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The Traveling Salesman Problem with Pickup and Delivery:
Polyhedral Results and a Branch-and-Cut Algorithm

Irina Dumitrescu · Stefan Ropke ·
Jean-François Cordeau · Gilbert Laporte

Abstract The Traveling Salesman Problem with Pickup and Delivery (TSPPD) is defined
on a graph containing pickup and delivery vertices between which there exists a one-to-
one relationship. The problem consists of determining a minimum cost tour such that each
pickup vertex is visited before its corresponding delivery vertex. In this paper, the TSPPD is
modeled as an integer linear program and its polyhedral structure is analyzed. In particular,
the dimension of the TSPPD polytope is determined and several valid inequalities, some
of which are facet defining, are introduced. Separation procedures and a branch-and-cut
algorithm are developed. Computational results show that the algorithm is capable of solving
to optimality instances involving up to 35 pickup and delivery requests, thus more than
doubling the previous record of 15.

Keywords Traveling salesman problem · pickup and delivery · precedence relationships ·
polyhedral results · valid inequalities · separation procedures · branch-and-cut algorithm

1 Introduction

The purpose of this paper is to present polyhedral results and a branch-and-cut algorithm for
the Traveling Salesman Problem with Pickup and Delivery (TSPPD) defined as follows. Let
G = (V,E) be an undirected graph, where V is the set of vertices and E is the set of edges.
The set V consists of pickup and delivery vertices, as well as two vertices corresponding
respectively to the start and the end depot. Pickup and delivery vertices are paired to form
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requests. Let n be the number of requests, P = {1, . . . ,n} the set of pickup vertices, and
D = {n+1, . . . ,2n} the set of delivery vertices. We denote the delivery vertex corresponding
to a pickup vertex i ∈ P by n + i, where n + i ∈ D. We can write the set of vertices as
V = P∪D∪{0,2n+1}, where 0 is the vertex corresponding to the start depot, and 2n+1 is
the vertex corresponding to the end depot. For any two vertices i and j, i < j, we represent
the edge between i and j as (i, j). A non-negative cost ci j is associated with every edge
(i, j) ∈ E. The TSPPD consists of finding a least cost Hamiltonian tour on G, containing
edge (0,2n +1), and such that each pickup vertex i ∈ P is visited before the corresponding
delivery vertex n+ i.

The TSPPD has many applications in courier services and dial-a-ride systems. It is
also the single-vehicle version of the multi-vehicle one-to-one pickup and delivery problem
(VRPPD) on which a rich literature exists (Cordeau et al. [2007]). It can therefore be used
to optimize each VRPPD route individually. Several problems are related to the TSPPD.
One is the Traveling Salesman Problem (TSP) in which each pickup vertex coincides with
its delivery vertex. The TSPPD is a special case of the Precedence-Constrained TSP (Balas
et al. [1995]) in which each vertex may have several predecessors. Another related prob-
lem is the TSP with backhauls where all pickup vertices must be visited before any of the
delivery vertices (see, e.g., Gendreau et al. [1996]). The TSPPD is NP-hard since any TSP
instance can be transformed into a TSPPD instance using a polynomial transformation (Re-
naud et al. [2002]). It is also a very difficult problem from an empirical point of view. The
largest instance size solved so far is only n = 15. In this paper we more than double this size.

The TSPPD has received relatively little attention. While some papers have proposed
exact algorithms for the TSPPD and some of its variants (Hernández-Pérez and Salazar-
González [2004], Kalantari et al. [1985]), most have focused on heuristic solution meth-
ods (Healy and Moll [1995], Renaud et al. [2002, 2000], Savelsbergh [1990], Fiala Timlin
and Pulleyblank [1992]). As far as we are aware only Ruland and Rodin have looked at the
polyhedral structure of the TSPPD (Ruland [1994], Ruland and Rodin [1997]). The TSPPD
they studied is exactly the one that we consider in our paper. However, apart from establish-
ing the validity of several classes of constraints, Ruland and Rodin did not present polyhedral
results. In our paper, we fill some of the gaps in the literature and derive several polyhedral
results. In particular, we determine the dimension of the TSPPD polytope, we introduce new
valid inequalities, and we show under which conditions several classes of valid inequalities
are facets for the TSPPD polytope. We also propose a branch-and-cut algorithm that uses
the inequalities discussed.

The remainder of this paper is organized as follows. A mathematical programming for-
mulation of the problem is presented in Section 2. The dimension of the TSPPD polytope is
determined in Section 3. Valid inequalities, some of which are facet defining, are introduced
in Section 4, and separation procedures are described in Section 5. Implementation details
are provided in Section 6 followed by computational results in Section 7 and by conclusions
in Section 8.

2 Mathematical model

In addition to the notation already introduced, we define δ (S) = {(i, j)∈E : i∈ S, j /∈ S or i /∈
S, j ∈ S} for any set of vertices S ⊆ V . If S = {i} we write δ (i) instead of δ ({i}). The
TSPPD was formulated by Ruland [1994] as a binary linear program by associating a binary
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variable xi j with every edge (i, j) ∈ E. We provide this formulation using the notation x(E ′)
for ∑

(i, j)∈E ′
xi j, where E ′ ⊆ E:

minimize ∑
(i, j)∈E

ci jxi j (1)

subject to

x0,2n+1 = 1 (2)

x(δ (i)) = 2 ∀i ∈V (3)

x(δ (S))≥ 2 ∀S⊆V,3≤ |S| ≤ |V |/2 (4)

x(δ (S))≥ 4 ∀S ∈U (5)

xi j ∈{0,1} ∀(i, j) ∈ E, (6)

where U is the collection of subsets S⊂V satisfying 3≤ |S| ≤ |V |−2 with 0∈ S, 2n+1 /∈ S
and for which there exists i ∈ P such that i /∈ S and n + i ∈ S. Constraints (3) are degree
constraints, (4) are subtour elimination constraints (SEC), and (5) are precedence constraints
which ensure that vertex i is visited before vertex n+ i for every i ∈ P.

3 Dimension of the TSPPD polytope

Assuming the set of edges E is ordered, let BE be the set of binary vectors with com-
ponents indexed by E. We associate an incidence vector x ∈ BE with every tour t in the
graph G. The vector x is defined as follows: xi j = 1 if (i, j) ∈ t, and xi j = 0 otherwise.
For notational convenience we do not distinguish between a tour and its incidence vec-
tor. We also perform arithmetic on tours, which will translate into basic operations with
vectors in BE . In the rest of this section we will use tour subtraction. The subtraction of
a tour t1 from a tour t2 will have an incidence vector obtained from subtracting the inci-
dence vector corresponding to t1 from the incidence vector corresponding to t2. In fact,
the incidence vector of t2− t1 represents the way in which the two tours differ from each
other; the edges that appear in both tours will cancel out. For example (1,2,3)− (2,3,5) =
((1,2),(2,3),(1,3))−((2,3),(3,5),(2,5)) = (1,2)+(1,3)−(3,5)−(2,5) meaning that the
incidence vector corresponding to (1,2,3)− (2,3,5) will have a 1 on the positions corre-
sponding to (1,2),(1,3), a−1 on the positions corresponding to (3,5) and (2,5), and a 0 on
the positions corresponding to every other edge. From the incidence vector of the difference
we can tell that the first vector in the subtraction contains the edges (1,2) and (1,3), while
the second one does not, and that the second tour contains the edges (1,2) and (1,3), while
the first tour does not. We call the leading edge the edge corresponding to the first non-zero
element of an incidence vector or of a vector obtained after performing arithmetic on tours.

Definition 1 Let T be the set of all feasible tours of the TSPPD, i.e., the incidence vectors
that satisfy (2)-(6). The TSPPD polytope is

PT SPPD = conv(T ).

Assumption 1 We make the following assumptions:

1. δ (0) = {(0,1),(0,2), . . . ,(0,n),(0,2n + 1)} and δ (2n + 1) = {(0,2n + 1),(n + 1,2n +
1), . . . ,(2n,2n+1)}.
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2. The subgraph of G induced by G and P∪D is a complete graph.

The first assumption simply means that G is the graph obtained at the end of a prepro-
cessing step. The edges that cannot appear in any tour are eliminated before we even attempt
to solve the problem. These edges are of the form (0,n + i) or (i,2n + 1), where i ∈ P. The
graph G cannot be further reduced. The second assumption is clearly non-restrictive and is
needed only for the proofs of the theoretical results presented in this paper. We now define
an order on the set of edges.

Definition 2 Define E0 = {(0,2n+1)} and E1 = E \(E0∪E2), where E2 = (δ (0)∪δ (2n+
1)∪{(n,2n)}) \E0. Let ≺E1 be the lexicographic order on the set E1 and ≺E2 the lexico-
graphic order on the set E2. We define a relation of total order ≺ on the set of edges E as
follows:

i. for any (i, j) ∈ E \E0, (0,2n+1)≺ (i, j);
ii. the restriction of ≺ to E1 is ≺E1 ;
iii. the restriction of ≺ to E2 is ≺E2 ;
iv. for any (i, j) ∈ E1 and (k, l) ∈ E2, (i, j)≺ (k, l).

Remark 1 The number of edges in E is 2n2 +n+1.

Proposition 1 (Ruland [1994]) The dimension of PT SPPD is at most 2n2−n−2.

Proof The rank of the matrix induced by the equality constraints is 2n + 3 (see Ruland
[1994]), so by Proposition 2.4 from Chapter I.4 of Nemhauser and Wolsey [1988] the poly-
tope has dimension at most |E|− (2n+3) = 2n2−n−2. ut

In order to prove the next result we need to introduce further notation. Given a set of
pickup vertices S ⊆ P we denote by P(S) the set of all paths that visit all vertices in S
exactly once. We denote by τ p an element of P(S). We denote by τd the path which visits
delivery vertices only, such that the k-th element of τd is the delivery vertex corresponding
to the pickup vertex on position k in τ p (i.e. τd

k = n+ τ
p
k ), for any k = 1, . . . , |S|. If a path in

a tour is defined on the empty set, we will read the tour without that path.

Theorem 1 The dimension of PT SPPD is 2n2−n−2,∀n≥ 2.

