best performing algorithms, Jozefowiez et al. [10] have introduced a three-phase
heuristic based on shortest path computations. The first phase integrates the disruptions
into the existing schedule by cancelling and delaying flights. An attempt is also made to
repair disconnected aircraft rotations by inserting new flights in these rotations through the
solution of a shortest path problem. In the second phase, passengers belonging to disrupted
itineraries are assigned to existing flights, again by solving shortest path problems. Finally,
the third phase aims at creating new flights to be included in existing aircraft rotations so

3

as to allow the re-assignment of additional passengers. This problem is also modelled and
solved as a shortest path problem. The heuristic has performed well on most instances of
the competition although, due to a programming problem, infeasible solutions were returned
in a small number of cases.

Another successful approach was introduced by Mansi et al. [13, 14]. It is based on an
oscillation strategy heuristic combined with mathematical programming. The first stage
attempts to obtain a feasible set of aircraft rotations by solving a problem relaxation which
is modelled as a mixed integer program. If some of the maintenance constraints are violated
by the solution to this program, a dynamic programming repair heuristic is applied. Linear
programs are then solved to maximize the number of passengers who reach their planned
destination while minimizing the total passenger delay. The second stage of the algorithm
aims to improve this solution by alternating between constructive and destructive steps
within an oscillation strategy. The destructive step removes aircraft routes and passenger
itineraries whereas the constructive step creates new routes and reassigns passengers to these
routes by solving multi-dimensional knapsack problems. This algorithm ranked second in
the ROADEF Challenge.

For a detailed overview of disruption management in the airline industry, we refer the reader
to the recent surveys of Ball et al. [4] and Clausen et al. [8].

The remainder of the paper is organized as follows. Section 2 introduces some basic concepts
and provides a description of the airline recovery problem. The large neighbourhood search
heuristic is then introduced in Section 3. This is followed by computational results in Section
4, and by the conclusion.

2 Problem Description

We first introduce some concepts used to define the airline recovery problem. We then specify
the decisions to be made along with the objective function and constraints to be satisfied
when making these decisions.

2.1 Basic concepts

A flight schedule is the set of all flights to be operated by the airline over a given time period.
Each flight in the schedule is defined by a flight number, origin and destination airports, and
departure and arrival times and dates. The sequence of flights assigned to a given aircraft
is called a rotation. For a rotation to be feasible, the destination airport of a flight must
correspond to the origin airport of the next one in the rotation, and the difference between
the arrival time of the first flight and the departure time of the second one must be larger
than or equal to the turn-around time.

4

A flight schedule s may be represented on a time-space network Gs = (Ns, As) where each
node in the set Ns represents an airport at a given point in time and each arc in As represents
either a flight leg or a connection between two flight legs. A flight leg is a non-stop flight
from an origin airport to a destination airport, and a multi-leg flight is a sequence of flight
legs that share the same flight number and must be performed sequentially by the same
aircraft. The minimum difference between the arrival and departure times of successive legs
in a multi-leg flight is called the transit time.

The aircraft fleet F comprises all aircraft operated by the airline. Each aircraft f ∈ F is
defined by a unique identification number, a model, and a cabin configuration. A cabin
configuration specifies how the seats are allocated between cabin classes (e.g., first, business,
economy). Aircraft of the same model share all their operational features: turn-around time,
transit time and range. In addition, models with common features are grouped into families.
Each aircraft must also undergo regular maintenance and there is a limit on the number of
flight hours performed between two successive maintenance checks.

Finally, passengers traveling with the airline during the recovery period are grouped into a
set I of itineraries. Each itinerary is defined by a list of one or several flight legs with a
cabin class for each leg, the outbound or inbound nature of the itinerary, and the number of
passengers traveling on this itinerary.

Three types of disruptions may perturb the planned schedule. In a flight disruption, a flight is
delayed or cancelled. In an aircraft disruption, an aircraft is unavailable for a period of time.
In an airport disruption, the departure and arrival capacities of an airport are temporarily
reduced. Of course, the three types of disruptions may occur concurrently within a given
disruption scenario.

2.2 Decisions to be made

The Airline Recovery Problem (ARP) consists in creating a rotation for each aircraft f ∈ F

available over the recovery period and in assigning passengers that belong to the itineraries
in I to the scheduled flights. In addition to the flight delays and cancellations forced by
the disruptions, one may voluntarily delay or cancel additional flights. The assignment of
aircraft to flights may be changed and new flights may be created and assigned to available
aircraft. All passengers traveling on a flight taking place during the recovery period may be
rescheduled on different flights.

The next sections describe the objective and constraints to be considered when creating
aircraft rotations and assigning passengers to flights.

