
A Branch-and-Cut Algorithm for the Quay Crane
Scheduling Problem in a Container Terminal

Luigi Moccia∗†, Jean-François Cordeau∗,

Manlio Gaudioso† and Gilbert Laporte∗

April 4, 2005

Abstract

The quay crane scheduling problem consists of determining a sequence of unload-

ing and loading movements for cranes assigned to a vessel, in order to minimize the

vessel completion time as well as the crane idle times. Idle times originate from in-

terferences between cranes since these roll on the same rails and a minimum safety

distance must be maintained between them. The productivity of container terminals

is often measured in terms of the time necessary to load and unload vessels by quay

cranes, which are the most important and expensive equipment used in ports. We

formulate the quay crane scheduling problem as a vehicle routing problem with side

constraints, including precedence relationships between vertices. For small size in-

stances our formulation can be solved by CPLEX. For larger ones we have developed

a branch-and-cut algorithm incorporating several families of valid inequalities which

exploit the precedence constraints between vertices.

Keywords: maritime container terminal; quay crane scheduling; branch-and-cut.

∗Canada Research Chair in Distribution Management, HEC Montréal, 3000 chemin de la Côte-Sainte-
Catherine, Montréal, Canada H3T 2A7

†Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria, 87036 Rende (CS) -
Italy.

1

1 Introduction

In maritime transportation the use of containers for general cargo has steadily increased

over the last 20 years. Containers are large metal boxes made in standard dimensions and

measured in multiples of twenty feet called “twenty foot equivalent units” (TEUs). The

world container port throughput for 2002 reached 266.3 million TEUs, an increase of 22.5

million TEUs from the level of 243.8 million TEUs reached in 2001. For statistics on mar-

itime transport we refer the reader to UNCTAD (2004). In this industry the hub and spoke

arrangement is widely adopted. Deep sea vessels, also called mother vessels, operate be-

tween a limited number of transshipment terminals (hubs). Smaller vessels (feeders) link

the hubs with the other ports (spokes). This network topology results in the consolidation

of capacity along the routes linking the hubs and in their growth. In recent years, mother

vessels have strongly increased in size, attaining up to 8000 TEUs. Transshipment ports

are large intermodal platforms, and a limited number of them handle an important share

of the world traffic. Thus, in 2002 the first 20 container ports handled 48% of the total traf-

fic. Ultra-large container vessels cut down transport cost. However, hub ports are forced

to invest heavily to accommodate these ships by deepening and widening channels and

constructing new berthing services of sufficient depth and length. These trends require a

continuous improvement in managerial practices at transshipment terminals which can

be viewed as large material handling systems. Advanced communication and informa-

tion technologies already exist and the next step will be the introduction of customized

optimization techniques. Customization is a key factor since maritime terminals differ

from each other in their layouts and material handling equipments. The need for an opti-

mal management of logistics activities at modern container terminals is well recognized.

For a recent overview and classification of the various equipments and decision problems

in such systems, see Vis and Koster (2003) and Steenken et al. (2004). A review of opera-

tional research issues in maritime logistics, focused on ship routing and scheduling, was

2

presented by Christiansen et al. (2004).

The productivity of container terminals is often measured in terms of the time necessary

to load and unload vessels by quay cranes (QCs), which are the most important and

expensive equipment used in ports. The Quay Crane Scheduling Problem (QCSP) consists

of determining a sequence of unloading and loading movements for cranes assigned to a

vessel in order to minimize the vessel completion time as well as the crane idle times. Idle

times originate from interferences between cranes since these roll on the same rails, and

thus cannot cross each other, and from the need to maintain a minimum safety distance

between them.

In our study we consider as an input the number of quay cranes assigned to the vessels.

Of course this decision affects the vessel completion time. In a complex system like a

transshipment port the decision making process is often hierarchical, and the quay cranes

assignment problem is solved before the QCSP. The number of quay cranes assigned to

a vessel often depends on contracts between the terminal and shipping companies. The

input data for the QCSP consists of the vessel stowage plan, of the loading plan, of the

ready time of each crane, and of a yard map showing the storage locations of containers

to be loaded on the vessel.

A first classification of the containers to be handled in a given ship bay is made according

to their positions, on the deck or in the hold, and of their kind of operations: loading or

unloading. Unloading always precedes loading: the deck is unloaded before the hold,

the hold is then loaded, then the deck. Containers having the same size, origin and des-

tination are assigned to neighbor slots in the vessel to simplify operations at the origin

and destination ports. Containers located in a given ship bay can be divided into dif-

ferent tasks when they share the following attributes: ship bay number, position (deck

or hold), operation (loading or unloading), size, destination port for outbound contain-

ers, or origin port for inbound containers. We assume that quay cranes have the same

3

productivity for the same task, expressed in moves per hour. In the machine scheduling

terminology, they can be viewed as identical machines executing non-preemptable tasks.

Precedence relationships between tasks are the result of their position in the ship and of

their associated operation type, as described above. Other precedence constraints can be

imposed to take into account vessel load balance during the operations. Given the task

positions in the vessel layout and the quay crane characteristics, certain pairs of tasks

cannot be performed simultaneously. A safety distance between movements must be ob-

served to avoid collisions, which translates into additional constraints between pairs of

tasks. Depending on the yard layout and technology, some tasks may not be executed si-

multaneously to avoid workload peaks in specific areas of the yard. Container terminals

in the Asia-Pacific region rely on the "Indirect Transfer System" (ITS) in which containers

in the yard are stacked in compact sections. A dedicated gantry crane, called transtainer,

moves them from and to the vehicles which link the yard with the quay and the gates.

The ITS minimizes yard surface requirements, but poses specific constraints on the QCSP

because tasks that interact with the same transtainer cannot be performed simultaneously.

European and North-American container terminals are based on the "Direct Transfer Sys-

tem" (DTS) in which vehicles (e.g. straddle carriers) used to transfer containers between

the yard, the quay and the gates are also capable of moving them between the slots in

the yard. The DTS requires a larger surface because dedicated lanes in the yard are re-

quired for the vehicles to access the slot positions. However, in this case, the quay crane

scheduling interaction with the yard is less critical.

Our purpose is to model the QCSP as a mixed integer linear program and to solve it

exactly by means of a branch-and-cut algorithm. The remainder of the article is orga-

nized as follows. The next section briefly reviews relevant work on the QCSP and closely

related problems. Section 3 defines the QCSP formally and introduces a mixed integer

linear formulation. Section 4 describes the valid inequalities used in the branch-and-cut

algorithm which is then described in Section 5, along with separation heuristics and pre-

4

processing techniques. Computational experiments are reported in Section 6, followed

by conclusions in Section 7.

2 Literature Review

The QCSP was first introduced by Daganzo (1990) who assumes the ships to be parti-

tioned into bays and defines a task as the loading and unloading of all containers of a

given bay. As a result, no precedence constraints are considered between groups of con-

tainers in the same bay. A task is preemptable since it involves different operations which,

in our study, are represented as different tasks. Cranes can be moved freely, but no in-

terference among QCs is modelled, and more than one vessel is considered. The paper

presents an algorithm for determining the number of cranes to be assigned to bays of

multiple vessels. Under similar assumptions, Peterkofsky and Daganzo (1990) provide

a branch-and-bound algorithm to determine the departure times of multiple vessels and

the number of cranes to be assigned to individual ship bays in a specific time interval.

The objective function to be minimized is the sum of the delay costs.