Proof We will prove that there are (2n2 − n− 2) + 1 linearly independent feasible tours
in the TSPPD polytope. Since linear independence implies affine independence, there are
2n2 − n− 1 affinely independent elements in the TSPPD polytope. This implies that the
dimension of the polytope is at least 2n2−n−2. But from Proposition 1 we know that the
dimension of the TSPPD polytope is at most 2n2− n− 2. It will follow that the dimension
of the TSPPD polytope is exactly 2n2−n−2.

To construct 2n2−n−1 linear combinations of feasible tours in the TSPPD polytope, we
take each feasible tour and consider it a row in a matrix, in which every column corresponds
to an edge (ordered increasingly with respect to the order introduced in Definition 2). By row
operations we find 2n2−n−1 linearly independent vectors, which are linear combinations
of rows (feasible tours) in the matrix and form an upper triangular matrix. The rank of the
upper triangular matrix is 2n2−n−1 and so the rank of the initial matrix (the one that has
all the feasible tours as its rows) will be at least 2n2−n−1. Therefore there are 2n2−n−1
linearly independent rows of that matrix. Since any row in that matrix is a feasible tour, there
are 2n2− n− 1 linearly independent feasible tours of the TSPPD polytope, which is what
we need to show.
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We will group the linear combinations of feasible tours into several mutually disjoint
sets Ti, i = 0, . . . ,7. The set T = ∪7

i=0Ti will contain the linearly independent linear combi-
nations of feasible tours needed. Each vector in a set Ti will have a distinct leading edge,
from the first 2n2−n−1 edges (ordered according to the order introduced in Definition 2).
Next we describe the sets Ti. If n = 2, then T3 = T4 = T6 = T7 = /0 and these cases can be
skipped.

0. Leading edge (0,2n+1): Let T0 = {(0,1,2, . . . ,2n,2n+1)}. |T0|= 1.

1. Leading edges (1, i), i = 2, . . . ,n:
We construct the vectors ai as linear combinations of feasible tours, such that their leading
edges are (1, i).

– For any i = 2, . . . ,n−1, let τ p ∈P(P\{1, i,n}).

ai = (0,1, i,n,n+1,n+ i,2n,τ p,τd ,2n,2n+1)− (0,1,n, i,n+1,n+ i,2n,τ p,τd ,2n,2n+1)

= (1, i)− (1,n)+(n,n+1)− (i,n+1).

– For i = n, let τ p ∈P(P\{1,n}).

an = (0,1,n,n+1,2n,τ p,τd ,2n+1)− (0,1,n+1,n,2n,τ p,τd ,2n+1)

= (1,n)− (1,n+1)+(n+1,2n)− (n,2n).

Let T1 = {ai : i = 2, . . . ,n}. Clearly, |T1|= n−1.

2. Leading edges (1,n+ i), i = 1, . . . ,n:
We construct the vectors bi as linear combinations of feasible tours, such that their leading
edges are (1,n+ i).

– For i = 1 let τ p ∈P(P\{1,n}).

b1 = (0,τ p,τd ,n,1,n+1,2n,2n+1)− (0,τ p,τd ,n,1,2n,n+1,2n+1)

= (1,n+1)− (1,2n)+(2n,2n+1)− (n+1,2n+1).

– For any i≥ 2, let τ p ∈P(P\{1, i}).

bi = (0, i,τ p,τd ,n+ i,1,n+1,2n+1)− (0,1,n+1, i,τ p,τd ,n+ i,2n+1)

= (1,n+ i)− (i,n+1)+(n+1,2n+1)− (n+ i,2n+1)+(0, i)− (0,1).

Let T2 = {bi : i = 1, . . . ,n}. |T2|= n.

3. Leading edges (i, j), i = 2, . . . ,n−1, j = i+1, . . . ,n:
We construct the vectors ci j as linear combinations of feasible tours, such that their leading
edges are (i, j). Let τ p ∈P(P\{i, j}).

ci j = (0,τ p,τd , i, j,n+ i,n+ j,2n+1)− (0,τ p,τd , i,n+ i, j,n+ j,2n+1)

= (i, j)− (i,n+ i)− ( j,n+ j)+(n+ i,n+ j).

Let T3 = {ci j : i = 2, . . . ,n−1, j = i+1, . . . ,n}. We note that |T3|= (n−2)(n−1)/2.

4. Leading edges (i,n+ j), i = 2, . . . ,n−1, j = 1, . . . ,n:
We construct the vectors di j as linear combinations of feasible tours, such that their leading
edges are (i,n+ j).



6

– For any i 6= j and j 6= n, let τ p ∈P(P\{i, j,n}).

di j = (0, j,n+ j, i,n,2n,n+ i,τ p,τd ,2n+1)− (0, j,n+ j,n, i,2n,n+ i,τ p,τd ,2n+1)

= (i,n+ j)− (i,2n)− (n,n+ j)+(n,2n).

– For any i = j, let τ p ∈P(P\{i,n}). We note that since i = j and i = 2, . . . ,n−1, we are
in the situation where j 6= n. In this case the leading edge will be (i,n+ i) = (i,n+ j).

dii =(0,n, i,n+ i,2n,τ p,τd ,2n+1)− (0, i,n,n+ i,2n,τ p,τd ,2n+1)

=(i,n+ i)− (n,n+ i)+(0,n)− (0, i).

– For j = n, let τ p ∈P(P\{i,n}). The leading edge will be (i,2n) = (i,n+n).

din = (0,n, i,2n,n+ i,τ p,τd ,2n+1)− (0, i,n,2n,n+ i,τ p,τd ,2n+1)

= (i,2n)− (n,2n)+(0,n)− (0, i).

Let T4 = {di j : i = 2, . . . ,n−1, j = 1, . . . ,n}. |T4|= n(n−2).

5. Leading edges (n,n+ i), i = 1, . . . ,n−1:
We construct the vectors ei as linear combinations of feasible tours. Let τ p ∈P(P\{i,n}).

ei = (0,τ p,τd , i,n,n+ i,2n,2n+1)− (0,τ p,τd , i,n,2n,n+ i,2n+1)

= (n,n+ i)− (n,2n)+(2n,2n+1)− (n+ i,2n+1).

Since n+ i < 2n,∀i = 1, . . . ,n−1, the leading edge of any ei is (n,n+ i).
Let T5 = {ei : i = 1, . . . ,n−1}. |T5|= n−1.

6. Leading edges (n+ i,n+ j), i = 1, . . . ,n−2, j = i+1, . . . ,n−1:
We construct the vectors fi j as linear combinations of feasible tours. Let τ p ∈ P(P \
{i, j,n}).

fi j = (0,τ p,τd , i, j,n,n+ i,n+ j,2n,2n+1)− (0,τ p,τd , i, j,n,n+ i,2n,n+ j,2n+1)

= (n+ i,n+ j)− (n+ i,2n)+(2n,2n+1)− (n+ j,2n+1).

Since i < j, it follows that n + i < n + j. Also, since i < n, we have n + i < 2n. Therefore,
the leading edge of any vector fi j is (n+ i,n+ j).
Let T6 = { fi j : i = 1, . . . ,n−2, j = i+1, . . . ,n−1}. |T6|= (n−2)(n−1)/2.

7. Leading edges (n+ i,2n), i = 1, . . . ,n−2:
We construct the vectors gi as linear combinations of feasible tours, such that their leading
edges are (n+ i,2n). Let τ p ∈P(P\{i,n−1,n}).

gi = (0,τ p,τd ,n−1,n, i,2n,n+ i,2n−1,2n+1)− (0,τ p,τd ,n−1,n, i,2n,2n−1,n+ i,2n+1)

= (n+ i,2n)− (2n−1,2n)+(2n−1,2n+1)− (n+ i,2n+1).

Let T7 = {gi : i = 1, . . . ,n−2}. |T7|= n−2.

The size of the union set T = ∪7
i=0Ti is given by |T | = |T0|+ |T1|+ · · ·+ |T7| = 2n2−

n− 1. The vectors in T have distinct leading edges, which are the first 2n2− n− 1 edges
with respect to the order introduced (Definition 2). Modulo row interchanging, they form an
upper triangular matrix of rank 2n2−n−1. Therefore, they are the vectors we need. ut
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4 Valid Inequalities

In this section we describe the inequalities we have tested in our branch-and-cut algorithm.
We will recall the inequalities proposed by other authors whenever we use them in our algo-
rithm or if we prove new results related to them. We also give conditions under which some
of the inequalities define facets of the TSPPD polytope. The proofs of these results are rather
technical and tedious. For this reason we chose to provide them in Dumitrescu [2005]. In
each of the proofs we show that there are 2n2−n−2 linearly independent (therefore affinely
independent) feasible tours that satisfy those inequalities at equality. This implies that the
face the inequality represents has dimension 2n2− n− 3 = dim(PT SPPD)− 1 and the face
is a facet (see for example Nemhauser and Wolsey [1988]). The proofs are very similar to
that of Theorem 1. In every one we consider every feasible tour that satisfies the inequalities
under consideration at equality to be a row in a matrix. This is always possible when the set
of edges E is totally ordered. We demonstrate that this matrix has rank 2n2−n−2. This is
done by using elementary row operations (addition, subtraction and row interchanging) to
obtain an upper triangular matrix. From the definition of the rank of a matrix, if the rank is
2n2−n−2, it follows that there are 2n2−n−2 linearly independent rows. Because the rows
were feasible tours satisfying the inequalities at equality, we have the 2n2− n− 2 linearly
independent elements needed.

We first note that any valid inequality given in this section can be transformed into
another valid inequality by switching the positions of the pickup and delivery vertices. This
is easy to see, due to symmetry, and is described formally in the following proposition.

Proposition 2 If ax≤ b is a valid inequality for the TSPPD, then there exists another valid
inequality a′x ≤ b, where a′i j = an+i,n+ j, a′i,n+ j = a j,n+i, a′n+i,n+ j = ai j, a′0i = an+i,2n+1,
a′n+i,2n+1 = a0i and a′0,2n+1 = a0,2n+1 for all i, j ∈ P. If ax ≤ b is a facet of the TSPPD
polytope, then a′x≤ b is also a facet.

For a set of vertices S ⊆ V we introduce the notation π(S) for the set of predecessors
of the vertices in S, i.e. π(S) = {i ∈ P : n + i ∈ S}. Similarly we denote by σ(S) the set of
successors of the vertices in S, σ(S) = {n+ i∈D : i∈ S}. Also, for S⊆V we define S̄ =V \S
and E(S) = {(i, j} ∈ E : i ∈ S, j ∈ S}. For S1,S2 ⊆ V we define (S1 : S2) = {(i, j) ∈ E : i ∈
S1, j ∈ S2 or i ∈ S2, j ∈ S1}.