5

2.3 Objective function

Three types of costs are considered in the ARP: operating costs, passenger inconvenience
costs, and inconsistency costs that are incurred if the positions of the aircraft at the end of
the recovery period do not match the planned positions. The objective consists in minimizing
a weighted sum of these three types of costs.

2.3.1 Operating costs

Costs related to the operation of a flight depend on the aircraft model and are expressed per
hour of flight time. This cost is added to the objective function for newly created flights and
is subtracted for cancelled flights. In the case of a delayed flight, drinks and a meal must
be provided to passengers whose delay exceeds a given limit that depends on the planned
trip duration. In addition, the airline must provide accommodation if the delay exceeds
five hours. In the case of a flight cancellation, the airline must reimburse the ticket price
and provide a financial compensation depending on the planned trip duration. The planned
duration of a trip is the sum of the durations of the flight legs that belong to the trip and it
therefore excludes waiting time during connections.

2.3.2 Passenger inconvenience costs

Inconvenience costs aim to capture the dissatisfaction experienced by passengers following
flight delays and cancellations, regardless of the compensation scheme just described. This
“disutility” is expressed in monetary units and is a function of the total delay with respect
to the planned itinerary of the passenger. Inconvenience costs also include a penalty in the
case of downgrading, i.e., if a passenger has to travel in a lower cabin class than the one that
was booked.

The delay cost is a linear function of the total delay at destination. Its slope depends on
the itinerary type (intercontinental, continental or domestic) and on the itinerary’s reference
cabin class. If an itinerary comprises multiple legs, the reference cabin class is the highest of
the booking cabin classes on these legs. The cost of a cancellation is a constant that depends
on the itinerary and reference cabin class. This cost also depends on whether the inbound
or outbound portion of the trip is cancelled. Finally, downgrading costs are calculated on a
leg basis and depend on the leg type as well as on the level of downgrading. For example,
downgrading from first class to economy class incurs a larger penalty than downgrading from
first class to business class.

6

2.3.3 Return to normal

Ideally, operations should be able to return to normal by the end of the recovery period.
To this end, the number of aircraft of each model and configuration at each airport at the
end of the recovery period should match the number in the planned schedule. If this is not
possible, penalty costs are incurred: a penalty p1 is imposed for each required aircraft that
can be matched with an aircraft of the same model but with a different configuration; a
larger penalty p2 is imposed if a required aircraft is matched with an aircraft of a different
model within the same family; finally, an even larger penalty p3 is imposed for each required
aircraft that cannot be matched with an aircraft of the same family.

2.4 Constraints

Two sets of constraints must be satisfied by any solution: operational constraints related to
aircraft assignment and routing, and functional constraints related to passenger assignment.

2.4.1 Operational constraints

If the aircraft assigned to a flight is changed, the new aircraft must belong to the same family
as the one originally assigned to this flight. In addition, the number of passengers traveling
in each cabin cannot exceed the seating capacity of this cabin, which is determined by the
configuration of the aircraft assigned to the flight.

Aircraft rotations must ensure that each aircraft goes to a specified maintenance station
before reaching the maximum allowed number of flight hours. Rotations must also respect
minimum turn-around times and transit times. Minimum connection times must also be
satisfied for connecting passengers: a minimum of 30 minutes is needed between any two
legs within an itinerary. Finally, airport capacity constraints impose upper bounds on the
number of departures and number of arrivals in each 60-minute interval starting on the hour
(e.g., 9:00) at each airport.

2.4.2 Functional constraints

A number of rules apply when modifying the itinerary of a passenger. First, the modified
itinerary must have the same final destination as the original one. Second, the modified
itinerary cannot start before the planned departure time of the first flight in the original
itinerary. Third, the maximum delay at destination cannot exceed 18 hours for domestic and
continental flights, and 36 hours for intercontinental flights. These limits do not, however,
apply to passengers who started their trip before the beginning of the recovery period or
those on the inbound portion of their trip.

7

3 Solution Method

We now describe the Large Neighbourhood Search (LNS) heuristic we have developed for
the ARP. LNS is a general heuristic search paradigm that was introduced by Shaw [21] in
the context of the vehicle routing problem. It is also closely related to the ruin and recreate
heuristic of Schrimpf et al. [20]. The basic idea behind LNS is to improve an initial solution
by repeatedly destroying and repairing parts of the solution.

Our method proceeds in three phases, construction, repair and improvement, which are
repeated until a stopping criterion is met. The aim of the first two phases is to produce
an initial solution that is feasible with respect to the operational and functional constraints
described in the previous section. The third phase then attempts to identify an improved
solution by considering large schedule changes while retaining feasibility. The whole process
is iterated by including some randomness in the construction phase so as to diversify the
search.