More recently Kim and Park (2004) have assumed that there may be multiple tasks asso-

ciated with a ship bay, and thus the loading and unloading operations associated with the

same bay are divided into different tasks. We have made the same assumptions in Section

1. Kim and Park present a mixed integer formulation of the QCSP which cannot be solved

in reasonable time, and therefore the authors propose a reduction of the solution space,

and then an exact method capable of solving small and medium size instances. For larger

instances a heuristic algorithm based on a greedy randomized adaptive search procedure

(GRASP) is used to quickly identify feasible solutions.

Lim et al. (2004) study the same multi-vessel QCSP as Daganzo (1990) but integrate

spatial constraints (non-crossing and minimum safety distance between QCs), and non-

5

simultaneity between tasks. However, precedence constraints are not considered and the

scheduling problem is modelled without integrating it over time, i.e. it is seen as a static

crane-to-task matching. A probabilistic tabu search and a "squeaky wheel" optimization

heuristic are applied to the problem, while dynamic programming algorithms can solve

simplified variants.

The single crane version of the QCSP is a particular case of the Precedence Constrained

Traveling Salesman Problem (PC-TSP) in which every vertex may have multiple predeces-

sors and successors. The asymmetric PC-TSP has been studied, among others, by Balas

et al. (1995) and Ascheuer et al. (2000) who proposed several families of valid inequalities

based in large part on the strengthening of existing inequalities for the asymmetric TSP.

This problem has applications, for example, in the scheduling of flexible manufacturing

systems (see, e.g., Ascheuer 1996). Some of the proposed PC-TSP inequalities also apply

to the QCSP. In particular, the predecessor and successor inequalities proposed by Balas

et al. will be used in our algorithm. The QCSP also shares some characteristics with

the Vehicle Routing Problem with Pickup and Delivery (VRP-PD) and the Dial-a-Ride Problem

(DARP). However there is a difference between the time precedence constraint in the QCSP,

where a QC can start a task only if the preceding tasks are already completed by any QC,

and the route precedence constraint in the VRP-PD or the DARP, where a delivery node can

be visited by a vehicle only after the pickup node has been visited by the same vehicle.

6

3 Mathematical models

We introduce our main notation in Section 3.1, followed by the Kim and Park (2004)

mixed integer formulation in Section 3.2, by some observations in Section 3.3, and by

an improved model in Section 3.4.

3.1 Notation

We are given a set of n tasks, Ω = {1, ..., n}, and a set of q quay cranes, K = {1, ..., q}. A

set Φ of ordered task pairs (i, j) describes the precedence relationships, i.e., i must pre-

cede j whenever (i, j) ∈ Φ. Similarly tasks i and j cannot be performed simultaneously

whenever (i, j) ∈ Ψ. Note that Φ ⊆ Ψ. The input data for the model are:

pi, ∀i ∈ Ω, the processing time of task i,

rk,∀k ∈ K, the earliest available time of QC k,

li,∀i ∈ Ω, the location of task i expressed by a ship bay number,

l0k, ∀k ∈ K, the starting position of QC k expressed by a ship bay number,

lTk ,∀k ∈ K, the final position of QC k expressed by a ship bay number,

t, the travel time between two consecutive bays,

tij,∀i, j ∈ Ω, the travel time of a QC from location li to location lj , tij = t× |li − lj|,

tk0j,∀j ∈ Ω, k ∈ K, the travel time of a QC k from location l0k to location lj , tk0j = t×|l0k− lj|

tkiT ,∀i ∈ Ω, k ∈ K, the travel time of a QC k from location li to location lTk , tkiT = t×|li− lTk |
(tkiT = 0,∀i ∈ Ω means that we do not consider the quay crane travel time after the

completion of the last task),

7

α1, the weight assigned to the makespan component of the objective function,

α2, the weight assigned to the total completion time component of the objective function.

We also define additional sets:

Φ
′
= {(i, j) ∈ Φ : li = lj}, the subset of precedences related to the loading, unloading,

hold, deck priorities,

π(i) = {j ∈ Ω : (j, i) ∈ Φ}, a set of tasks that must be completed before i starts,

σ(i) = {j ∈ Ω : (i, j) ∈ Φ}, a set of tasks that can only start after i is completed,

π
′
(i), σ

′
(i), defined as above but on the set Φ

′ instead of Φ,

Υ(i, j) = {l ∈ Ω : l ∈ π
′
(j), l ∈ σ

′
(i)}, a set of tasks belonging to the same ship bay that

can start only after i is completed and must be completed before j starts.

We denote by ζ(i, j) a lower bound on the difference between the starting time of a task j

and the completion time of a task i which uses the precedence relationships inside a ship

bay:

ζ(i, j) =

0 if Υ(i, j) = ∅
∑

l∈Υ(i,j) pl otherwise
,∀i, j ∈ Ω.

Similarly ζ(0, j) represents a straightforward lower bound on the starting time of a task j

when j has predecessors on the same ship bay:

ζ(0, j) =

0 if π
′
(j) = ∅

∑
l∈π′ (j) pl otherwise

, ∀j ∈ Ω.

8

3.2 The Kim and Park formulation

In the Kim and Park formulation the problem is modelled on a graph G = (V, A), where

V = Ω ∪ {0, T}, 0 and T being initial and final states of the cranes and A ⊆ V × V . For

notational convenience define Ω0 = Ω ∪ {0} and ΩT = Ω ∪ {T}. The formulation uses the

following variables:

xk
ij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K, if QC k performs task j immediately after task i, then xk

ij =

1; otherwise xk
ij = 0; if i = 0 and xk

ij = 1, then task j is the first task of QC k; similarly

if j = T and xk
ij = 1, then task i is the last task of QC k;

Di ∀i ∈ Ω, the completion time of task i;

zij ∈ {0, 1} ∀i, j ∈ Ω, if task j starts later than the completion time of task i then zij = 1,

otherwise zij = 0;

Ck ∀k ∈ K, the completion time of QC k;

W, the makespan, i.e., the earliest time at which all QCs can complete their work.

The Kim and Park model, denoted by F1, is as follows:

minimize α1W + α2

∑

k∈K

Ck (1)

9

subject to

Ck ≤ W ∀k ∈ K, (2)
∑
j∈Ω

xk
0j = 1 ∀k ∈ K, (3)

∑
i∈Ω

xk
iT = 1 ∀k ∈ K, (4)

∑

k∈K

∑
i∈Ω

xk
ij = 1 ∀j ∈ Ω, (5)

∑

j∈ΩT

xk
ij −

∑

j∈Ω0

xk
ji = 0 ∀i ∈ Ω,∀k ∈ K, (6)

Di + tij + pj −Dj ≤ M(1− xk
ij) ∀i, j ∈ Ω, ∀k ∈ K, (7)

Di + pj ≤ Dj ∀(i, j) ∈ Φ, (8)

Di + pj −Dj ≤ M(1− zij) ∀i, j ∈ Ω, (9)

zij + zji = 1 ∀(i, j) ∈ Ψ, (10)
k∑

v=1

∑

u∈Ω0

xv
uj −

k∑
v=1

∑

u∈Ω0

xv
ui ≤ M(zij + zji) ∀i, j ∈ Ω, li < lj,∀k ∈ K, (11)

Dj + tkjT − Ck ≤ M(1− xk
jT) ∀j ∈ Ω,∀k ∈ K, (12)

rk −Dj + tk0j + pj ≤ M(1− xk
0j) ∀j ∈ Ω,∀k ∈ K, (13)

xk
ij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A, (14)

zij ∈ {0, 1} ∀k ∈ K, ∀i, j ∈ Ω, (15)

Ck, Di ≥ 0 ∀i ∈ Ω,∀k ∈ K, (16)

where M is a sufficiently large constant.