4.1 Generalized Order Constraints

Ruland and Rodin [1997] proved the following result.

Proposition 3 (Generalized Order Constraints (GOC)) Let S1, . . . ,Sm ⊂ P∪D be mutu-
ally disjoint sets such that m≥ 2, Si∩π(Si+1) 6= /0,∀i = 1, . . . ,m, where Sm+1 = S1. Then the
inequality

m

∑
i=1

x(Si)≤
m

∑
i=1
|Si|−m−1 (7)

is valid.

Example 1 Consider the subsets S1 = {i,n + k},S2 = { j,n + i},S3 = {k,n + j}. Clearly
Si ∩ π(Si+1) 6= /0,∀i = 1,2,3. The GOC for these sets is xi,n+k + x j,n+i + xk,n+ j ≤ 2. This
inequality is illustrated in Figure 1.
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i

n + k

j

n + i

k

n + j

S3S2S1

Fig. 1 Generalized order constraint with m = 3

An equivalent class of inequalities was also proposed by Balas et al. [1995] for the
precedence-constrained asymmetric traveling salesman problem (PCATSP), under the name
of cycle breaking inequalities.

Remark 2 For small values of n the generalized order constraints (7) do not define facets for
the TSPPD polytope. This remark is easy to check using Porta (Christof and Löbel).

4.2 Order Matching Constraints

Proposition 4 (Order Matching Constraints (OMC)) For any i1, . . . , im ∈ P and H ⊆
(P∪D)\{n+ i1, . . . ,n+ im} such that {i1, . . . , im} ⊆ H, the inequality

x(H)+
m

∑
j=1

xi j ,n+i j ≤ |H| (8)

is valid.

Proof The OMC were introduced by Ruland [1994] who stated and proved the above result
only for m even. Dumitrescu [2005] has extended this result to m odd by showing that if the
proposition is true for m = 2, . . . ,k and 2 < k < n then it is also true for m+1. ut

Proposition 6 below contains a more general result. In the following proposition we give
the characterisation of a subset of the order matching constraints, which are facet defining
for the TSPPD polytope.

Proposition 5 For any H = {i1, . . . , im} ⊆ P, the inequality

x(H)+
m

∑
j=1

xi j ,n+i j ≤ |H|

defines a facet of the TSPPD polytope.

Proof See Dumitrescu [2005]. ut

Cordeau [2006] has provided a generalization of the order matching constraints for the
asymmetric dial-a-ride problem. Because of symmetry this result also holds in our case.
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Proposition 6 (Generalized order matching constraints (GOMC)) For all i1, . . . , im ∈ P,
H ⊆ P∪D and Tj ⊂ P∪D, for j = 1, . . . ,m, such that

{
i j,n+ i j

}
⊆ Tj, Ti∩Tj = /0, ∀i 6= j,

and H ∩Tj = {i j} for j = 1, . . . ,m, the inequality

x(H)+
m

∑
j=1

x(Tj)≤ |H|+
m

∑
j=1
|Tj|−2m

is valid for the TSPPD.

This inequality can be further generalized by relaxing the constraints on the sets H and
Tj as the following proposition shows.

Proposition 7 (Doubly generalized order matching constraints (DGOMC)) For all sub-
sets {i1, . . . , im} ⊆ P, H ⊂ P∪D and Tj ⊂ P∪D, for j = 1, . . . ,m, such that

{
i j,n+ i j

}
⊆ Tj

for j = 1, . . . ,m, Ti ∩Tj ⊆ H, ∀i 6= j, {i1, . . . , im} ⊆ H and {n + i1, . . . ,n + im}∩H = /0, the
inequality

x(H)+
m

∑
j=1

x(Tj)≤ |H|+
m

∑
j=1
|Tj|−2m (9)

is valid for the TSPPD.

Proof In a feasible TSPPD tour x(Tj) ≤ |Tj| − 1 for j = 1, . . . ,m. If x(Tj) = |Tj| − 1 for a
subset Tj, then the TSPPD tour enters and leaves Tj once. The tour must visit i j before n+ i j
because of the precedence constraint. Set α =

∣∣{ j ∈ {1, . . . ,m} : x(Tj) = |Tj|−1
}∣∣. Since i j

is in H and n+ i j is outside H for all j = 1, . . . ,m and because (Ti∩Tj)\H = /0 for i 6= j the
TSPPD tour must leave H at least α times, and consequently it must enter H at least α times;
therefore x(δ (H)) ≥ 2α . In a feasible TSPPD solution, α ≥ ∑

m
j=1(x(Tj)− |Tj|+ 2) since

x(Tj)−|Tj|+2 = 1 if x(Tj) = |Tj|−1 and ≤ 0 otherwise. Using this lower bound on α we
obtain x(δ (H))≥ 2∑

m
j=1(x(Tj)−|Tj|+2). From the degree constraints, 2x(H)+x(δ (H)) =

2|H| and thus 2|H|−2x(H)≥ 2∑
m
j=1(x(Tj)−|Tj|+2). Rearranging terms yields (9). ut

Example 2 Figure 2 shows three examples of the doubly generalized order matching con-
straints. The solid lines in each of the figures represent the edges on the left-hand side of
(9). The first figure (2.a) shows a simple DGOMC with four vertices, at most two edges can
be used. This DGOMC is also an OMC. The second figure (2.b) shows a DGOMC with
five vertices. This DGOMC is also a GOMC, but not an OMC as T2 contains three vertices.
At most three of the edges in the figure can be used in a TSPPD solution. The last figure
(2.c) shows a DGOMC with H = {i1, i2}, T1 = {i1, i2,n + i1} and T2 = {i1, i2,n + i2}. This
DGOMC is neither an OMC nor a GOMC as T1∩T2 6= /0. The edge {i1, i2} has a coefficient
3 on the left-hand side as it appears in all the terms x(H), x(T1) and x(T2). This is illustrated
by a thick line in the figure. The left-hand side can be at most 4 in this example.

4.3 Precedence Constraints

The set of inequalities that we discuss next were proved to be valid by Ruland [1994]. They
appear as inequalities (5) in the mathematical model provided in Section 2.
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Fig. 2 Doubly generalized order matching constraints

Proposition 8 (Precedence Constraints (PC)) For any S ⊂ V , 3 ≤ |S| ≤ |V |− 2 with 0 ∈
S,2n+1 /∈ S, and for which there exists i ∈ P such that i /∈ S and n+ i ∈ S, the inequality

x(δ (S))≥ 4 (10)

is valid for the TSPPD.

The following proposition establishes that a subset of the precedence constraints are
facet defining.

Proposition 9 Under the assumption that there exists a unique i ∈ P such that i /∈ S and
n+ i ∈ S, the inequality (10) is facet defining for the TSPPD polytope.

Proof See Dumitrescu [2005]. ut

Ruland [1994] showed that the subset of the precedence constraints identified in Proposi-
tion 9 are sufficient to guarantee a feasible integer solution together with constraints (2)–(4)
and (6).

4.4 π-inequalities

We now describe a set of valid inequalities for the TSPPD polytope, which were first intro-
duced by Balas et al. [1995] for the PCATSP.

Proposition 10 (π-Inequalities) For any S⊆V \{2n+1}, the inequality

x((S\π(S) : S̄\π(S)))≥ 1 (11)

is valid for the TSPPD polytope.

Balas et al. [1995] used the term σ -inequalities to denote the inequalities obtained by
exchanging the roles of pickup and delivery vertices in the π-inequalities.

Remark 3 For small values of n the inequalities (11) do not define facets for the TSPPD
polytope.

This remark is easy to check with Porta (Christof and Löbel). As the depot is split into a
start- and end-depot in our formulation it is possible to strengthen the inequality slightly:
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Fig. 3 π-inequality example

Proposition 11 For any S⊆V \{2n+1}, the inequality

x
((

S\π(S) : S̄\ (π(S)∪{0})
))
≥ 1 (12)

is valid for the TSPPD polytope.

Proof Consider a feasible tour for the TSPPD. If we assume that 0 is the first vertex in the
tour, let ŝ be the last vertex from S on the tour. We note that ŝ ∈ S \ π(S). The successor
of ŝ in the tour cannot be vertex 0, it is not in S and cannot be in π(S), therefore it must
belong to S̄ \ (π(S)∪{0}). It follows that the edge between ŝ and its successor in the tour
links S\π(S) and S̄\ (π(S)∪{0}). ut

Example 3 Figure 3 shows an example of a π-inequality for an instance with three requests.
The figure shows the set S containing the vertices {i,n + i,n + j}. The solid lines shown in
the figure represent the edges that appear on the left-hand side of (12). At least one of these
edges must be used in any feasible tour.

4.5 Lifted Subtour Elimination Constraints

This section presents new valid inequalities that strengthen the classical TSP subtour elimi-
nation constraints.

Proposition 12 (Lifted subtour elimination constraints (LSEC)) Let S ⊆ P∪D with the
property that there exists i ∈ P such that i ∈ S and n+ i ∈ S. The inequality

x(S)+ ∑
j∈S∩P,n+ j/∈S

xi,n+ j ≤ |S|−1 (13)

is valid.

We skip the proof of Proposition 13 since we will soon introduce a more general version
of these inequalities.

Proposition 13 Equation (13) is facet defining under the following assumptions:

– there is no i ∈ P such that i /∈ S and n+ i ∈ S, and
– {i : i ∈ P∩S,n+ i /∈ S} 6= /0.
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Proof See Dumitrescu [2005]. ut

We note that the lifted subtour elimination constraint can be generalized as follows.

Proposition 14 (Generalized lifted subtour elimination constraints (GLSEC)) Let S ⊂
P∪D with the property that there exists i∈P such that i∈ S and n+ i∈ S. Let Tk ⊂P∪D, for
k = 1, . . . ,m such that there exists a pk ∈ P such that pk ∈ S and n+ pk ∈ Tk for k = 1, . . . ,m.
Furthermore we require that Tk∩S = {i},∀k = 1, . . . ,m and Tj∩Tk = {i},∀ j = 1, . . . ,m,k =
1, . . . ,m, j 6= k. The inequality

x(S)+
m

∑
k=1

x(Tk)≤ |S|−1+
m

∑
k=1

(|Tk|−2) (14)

is valid.