A general overview of the method is presented in Figure 1. The construction and repair
phases are repeated several times by varying the aircraft ordering used in the construction
procedure. They stop after a given computing time has been spent or after a given number of
iterations have been performed without improving the incumbent solution. In computational
experiments, we have used a maximum computing time equal roughly to half of the total
computing time available and a maximum of 100 iterations without improvement. The best
solution found during this process is then used as a starting point for the third and final
phase. When computing time allows, the whole process is repeated, starting again from the
construction phase.

Construction
phase

Improvement
phase

Repair
phase

improvement

CPU time

CPU time or number
of iterations without

Figure 1: Overview of the solution method

8

3.1 Construction phase

In this phase, we first randomly sort the aircraft in the set F so as to treat them in a different
order each time the construction phase is performed. Then, starting from the original flight
schedule, we try to construct a feasible rotation for each aircraft by delaying and cancelling
flights.

We thus consider each aircraft in turn and check whether its original rotation is still feasible
after taking all known disruptions into account. To this end, we may have to delay flights
that cannot take place as planned because of delays on previous flights performed by the
same aircraft. For each such flight, we attempt to find a feasible schedule by repeatedly
delaying the flight by increments of 60 minutes until airport capacity constraints can be
satisfied at both the origin and destination. If the resulting rotation is feasible, it is left
unchanged. Otherwise, we identify the first flight yielding an infeasibility and we declare
this flight critical . The infeasibility may be caused by insufficient airport capacity or by
the fact that the aircraft cannot arrive on time at the airport where it is scheduled for
maintenance. It may also be caused by the fact that a flight has been cancelled inside the
rotation, thus making it impossible to connect the first part of the rotation with the second
one.

If a flight has been cancelled inside the rotation, we first try to create a new flight that is as
similar as possible to the cancelled one and allows the rotation to be reconnected. If this is not
possible, we try to remove from the rotation the smallest subsequence of flights that forms
a loop (i.e., such that the origin airport of the first flight corresponds to the destination
of the last flight) and makes it possible to reschedule the following flights. Removing a
loop ensures that the remaining parts of the rotation can be connected without introducing
further violations of the maintenance or airport capacity constraints. It also ensures that
the aircraft will finish its rotation where planned. If we fail to identify such a loop, we can
ensure feasibility by cancelling the sequence that starts with the critical flight and finishes
with the end of the rotation.

If the rotation is infeasible because of maintenance constraints, we proceed in a similar way:
we try to remove a loop that takes place before the scheduled maintenance and allows the
aircraft to arrive on time at the required airport. If this is not possible, we can also cancel
the sequence from the critical flight to the end of the rotation. In this case, the critical
flight is the last flight that would depart from the maintenance airport before the scheduled
maintenance. We assume here that maintenance constraints can always be satisfied by
either removing a loop or cancelling a sequence inside the rotation, which was the case in
the instances tested for the ROADEF Challenge.

Finally, if the infeasibility is caused by insufficient airport capacity at the departure or arrival
of the critical flight, we first try to reschedule this flight at a later time when capacity is less
constrained. Again, if this proves impossible we try to remove a loop that either contains
the critical flight or takes place after this flight, so that the critical flight can be delayed to

9

a time when airport capacity is sufficient. If this attempt fails, we again try to cancel the
sequence starting with the critical flight and going to the end of the rotation. In this case,
however, the procedure is less aggressive and the sequence is removed only if it allows the
aircraft to finish its rotation at the appropriate airport. If not, the rotation is left unchanged
and an attempt to repair the infeasibility will be made in the repair phase by delaying one
or several other flights in the schedule.

A pseudo-code summarizing the four main steps of the construction phase in presented in
Algorithm 1.

3.2 Repair phase

This phase proceeds in three steps. First, each aircraft is treated in the same order as in
the construction phase and we try to make the solution feasible with respect to the airport
capacity constraints that are still violated after the construction phase. We have observed
that in most cases it is possible to delay flights departing or arriving in the time period for
which the airport capacity is insufficient. To identify such flights, we use a greedy approach.
For each aircraft and each flight, we thus check whether the airport capacity is sufficient at
the departure and arrival times. If not, we try to delay the flight to a less congested period.
If this is impossible we then try to remove the smallest loop containing the flight, as in the
construction phase. If this also fails, we finally remove the sequence from this flight to the
end of the rotation.

