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Traveling Salesman Problem (TSP)

Undirected graph G = (V,E)
or directed graph G = (V,A)
where

V = {i, . . . , n} : vertex set

E = {(i, j) : i, j ∈ V, i < j} : edge set

A = {(i, j) : i, j ∈ V, i 6= j} : arc set

C = (cij) : cost matrix defined on E or A.

TSP: determine a least cost Hamiltonian cycle or circuit (tour) on G.

Hamiltonian cycle
(symmetric TSP)

Hamiltonian circuit
(asymmetric TSP)
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TSP history
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1950
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TSP history

BC Before Computers

1950

AD After Dantzig
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Ancient history

• Euler (“Solution d’une question curieuse qui ne parâıt soumise à aucune
analyse”), Mémoire de l’Académie des Sciences de Berlin 15 (1759) 310–
337 published in Opera Omnia (1) 7 (1766) 26–56.

Studied the Knight’s tour problem

• Kirkman, rector of the parish of Craft with Southworth, Lancashire, from
1840 to 1892. Philosophical Transactions of the Royal Society, London,
146 (1856) 413–418.

“Given the graph of a polyhedron, can one always final a circuit
which passes through each vertex one and only once?”

• Hamilton (1856)

Icosian game (marketed in 1859): find paths and circuits on the
dodecahedral graph, satisfying certain conditions (e.g., adjacency
conditions, etc.).

The rights were sold for £25 to a wholesaler dealer in games and
puzzles.

• Menger (1930)

Hamiltonian path: “We call this the messenger problem (because
in practice the problem has to be solved by every postman, and also
by many travelers): finding the shortest path joining all of a finite
set of points, whose pairwise distances are known”.

Book published in 1931–32 in German: “The Traveling Salesman Prob-
lem, how he should be and what he should do to be successful in his
business. By a veteran traveling salesman”. Last chapter: “By a proper
choice and scheduling of the tour, one can often gain so much time
that we have to make some suggestions . . . The most important aspect
is to cover as many location as possible without visiting a location twice”.

• Tucker (1937 ?)
Introduced the problem to Flood in (1937) according to Flood, and
in 1931–32 according to Tucker, in relation with a school-bus routing
study in New Jersey.
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Recent history

1. Symmetric TSP

The seminal article of Dantzig, Fulkerson and Johnson (1954) and the
origin of branch-and-cut.

2. Asymmetric TSP

Eastman’s thesis (1958), the seminal articles of Land and Doig (1960)
and of Little, Murty, Sweeney and Karel (1963), and the origin of branch-
and-bound.

3. Heuristics

The seminal articles of Croes (1958) and of Lin (1965) and the origin of
local search.
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1) The Symmetric TSP: Branch-and-Cut Methods

For S ⊆ V , let

E(S) = {(i, j) ∈ E : i, j ∈ S} and

δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S or i /∈ S, j ∈ S}

δ(i) = δ({i})(i ∈ S)

D(S) =
∑

i∈S

|δ(i)|

Useful “degree identity”:

2E(S) + δ(S) = D(S)

S
S

D(S) = 20, E(S) = 8, δ(S) = 4
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First integer linear programming formulation: Cutting planes

(Dantzig, Fulkerson and Johnson, 1954)

xe =

{

1 edge e ∈ E appears on the tour
0 otherwise

x(F ) =
∑

e∈F

xe (F ⊆ E)

Minimize
∑

e∈E

cexe

subject to
(Degree constraints) x(δ(i)) = 2 (i ∈ V )
(Connectivity constraints) x(δ(S)) ≥ 2 (S ⊂ V, 3 ≤ |S| ≤ n − 3)
(Integrality constraints) xe = 0, 1 e ∈ E

Connectivity
constraints x(δ(S)) ≥ 2

m
Subtour elimination
constraints x(E(S)) ≤ |S| − 1

because 2E(S) + δ(S) = D(S) = 2|S|.
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Some historical notes:“49-city problem”

• Dantzig, Fulkerson, Johnson initially relaxed the integrality conditions.
Feasibility regained by imposing a mix of subtour elimination constraints,
connectivity contraints and “complicated types of restraints” to regain in-
tegrality. These are based on combinatorial arguments. Several computer
runs are required.

• On the 49-city problem, these are unnecessary if the right subtour elimi-
nation constraints are imposed first.

• 49 or 42 cities? Seven cities (Baltimore, Wilmington, Philadelphia, Newark,
New York, Hartford, Providence) appear in this order on the (Washing-
ton, Boston) edge of the 42-city problem.
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Martin (1966) (CEIR, New York)

• Relaxes integrality requirements and xe ≤ 1!

• Imposes n degree constraints and n subtour elimination constraints: S =
{i, closest neighbour of i}

• Obtains integrality first by means of the “Accelerated Euclidian algo-
rithm” (Martin, 1963), an extension of the “Method of Integer Forms”
(Gomory, 1963).

• Identifies subtour elimination constraints visually, and reoptimizes.