The objective function (1) minimizes a weighted sum of W , the vessel completion time or

makespan, and of
∑

k∈K Ck, the sum of the quay crane completion times. The two parts of

the objective function will lead to the same solution if there is only one quay crane, since

in this case W = C1. However, when multiple quay cranes are available, minimizing

over W or over
∑

k∈K Ck usually results in different scheduling decisions. A quay crane

10

completion time is made up of idle times, travelling times and handling times. Since we

assume deterministic handling times,
∑

k∈K Ck will have a constant part, the sum of the

task handling times, and a variable part, the sum of the travelling and idle times, which

depends on the scheduling decision. Among solutions with the same makespan the ter-

minal management is interested in solutions that also minimize quay crane idle times in

order to increase the utilization factor of this expensive material handling equipment. To

this end we can set α1 >> α2, since reducing the makespan is more important. We also

note that quay crane idle times are prominent with respect to the quay crane travelling

times.

The makespan is defined by constraints (2). Constraints (3) and (4) ensure, respectively,

that each crane k leaves its initial state 0 and ends at its final state T . Each task j is

assigned to one and only one crane k by constraints (5). Constraints (6) define the flow

balance for each task and each crane. Constraints (7) determine the completion time for

each task and eliminate subtours. Precedence relationships are enforced by constraints

(8). Constraints (9) define variables zij . Constraints (10) guarantee that tasks i and j

cannot be performed simultaneously when (i, j) ∈ Ψ. The non-crossing requirement

among QCs is modelled by constraints (11). If tasks i and j, with li < lj , are performed

simultaneously, then zij + zji = 0. Assuming that both QCs and tasks are ordered in

increasing order of their relative bay locations in the ship, if k1 < k2, QC k1 performs

tasks j and QC k2 performs task i, then a crossing between the two quay cranes will take

place. However, in such a case,
∑k

v=1

∑
u∈Ω0 xv

uj −
∑k

v=1

∑
u∈Ω0 xv

ui = 1, which cannot be

allowed because of constraints (11) and the fact that zij + zji = 0. The completion time

of each QC is defined by constraints (12), while constraints (13) enforce time variables

associated with the first task of each QC.

11

3.3 Observations on the Kim and Park formulation

In this section we present several strengthenings of formulation F1.

3.3.1 Consistency of the variable zij

If task j starts later than the completion time of task i, then zij = 1. In this situation the

left-hand side of (9) is negative and the constraint is satisfied for zij = 0. The formulation

can therefore be strengthened by adding the following constraints:

Dj − pj −Di ≤ Mzij ∀i, j ∈ Ω. (17)

To avoid QC collisions constraints (9) and (17) need some refinements. For example,

consider two tasks i and j on the same bay, i.e. li = lj . Collisions between QCs working on

tasks belonging to the same bay are avoided because of constraints (10) forcing the non-

simultaneity of the associated tasks. Suppose that task i is completed at time Di by QC k

which leaves the bay moving left; also suppose that QC h, h > k, has already completed

a task u in a bay located right to the bay where are located i and j. If tuj ≤ Di −Du then

the QC h can start task j as soon as QC k completes task i, i.e. Dj − pj = Di and no

interference is detected by the model since zij can take the value 1; however a collision

does happen. Under this condition, task j should not start before time Di + t which will

allow the QC that has processed task i to move safely to another bay, assuming that the

safety distance between QCs is equal to the length of a ship bay. This can be achieved by

forcing the variable zij to be equal to 0 if Dj − pj = Di and the QC processing j comes

from a neighbor bay. Then, when li = lj , constraints (9) and (17) should be restated as

12

follows:

Di + pj −Dj +
∑

k∈K

∑

u∈Ω0,lu 6=li

txk
uj ≤ M(1− zij) ∀i, j ∈ Ω, li = lj, (18)

Dj − pj −Di −
∑

k∈K

∑

u∈Ω0,lu 6=li

txk
uj ≤ Mzij ∀i, j ∈ Ω, li = lj. (19)

We note also that precedence constraints (8) can be replaced by the following variable

fixing:

zij = 1, zji = 0 ∀(i, j) ∈ Φ. (20)

And, because Φ ⊆ Ψ, we can avoid writing constraints (10) when (i, j) ∈ Φ:

zij + zji = 1 ∀(i, j) ∈ Ψ \ Φ. (21)

When the precedence between two tasks i and j is transitively derived, the associated

precedence constraint between them is unnecessary, but to improve the linear relaxation,

we can incorporate in constraints (18) a lower bound of the time between the completion

of the task i and the start of the task j whenever Υ(i, j) 6= ∅. Note that in this case

(i, j) ∈ Φ, zij = 1 and the right-hand side of (18) is equal to zero. We can add to the left-

hand side of (18) the quantity ζ(i, j) which, as mentioned above, defines a lower bound

on the difference between the starting time of a task j and the completion time of a task

i. Furthermore we can also add the quantity
∑

k∈K

∑
u∈Ω0,lu 6=li

∑
l∈Υ(i,j) txk

ul representing

a lower bound on the QC waiting times between the starting of the tasks in Υ(i, j). For

notational convenience let Ωi = {u ∈ Ω0 : lu 6= li} and Υ̃(i, j) = {Υ(i, j) ∪ {j}}. Then

constraints (18) become:

Di + pj + ζ(i, j)−Dj +
∑

k∈K

∑
u∈Ωi

∑

l∈Υ̃(i,j)

txk
ul ≤ M(1− zij) ∀i, j ∈ Ω, li = lj. (22)

13

3.3.2 Non-crossing constraints

The large constant M is unnecessary in constraints (11) since the maximum value of the

left-hand side is equal to 1. Moreover constraints (11) are only relevant when zij + zji = 0,

and we can therefore avoid writing these constraints for (i, j) ∈ Ψ. We also note that in

constraints (11) the term
∑k

v=1

∑
u∈Ω0 xv

ui can be written as
∑k−1

v=1

∑
u∈Ω0 xv

ui because if task

j is assigned to QC k and zij + zji = 0 (relevant case of simultaneity between two tasks),

then task i belongs to a QC h with h 6= k. Since
∑k

v=1

∑
u∈Ω0 xv

ui ≥
∑k−1

v=1

∑
u∈Ω0 xv

ui this also

constitutes a strengthening. The non-crossing constraints (11), since
∑

u∈Ω0

∑k−1
v=1 xv

ui =

1−∑
u∈Ω0

∑q
v=k xv

ui, can therefore be rewritten as follows:

k∑
v=1

∑

u∈Ω0

xv
uj +

q∑

v=k

∑

u∈Ω0

xv
ui ≤ 1 + zij + zji ∀i, j ∈ Ω, li < lj, (i, j) /∈ Ψ, ∀k ∈ K. (23)

3.3.3 A lower bound for the task starting time

A trivial lower bound for the starting time of a task i is d0i = mink{rk + tk0i}. Taking into

account the precedence relationships inside a ship bay leads to some refinements. The

lower bound a(i) on the starting time of a task i can be computed recursively as:

a(i) = max{d0i + ζ(0, i), max
j∈π(i)\π′ (i)

(a(j) + pj)}. (24)

The value a(i) is always defined since the precedence graph is acyclic, for otherwise the

problem would not be feasible. Using a(i) we can replace M in constraints (13) with

rk + tk0j − a(j).