Second, we try to reinsert the sequences that were removed during the construction phase.
To this end, we identify for each aircraft all time intervals (between two successive flights)
that are long enough to accommodate new flights. For each such interval, we check whether
it is possible to insert one of the available sequences. Whenever a feasible insertion is found,
it is performed without verifying whether a better insertion would be possible elsewhere in
the schedule. This approach is very fast and usually yields significant cost improvements in
a few iterations.

Third, we turn our attention to passengers. To respect the functional constraints related to
passenger assignments, we apply a simple rule: all passenger itineraries that have become
infeasible with respect to the new schedule and the set of functional constraints are cancelled.
We then try to accommodate passengers whose itineraries have been cancelled by repeatedly
solving shortest path problems. In this step, passengers are treated in decreasing order of
the penalty cost in the case of an itinerary cancellation. For a given itinerary i ∈ I, we
consider the graph Gsi obtained from Gs by retaining only flight arcs that have a non-zero
capacity and could belong to a path from the origin of itinerary i to its destination within
the relevant time horizon. The source node in Gsi represents the origin airport of itinerary i
at the planned departure time and is connected to the departure node of all flights leaving
from that airport. The sink node represents the destination airport of the itinerary and all
incoming flights at this airport are connected to it. Two main types of costs are assigned to

10

Algorithm 1 Construction phase

1: randomly sort all aircraft in the set F

2: for all aircraft f ∈ F do

3: for all flight j that have become infeasible because of delays on previous flights do

4: set t = 60
5: while delaying flight j by t minutes does not resolve infeasibility and t ≤ 960 do

6: set t = t + 60 and try delaying flight j by t minutes
7: end while

8: end for

9: for all flight j that have been cancelled do

10: if creating a flight similar to j is feasible then

11: create flight
12: else if removing a loop containing flight j makes the rotation feasible then

13: remove loop
14: else

15: cancel flights from j to the end of the rotation
16: end if

17: end for

18: for all flight j causing a violation of the maintenance constraints do

19: if removing a loop makes the rotation feasible then

20: remove loop
21: else

22: cancel flights from j to the end of the rotation
23: end if

24: end for

25: for all flight j that cannot take place because of insufficient airport capacity do

26: set t = 60
27: while delaying flight j by t minutes does not resolve infeasibility and t ≤ 960 do

28: set t = t + 60 and try delaying flight j by t minutes
29: end while

30: if rotation is still infeasible then

31: if removing a loop makes the rotation feasible then

32: remove loop
33: else if the origin of flight j is the desired final destination of aircraft f then

34: cancel flights from j to the end of the rotation
35: end if

36: end if

37: end for

38: end for

flight arcs: downgrading costs are assigned to arcs associated with a lower cabin class than
the itinerary’s reference class; delays costs are assigned to arcs incident to the sink node and

11

reflect the total delay with respect to the planned itinerary (see Section 2.3.2). Finally, all
flight arcs have an extra cost of 1 to make sure that, whenever there exist paths arriving
at destination without any lateness or downgrading, the algorithm will select the path with
the smallest number of flight arcs. If we succeed in finding a path in Gsi that satisfies all
functional constraints, we assign to this path the largest number of passengers satisfying the
seating capacity on all flight legs. The remaining passengers from the same itinerary remain
unassigned and may be assigned to a different path. This process is repeated as long as new
passenger assignments are possible.

Figure 2 illustrates the graph Gsi for a specific itinerary between YUL and MXP. Each flight
arc has a label indicating the cost and capacity of the arc. There are three possible paths from
origin to destination. Five passengers would first be assigned to the path YUL-AMS-MXP
because it has the cheapest cost.

AMS AMS

CDG CDG

FCO FCO

MXP

YUL

JFK JFK

(1, 5)

(121, 10)

(91, 12)

(1, 12)

(1, 40)

(1, 22)

(1, 3)

Figure 2: An example graph Gsi

A pseudo-code summarizing the main steps of the repair phase is presented in Algorithm 2.

3.3 Improvement phase

In this phase, we try to improve the solution with a simple procedure that considers large
changes to the solution. When no further improvement is possible, this phase stops and the
algorithm returns to the construction and repair phases to generate a new tentative solution.