Proof Assume that the inequality is violated in a valid TSPPD solution. This implies that
there exists a vertex i and sets S, Tk satisfying the conditions in the proposition such that

x(S)+
m

∑
k=1

x(Tk)≥ |S|+
m

∑
k=1

(|Tk|−2).

First note that in a valid solution at most two of the sets Tk can satisfy the equality x(Tk) =
|Tk|−1 because of the degree constraint (3) on vertex i.

Assume x(Tkα
) = |Tkα

|−1 and x(Tkβ
) = |Tkβ

|−1 for kα ,kβ ∈ {1, . . . ,m}, kα 6= kβ then
we have that x(Tk) ≤ |Tk| − 2 for all k ∈ {1, . . . ,m}, k 6= kα , k 6= kβ . In order for the in-
equality to be violated we must have that x(S)≥ |S|−2. But x(S) = |S|−1 is not possible as
x(δ (i)∩E(S)) = 0 because of the degree constraint on vertex i. Consequently x(S) = |S|−2
if a feasible integer solution violates the inequality under the given assumptions. In that
case S′ = S \{i} and Tkα

defines a violated generalized order constraint (see section 4.1) as
{i,n+ pkα

} ⊆ Tkα
, {pkα

,n+ i} ⊆ S′, and x(S′)+ x(Tkα
) = |S′|+ |Tkα

|−2.
Now assume that x(Tkα

) = |Tkα
| − 1, kα ∈ {1, . . . ,m} and that x(Tk) ≤ |Tk| − 2 for all

k ∈ {1, . . . ,m}, k 6= kα . In that case x(S) = |S| − 1 if the GLSEC is violated. This again
implies that the sets S′ = S \ {i} and Tkα

define a violated generalized order constraint. If
x(Tk)≤ |Tk|−2 for all k ∈ {1, . . . ,m}, then the inequality cannot be violated as x(S)≤ |S|−1
(due to the subtour elimination constraint (4)). We can conclude that the GLSEC cannot be
violated by a feasible integer solution to the TSPPD. ut

The inequality is a generalization of the LSEC (13) as a given LSEC defined by a pickup
vertex i and a set S can be expressed as a GLSEC as follows. Let {p1, . . . , pm}= { j ∈ P∩S :
n + j /∈ S} be the set of pickups in S without their corresponding delivery in S. The pickup
vertex i and the sets S and Tk = {i,n+ pk},k = 1, . . . ,m define a GLSEC that is identical to
the LSEC.

Example 4 Figure 4 shows two examples of the GLSEC. The first example (a) shows a
GLSEC with S = {i,n + i, p1, p2},T1 = {i,n + p1},T2 = {i,n + p2} where {p1, p2} ⊆ P.
The solid lines in the figure represent the edges on the left-hand side of inequality (14). At
most three of the edges can be used in a feasible tour. This GLSEC is also an LSEC.

The second example (b) shows a GLSEC with T2 = {i,n+ p2,k} and S and T1 as before.
This GLSEC is not an LSEC as |T2|> 2. At most four of the edges in the figure can be used
in a feasible tour.
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Fig. 4 Generalized lifted subtour elimination constraint

4.6 Depot Constraints

Proposition 15 (Depot constraints (DC)) For any S⊂V and T ⊂ D such that 0 ∈ S, 2n+
1 /∈ S, S∩T = /0 and π(T )∩S = /0 the following inequality

2x(S)+ x(S : T )≤ 2(|S|−1) (15)

is valid for the TSPPD.

Proof Let S′ = S\{0}. In an integer solution, x(0 : S′) is equal to 0 or 1. If x(0 : S′) = 1, the
number of edges between S and T is at most x(δ (S))−2. This is true since one of the edges
from the set δ (S) is used to connect 0 to 2n+1 /∈ T and at least one other edge from the set
cannot reach T as this would imply that there is a path from vertex 0 to a delivery vertex that
does not visit the corresponding pickup vertex (because of the definition of S and T ). Thus

x(S : T ) ≤ (x(δ (S))−2)

⇔ x(S : T ) ≤ 2(|S|− x(S))−2

⇔ 2x(S)+ x(S : T ) ≤ 2(|S|−1)

as x(δ (S)) = 2(|S|− x(S)). Consequently the inequality is valid when x(0 : S′) = 1. If x(0 :
S′) = 0 then we have

x(S : T ) ≤ x
(
δ

(
S′

))
⇔ x(S : T ) ≤ 2(|S′|− x(S′))

⇔ 2x(S′)+ x(S : T ) ≤ 2|S′|
⇔ 2x(S)+ x(S : T ) ≤ 2(|S|−1).

The first inequality is true since x(0 : T ) = 0; the last equivalence is true since x(S) = x(S′)
because of the assumption x(0 : S′) = 0. ut
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It is easy to see that the depot inequality is a strengthening of the subtour elimination
constraints for the set S when 0 ∈ S.

Example 5 Figure 5 shows an example of a depot constraint. In the figure S = {0, i, j} and
T = {n+k,n+ l} where {i, j,k, l} ⊆ P and {i, j}∩{k, l}= /0. The solid lines correspond to
the the left-hand side of inequality (15), and the thick lines represent edges with coefficient
2. For this depot constraint the left-hand side has to be less than or equal to 4.

S

i

j

0

n + k

n + l

2n + 1

T

Fig. 5 Depot constraint

4.7 Start-End Constraints

This section introduces the start-end constraint (StEnC). Before presenting the valid in-
equality a technical definition is necessary. The definition characterizes the so called SE-
infeasible sets that lead to start-end constraints.

Definition 3 Let S⊆P∪D, S1⊆ S∩P, S2⊆ S∩D and ES⊆E(S). The quadruple (S,S1,S2,ES)
is called SE-feasible if a feasible TSPPD tour (0,v1, . . . ,v2n,2n+1) exists such that either

1. {v1, . . . ,v|S|}= S and (vi,vi+1) ∈ ES for all i ∈ {1, . . . , |S|−1} and v1 ∈ S1 or
2. {v2n−|S|+1, . . . ,v2n} = S and (vi,vi+1) ∈ ES for all i ∈ {2n− |S|+ 1, . . . ,2n− 1} and

v2n ∈ S2 or
3. there exist integers p≥ 1 and q≥ 1, p+q = |S| such that S = {v1, . . . ,vp}∪{v2n−q+1, . . . ,v2n}

and (vi,vi+1) ∈ ES for all i ∈ {1, . . . , p− 1}∪{2n− q + 1, . . . ,2n− 1} and v1 ∈ S1 and
v2n ∈ S2.

If the quadruple is not SE-feasible it is called SE-infeasible.

Example 6 Figure 6 shows two examples of SE-feasible quadruples and two examples of
SE-infeasible quadruples. In these examples i, j,k and l are assumed to be distinct pickup
vertices. Figure (6.a) shows the quadruple (S = {i, j,k,n+ i},S1 = {i, j},S2 = /0,ES = {(i, j),
(i,n+ i),( j,n+ i),( j,k)}), and the solid lines in the figure represent the set ES. This quadru-
ple is SE-feasible as it fulfills condition 1 in Definition 3 with a feasible TSPPD tour being
(0, i,n+ i, j,k, . . . ,2n+1).

Figure (6.b) shows the quadruple (S = {i, j,n+ k,n+ l},S1 = {i, j},S2 = {n+ l},ES =
{(i, j),(n+k,n+ l)}). This quadruple is SE-feasible as it fulfills condition 3 in Definition 3
with a feasible TSPPD tour being (0, i, j, . . . ,n+ k,n+ l,2n+1).
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Figure (6.c) shows the quadruple (S = {i, j,n + i,n + k},S1 = {i, j},S2 = {n + i,n +
k},ES = {(i,n + k),( j,n + k),( j,n + i)}) this quadruple is SE-infeasible as it is impossible
to find a feasible TSPPD tour that satisfies one of the three conditions in Definition 3. If (i, j)
is added to ES then the quadruple becomes SE-feasible as (0, i, j,n+ i, . . . ,n+k,2n+1) is a
feasible tour satisfying condition 3 with the modified set ES.

Figure (6.d) shows another SE-infeasible quadruple (S = {i, j,k,n+k},S1 = {i, j},S2 =
{n + k},ES = {(i,k),(i,n + k),( j,n + k)}). If k is added to S1 then the quadruple becomes
SE-feasible as (0,k, i,n + k, j, . . . ,2n + 1) is a feasible tour satisfying condition 1 with the
modified set S1.

kj
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(b)

n + ij

i n + k
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kj

i n + k

S

S1
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Fig. 6 Examples of SE-feasibility (cases (a) and (b)) and SE-infeasibility (cases (c) and (d)).

Proposition 16 (Start-End Constraints (StEnC)) Let S ⊆ P∪D, S1 ⊆ S∩P, S2 ⊆ S∩D
and ES ⊆ E(S). If (S,S1,S2,ES) is SE-infeasible then the following inequality is valid

x(ES)+ x(0 : S1)+ x(2n+1 : S2)≤ |S|−1. (16)

Proof Let E0 = (0 : S1)∪ (2n+1 : S2). The proof of Proposition 16 is split into 3 parts:
x(E0) = 0, x(E0) = 1, and x(E0) = 2. For x(E0) = 0 the inequality is implied by the subtour
elimination constraint on S. If x(E0) = 1 then the inequality can only be violated by a feasible
integer solution if x(ES) = |S|−1, which implies that the tour only enters and leaves S once.
The case x(E0) = 1 implies that the path visiting S either connects to the start depot using an
edge from (0 : S1) or to the end depot using an edge from (2n+1 : S2). Both cases are ruled
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out by the condition that (S,S1,S2,ES) is SE-infeasible: x(0 : S1) = 1 implies that condition
1) in Definition 3 is satisfied and x(2n+1 : S2) = 1 implies that condition 2) in Definition 3
is satisfied. Last, if x(E0) = 2 then the inequality can only be violated by a feasible integer
solution if x(ES)≥ |S|−2. x(ES) = |S|−1 is ruled out by using the above arguments. Indeed
x(ES) = |S|−2 and x(E0) = 2 imply that the tour starts in vertex 0, visits a number of vertices
in S, then leaves S to visit vertices outside of S, returns to visit vertices in S and finally goes
directly from S to 2n + 1. The vertex visited after vertex 0 must be from S1 and the vertex
visited before vertex 2n + 1 must be a vertex from S2. This is again impossible because
(S,S1,S2,ES) is SE-infeasible. Such a solution would imply that condition 3) in Definition
3 is satisfied. ut

Example 7 Figure 7 illustrates the start-end constraints obtained from the SE-infeasible sets
shown in Figures (6.c) and (6.d). At most three of the edges shown in Figure (7.a) and (7.b)
can be used in a feasible TSPPD tour.
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0 2n + 1

(a)

kj

i n + k

2n + 10
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Fig. 7 Start-end constraints obtained from the SE-infeasible quadruples shown in Figures (6.c) and (6.d).