14

3.3.4 An upper bound for the task completion time

An upper bound on task completion time can be used instead of M in equations (7),

(9) and (12). The upper bound for the task completion time corresponds to the upper

bound for the makespan, minus the travelling time tkiT . We note that computing an up-

per bound on task completion time with a constructive heuristic will not be valid since

the objective function is the weighted sum of the makespan and of the sum of the QC

completion times. The sum of the QC completion times corresponds to a constant part,
∑

i∈Ω pi, plus the QC travelling times and the QC idle times caused by the interferences

between cranes. In any practical case the idle times are much larger than the travelling

times, and therefore we can conclude that the sum of the QC completion times decreases

when interferences between cranes are reduced. A larger makespan may yield a reduced

QC interference, and therefore the two elements of our objective function are conflicting.

Anyhow, when only one QC is allowed on a vessel, the interference waiting times are

eliminated by definition, and the corresponding makespan U is easy to compute. Using

this value as an upper bound on task completion time does not cut off any feasible so-

lution. The makespan upper bound is set equal to mink{rk +
∑

i∈Ω pi + T k}, where T k is

a feasible solution value for the TSP associated with QC k over all tasks. Since the quay

crane moves along a line this TSP instance is immediately solved.

3.4 Formulation F2

We now introduce a new formulation for the QCSP which integrates the observations

made in Section 3.3. To define branching priorities and simplify the equations we intro-

duce new variables yik ∈ {0, 1}, ∀i ∈ Ω, k ∈ K and yik = 1 if and only if task i is assigned

to QC k, and yik = 0 otherwise. Formulation F2 has the same objective function (1) and

is subject to constraints (2), which define the makespan, plus the following:

15

∑

j∈ΩT

xk
0j = 1 ∀k ∈ K, (25)

∑

i∈Ω0

xk
iT = 1 ∀k ∈ K, (26)

yik =
∑

j∈ΩT

xk
ij ∀i ∈ Ω, ∀k ∈ K, (27)

yik =
∑

j∈Ω0

xk
ji ∀i ∈ Ω, ∀k ∈ K, (28)

∑

k∈K

yik = 1 ∀i ∈ Ω, (29)

Di + tij + pj −Dj ≤ M1
ij(1−

∑

k∈K

xk
ij) ∀i, j ∈ Ω, (30)

Di + pj −Dj ≤ M2
j (1− zij) ∀i, j ∈ Ω, li 6= lj, (31)

Dj − pj −Di ≤ M3
i zij ∀i, j ∈ Ω, li 6= lj (32)

Di + pj + ζ(i, j)−Dj

+
∑

k∈K

∑
u∈Ωi

∑

l∈Υ̃(i,j)

txk
ul ≤ M4

ij(1− zij) ∀i, j ∈ Ω, li = lj, (33)

Dj − pj −Di −
∑

k∈K

∑
u∈Ωi

txk
uj ≤ M5

ijzij ∀i, j ∈ Ω, li = lj, (34)

zij = 1, zji = 0 ∀(i, j) ∈ Φ, (35)

zij + zji = 1 ∀(i, j) ∈ Ψ \ Φ, (36)
k∑

v=1

∑

u∈Ω0

xv
uj +

q∑

v=k

∑

u∈Ω0

xv
ui ≤ 1 + zij + zji ∀i, j ∈ Ω, li < lj, (i, j) /∈ Ψ, k ∈ K, (37)

Dj + tkjT − Ck ≤ M6
jk(1− xk

jT) ∀j ∈ Ω,∀k ∈ K, (38)

rk −Dj + tk0j + pj ≤ M7
jk(1− xk

0j) ∀j ∈ Ω,∀k ∈ K, (39)

xk
ij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A, (40)

yik, zij ∈ {0, 1} ∀k ∈ K, ∀i, j ∈ Ω, (41)

a(i) + pi ≤ Di ≤ U ∀i ∈ Ω, (42)

Ck ≥ rk ∀i ∈ Ω, ∀k ∈ K, (43)

16

where M1
ij = U + tij − a(j), M2

j = U − a(j), M3
i = U − pj − (a(i) + pi), M4

ij = U + ζ(i, j)−
a(j) + t× |Υ̃(i, j)|, M5

ij = U − pj − (a(i) + pi), M6
jk = U + tkjT − rk, M7

jk = rk − a(j) + tk0j .

Constraints (25) and (26) ensure, respectively, that each crane k leaves its initial state 0

and ends at its final state T , but unlike what is stated in constraints (3) and (4) of F1, a

QC k is allowed to go from its initial state directly to its final state. This modification

enlarges the solution space but allows the detection of instances in which a reduction

of the number of QCs is beneficial. Constraints (27) and (28) define variables yik. Only

one group of these constraints would have been necessary, but together with constraints

(29) they also model the assignment of each task to one and only one crane and the flow

balance for each task. Constraints (30) determine the completion time for each task and

eliminate subtours. Constraints (31) - (35) have already been discussed in Section 3.3.1

The non-crossing requirement among QCs is modelled by constraints (37) as discussed in

Section 3.3.2. The completion time and the earliest starting time of each QC are defined

by constraints (38) and (39), respectively.

4 Valid Inequalities

We now describe several families of valid inequalities for the QCSP. All of these inequali-

ties are redundant for model F2 but can strengthen its LP relaxation.

The following additional notation will be used to describe the valid inequalities. Given

a vertex set S ⊆ V , define S̄ = {i ∈ V |i 6∈ S} and δ(S) = δ+(S) ∪ δ−(S) where δ+(S) =

{(i, j) ∈ A|i ∈ S, j 6∈ S} and δ−(S) = {(i, j) ∈ A|i 6∈ S, j ∈ S}. For notational convenience,

let xij =
∑

k∈K xk
ij denote the total flow on arc (i, j) and define x(S) =

∑
i,j∈S xij . Similarly,

let x(A′) =
∑

(i,j)∈A′ xij for any arc set A′ ⊆ A.

17

4.1 Lower bounds on the QC completion time

To strengthen the formulation F2 we introduce lower bounding inequalities on the QC

completion time. New variables are required:

wk
0 ,∀k ∈ K, a lower bound on the idle time of the QC k at the starting time,

ρk, ∀k ∈ K, a lower bound on the travel time for the QC k on its right side,

λk, ∀k ∈ K, a lower bound on the travel time for the QC k on its left side,

υk,∀k ∈ K, the maximum value between ρk and υk.

The defining constraints are then:

wk
0 ≥

∑

j∈Ω,π′ (j) 6=∅
ζ(0, j)xk

0j ∀k ∈ K, (44)

ρk ≥ tk0iyik ∀i ∈ Ω, li > l0k,∀k ∈ K, (45)

λk ≥ tk0iyik ∀i ∈ Ω, li < l0k,∀k ∈ K, (46)

υk ≥ ρk ∀k ∈ K, (47)

υk ≥ λk ∀k ∈ K, (48)

Ck ≥ wk
0 + rk + 2λk + 2ρk − υk +

∑
i∈Ω

piyik ∀k ∈ K, (49)

ρk, λk, υk ≥ 0 ∀k ∈ K. (50)

Constraints (44) define a straightforward lower bound wk
0 on the idle time of the QC k at

the starting time when the first task performed by the QC k requires preceding tasks to

be completed. Note that we are assuming that all the crane earliest available times rk are

equal. This assumption holds for our instance set but is not true in general. However, a

slightly different constraint, not reported here, can work for the general case. Constraints

(45) compute ρk as a lower bound on the travel time of the QC k with respect to the

18

starting position l0k. Analogously, constraints (46) define a lower bound on the travel time

λk of QC k. Constraints (47) and (48) define υk as the maximum value between ρk and υk.