The improvement procedure attempts to delay some flights in the hope of accommodating
additional passengers. Again, we consider each aircraft in turn and we attempt to delay each
of its flights by a certain amount of time ∆. Whenever we obtain a feasible schedule that
does not lead to any flight cancellation, we check whether it is possible to improve the best
solution by reassigning passengers. Obviously, every time a flight is delayed, this delay must
be propagated along the rotation until there is slack time in the schedule. While doing this,

12

Algorithm 2 Repair phase

1: for all aircraft f ∈ F do

2: for all flight j that cannot take place because of insufficient airport capacity do

3: set t = 60
4: while delaying flight j by t minutes does not resolve infeasibility and t ≤ 960 do

5: set t = t + 60 and try delaying flight j by t minutes
6: end while

7: if rotation is still infeasible then

8: if removing a loop makes the rotation feasible then

9: remove loop
10: else

11: cancel flights from j to the end of the rotation
12: end if

13: end if

14: end for

15: for all loop ℓ that has been cancelled do

16: if inserting loop ℓ in the rotation of aircraft f is feasible then

17: perform insertion
18: end if

19: end for

20: end for

21: for all itinerary i ∈ I do

22: if itinerary i has become infeasible then

23: cancel itinerary
24: end if

25: end for

26: sort cancelled itineraries in set I in decreasing order of penalty cost
27: for all cancelled itinerary i ∈ I do

28: while there are still unassigned passengers in itinerary i do

29: solve a shortest path in graph Gsi

30: assign as many passengers as possible to shortest path
31: end while

32: end for

we may thus have to cancel some passenger itineraries that are no longer feasible. Again,
passengers are reassigned by repeatedly solving shortest path problems as in the repair
phase. Every time a cost improvement is obtained, the corresponding solution replaces the
current solution and the process continues with the next flight. When all flights have been
considered, we increase the value of ∆ and the procedure is repeated from the first flight of
the first aircraft. It should be noted that the delay ∆ is always computed with respect to the
current schedule and not with respect to the original one. In computational experiments,
we have considered the following sequence of values for ∆: 35, 70, 105, ... The improvement

13

procedure stops when ∆ exceeds 560 (i.e., 35 · 16) or when the CPU time spent in this phase
exceeds 4 minutes.

Algorithm 3 summarizes the main steps of the improvement phase.

Algorithm 3 Improvement phase
1: set ∆ = 35
2: while ∆ ≤ 560 do

3: for all aircraft f ∈ F do

4: for all flight j in the rotation of aircraft f do

5: if delaying flight j by ∆ minutes is feasible then

6: update schedule and reassign disrupted passengers
7: if cost of new solution is smaller than best solution then

8: replace best solution
9: else

10: revert to best solution
11: end if

12: end if

13: end for

14: end for

15: set ∆ = ∆ + 35
16: end while

4 Computational Results

We report the results obtained on the test instances used for ranking teams in the 2009
ROADEF Challenge. Our algorithm was tested on an AMD Turio64x2 computer with 2 GB
of memory. The maximum computing time was set to 10 minutes for each instance.

Table 1 shows the ranking of the nine teams that qualified for the final of the competition
as well as the global score obtained by each team. This global score was computed as the
average score on each of the 18 instances considered in the final round. For each instance,
the score is equal to 100(zw − z)/(zw − zb) where z is the cost of the solution produced by
the algorithm, and zb and zw are, respectively, the best and worst solution costs found by
all algorithms. If an algorithm has failed to produce a solution after 10 minutes or if it has
returned an infeasible solution, it is assumed to have returned a solution with a cost equal
to 2zw.

The next two tables provide some statistics on the size of the 18 instances. For each instance,
we report the duration of the recovery period, the number of aircraft, airports, flights and
itineraries considered in the problem, as well as the number of flight, aircraft and airport
disruptions. One can see that all instances are rather large in terms of the number of flights

14

Table 1: Final scores

Team Rank Score
Bisaillon et al. 1 95.90
Hanafi et al. 2 92.73
Acuna-Agost et al. 3 74.26
Eggermont et al. 4 72.01
Darlay et al. 5 70.62
Peekstok and Kuipers 6 70.31
Jozefowiez et al. 7 64.02
Dickson et al. 8 42.02
Eggenberg and Salani 9 20.48

and passenger itineraries considered. In addition, it is worth mentioning that each itinerary
may actually comprise several passengers, and passengers that belong to the same itinerary
may be assigned to different flights in the recovery period. The number of disruptions
varies considerably between instances. B instances contain mostly flight disruptions while X
instances contain more aircraft and airport disruptions.