It is worth noting that the proposition and its proof only use the notion of feasible tours.
This implies that the inequality can be used for other variants of the TSP, for example the
Traveling Salesman Problem with Time Windows.

5 Separation Procedures

This section describes both exact and heuristic separation procedures for the valid inequal-
ities introduced in Section 4. To separate the subtour elimination constraints (4) and prece-
dence constraints (5) we use the separation procedures suggested by Ruland [1994]. Note
that many of the inequalities induce a similar inequality by switching the roles of the pickup
and delivery vertices, and the vertices of the start and end depot as stated in Proposition 2.
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In this section we only describe algorithms for separating one of the two forms. Separation
algorithms for the sister-inequalities follow easily.

In the rest of this section we use x∗ to denote the fractional solution we wish to separate
from PT SPPD.

5.1 Separation of generalized order constraints

Ruland [1994] proposed an exact separation procedure for separating the GOC with m = 2.
We have implemented a similar procedure, shown in Algorithm 1. We assume that x∗ does
not violate any subtour elimination constraint. The algorithm works by iterating through
all pairs of requests. For each request pair (i,n + i) and ( j,n + j) the best possible sets S1
and S2 are constructed such that S1 ∩ S2 = /0 and i ∈ S1 ∩ π(S2) and j ∈ S2 ∩ π(S1). The
optimization problems in lines 3 and 4 can be solved using a maximum flow algorithm. The
key observation needed to see that this algorithm finds a violated GOCs for m = 2 if one
exists is that x∗(S′2)−|S′2|= x∗(S2)−|S2| in line 5. We now prove the validity of this claim.
Let T = S1∩S2. Assume that x∗(T )+x∗(T : S1 \T ) < |T |. Combining this assumption with
the fact that x∗(S1) = x∗(S1 \T )+x∗(T )+x∗(T : S1 \T ) leads to the inequality x∗(S1 \T )−
|S1 \T | > x∗(S1)−|S1| which is in contradiction with the maximization performed in line
3 of the algorithm. Therefore x∗(T )+ x∗(T : S1 \T ) ≥ |T | and analogously x∗(T )+ x∗(T :
S2\T )≥ |T | . Adding these two inequalities yields 2x∗(T )+x∗(T : S1\T )+x∗(T : S2\T )≥
2|T |. Since 2x∗(T )+x∗(δ (T )) = 2|T | and (S1 \T )∩(S2 \T ) = /0 we also have that 2x∗(T )+
x∗(T : S1\T )+x∗(T : S2\T )≤ 2|T | so x∗(T )+x∗(T : S1\T ) = x∗(T )+x∗(T : S2\T ) = |T |.
Now x∗(S2)−|S2| = x∗(S2 \T )+ x∗(T )+ x∗(T : S2 \T )−|S2| = x∗(S2 \T )+ |T |− |S2| =
x∗(S′2)−|S′2| as claimed.

Algorithm 1 can be extended to find inequalities with m > 2 for a constant m. Its time
complexity is O(nm f (n)), where f (n) is the time complexity of solving a maximum flow
problem on a graph with n vertices. For m > 2 this effort does not seem to be worthwhile
compared with the effect the inequalities have on the lower bound. Instead we propose a
heuristic for separating generalized order constraints for m≥ 3.

Algorithm 1 Exact separation of generalized order constraints (for m = 2)
1: for all i ∈ {1, . . . ,n} do
2: for all j ∈ {i+1, . . . ,n} do
3: S1 = argmaxS⊂P∪D{x∗(S)−|S| : {i,n+ j} ⊆ S,{ j,n+ i}∩S = /0}.
4: S2 = argmaxS⊂P∪D{x∗(S)−|S| : { j,n+ i} ⊆ S,{i,n+ j}∩S = /0}.
5: Set S′2 = S2 \ (S1 ∩S2).
6: if x∗(S1)+ x∗(S′2) > |S1|+ |S′2|−3 then
7: A violated inequality has been found. Store the inequality.
8: end if
9: end for

10: end for

The heuristic needs a set S of candidates for the sets Si in the inequality. For this we
use all the sets calculated in lines 3 and 5 of Algorithm 1. We only keep the sets S for which
x(S) > |S|−2 as sets S with x(S)≤ |S|−2 can never play the role of one of the sets Si in a
violated GOC. A multi-graph G′ with n vertices is created. For each set S in S we generate
one or more arcs in the graph. Each arc (i, j), i, j ∈ P corresponds to a set S ∈S for which



18

{ j,n + i} ⊆ S and {i,n + j}∩ S = /0. We associate a cost as well as the vertices of S with
the arc. The cost of the arc is set to |S| − x∗(S)− 1, so that the cost of all arcs are greater
than or equal to zero. To find violated GOCs we look for minimum cost cycles in G′, such
that the vertex sets associated with the arcs in the cycle are mutually disjoint. Only cycles
with cost less than 1 are interesting as these correspond to violated inequalities. Such cycles
can be found by means of a labeling algorithm for the resource constrained shortest path
problem, as described by Irnich and Desaulniers [2005]. This leads to an algorithm whose
running time is not polynomially bounded, but is reasonably fast in practice. To ensure that
the branch-and-cut algorithm does not spend too much time separating GOCs with m ≥ 3
we impose a time limit on the running time of the algorithm for finding cycles in G′.

5.2 Heuristic separation of doubly generalized order matching constraints

In this section we present a heuristic for the DGOMC. Since this family of inequalities
generalizes the OMC and GOMC we do not implement separation procedures for them. It
is worth noting that Ruland [1994] proposed an exact separation procedure for the OMC for
the special case when m = 2.

The separation heuristic for the DGOMC is shown in pseudo-code in Algorithm 2. The
heuristic considers all pairs of requests. For each pair of requests (i,n + i) and ( j,n + j) it
attempts to find a violated inequality with m ≥ 2, where (i,n + i) ⊆ T1 and ( j,n + j) ⊆ T2.
The candidates for T1 and T2 are found in lines 3 and 4. The conditions on the optimization
problem in lines 3 and 4 ensure that the conditions in Proposition 7 are satisfied. In lines
5 and 6 a set H that matches the sets T1 and T2 is constructed. The intermediate set H ′

contains the vertices that H must contain, while the statement in line 6 constructs H such
that x∗(H)−|H| is maximized subject to H satisfying the conditions in Proposition 7. The
sets T1, T2 and H found in lines 3 to 6 could define a violated DGOMC, but before checking
whether a violated inequality has been found, the heuristic tries to add more T sets to the
inequality (in line 8).

Algorithm 2 Doubly generalized order matching separation
1: for all i ∈ {1, . . . ,n} do
2: for all j ∈ {i+1, . . . ,n} do
3: T1 = argmaxS⊆P∪D{x∗(S)−|S| : {i,n+ i} ⊆ S,n+ j /∈ S}.
4: T2 = argmaxS⊆P∪D{x∗(S)−|S| : { j,n+ j} ⊆ S,n+ i /∈ S}.
5: H ′ = {i, j}∪ (T1 ∩T2).
6: H = argmaxS⊆P∪D{x∗(S)−|S| : H ′ ⊆ S,{n+ i,n+ j}∩S = /0}.
7: set Γ = {T1,T2}.
8: Add more T sets to Γ to improve inequality.
9: if x∗(H)+∑T∈Γ x∗(T ) > |H|+∑T∈Γ |T |−2|Γ | then

10: A violated inequality has been found. Store the inequality.
11: end if
12: end for
13: end for

We have implemented two strategies for adding T sets. The first strategy keeps the set
H fixed and adds T sets that are compatible with H and the existing T sets. That is, the new
set T ′ should contain a request (k,n+ k) such that k ∈ H, n+ k /∈ H and T ′∩T ⊆ H for all
T ∈ Γ , where Γ is the set of all existing T sets (introduced in line 7). The second strategy
keeps the existing T sets fixed, but allows H to change. This strategy generates new T sets
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that are compatible with the existing T sets. When a promising new T set has been identified
a new set H is computed that ensures that the conditions from Proposition 7 are satisfied.
This set is constructed in a way that resembles how the original H set was constructed in
lines 5 and 6. For both strategies we only accept changes to an existing collection of T and
H sets if they improve the inequality defined by the original sets (makes the inequality more
violated or makes it closer to being violated). The second strategy is more time consuming
than the first one, so it is only attempted at the root node of the branch-and-cut tree. In lines
9 to 11 the heuristic checks for violation of a DGOMC. If a violated inequality has been
detected, it is stored and the heuristic moves on to a new pair of requests.

The computations in lines 3, 4 and 6 can be performed by using a max-flow algorithm.
In order to speed up the heuristic we only use an exact max-flow algorithm at the root node
of the branch-and-cut tree and a faster heuristic max-flow algorithm elsewhere. Another way
of speeding up the heuristic is to skip lines 3 to 11 if either T1 or T2 found in lines 3 and 4
are poor, that is, if x∗(T1)−|T1| or x∗(T2)−|T2| are close to 2.

5.3 Heuristic separation of π- and σ - inequalities

The heuristic for separating π- and σ -inequalities uses a randomized greedy principle. It
creates an initial candidate set S containing only one vertex. Vertices are added to the set
iteratively. The set S is used as a candidate for both π- and σ -inequalities. At each iteration
the heuristic selects the vertex to add using the formula

arg min
i∈(P∪D)\S

{
min

{
x∗(S\π(S) : S̄\ (π(S)∪{0})),x∗(S\σ(S) : S̄\ (σ(S)∪{2n+1}))

}}
.

A noise is added to the evaluation of x∗(·) in order to randomize the heuristic. If a set S
violates either a π- or a σ -inequality this inequality is stored and the heuristic considers a
new vertex to initialize S. All vertices are used as initial vertices several times.