Using ρk, λk and υk we can compute a lower bound on the QC travel time. Since a crane

moves along a line, this quantity cannot be less than 2λk + 2ρk − υk. Therefore constraints

(49) define the QC completion time as bounded by the sum of the starting idle time, travel

time and processing times of its assigned tasks.

Another way of defining a lower bound on the QC completion time is:

Ck ≥ rk +
∑
j∈Ω

(tk0j + ζ(0, j))xk
0j +

∑
i∈Ω

∑

j∈ΩT

(pi + tij)x
k
ij ∀k ∈ K. (51)

In the following we consider inequalities (44) - (50) and (51) as part of formulation F2.

4.2 Subtour elimination constraints

In the case of the QCSP, the subtour elimination constraint x(S) ≤ |S| − 1 for S ⊆ Ω

can be lifted in many different ways by taking into account the precedence relationships.

Balas et al. (1995) have proposed two families of inequalities for the asymmetric PC-TSP

that also apply to the QCSP. The following inequality, called a successor inequality (or

σ-inequality) is valid for the QCSP:

x(S) +
∑

i∈S̄∩σ(S)

∑
j∈S

xij +
∑

i∈S̄\σ(S)

∑

j∈S∩σ(S)

xij ≤ |S| − 1. (52)

Example. Consider the set S = {i, j, l} ⊆ Ω for which a non-transitively derived prece-

dence relationship between i and l exists, i.e. l ∈ σ(i) and σ(i) ∩ π(l) = ∅. Suppose also

that task j does not have precedence relationships with the other tasks in S. We will use

this set S to illustrate lifted subtour elimination constraints later in this section. We note

that σ(S) = {l} ∪ σ(l) ∪ σ(j). We depict in Figure 1 the successor inequality associated

19

with S, where the lifted arcs are indicated with dotted lines.

j

i
l

σ(j)

S

σ(l)

σ(S)

S̄ \ σ(S)

Figure 1: Successor inequality for S = {i, j, l} ⊆ Ω

Similarly, for any set S ⊆ Ω, the following predecessor inequality (or π-inequality) is valid

for the QCSP:

x(S) +
∑
i∈S

∑

j∈S̄∩π(S)

xij +
∑

i∈S∩π(S)

∑

j∈S̄\π(S)

xij ≤ |S| − 1. (53)

Example. The set π(S) is equal to {i} ∪ π(i) ∪ π(j). We illustrate in Figure 2 the corre-

sponding predecessor inequality where the lifted arcs are shown by dotted lines.

j

i
l

S

S̄ \ π(S)

π(S)

π(i)

π(j)

Figure 2: Predecessor inequality for S = {i, j, l} ⊆ Ω

Because we have a directed formulation, we can also lift subtour elimination constraints

by taking into account the orientation of the arcs. For an ordered set S = {i1, i2, . . . , ih} ⊆

20

Ω with h ≥ 3, Grötschel and Padberg (1985) proposed the following inequalities for the

asymmetric TSP:

h−1∑
j=1

xij ,ij+1
+ xih,i1 + 2

h−1∑
j=2

xij ,i1 +
h−1∑
j=3

j−1∑

l=2

xij ,il ≤ h− 1 (54)

h−1∑
j=1

xij ,ij+1
+ xih,i1 + 2

h∑
j=3

xi1,ij +
h∑

j=4

j−1∑

l=3

xij ,il ≤ h− 1. (55)

Considering different orderings of the nodes in S we can obtain different liftings. As in

Cordeau (2005) these inequalities can be further lifted by taking precedence relationships

into account. Two families of valid inequalities for the DARP that exploit this idea are

introduced in Cordeau (2005) and are also valid for the QCSP. We report these inequalities

in Propositions 1 and 3 along with their proofs because we extend them in Propositions

2 and 4. These new propositions take into account situations occurring with the QCSP

structure, i.e. tasks can have multiple predecessors and successors, which is different

from the DARP structure.

Proposition 1. Let S = {i1, i2, . . . , ih} ⊆ Ω. The following inequality is valid for the QCSP:

h−1∑
j=1

xij ,ij+1
+ xih,i1 + 2

h−1∑
j=2

xij ,i1 +
h−1∑
j=3

j−1∑

l=2

xij ,il +
∑

l∈S̄∩σ(S)

xl,i1 ≤ h− 1. (56)

Proof. Suppose that S̄ ∩ σ(S) 6= ∅ and one arc of the form (l, i1) with l ∈ S̄ ∩ σ(S) is

part of the solution. Then no arc (ij, i1) with 2 ≤ j ≤ h can belong to the solution. As a

result, if the left-hand side of (56) is larger than h− 1, then there exists a subpath linking

the h elements of S. But because S contains at least one task il which must precede l, i.e.

l ∈ σ(il), this subpath together with the arc (l, i1) would violate the precedence constraint

for il. ¤

Example. One possible lifted directed subtour elimination constraint (obtained with i1 =

21

j, i2 = i, i3 = l) is illustrated in Figure 3.

j

i
l

σ(j)

S

σ(l)

σ(S)

S̄ \ σ(S)

2

Figure 3: Lifted directed subtour elimination constraint of Proposition 1

Proposition 2. Let S = {i1, i2, . . . , ih} ⊆ Ω and i1 ∈ σ(S). The following inequality is valid

for the QCSP:

h−1∑
j=1

xij ,ij+1
+ xih,i1 + 2

h−1∑
j=2

xij ,i1 +
h−1∑
j=3

j−1∑

l=2

xij ,il +
∑

l∈S̄

xl,i1 ≤ h− 1. (57)

Proof. Suppose that one arc (l, i1) with l ∈ S̄ is part of the solution. If l ∈ S̄ ∩ σ(S)

Proposition 1 still holds. Hence assume that l ∈ S̄ \ σ(S). Then no other arc entering

i1 can belong to the solution. But, if the left-hand side of (57) is larger than h − 1, then

there exists a subpath linking the h elements of S, starting from i1. But because S contains

at least one task id that must precede i1, i.e. i1 ∈ σ(id), this subpath would violate the

precedence constraint for id. ¤

Example. We illustrate in Figure 4 the case with i1 = l, i2 = j, i3 = i.