Table 2: Characteristics of the B instances

B01 B02 B03 B04 B05 B06 B07 B08 B09 B10
Rec. per. (h) 36 36 36 36 52 36 36 36 36 52
Nb. aircraft 255 256 256 256 256 256 256 256 256 256
Nb. airports 45 45 45 45 44 45 45 45 45 44
Nb. flights 1423 1423 1423 1423 1423 1423 1423 1423 1423 1423
Nb. itin. 11214 11214 11214 11214 11214 11565 11565 11565 11565 11565
Flight disr. 230 255 229 230 0 230 255 229 230 77
Aircraft disr. 0 0 1 0 0 0 0 1 0 0
Airport disr. 0 0 0 1 34 0 0 0 1 34

Tables 4–7 report the cost of the solutions found by each team on each of the 18 instances. In
these tables, “INF” indicates that the algorithm has produced an infeasible solution. These
results show that our algorithm is very stable and has produced good quality solutions to
all instances. Other algorithms have sometimes found better solutions but few were able to
return a feasible solution consistently. The only other team to produce feasible solutions to
all instances was that of Hanafi et al. which ranked second overall. However, their results
on the B instances were not competitive with ours. Some of the teams achieved a low final
score because they failed to produce feasible solutions to several of the larger X instances
that contained multiple aircraft disruptions.

15

Table 3: Characteristics of the X instances

XA01 XA02 XA03 XA04 XB01 XB02 XB03 XB04
Rec. per. (h) 14 52 14 52 36 52 36 52
Nb. aircraft 85 85 85 85 256 256 256 256
Nb. airports 35 35 35 35 45 44 45 44
Nb. flights 608 608 608 608 1423 1423 1423 1423
Nb. itin. 1943 3959 1872 3773 11214 11214 11565 11565
Flight disr. 83 0 83 0 229 0 228 0
Aircraft disr. 3 3 3 3 3 1 4 4
Airport disr. 0 407 0 407 0 34 0 34

Table 4: Results on the B instances (first part)

Team B01 B02 B03 B04 B05
Bisaillon et al. 983731.75 1522452.75 1031825.30 1192519.20 15639190.80
Hanafi et al. 5813896.95 9950888.70 5569623.95 5775277.70 13139974.30
Acuna-Agost et al. 1540123.55 2656393.25 1572754.95 1629491.90 14042563.85
Eggermont et al. 3217796.25 4461933.95 3271881.70 3543256.85 31672882.38
Darlay et al. 2536224.55 6606995.30 2608230.65 2579266.05 23851090.70
Peekstok and Kuipers 1590791.95 2482349.85 1650348.50 1667929.00 9653780.05
Jozefowiez et al. 971182.50 1220708.30 1007565.70 1101394.80 25302036.95
Dickson et al. 9963882.35 15710470.60 9972001.35 9740290.50 50600941.50
Eggenberg and Salani 43169547.75 INF 47509155.15 46400734.65 94278109.15

Table 5: Results on the B instances (second part)

Team B06 B07 B08 B09 B10
Bisaillon et al. 3789254.05 5488693.00 4069557.35 5906239.15 52355192.80
Hanafi et al. 9095248.10 19144460.30 10099607.00 10176173.55 34523605.00
Acuna-Agost et al. 4926204.05 8381142.30 5092952.60 5414178.30 40080949.40
Eggermont et al. 8551295.95 13986055.45 8497737.40 9801201.70 79360538.12
Darlay et al. 9464384.25 15325407.75 9116067.25 11028794.15 52379928.90
Peekstok and Kuipers 5993131.95 8580429.20 6234247.00 5465108.55 38537692.15
Jozefowiez et al. 3218000.10 5039744.20 3509318.00 3967344.70 59289841.80
Dickson et al. 19611307.00 28392630.90 17341482.60 20636676.85 77266518.80
Eggenberg and Salani 66101253.95 INF 62391786.00 68668311.00 124900519.50

16

Table 6: Results on the X instances (first part)

Team XA01 XA02 XA03 XA04
Bisaillon et al. 462571.10 2238311.75 959080.90 5480962.75
Hanafi et al. 116195.20 1475322.10 285287.05 4112262.60
Acuna-Agost et al. 214321.95 2010576.25 433172.00 6575537.15
Eggermont et al. 668551.40 5046206.95 1296361.80 6968582.90
Darlay et al. 264756.30 INF 604065.45 INF
Peekstok and Kuipers 145591.00 2614075.45 INF INF
Jozefowiez et al. 150857.60 INF 404964.20 INF
Dickson et al. INF INF INF INF
Eggenberg and Salani 3743311.35 19156807.65 5046151.00 INF

Table 7: Results on the X instances (second part)

Team XB01 XB02 XB03 XB04
Bisaillon et al. 1352823.05 17064421.50 6463354.30 53543381.45
Hanafi et al. 5985772.05 12716512.00 11124244.55 34331225.80
Acuna-Agost et al. INF INF INF INF
Eggermont et al. 3435588.65 INF INF INF
Darlay et al. 3300123.35 23798066.00 INF INF
Peekstok and Kuipers INF 11297822.20 INF INF
Jozefowiez et al. INF INF INF INF
Dickson et al. INF 48707651.85 INF INF
Eggenberg and Salani 52947166.05 100140971.75 67931981.80 120051351.40