5.4 Exact separation of lifted subtour elimination constraints

This section describes an exact separation algorithm for the LSEC. The running time of the
procedure is exponential in n, but for the instance sizes considered in this paper it is reason-
ably fast. The pseudo-code is shown in Algorithm 3. We assume that the fractional solution
does not violated any ordinary subtour elimination constraint. In line 1, the algorithm selects
the connector vertex, i.e, the vertex corresponding to vertex i in Proposition 12. We call it
the connector vertex because it provides the connection between the set S and the delivery
vertices outside S. In line 2 the set of interesting delivery vertices for the chosen connector
vertex is determined, and in line 3 the algorithm iterates through all subsets of the interesting
delivery vertices. For each such subset the algorithm computes in line 4 the optimal corre-
sponding set S that together with the connector vertex defines an LSEC. In line 5 a check is
performed to determine if the constructed LSEC is violated.

The computation in line 4 can be carried out using a max-flow computation. The algo-
rithm has a worst case exponential running time as every subset of the set Di is examined
in lines 3 to 8. The set Di can contain up to n elements, but in practice Di is rather small,
usually |Di| ≤ 6.

Proposition 17 Algorithm 3 finds a violated LSEC if one exists.
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Algorithm 3 Exact separation of lifted subtour elimination constraints
1: for all i ∈ {1, . . . ,n} do
2: Di = { j ∈ D\{n+ i} : x∗i j > 0}.
3: for all W ⊆ Di do
4: SW = argmaxS⊆P∪D{x∗(S)−|S| : ({i,n+ i}∪π(W ))⊆ S,W ∩S = /0}.
5: if x∗(SW )+ x∗(i : W ) > |SW |−1 then
6: A violated LSEC has been found, store the inequality.
7: end if
8: end for
9: end for

Proof Assume that S′ ⊆ P∪D and the connector vertex i′ ∈ S′∩P defines a violated LSEC.
We show that the algorithm detects a violated LSEC. Since we assumed that S′ and i′ yielded
a violated LSEC and that no SEC was violated by the fractional solution, we have

∑
j∈(S′∩P),n+ j/∈S′

x∗i′,n+ j > 0.

Let W ′ = { j ∈ σ(S′) : j /∈ S′,x∗i′ j > 0}. Then ∑ j∈(S′∩P),n+ j/∈S′ x∗i′,n+ j = x∗(i : W ′). At some
point during execution of the separation algorithm i = i′ and W = W ′ in line 4, because of
the definition of the set Di. When this occurs the algorithm finds the set SW maximizing
x∗(SW )−|SW | such that ({i,n+ i}∪π(W ))⊆ SW and W ∩SW = /0. The set S′ satisfies these
constraints as well as it defined an LSEC. This implies x∗(SW )− |SW | ≥ x∗(S′)− |S′| and
therefore

x∗(SW )−|SW |+ x∗(i′ : W ) ≥ x∗(S′)−|S′|+ x∗(i′ : W ′) >−1

⇒ x∗(SW )+ x∗(i′ : W ) > |SW |−1.

The second inequality follows as S′ and i defined a violated LSEC. This shows that a violated
inequality will be detected in line 5 whenever i = i′ and W = W ′. ut

The basic algorithm outlined above can be accelerated using the following observations.
In line 3 we can consider the subsets of Di in increasing order of their size, that is, we first
consider singletons. Let SW be the subset found in line 4, corresponding to a set W = {n+ j}.
If x∗(SW ) + x∗(i : Di) ≤ |SW | − 1 then we can remove n + j from Di as no LSEC with i
as connector vertex, j ∈ S and n + j /∈ S can be violated. After removing a vertex from
Di using this rule, it is useful to check whether more vertices can be removed (even the
ones already checked). This is because removing a vertex from Di decreases x∗(i : Di).
The reduction also works when |W | ≥ 2. In this case we eliminate all supersets of W if
x∗(SW )+ x∗(i : Di)≤ |SW |−1 where SW is the set found in line 4 corresponding to W .

5.5 Heuristic separation of generalized lifted subtour elimination constraints

The separation algorithm for the GLSEC is a heuristic. The pseudo-code for separation when
the connector vertex is a pickup is shown in Algorithm 4. In line 3 the heuristic loops over
all candidates for connector vertices. In lines 4 to 7 the heuristic finds a candidate for the set
S given the chosen connector vertex. This is done by finding a path of “highly connected”
vertices in the fractional solution (line 4). The set of vertices formed by the path is extended
by adding more vertices in lines 6 and 7. We prefer to add pickup vertices as this leaves
the algorithm with more opportunities for constructing the T sets. In line 8 we construct the
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Algorithm 4 Heuristic separation of GLSEC
1: Input: fractional solution x∗

2: Generate a weighted graph G′ = (V,E ′) with E ′ = {e ∈ E : x∗e > 0} and weight w(e) = 1− x∗e ,e ∈ E ′.
3: for all i ∈ {1, . . . ,n} do
4: Find shortest path p from i to n+ i in G′.
5: Let S contain the vertices in p.
6: Improve S by adding vertices to S as long as x∗(δ (S)) decreases.
7: Improve S by adding pickup vertices to S as long as x∗(δ (S)) does not increase.
8: Set W = (S∩P)\π(S).
9: for all j ∈W do

10: T = argmaxT∈P∪D{x∗(T )−|T | : {i,n+ j} ⊆ T,T ∩S = {i}}.
11: S′ = argmaxS′∈P∪D{x∗(S′)−|S′| : {i,n+ i, j} ⊆ S′,T ∩S′ = {i}}.
12: set Γ = {T}.
13: Add more T sets to Γ to improve inequality.
14: if x∗(S′)+∑T∈Γ x∗(T ) > |S′|−1+∑T∈Γ (|T |−2) then
15: A violated inequality has been found. Store the inequality.
16: end if
17: end for
18: end for

set W , containing the pickups from S that do not have their corresponding delivery in S. In
lines 9 to 17 the heuristic goes through the vertices in W , trying to construct good T sets. The
purpose of line 11 is to improve the set S given a set T . The optimization problems in lines 10
and 11 can be solved using maximum flow calculations. The sets T and S′ constructed in line
10 and 11 may represent a violated GLSEC, but before checking for violation the heuristic
tries to add more T sets to improve the inequality (in line 13). This is done similarly as for
the first T set in line 10, but one must take care that the constructed T sets only have vertex
i in common. In line 14 one checks whether the set S′ along with the sets in Γ violates a
GLSEC.

5.6 Heuristic separation of depot constraints

The separation routine for the depot constraint is a simple randomized construction heuris-
tic. The heuristic starts with a set S = {0, i} such that x∗0i > 0. Given a candidate set S the best
matching set T is computes as T = D\(S∪σ(S)). The heuristic checks whether S and T de-
fine a violated inequality. If not, it tries to extend S by adding a vertex j. The vertex is chosen
as argmax j∈P∪D\S f (S∪{ j}), where f (S) = 2x∗(S) + x∗ (S : D\ (S∪σ(S)))− 2(|S|+1).
That is, f (S) measures by how much S violates the inequality. If a violated inequality is
detected, then the extension of the set S stops and the inequality is returned. In order to ran-
domize the heuristic, a random number in the interval [−0.3,0.3] is added to f (S) when the
function is evaluated. The heuristic is applied several times with each possible start vertex,
the first time without any randomization.

5.7 Heuristic separation of start-end constraints

A heuristic for the start-end constraints can be constructed by repeatedly solving two sub-
problems: 1) candidate sets S, S1, S2 and ES have to be selected such that S ⊆ P ∪D,
S1 ⊆ S∩ P, S2 ⊆ S∩D and ES ⊆ E(S) and such that inequality (16) is violated, and 2)
one must determine whether (S,S1,S2,ES) is SE-infeasible.
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We first turn our attention to the second subproblem. We have implemented an algo-
rithm that checks whether (S,S1,S2,ES) is SE-infeasible by enumerating feasible partial
paths using only edges from ES ∪ (0 : S1)∪ (S2 : 2n+1). This algorithm precisely deter-
mines whether (S,S1,S2,ES) is SE-infeasible or not, but requires that |S| and |ES| be fairly
small in order to have a reasonable running time.

A heuristic algorithm for checking whether (S,S1,S2,ES) is SE-infeasible works as fol-
lows. First construct the sets SD = {i ∈ S∩D : i− n /∈ S} and SP = {i ∈ S∩P : i + n /∈ S}.
Here, SD is the set of vertices in S that cannot be reached by a feasible path starting in
vertex 0 that only visits vertices from S. The interpretation of SP is similar, but consid-
ers paths ending at vertex 2n + 1. Define graphs G1 = (S,ES \ (δ (SD)∪E(SD))) and G2 =
(S,ES \ (δ (SP)∪E(SP))). For each i∈ S1 define U1

i ⊂ S as the set of vertices from S that are
unreachable from i in G1. Similarly, for each j ∈ S2 define U2

j ⊂ S as the set of vertices from
S that are unreachable from j in G2. If U1

i ∩U2
j 6= /0 for all i ∈ S1, j ∈ S2 then (S,S1,S2,ES)

is SE-infeasible. If U1
i ∩U2

j = /0 for some i ∈ S1 and j ∈ S2 then we do not know whether
(S,S1,S2,ES) is SE-feasible or not. The algorithm is therefore weaker than the enumerative
algorithm, but is much faster in most cases. As a result we only use the enumerative algo-
rithm when |S| ≤ 12 (|S| ≤ 20 at the root node). For larger sets we resort to the heuristic
procedure.

The first subproblem determines the sets S, S1, S2 and ES. We propose two heuristics
for performing this selection. Given a fractional solution x∗ both heuristics use the sets
A1 = {i∈ P : x∗0,i > 0} and A2 = {i∈D : x∗i,2n+1 > 0} as a starting point. For each set B1 ⊆ A1
and B2 ⊆ A2 the first heuristic tries to determine a set S such that S,S1 = B1,S2 = B2 and
ES = {e ∈ E(S) : x∗e > 0} violates inequality (16). This set is determined as follows. Let
S+ = B1 ∪B2 and S− = (σ(B1)∪π(B2)) \ S+. Here, S+ is the set of vertices we need in S
and S− is the vertices that we do not want in S. The set S− is chosen to make it more likely
that the four sets are going to satisfy the conditions in Proposition 16. Now S is determined
by S = argmaxS′⊆P∪D{x∗(S′)−|S′| : S+ ⊆ S′,S−∩S′ = /0} using a maximum flow computa-
tion. After S has been computed the heuristic checks whether the four sets defines a violate
inequality and whether (S,S1,S2,ES) is SE-infeasible. If (S,S1,S2,ES) cannot be proved to
be SE-infeasible we apply a heuristic that greedily removes vertices from S and updates ES
accordingly. After each vertex removal (S,S1,S2,ES) is checked for SE-infeasibility.