Proposition 3. Let S = {i1, i2, . . . , ih} ⊆ Ω. The following inequality is valid for the QCSP:

h−1∑
j=1

xij ,ij+1
+ xih,i1 + 2

h∑
j=3

xi1,ij +
h∑

j=4

j−1∑

l=3

xij ,il +
∑

l∈S̄∩π(S)

xi1,l ≤ h− 1. (58)

Proof. The proof is similar to that of Proposition 1 by observing that if one arc (i1, l) with

22

j

i
l

σ(j)

S

σ(l)

σ(S)

S̄ \ σ(S)

2

Figure 4: Lifted directed subtour elimination constraint of Proposition 2

l ∈ S̄ ∩ π(S) is part of the solution, then no arc (i1, ij) with 2 ≤ j ≤ h can belong to the

solution. ¤

Example. In Figure 5 we report a lifted directed subtour elimination constraint obtained

with i1 = j, i2 = i, i3 = l.

j

i
l

S

S̄ \ π(S)

π(S)

π(i)

π(j) 2

Figure 5: Lifted directed subtour elimination constraint of Proposition 3

Proposition 4. Let S = {i1, i2, . . . , ih} ⊆ Ω and i1 ∈ π(S). The following inequality is valid

for the QCSP:

h−1∑
j=1

xij ,ij+1
+ xih,i1 + 2

h∑
j=3

xi1,ij +
h∑

j=4

j−1∑

l=3

xij ,il +
∑

l∈S̄

xi1,l ≤ h− 1. (59)

Proof. The proof is similar to that of Proposition 2. ¤

23

Example. In Figure 6 we depict a lifted directed subtour elimination constraint obtained

with i1 = i, i2 = j, i3 = l.

j

i
l

S

S̄ \ π(S)

π(S)

π(i)

π(j)

2

Figure 6: Lifted directed subtour elimination constraint of Proposition 4

5 Branch-and-Cut Algorithm

Branch-and-cut has been successfully applied to several routing problems (see, e.g., As-

cheuer et al. 2001, Naddef and Rinaldi 2002, Laporte et al. 2003). This section describes

our branch-and-cut implementation for the QCSP. It uses preprocessing techniques to re-

duce instance size and separation heuristics to identify violated inequalities.

After applying the preprocessing steps presented in Section 5.1 and generating an initial

pool of inequalities, the algorithm first solves the LP relaxation of the problem. If the so-

lution to the LP relaxation is integer, an optimal solution has been identified. Otherwise,

an enumeration tree is constructed and violated valid inequalities are identified by means

of the separation heuristics described in Section 5.4, and incorporated into subproblems.

Because all inequalities described in Section 4 are valid for the original formulation, the

inequalities added at any node of the tree are also valid for all other nodes. Hence, when-

ever the LP bound is evaluated at a given node of the tree, the linear program incorporates

all cuts generated thus far.

24

To control the branch-and-cut process, branching is first performed on the variables yk
i

which reflect the assignment of tasks to cranes. At a given node of the search tree, if the

yk
i variables are all integer but there exists at least one fractional xk

ij variable, the sep-

aration heuristics are executed in the hope of identifying violated valid inequalities. If

at least one of the heuristics succeeds in finding one or more violated inequalities, the

relaxation is solved with all identified cuts and the heuristics are executed again. The

cut generation process at a node terminates when all heuristics fail to find any violated

inequality. If the solution to the relaxation is still fractional after the generation of cuts,

branching is performed on a fractional yk
i variable, if there is any, or on a fractional xk

ij

variable, otherwise. The priorities for branching are reported in Section 5.2. In addition

to the application of the separation heuristics at some nodes of the branch-and-bound

tree, a pool of inequalities is checked exhaustively for violations at each node of the tree,

including those where not all y variables take integer values. The inequalities that belong

to this pool are described in Section 5.3.

5.1 Variable fixing

During the preprocessing phase we use the following variable fixing rules which result

from the precedence relationships:

xk
ji = 0 ∀(i, j) ∈ Φ,∀k ∈ K,

xk
ij = 0 ∀(i, j) ∈ Φ,∀k ∈ K : ∃ l ∈ Ω, (i, l) ∈ Φ, (l, j) ∈ Φ.

5.2 Branching priorities

We set the branching priorities, expressed as b(), as follows:

25

b(yik) = 100,∀i ∈ Ω, k ∈ K,

b(xk
0j) = 10,∀j ∈ ΩT , k ∈ K,

b(xk
ij) = 1, ∀i ∈ Ω, j ∈ ΩT , k ∈ K,

where higher values correspond to higher priorities.

5.3 Initial pool of inequalities

The initial pool of inequalities comprises all constraints that are enumerated exhaustively

and whose violations are checked individually at every node of the branch-and-bound

tree. These inequalities are chosen to ensure that the size of the pool will remain reason-

able so as to avoid slowing down the processing of a node. We have included in the initial

pool of inequalities subtour elimination constraints (52) and (53) with |S| = 2.

5.4 Separation Heuristics

The identification of violated inequalities of the form x(S) ≤ |S| − 1 can be achieved

by solving a series of maximum flow problems between any task i and all other tasks

j ∈ V \ {i}. However, in addition to being computationally expensive, this approach

does not take the possible liftings into account. For these reasons, we resort to a simple

tabu search heuristic inspired from the procedures proposed by Augerat et al. (1999) and

Cordeau (2005).

When all yk
i variables are integer but there is at least one fractional xk

ij variable, two heuris-

tics are executed sequentially. The first one checks for violations of (52), (56) and (57).

Using the fact that 2x(S) + x(δ(S)) = 2|S| in a feasible integer solution, violations of (52)

26

can be identified by finding sets S such that

x(δ(S))− 2
∑

i∈S̄∩σ(S)

∑
j∈S

xij − 2
∑

i∈S̄\σ(S)

∑

j∈S∩σ(S)

xij < 2. (60)

We select the set of tasks i ∈ Ω assigned to a QC k ∈ K. Define this set as Sk. We search

for violated inequalities only if |Sk| ≥ 3, since we have already inserted in the initial

pool of inequalities all subtour elimination constraints with |S| = 2. The heuristic starts

with an empty set S. At each iteration, it either adds or removes a task from S so as to

minimize the left-hand side of (60). Whenever a task is removed from S, its reinsertion

is declared tabu for θ iterations. The heuristic runs for a number of iterations equal to

τ × |Sk|, where τ is a user-defined parameter. At each iteration, the current set S is also

checked for possible violations of inequalities (56) and (57). Given a task i ∈ S we define

χσ(i) = 2
∑

j∈S\{i} xj,i +
∑

l∈S̄ xl,i, if i ∈ σ(S), or χσ(i) = 2
∑

j∈S\{i} xj,i +
∑

l∈S̄∩σ(S) xl,i,

otherwise. The task with the largest value of χσ is labelled as i1 and the other tasks are

labelled at random. A similar heuristic is then used to identify violations of inequalities

(53), (58) and (59). In the latter case, the task with the largest value of χπ(i) is labelled as i1,

where χπ(i) = 2
∑

j∈S\{i} xi,j+
∑

l∈S̄ xi,l, if i ∈ π(S), or χπ(i) = 2
∑

j∈S\{i} xi,j+
∑

l∈S̄∩π(S) xi,l,

otherwise.

6 Computational Experiments

We first describe our test instances (Section 6.1), and then provide results obtained with

formulations F1 and F2 in Section 6.3, and with the branch-and-cut algorithm in Section

6.4. We also present some implementation details and sensitivity analyses of our algo-

rithms in Section 6.2.

27

6.1 Test instances

We have conducted tests on the 37 instances introduced by Kim and Park (2004). These

instances are numbered from 13 to 49 and in Table 1 we report their size in terms of

number of QCs and tasks. It turns out that the instances belonging to the sets {13, . . . , 22}
Instance set Number of QCs Number of tasks
{13, . . . , 22} 2 10
{23, . . . , 32} 2 15
{33, . . . , 42} 3 20
{43, . . . , 49} 3 25

Table 1: Description of the instances

and {23, . . . , 32} are easily solved with formulation F2, while the remaining instance sets

are more challenging. Therefore, we break up our computational experiments in two

parts and, for convenience, we define the instances ranging from 13 to 32 as instance set

I1 and the others as instance set I2.