The last four tables provide additional statistics that provide insight into the behaviour of
our heuristic. For each instance, we report the average number of times phases 1 and 2 have
been performed, the average number of airport capacity constraint violations at the end of
phase 1, and the average cost at the end of phase 2. We then report the average number
of times phase 3 has been performed, the average number of improvements found during
this phase, and the average cost at the end of phase 3. One can see from these tables that
the solutions produced by the first phase are usually nearly feasible. This is especially true
on the X instances where the average number of violations at the end of the first phase is
less than 1. The number of executions of phases 1 and 2 is rather large and exceeds 100 on
all instances tested. One can also observe that the improvement phase has a large impact
on solution quality. On B instances, for example, the cost reduction between the end of
the second and third phases is often close to 50%. It is interesting to note that the third
phase is often performed only once or twice because of the very limited computing time

17

available, but that each execution may allow a large number of successive improvements to
the solution. The average number of improvements found in each execution exceeds 50 on
several instances.

Table 8: Statistics for the B instances (first part)

B01 B02 B03 B04 B05
Phases 1 and 2 211 211 211 227 111
Avg. Nb. Viol. 5.18 8.51 5.79 5.84 21.29
Avg. Cost 2195715.33 3688140.59 2238392.77 2277191.32 26267627.36
Phase 3 2 2 2 2 1
Avg. Nb. Improv. 8.00 14.50 8.00 8.50 85.00
Avg. Cost 1040774.18 1973391.40 1092207.45 1181432.25 16358256.75

Table 9: Statistics for the B instances (second part)

B06 B07 B08 B09 B10
Phases 1 and 2 211 211 211 220 104
Avg. Nb. Viol. 5.18 8.51 5.79 15.20 21.13
Avg. Cost 7443229.07 10311353.33 7469850.58 11054431.11 69914976.16
Phase 3 2 2 2 1 1
Avg. Nb. Improv. 65.00 51.00 71.00 63.00 30.00
Avg. Cost 4212963.97 6549805.35 4446643.62 5890421.40 52225120.15

Table 10: Statistics for the X instances (first part)

XA01 XA02 XA03 XA04
Phases 1 and 2 5755 294 4567 271
Avg. Nb. Viol. 0.50 0.13 0.50 0.31
Avg. Cost 614177.69 3606252.90 1014649.50 7353259.02
Phase 3 58 2 46 2
Avg. Nb. Improv. 514.88 32.00 346.65 101.00
Avg. Cost 365955.03 2374008.12 838638.25 5610399.75

18

Table 11: Statistics for the X instances (second part)

XB01 XB02 XB03 XB04
Phases 1 and 2 211 103 253 105
Avg. Nb. Viol. 5.78 27.36 5.79 20.92
Avg. Cost 2493575.53 26900257.27 9779145.74 70910410.06
Phase 3 2 1 2 1
Avg. Nb. Improv. 6.50 78.00 53.50 35.00
Avg. Cost 1334630.83 17343524.25 6748912.70 53373058.85

5 Conclusion

We have introduced a simple large neighbourhood search heuristic for an airline recovery
problem integrating aircraft and passenger recovery. This algorithm produced high quality
solutions consistently on the test instances used for the 2009 ROADEF Challenge in which
our team won the first prize. The success of our algorithm can be explained in part by the
fact that it aims to achieve feasibility as quickly as possible and that it executes a very large
number of simple and fast moves. The net result is a highly reliable, efficient and robust
algorithm.

Acknowledgements

This work was partly supported by a strategic research workshop grant from HEC Montréal
and by the Canadian Natural Sciences and Engineering Research Council under grants
227837-04 and 39682-05. This support is gratefully acknowledged. Thanks are also due
to Karine Sinclair who suggested several useful references.

References

[1] A.F. Abdelghany, G. Ekollu, R. Narasimhan, and K.F. Abdelghany. A proactive crew
recovery decision support tool for commercial airlines during irregular operations. An-
nals of Operations Research, 127:309–331, 2004.

[2] K.F. Abdelghany, A.F. Abdelghany, and G. Ekollu. An integrated decision support
tool for airlines schedule recovery during irregular operations. European Journal of
Operational Research, 185:825–848, 2008.

[3] M.F. Argüello, J.F. Bard, and G. Yu. A GRASP for aircraft routing in response to
groundings and delays. Journal of Combinatorial Optimization, 5:211–228, 1997.

19

[4] M. Ball, C. Barnhart, G.L. Nemhauser, and A. Odoni. Air transportation: Irregular
operations and control. In Handbooks in Operations Research and Management Science,
vol. 14, C. Barnhart and G. Laporte, eds., pp. 1–61. Elsevier, Amsterdam, 2007.