The second heuristic for the first subproblem works on a graph G′ = (V ′,E ′) where
V ′ = P∪D and E ′ = {e∈E(V ′) : x∗e > 0}. Each edge e∈E ′ is assigned a weight we = 1−x∗e .
For each set B1 ⊆ A1 and B2 ⊆ A2 the second heuristic builds a set S = B1∪B2 and considers
each pair i, j such that i ∈ B1 and j ∈ B2. The heuristic computes a shortest path between
i and j in the graph G′ and adds all vertices on the path to S. One checks whether the sets
S,S1 = B1,S2 = B2 and ES = e ∈ E(S) : x∗e > 0 violate inequality (16). If they do, a check is
made to determine whether (S,S1,S2,ES) is SE-infeasible.

Every time a violated start-end inequality is detected (by either heuristic) one checks
whether the inequality can be strengthened by greedily adding more edges to ES.

6 Implementation details

The branch-and-cut algorithm was implemented using CPLEX 10.1 and the Concert library.
The search tree is explored using a best bound strategy. The algorithm branches on the xi j
variables. The variable to branch on is chosen using CPLEX’s implementation of strong
branching.
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Priority Name Separation procedure
1 Subtour elimination constraints (SEC) Exact.
2 Precedence constraints (PC) Exact.
3 π-/σ -constraints (PSC) Heuristic.
3 Generalized order constraints (GOC) Exact for m = 2, heuristic for m > 2.
3 Generalized lifted subtour elimination constraints (GLSEC) Heuristic.
3 Lifted subtour elimination constraints (LSEC) Exact.
3 Depot constraints (DC) Heuristic.
3 Doubly generalized order matching constraints (DGOMC) Heuristic.
3 Start-end constraints (StEnC) Heuristic.

Table 1 Overview of the implemented separation procedures

Table 1 provides an overview of the implemented separation routines. The first column
shows the priority of the separation algorithm. Separation procedures with lower priority
are always called before procedures with higher priority. Procedures with the same prior-
ity are called in the order listed in the table. If a separation procedure finds one or more
valid inequalities, then the succeeding separation procedures are not called. If a separation
procedure A fails to find a violated inequality and another procedure B with the same pri-
ority finds violated inequalities, then we start from procedure B the next time we invoke
separation procedures of the same priority.

Adding violated valid inequalities to the LP relaxation normally improves the lower
bound, but separating inequalities and solving linear programs with many constraints can
be time consuming. It is therefore important to achieve a good balance between cutting and
branching. In our algorithm we chose to only add a cut if it is violated by 0.2 or more.
Also, for the first 100 branch-and-bound nodes we separate inequalities at every node, but
thereafter we only separate inequalities at every 20th node.

CPLEX allows the user to activate a number of generic cuts such as disjunctive cuts and
Gomory fractional cuts. Apparently it only uses the inequalities from the initial relaxation
in order to generate new cuts. User cuts added on the fly are not taken into account. The cuts
generated by CPLEX would not be very useful as our initial relaxation only contains equality
(2) and inequalities (3). To make the generic cuts generated by CPLEX more useful our
algorithm solves the root node twice. In the first phase the algorithm generates all violated
inequalities that can be detected using the separation procedures described in Section 5.
After this pass the algorithm extracts the generated inequalities that are binding when all
generated cuts are applied. These inequalities along with equality (2) and inequalities (3)
form the initial relaxation for the second pass. In the second pass CPLEX is allowed to
generate generic cuts and our algorithm generates TSPPD specific inequalities. As a result
CPLEX is able to generate its generic cuts using a richer initial relaxation.

Upper bounds are calculated using a simple large neighborhood search (LNS) heuristic.
The LNS heuristic was proposed by Shaw [1998]; here we use a variant similar to what
was proposed by Ropke and Pisinger [2006]. The heuristic improves an initial solution by
repeatedly removing a set of requests (destroying the solution) and reinserting them in the
solution (repairing the solution). The requests to remove are randomly selected and up to
50% of the requests in the solution can be removed. The requests are reinserted by ordering
them in a random fashion and inserting them one at a time. When a request is inserted its
pickup and delivery vertices are placed in the positions that least increase the overall cost.
After performing a destroy and repair step the algorithm accepts the new solution if it is
better than the current best and discards it otherwise. The descent stops after a predetermined
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number of iterations or after a given number of iterations without improvements. The full
process is repeated n times using random starting solutions.

A simple local search procedure has been implemented to help intensify the search. It
considers each request in turn. If relocating the pickup and delivery pair to another position
in the tour decreases the overall cost, then that move is performed. This is continued as long
as improving moves can be found. The relocate local search procedure is applied every time
a new solution has been constructed by the insertion procedure and it is also applied to the
partial tour obtained after removing requests with a 50% probability.

7 Computational results

All algorithms were implemented in C++ and were run on an AMD Opteron 250 computer
(2.4 GHz) running Linux. Section 7.1 describes the data sets used for the computational
tests and Section 7.2 investigates the impact of the valid inequalities proposed in the paper.
Section 7.3 analyses the results of the branch-and-cut algorithm.

7.1 Data sets

We have performed tests on three data sets. The first set of instances was created by gen-
erating 2n + 1 points randomly in the square [0,1000]× [0,1000]. The first point is used
as the depot while the remaining points are paired to form requests (point i is paired with
point n + i). The travel costs (ci j) were set equal to the Euclidean distances. Instances with
n = 5,10,15,20,25,30,35 were created, five for each size. The instances are named probnX ,
where X is one of the letters a, b, c, d and e used to distinguish between instances with the
same size.

Two other data sets were proposed by Renaud et al. [2002]. One set of instances (the
second data set in this paper) was generated from TSP instances from the TSPLIB (Reinelt
[1991]). This data set contains instances ranging from 25 to 220 requests. We only used the
instances with less than 51 requests in our tests. A TSP instance with an odd number of
vertices is transformed into a TSPPD instance by designating the first vertex as the depot.
Pickup-delivery pairs are formed by choosing a random vertex as pickup. Its corresponding
delivery is selected using one of the following rules: Rule A: Select the delivery vertex from
among the five closest neighbors (not yet selected) of the pickup vertex. Rule B: Select the
delivery vertex from among the ten closest neighbors (not yet selected) of the pickup vertex.
Rule C: Select the delivery vertex randomly from the remaining vertices. For each TSP
instance three TSPPD instances were created, one for each of the three rules. The last letter
in the instance name indicates the rule used to create the instance.

The third set of instances was also proposed by Renaud et al. [2002]. These instances
were constructed as follows. A random TSP instance was constructed and solved to opti-
mality. The first constructed vertex was chosen as depot and the tour was followed from this
vertex to create pickup-delivery pairs. To create a pickup-delivery pair, the next unselected
vertex on the tour was chosen as pickup and the delivery was chosen randomly among the
remaining unselected vertices. This creates a TSPPD instance for which the optimal TSP
solution also is optimal for the TSPPD. Ten instances with 50 requests and ten instances
with 100 requests were created.

For all test sets travel costs ci j are rounded to the nearest integer. All data sets can be
downloaded from www.diku.dk/~sropke.
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7.2 Impact of the valid inequalities

This section reports on the impact of the valid inequalities on the lower bound. Tables 2
and 3 show the impact of adding violated valid inequalities. Table 2 contains results for the
first data set (randomly generated instances), while Table 3 contains results for the TSPLIB
instance proposed by Renaud et al. [2002] (second data set). The basis of the comparison is
the lower bound obtained by solving the linear relaxation of (1)–(6). The subtour elimination
(4) and precedence constraints (5) are separated exactly when solving this model.

In this section we add an inequality if it is violated by at least 0.01. This is different from
the branch-and-cut algorithm where we are more conservative and only add an inequality
if it is violated by at least 0.2. We choose to add more inequalities in this section to better
show the potential of each family of inequalities.

The columns in the tables should be interpreted as follows: n is the number of requests,
SEC+PC reports the integrality gap of the linear relaxation of (1)–(6). The integrality gap is
calculated as 100(z̄− z′)/z̄, where z′ is the value of the LP relaxation of (1)–(6) and z̄ is the
upper bound (either best known heuristic solution or optimal solution if it is known). The
columns GOC, DGOMC, LSEC, GLSEC, DC, PSC and StEnC (see Table 1 for definitions of
the abbreviations) show by how much the integrality gap is closed when the particular family
of valid inequalities is added to the LP relaxation of (1)–(6). The entries are calculated as
100(z− z′)/(z̄− z′), where z is the lower bound after adding the particular family, and z′

and z̄ are defined as before. Entries are left blank if the initial LP relaxation solved the IP
to optimality. The column All shows the gap closed when using all separation procedures
described in Section 5 and the column All+CPLEX shows the gap closed when using the
same inequalities as in the All column, plus the general purpose cuts provided by CPLEX.

The results show that the GOC and GLSEC are the inequalities that work best toward
closing the integrality gap. For the first data set (Table 2) the LSEC, PSC and StEnC also turn
out to be worthwhile. For the second data set (Table 3) the StEnC are less powerful while
DGOMC, LSEC, GLSEC, PSC appear to be roughly equally important. It is interesting to
note the behavior of the DGOMC on the second data set. The inequalities work best on the
A instances while they are less effective on the C instances. We believe this is because the
pickup and delivery vertices associated with the same request are close to each other in the
A instances, and therefore it is easier to construct the T sets in the inequality that has to
contain both the pickup and delivery of a selected request.

Tables 4 and 5 show the time it takes to solve the LP relaxations considered in Tables 2
and 3. The table groups results according to the instance size and reports the average com-
putation time over all instances with the same size. The first column in each table indicates
the instance size. Note that the last row provides an average over all instances in the data set.