A task is a collection of containers and an average of 30 containers per task is common

in practice. Therefore an instance of 25 tasks corresponds to 750 moves. Using data from

the Medcenter Container Terminal located in the port of Gioia Tauro we found that 75 %

of the vessels requested less than 750 moves. However, the terminal traffic originating

from vessels requiring more than 750 moves accounts for about half of the total traffic.

Furthermore, these larger vessels have higher priorities.

6.2 Implementation details

Our algorithms were implemented in C++ by using ILOG Concert 1.3 and CPLEX 8.1.

They were run on a 2.5 GHz Pentium IV computer with 512MB of memory. The CPLEX

parameters affect all algorithms. We let only two parameters vary: the MIP emphasis and

the heuristic frequency. The CPLEX MIP emphasis parameter, which in the following is

denoted µ, controls the exploration of the branch-and-bound tree. The four options are:

28

• µ = 0, default, balance optimality and feasibility;

• µ = 1, emphasis on feasibility;

• µ = 2, emphasis on optimality;

• µ = 3, emphasis on improving the best bound.

The heuristic frequency parameter indicates how often the CPLEX heuristic is applied

in the hope of identifying feasible integer solutions. The default value is zero, and the

heuristic is activated at an interval chosen automatically by CPLEX. Setting the value to a

positive integer fh applies the heuristic at the node interval 0, fh, 2fh, 3fh, etc.

A sensitivity analysis of our algorithms to the CPLEX parameters was carried out. The

performance of the algorithm on formulations F1 and F2 is not very sensitive to µ on

instance set I1, except for the fact that setting µ = 3 produces rather poor results. Some

more noticeable differences occur when formulation F2 is tested on the instance set I2.

Here the µ = 1 yields the best results. Therefore the µ parameter is set equal to one

for formulation F2 and, for consistency, the same choice is applied to F1. The CPLEX

heuristic frequency fh is set to the default zero value for formulations F1 and F2 since

other choices produce worse results. For these two algorithms setting µ = 1 (with an

emphasis on feasibility) already provides good quality solutions. The branch-and-cut

algorithm, instead, uses different settings: µ = 2 and fh = 1. This parameter combination

works better since the cutting phase improves the lower bounds but takes additional

computation time. The MIP emphasis on optimality exploits the better lower bounds and

the CPLEX heuristic finds good solutions by exploring fewer nodes of the branch-and-cut

tree. The parameters used in the tabu search procedures are as follows:

• θ : tabu duration, equal to 5;

• τ : parameter that controls the number of tabu search iterations, equal to 4.

29

We set a two hours time limit for all algorithms.

6.3 Results with the formulations F1 and F2

We first compare the two formulations F1 and F2 on the instance set I1. Here formu-

lation F2 is always capable of yielding an optimal solution within a short computation

time, while formulation F1 is much slower. The results are reported in Table 2 and are

consistent with those of Kim and Park (2004) who showed that formulation F1 could only

solve within a reasonable time instances involving up to two QCs and six tasks, smaller

than those considered in our experiments. We note that instance 13 is solved to optimality

by formulation F2 with a solution value larger than the upper bound obtained with for-

mulation F1. This apparently strange result is due to the slight variation in the solution

space between the two formulations: formulation F2 incorporates constraints (33) and

(34) that avoid QC collisions as indicated in Section 3.3.1. However, if we remove these

constraints from F2 the optimal solution of the instance 13 is equal to that found by F1,

but the solution contains a collision. We note that in Kim and Park (2004) the scheduling

problem is solved exactly by a dedicated branch-and-bound scheme on a reduced solu-

tion space which avoids such cases. In fact the optimal solution on this reduced solution

space found on instance 13 by Kim and Park has the same solution value, 453, as ours.

However, comparing the optimal solutions found on instance set I1 by our algorithm and

that of Kim and Park, we note that our approach (which does not assume solution space

reduction) generates some benefits because, for example, on instances 20 and 22 we find

better solutions with a 20 and 34% makespan reduction (Table 3).

We have run additional tests in order to asses the contribution of inequalities (44) - (50)

and (51) to the performance of formulation F2. Denote by F2a formulation F2 without

constraints (44) - (50) and (51), by F2b formulation F2a plus constraints (44) - (50), and by

F2c formulation F2a plus constraints (51). The results of the corresponding three algo-

30

rithms over the instance set I1 are reported in Table 4. We note that F2a improves over

F1 (see also Table 2). However more significant enhancements are achieved adding con-

straints (44) - (50) or (51). Constraints (51) yield the most important contribution. How-

ever, by only combining (44) - (50) and (51) we achieve the best results since F2 dominates

F2c.

6.4 Results with the branch-and-cut algorithm

We have tested our branch-and-cut algorithm on instance set I2 where the formulation

F2 does not always converge within the assigned two hours time limit. As reported

in Table 5, the branch-and-cut algorithm proves the optimality of three more instances

with respect to F2 and also improves the average computation time and solution quality.

We have run some tests to evaluate the merit of two parts of our algorithm, the subtour

elimination constraints with |S| = 2 added to the root node, and the tabu search heuristic

which seeks violated subtour elimination constraints. Running the algorithm without one

of these two components yields slightly worse results. In both cases the average gap on

the instance set I2 becomes equal to 1.9% instead of 1.0% with the full branch-and-cut

algorithm.

7 Conclusions and future research

We have formulated and solved the quay crane scheduling problem encountered in the

daily operation of maritime container terminals. We have developed an improved formu-

lation of the QCSP capable of solving small and medium size instances. A branch-and-cut

algorithm, which exploits the precedence relationships of the problem, further improves

these results.

31

Ideally, algorithms for the QCSP should handle larger instances than those solved in this

study, which would require the use of heuristics. Our branch-and-cut algorithm can al-

ready handle the scheduling of the majority of the vessels arriving to a transhipment ter-

minal container. It should also prove valuable to benchmark solution quality of heuristics.

Acknowledgment

This work was supported by the Canada Research Chair in Distribution Management,

by the HEC Centre for International Business Studies, and by the CN Chair in Transport

Economics and Intermodality. The authors thank K. H. Kim and Y. M. Park who kindly

provided the instance set. Thanks are also due to the referees for their valuable comments.

References

Ascheuer, N.: 1996, Hamiltonian Path Problems in the On-line Optimization of Flexible Manu-

facturing Systems, PhD thesis, Konrad Zuse Zentrum für Informationstechnik Berlin.

Ascheuer, N., Fischetti, M. and Grötschel, M.: 2001, Solving the asymmetric travelling

salesman problem with time windows by branch-and-cut, Mathematical Programming

90, 475–506.

Ascheuer, N., Jünger, M. and Reinelt, G.: 2000, A branch & cut algorithm for the asymmet-

ric traveling salesman problem with precedence constraints, Computational Optimization

and Applications 17, 61–84.

Augerat, P., Belenguer, J., Benavent, E., Corberán, A. and Naddef, D.: 1999, Separating

capacity inequalities in the CVRP using tabu search, European Journal of Operational Re-

search 106, 546–557.

32

Balas, E., Fischetti, M. and Pulleyblank, W.: 1995, The precedence-constrained asymmet-

ric traveling salesman polytope, Mathematical Programming 68, 241–265.

Christiansen, M., Fagerholt, K. and Ronen, D.: 2004, Ship routing and scheduling: Status

and perspectives, Transportation Science 38, 1–18.