[5] S. Bratu and C. Barnhart. Flight operations recovery: New approaches considering
passenger recovery. Journal of Scheduling, 9:279–298, 2006.

[6] J.M. Cao and A. Kanafani. Real-time decision support for integration of airline flight
cancellations and delays part I: Mathematical formulation. Transportation Planning
and Technology, 20:183–199, 1997.

[7] J.M. Cao and A. Kanafani. Real-time decision support for integration of airline flight
cancellations and delays part II: Algorithm and computational experiments. Trans-
portation Planning and Technology, 20:201–217, 1997.

[8] J. Clausen, A. Larsen, J. Larsen, and N.J. Rezanova. Disruption management in the
airline industry: Concepts, models and methods. Computers & Operations Research,
37:809–821, 2010.

[9] A. Jarrah, G. Yu, N. Krishnamurthy, and A. Rakshit. A decision support framework
for airline flight cancellations and delays. Transportation Science, 27:266–280, 1993.

[10] N. Jozefowiez, C. Mancel, and F. Mora-Camino. A heuristic approach based on shortest
path problems for integrated flight, aircraft, and passenger rescheduling under disrup-
tions. LAAS technical report, Université de Toulouse, 2010.

[11] L. Lettovsky, E.L. Johnson, and G.L. Nemhauser. Airline crew recovery. Transportation
Science, 34:337–348, 2000.

[12] S. Luo and G. Yu. On the airline schedule perturbation problem caused by the ground
delay program. Transportation Science, 31:298–311, 1997.

[13] R. Mansi. Approches hybrides pour des variantes du sac dos et applications. Ph.D.
thesis, Université de Valenciennes, France, 2009.

[14] R. Mansi, C. Wilbaut, S. Hanafi and F. Clautiaux. Combining Oscillation Heuristic
and Mathematical Programming for Disruption Management in the Airline Industry.
To appear in Proceedings of the VIII Metaheuristic International Conference (MIC),
Hamburg, Germany, 2009.

[15] C. Medard and N. Sawhney. Airline crew scheduling: From planning to operations.
European Journal of Operational Research, 183:1013–1027, 2007.

[16] R. Nissen and K. Haase. Duty-period-based network model for crew rescheduling in
European airlines. Journal of Scheduling, 9:255–278, 2006.

20

[17] M. Palpant, M. Boudia, C.-A. Robelin, S. Gabteni, and F. Laburthe. ROADEF 2009
Challenge: Disruption management for commercial aviation. Working paper, Amadeus
S.A.S., Operations Research Division, Sophia Antipolis, France, 2009.

[18] A. Rakshit, N. Krishnamurthy, and G. Yu. System operations advisor: A real-time
decision support system for managing airline operations at United Airlines. Interfaces,
26(2):50–58, 1996.

[19] J.M. Rosenberger, E.L. Johnson, and G.L. Nemhauser. Rerouting aircraft for airline
recovery. Transportation Science, 37:408–421, 2003.

[20] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record breaking opti-
mization results using the ruin and recreate principle. Journal of Computational Physics,
159:139–171, 2000.

[21] P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems In CP-98 (Fourth International Conference on Principles and Practice
of Constraint Programming), Lecture Notes in Computer Science, 1520, pp. 417–431.
Springer-Verlag, Berlin, 1998.

[22] M. Stojković and F. Soumis. An optimization model for the simultaneous operational
flight and pilot scheduling problem. Management Science, 47:1290–1305, 2001.

[23] M. Stojković, F. Soumis, and J. Desrosiers. The operational airline crew scheduling
problem. Transportation Science, 32:232–245, 1998.

[24] G. Stojković, F. Soumis, J. Desrosiers, and M.M. Solomon. An optimization model for a
real-time flight scheduling problem. Transportation Research Part A, 36:779–788, 2002.

[25] D. Teodorović and S. Guberinić. Optimal dispatching strategy on an airline network
after a schedule perturbation. European Journal of Operational Research, 15:178–182,
1984.

[26] B.G. Thengvall, J.F. Bard, and G. Yu. A bundle algorithm approach for the aircraft
schedule recovery problem during hub closures. Transportation Science, 37:392–407,
2003.

[27] G. Yu, M. Argüello, G. Song, S.M. McCowan, and A. White. A new era for crew
recovery at Continental Airlines. Interfaces, 33(1):5–22, 2003.

[28] Y. Zhang and M. Hansen. Real-time inter-modal substitution (RTIMS) as an airport
congestion management strategy. Transportation Research Records, 2052:90–99, 2008.

21