Results on the “42-city” problem

Subtour
Total number Integrality eliminations

Pass of constraints cuts Iterations Objective constraints
1 84 10 99 646 8
2 92 7 129 686 1
3 93 10 135 699 0

27 363 9

• Each pass requires a new computer run.
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The London School of Economics years

Miliotis (1975, 1976, 1978): Branch-and-cut

1975: “Combining cutting-plane and branch-and-bound methods to solve in-
teger programming problems: Applications to the travelling salesman
problem and the 1-matching problem”, Ph.D. thesis, London School of
Economics.

1976: “Integer programming approaches to the travelling salesman problem”,
Mathematical Programming 10, 367–378.

1978: “Using cutting planes to solve the symmetric travelling salesman prob-
lem”, Mathematical Programming 15, 177–188.

• Fully automated algorithms:

1976 paper: integrality reached first by branch and bound; subtour elimination
constraints then introduced. (42 ≤ n ≤ 64).

1978 paper: integrality reached by Gomory cutting planes and subtour elimina-
tion constraints then introduced (straight algorithm) or generate
subtour elimination constraints before Gomory cuts (reverse algo-
rithm). (42 ≤ n ≤ 64).

The reverse algorithm is more efficient than the straight algorithm
on larger instances and requires the generation of fewer Gomory
cuts.
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Land (1979): Cut-and-price

“The solution of some 100-city Travelling Salesman Problem”, Working paper,
London School of Economics, 1979.

• Dynamic generation of subtour elimination constraints,
2-matching constraints (Edmonds, 1965) and Gomory cuts (“as a last
resort”). Most calculations carried out on a subset of the variables. A
pricing scheme is used to determine whether new variables should be
introduced.

H = handle
E' = teeth

∑

e∈E(H)

xe +
∑

e∈E′

xe ≤ |H| + (|E′| − 1)/2

H ⊂ V,E′ ⊂ E, |E′| ≥ 3 and odd, |{i, j} ∩ H| = 1 for all (i, j) ∈ E′, {i, j} ∩
{h, l} = Ø for all (i, j), (h, l) ∈ E′, (i, j) 6= (h, l).

• Twelve 100-city instances out thirteen solved optimally.
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Comb inequalities (Chvátal, 1973)

H = handle
Tl = teeth

...

∑

e∈E(H)

xe +
s

∑

l=1

∑

e∈E(Tl)

xe ≤ |H| +
s

∑

l=1

(|Tl| − 1) − (s + 1)/2

H,T1, . . . , Tl ⊂ V, s ≥ 3 and odd, H ∩ Tl 6= Ø
and Te\H 6= Ø(l = 1, . . . , s), Th ∩ Te = Ø
(h, l = 1, . . . , s, h 6= l).

Other valid inequalities ( see Naddef, 2002)

Clique tree inequalities
Crown inequalities
Ladder inequalities
Bicycle inequalities
Star inequalities
Bipartition inequalities
Path inequalities
Domino inequalities
Hypohamiltonian inequalities, etc.
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Polyhedral theory (1970s, 1980s, 1990s)

• Study of polytopes associated with the TSP

• Facets

• Separation procedures (exact and approximate)

• Facet identification procedures

• Strong branch-and-cut algorithms capable of solving instances with sev-
eral 100s vertices

(Fonlupt, Grötschel, Holland, Hong, Naddef, Padberg, Pulleyblank, Rinaldi,
Thienel, etc.) (n = 2392)
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Recent efficient implementations (Applegate, Bixby, Chvátal,
Cook) – Concorde

• Branch-and-cut-and-price

• 2-matching and comb inequalities

• Certain path inequalities

1998: Documenta Mathematica, 645–656

n Nodes in search Computation
tree time

120 1 3.3 seconds
318 1 24.6 seconds
1002 1 94.7 seconds
666 1 260.0 seconds
532 3 294.3 seconds
2392 1 342.2 seconds
225 1 438.9 seconds
3038 193 1.5 days
4461 159 1.7 days
7397 129 49.5 days
13509 9539 ∼ 10 years

(48 workstations)

Concorde available at www.caam.rice.edu/∼keck/concorde.html
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2003: Mathematical Programming Series B

1,904,711-city “world TSP”: solved within 0.112% of optimality in 256.1 days.
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2) The Asymmetric TSP: Branch-and-Bound Methods

(Dantzig, Fulkerson and Johnson, 1954)

xij =

{

1 arc (i, j) ∈ A appears on the tour

0 otherwise

Minimize
∑

(i,j)∈A

cij xij

subject to

(Degree constraints)
∑

j 6=i

xij = 1 (i ∈ V )

∑

i 6=j

xij = 1 (j ∈ V )

(Subtour elimination constraints)
∑

j 6=i

xij ≤ |S| − 1 (S ⊂ V, |S| ≥ 2)

(Integrality constraints) xij = 0, 1 ((i, j) ∈ A).