Cordeau, J.-F.: 2005, A branch-and-cut algorithm for the dial-a-ride problem, Operations

Research. Forthcoming.

Daganzo, C. F.: 1990, The productivity of multipurpose seaport terminals, Transportation

Science 24, 205–216.

Grötschel, M. and Padberg, M.: 1985, Polyhedral theory, in E. L. Lawler, J. K. Lenstra,

A. H. G. Rinnooy Kan and D. B. Shmoys (eds), The Traveling Salesman Problem, Wiley,

New York, pp. 251–305.

Kim, K. H. and Park, Y. M.: 2004, A crane scheduling method for port container terminals,

European Journal of Operational Research 156, 752–768.

Laporte, G., Riera Ledesma, J. and Salazar González, J. J.: 2003, A branch-and-cut algo-

rithm for the undirected traveling purchaser problem, Operations Research 51, 940–951.

Lim, A., Rodrigues, B., Xiao, F. and Zhu, Y.: 2004, Crane scheduling with spatial con-

straints, Naval Research Logistics 51, 386–406.

Naddef, D. and Rinaldi, G.: 2002, Branch-and-cut algorithms for the capacitated VRP, in

P. Toth and D. Vigo (eds), The Vehicle Routing Problem, SIAM Monographs on Discrete

Mathematics and Applications, Philadelphia, pp. 53–84.

Peterkofsky, R. and Daganzo, C. F.: 1990, A branch and bound solution method for the

crane scheduling problem, Transportation Research 24B, 159–172.

Steenken, D., Voss, S. and Stahlbock, R.: 2004, Container terminal operation and opera-

tions research - a classification and literature review, OR Spectrum 26, 3–49.

33

UNCTAD: 2004, Review of maritime transport, Technical report, United Nations, New York

and Geneva.

Vis, I. F. A. and Koster, R. D.: 2003, Transshipment of containers at a container terminal:

An overview, European Journal of Operational Research 147, 1–16.

F1 F2
Instance Solution Time Gap Solution Time Gap

code (min.) (%) (min.) (%)
13 450 120.00 41.33 453 7.75 0.00
14 555 120.00 56.76 546 0.01 0.00
15 513 120.00 58.48 513 0.02 0.00
16 321 120.00 48.60 312 0.09 0.00
17 459 120.00 47.06 453 0.04 0.00
18 399 120.00 55.64 375 0.01 0.00
19 552 120.00 50.54 543 1.96 0.00
20 402 120.00 53.73 399 0.04 0.00
21 471 120.00 63.69 465 0.01 0.00
22 537 120.00 43.58 537 0.18 0.00
23 708 120.00 51.69 576 0.06 0.00
24 900 120.00 63.00 666 0.96 0.00
25 822 120.00 64.60 738 0.59 0.00
26 792 120.00 72.35 639 0.14 0.00
27 708 120.00 62.29 657 0.05 0.00
28 693 120.00 70.13 531 0.21 0.00
29 1026 120.00 68.71 807 0.15 0.00
30 999 120.00 65.77 891 0.22 0.00
31 711 120.00 32.91 570 85.56 0.00
32 684 120.00 74.12 591 1.12 0.00

Average 635 120.00 57.25 563 4.96 0.00

Table 2: Comparison between F1 and F2 formulations. The % gap is computed with
respect to the value of the linear relaxation as 100× (upper bound− lower bound)/upper
bound.

34

Instance Solution value Gap
code KP F2 (%)

13 453 453 0.0
14 546 546 0.0
15 513 513 0.0
16 321 312 2.9
17 456 453 0.7
18 375 375 0.0
19 552 543 1.7
20 480 399 20.3
21 465 465 0.0
22 720 537 34.1
23 576 576 0.0
24 669 666 0.5
25 738 738 0.0
26 639 639 0.0
27 657 657 0.0
28 537 531 1.1
29 807 807 0.0
30 891 891 0.0
31 570 570 0.0
32 591 591 0.0

Table 3: Comparison between solutions on instance set I1 reported in Kim and Park (2004)
and with the formulation F2. The % gap is computed as 100 × (KP − F2)/F2

35

F2a F2b F2c

Instance Solution Time Gap Solution Time Gap Solution Time Gap
code (min.) (%) (min.) (%) (min.) (%)

13 453 120.00 41.72 453 24.96 0.00 453 7.33 0.00
14 558 120.00 56.99 546 1.89 0.00 546 0.03 0.00
15 513 120.00 58.48 513 0.18 0.00 513 0.02 0.00
16 312 120.00 47.12 312 4.64 0.00 312 0.15 0.00
17 456 120.00 46.71 453 1.41 0.00 453 0.04 0.00
18 375 120.00 52.80 375 0.50 0.00 375 0.04 0.00
19 543 120.00 49.72 543 20.34 0.00 543 1.19 0.00
20 399 120.00 53.38 399 1.18 0.00 399 0.39 0.00
21 468 120.00 63.46 465 0.36 0.00 465 0.01 0.00
22 537 120.00 43.58 537 1.99 0.00 537 0.20 0.00
23 618 120.00 44.66 585 120.00 3.08 576 2.11 0.00
24 732 120.00 54.51 675 120.00 3.11 666 26.11 0.00
25 819 120.00 64.47 741 120.00 1.62 738 6.31 0.00
26 759 120.00 71.15 657 120.00 4.11 639 3.25 0.00
27 699 120.00 61.80 678 120.00 4.87 657 0.14 0.00
28 588 120.00 64.80 537 120.00 3.35 531 0.78 0.00
29 870 120.00 63.10 810 120.00 2.59 807 2.08 0.00
30 948 120.00 63.92 897 120.00 0.67 891 3.02 0.00
31 621 120.00 23.19 585 120.00 6.67 570 120.00 0.53
32 654 120.00 72.94 600 120.00 3.00 591 0.26 0.00

Average 596 120.00 54.92 568 62.87 1.65 563 8.67 0.03

Table 4: Comparison between three variants of formulation F2 on instance set I1. The %
gap is computed with respect to the value of the linear relaxation as 100 × (upper bound
− lower bound)/upper bound.

36

F2 B&C
Instance Solution Time Gap Solution Time Gap

code (min.) (%) (min.) (%)
33 603 32.8 0.0 603 10.6 0.0
34 717 31.1 0.0 717 14.9 0.0
35 684 53.0 0.0 684 42.0 0.0
36 678 120.0 0.6 678 86.1 0.0
37 510 112.7 0.0 510 21.2 0.0
38 618 120.0 2.0 618 120.0 0.7
39 546 120.0 8.2 513 120.0 0.9
40 564 120.0 1.2 564 67.1 0.0
41 588 120.0 1.2 588 120.0 0.5
42 570 120.0 2.1 570 120.0 1.7
43 939 120.0 8.9 897 120.0 4.2
44 858 120.0 5.7 822 120.0 0.2
45 846 120.0 3.3 840 120.0 1.8
46 870 120.0 21.9 690 90.4 0.0
47 792 56.0 0.0 792 27.0 0.0
48 762 120.0 18.3 645 120.0 2.5
49 1101 120.0 20.4 927 120.0 5.1

Average 720 101.5 5.5 686 84.7 1.0

Table 5: Results of the branch-and-cut algorithm on instance set I2 compared to formula-
tion F2. The % gap is computed with respect to the value of the linear relaxation as 100
× (upper bound − lower bound)/upper bound.

37