Relaxing the subtour elimination constraints yields an Assignment Problem
(AP) which is easy to solve.
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Early Branch-and-Bound Methods

• Eastman (1958) probably developed the first branch-and-bound algo-
rithm.

• Croes (1958) also used a branching scheme for the TSP.

• Land and Doig (1960) proposed branch-and-bound as a generic algorithm
for mixed integer linear programs.
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Editor’s note on the Croes paper (1958)

“This paper was received from G. A. Croes shortly before he
returned to Holland after an assignment at Shell Development
Company. Subsequent attempts by the Editor to contact Croes
have failed. As a result, the author has neither seen proof of this
article nor has he taken advantage of the constructive comments
of the referees. Minor corrections suggested by the referees have
been made. One comment that should be called to the reader’s
attention is that the use of xij with i representing the column

and j the row is the opposite of the usual usage.”
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Before Little et al. (1963)

Largest size solved consistently: n = 13 (exception: n = 42, Dantzig et al.,
1954)

Little et al. (1963)

• Do not start from a formulation

• Compute a lower bound on the AP solution value (by matrix reduction)

• Branch on “included” and “excluded” arcs (xij = 1 or xij = 0)

• Coined the expression “branch-and-bound”

• Refer to earlier methods based on the same idea: Eastman (1958), Ph.D.
thesis, Harvard University; Rossman, Twery and Stone (undated unpub-
lished paper); Rossman and Twery (1958), presentation at the 6th ORSA
meeting, mimeographed.

• Refer to Land and Doig (1960) [wrongly as Doig and Land] who intro-
duced branch-and-bound as a generic algorithm for solving mixed or pure
integer linear programs. [“For another example, see Doig and Land”].

• Solve instances with n = 30 (100 out of 100), n = 40 (5 out of 100),
and n = 64 (Knight’s tour, 0.178 minutes).
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Algorithms Based on the AP Relaxation

• Eastman (1958)

• Little, Murty, Sweeney and Karel (1963)

• Shapiro (1966)

• Murty (1968)

• Bellmore and Malone (1971)

• Garfinkel (1973)

• Smith, Srinivasan and Thompson (1977)

• Carpaneto and Toth (1980)

• Balas and Christofides (1981)

• Carpaneto, Dell’Amico and Toth (1995)

Main ingredients of the Carpaneto and Toth Method (1980) improved
by Carpaneto, Dell’Amico and Toth (1995).

• Solution of an AP at the root node

• If subtours, generation of a feasible solution by means of a patching
algorithm (Karp, 1979) (but only at the root node)

i

j

k

l

= =

min{cik + clj − cij − clk}

Excellent heuristic for the asymmetric TSP.

• Bounding: AP relaxation (as in Little et al.) or AP solution if necessary.

• Branching on the subtour with the smallest number of fixed arcs.
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A

B

B C
A

C
A

B
D A

B

CC

B

D

AA

D

infeasible

A D

B

C

• When fixing xij = 0: set cij = ∞

• When fixing xij = 1: remove row i and column j from cost matrix.

• Lower bound at root node ∼= 99.2% optimal value for 50 ≤ n ≤ 250.
Increases with n.

• Large random instances (n ≤ 3000) can be solved optimally.
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3) Local search heuristics

• Croes (1958): first 2-opt algorithm.

=
=

• Bock (1958): first 3-opt algorithm (unpublished manuscript, 14th ORSA
National meeting).

=

==

• Lin (1965): generalization to r-opt.

• Checking r-optimality requires O(nr) operations.

• Christofides and Eilon (1972):

3-opt vs 2-opt : major improvement
4-opt vs 3-opt : small improvement
5-opt vs 4-opt : major improvement

• Very efficient 3-opt implementation: Johnson and McGeoch (2002).

• Or-opt (Ilhan Or, 1976): relocate chains of length 3, 2 and 1.

Checking Or-optimality requires O(n2) iterations.

• Golden and Stewart (1985) applied Or-opt after their construction heuris-
tic: “In general the Or-opt procedure yields solutions that are comparable
to the 3-opt in terms of quality of solution in amount of time closer to
that of the 2-opt procedure”.

• Johnson and McGeoch (2002): “Or-opt no longer appears to be a serious
competitor”.
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• Babin, Deneault and Laporte (2005) show that when starting from a
random solution, 2-opt is faster and better than Or-opt.

Or-opt can be improved to yield better results in a shorter time.

Improved Or-opt + 2-opt is an excellent combination and is easy to
implement.

• Lin and Kernighan (1973): r-opt with dynamically adapted values of r.
Probably the best available heuristic for the symmetric TSP. See the
implementations of Helsgaun (2000) and of Johnson and McGeoch (1997,
2002).

• Comparisons made with Held-Karp lower bounds show gaps of less than
0.1% on very large instances.
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Conclusion

• The TSP is a fascinating problem.

• Many of the exact and approximate solution techniques used in combi-
natorial optimization originate from the study of the TSP.

• Any further progress will probably require the use of highly sophisticated
programming techniques.
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