We see that the StEnC are the most time consuming to separate for data set 1. It may
seem counter-intuitive that it sometimes takes less time to separate all inequalities than it
does just to separate StEnC inequalities. The reason for this behaviour is that the time con-
suming StEnC separation procedure is called more often when only this type of inequality
along with SEC and PC are separated. When all the other inequalities are enabled the StEnC
separation procedure is called less often as the other inequalities are able to close most of
the gap. For data set 2 the most time consuming inequalities are GOC, StEnC and GOMC.
The instances in the second data set (Table 5) are larger than in the first and we therefore
observe larger running times for this data set.
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Gap Gap closed Gap closed
Name n SEC+PC GOC DGOMC LSEC GLSEC DC PSC StEnC All All+CPLEX

prob5a 5 2.5 65.6 92.6 78.1 78.1 18.1 81.1 27.8 100.0 100.0
prob5b 5 0.0
prob5c 5 0.0
prob5d 5 0.0
prob5e 5 5.0 76.0 14.4 100.0 100.0 0.0 50.2 100.0 100.0 100.0

prob10a 10 12.4 64.4 24.8 34.6 64.8 6.0 29.7 36.6 85.2 93.7
prob10b 10 16.1 88.5 35.1 20.6 50.9 6.7 37.2 56.8 95.6 100.0
prob10c 10 4.1 100.0 44.1 66.1 77.4 48.5 73.0 96.0 100.0 100.0
prob10d 10 5.0 41.3 23.3 10.4 45.3 5.8 50.8 44.2 94.3 100.0
prob10e 10 3.8 49.8 9.9 17.7 17.7 3.3 19.5 53.3 82.0 100.0
prob15a 15 11.0 54.4 22.8 27.4 30.0 11.2 28.8 30.5 73.4 84.7
prob15b 15 19.8 58.2 27.4 40.9 51.3 0.5 31.9 26.4 68.6 76.6
prob15c 15 6.2 97.0 34.2 62.0 69.7 16.0 68.3 58.1 100.0 100.0
prob15d 15 12.3 67.3 18.7 23.6 32.9 4.5 22.2 27.6 75.3 80.9
prob15e 15 5.2 100.0 44.0 38.7 59.1 11.4 41.4 21.9 100.0 100.0
prob20a 20 11.3 87.0 26.1 39.6 46.3 9.2 29.3 24.8 94.0 99.6
prob20b 20 13.2 77.2 12.7 15.6 16.3 11.8 23.5 18.3 88.2 91.7
prob20c 20 12.1 58.0 19.8 32.7 38.8 3.6 29.0 19.4 74.5 80.1
prob20d 20 8.7 69.4 12.9 16.0 25.3 4.7 19.8 18.0 76.7 80.4
prob20e 20 12.2 51.3 11.9 26.2 32.1 1.4 24.1 29.5 62.2 66.3
prob25a 25 17.0 38.1 9.2 8.2 19.2 2.7 6.2 4.9 42.0 46.9
prob25b 25 14.7 51.3 16.9 25.3 29.3 4.6 18.8 17.0 56.5 59.4
prob25c 25 14.2 52.2 14.5 27.0 30.2 2.9 21.5 22.5 63.4 67.8
prob25d 25 14.9 39.4 9.4 12.8 22.4 6.3 15.6 11.5 44.9 48.5
prob25e 25 12.2 58.9 18.5 15.8 26.3 2.0 20.7 7.3 70.1 74.0
prob30a 30 18.4 51.5 12.8 23.6 27.4 4.2 19.2 17.6 58.6 60.4
prob30b 30 16.4 55.1 25.5 26.8 35.5 9.9 27.9 22.5 63.8 66.1
prob30c 30 14.7 55.4 11.7 13.1 18.5 4.1 11.1 3.3 56.7 61.1
prob30d 30 12.5 61.0 7.1 21.1 22.5 1.7 18.4 7.8 68.5 70.8
prob30e 30 16.5 49.3 13.2 18.0 20.4 6.2 17.3 8.3 54.4 58.3
prob35a 35 14.9 55.2 14.1 13.8 23.4 6.2 17.1 15.9 63.5 66.1
prob35b 35 20.3 43.7 17.0 15.0 22.0 0.9 17.4 2.6 47.9 50.2
prob35c 35 16.6 56.3 15.6 17.4 28.4 8.0 16.8 13.4 64.2 67.1
prob35d 35 16.5 47.2 7.9 14.5 20.0 5.6 19.0 11.7 53.9 55.5
prob35e 35 17.5 38.0 6.9 8.8 10.8 1.6 9.1 2.3 42.5 44.3

Avg. 10.4 61.2 21.1 28.5 37.3 7.2 28.6 26.8 72.5 76.6

Table 2 Impact of the valid inequalities on data set 1.

7.3 Performance of the branch-and-cut algorithm

We now evaluate the performance of the branch-and-cut algorithm. We have tested the al-
gorithm on the three data sets introduced in Section 7.1. The branch-and-cut algorithm uses
all developed separation routines and the generic CPLEX cuts were also enabled. All exper-
iments were performed within a time limit of four hours.

Results for the first, second and third data sets are presented in Tables 6, 7 and 8. The
GOC and DGOMC separation procedures were disabled for the experiments on the third
data set as the implemented separation procedures for these inequalities do not scale well
with instance size.

The columns in the tables should be interpreted as follows: Best IP is the best integer
solution, i.e. either the optimal solution (if known) or the best solution found by the heuristic,
seconds is the computation time in seconds, a check mark in the Opt column indicates that
the instance was solved to optimality, Root LB is lower bound at the root node, Best LB is
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Gap Gap closed Gap closed
Name n SEC+PC GOC DGOMC LSEC GLSEC DC PSC StEnC All All+CPLEX

EIL51A 25 8.2 15.4 31.4 8.1 8.1 0.0 35.4 0.6 56.5 68.1
EIL51B 25 8.6 31.8 17.5 15.2 15.2 5.8 13.3 0.4 45.6 53.2
EIL51C 25 11.9 35.9 0.1 3.5 4.5 5.3 14.6 0.0 43.0 46.9
ST69A 34 12.1 37.1 28.9 17.1 18.6 0.0 19.1 1.0 59.1 62.1
ST69B 34 11.9 38.3 19.6 19.4 20.3 0.0 18.2 5.3 51.9 54.5
ST69C 34 15.6 46.3 11.9 18.3 22.4 5.7 19.7 1.2 54.5 57.0

EIL75A 37 8.4 18.1 18.6 11.9 12.0 0.0 14.4 0.0 33.2 38.1
EIL75B 37 10.6 24.5 11.8 17.9 21.9 0.8 14.8 2.5 31.9 34.5
EIL75C 37 9.0 28.6 3.9 5.5 12.3 2.1 12.5 1.3 34.6 40.1
PR75A 37 17.7 37.0 30.5 22.1 26.0 0.0 24.4 13.3 54.3 55.7
PR75B 37 15.1 39.2 18.4 15.0 24.6 0.9 21.3 13.9 47.9 51.6
PR75C 37 14.4 55.8 8.2 28.3 31.1 0.3 29.7 20.8 62.3 65.0

KROA99A 49 15.3 41.8 40.5 31.8 32.4 0.0 32.5 1.3 62.3 65.7
KROA99B 49 19.7 43.0 24.1 18.5 26.5 0.4 19.3 4.7 50.1 51.8
KROA99C 49 17.0 48.4 13.8 17.2 21.1 4.0 12.8 2.3 52.0 53.9
KROB99A 49 14.3 41.3 30.6 31.5 33.5 0.0 21.7 4.4 54.3 56.6
KROB99B 49 12.7 49.5 30.1 27.6 37.2 0.1 27.4 4.2 71.0 73.8
KROB99C 49 14.8 62.4 6.1 20.4 26.2 3.7 9.9 1.3 65.8 67.3
KROC99A 49 20.7 41.2 30.4 25.6 31.6 0.1 27.7 3.3 55.4 57.7
KROC99B 49 18.8 36.7 32.0 18.4 22.4 4.7 26.9 5.9 51.0 52.5
KROC99C 49 20.8 46.3 7.7 16.0 19.9 0.4 14.3 7.0 50.6 52.4
KROD99A 49 15.5 31.7 33.1 25.7 27.9 1.4 29.5 1.6 56.8 59.0
KROD99B 49 17.3 42.8 29.9 22.0 30.9 0.4 20.6 2.0 55.3 57.8
KROD99C 49 17.1 44.3 8.6 12.2 17.7 0.8 8.6 9.8 46.8 48.9
KROE99A 49 15.3 25.4 45.5 17.8 22.8 0.0 33.3 5.2 61.7 63.7
KROE99B 49 17.1 33.5 24.7 12.9 22.3 0.6 17.6 2.7 44.6 46.6
KROE99C 49 14.8 43.1 15.9 13.1 20.4 5.2 20.0 3.6 52.7 54.8

RAT99A 49 12.5 33.9 31.8 34.5 34.6 0.2 33.7 11.3 56.4 60.8
RAT99B 49 16.9 35.7 15.2 22.7 26.1 0.0 19.5 9.9 42.0 44.2
RAT99C 49 11.0 43.4 13.8 27.4 30.1 12.0 39.0 19.6 62.2 64.1
EIL101A 50 8.6 20.5 21.6 9.9 14.6 1.3 15.9 0.0 33.3 36.4
EIL101B 50 9.4 27.7 10.6 10.0 15.9 0.8 15.5 0.0 34.0 38.4
EIL101C 50 7.7 18.8 5.5 3.3 7.0 2.2 12.1 0.5 29.1 33.0

Avg. 14.0 37.0 20.4 18.2 22.4 1.8 21.1 4.9 50.4 53.5

Table 3 Impact of the valid inequalities on data set 2.

n SEC+PC GOC DGOMC LSEC GLSEC DC PSC StEnC All All+CPLEX
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

10 0.0 0.1 0.1 0.0 0.1 0.0 0.1 8.4 2.7 3.1
15 0.0 0.2 0.7 0.1 0.2 0.1 0.2 8.9 6.9 12.9
20 0.1 1.1 1.3 0.3 0.5 0.1 0.6 8.6 4.9 16.8
25 0.2 2.5 4.0 0.6 1.3 0.3 1.1 6.0 10.5 44.8
30 0.3 7.1 6.0 1.2 2.1 0.4 2.7 11.1 24.1 73.2
35 0.3 10.3 12.0 1.2 3.1 0.5 4.3 11.0 32.3 100.3

Avg. 0.2 5.3 5.6 0.7 1.4 0.3 2.2 8.7 18.5 56.8

Table 4 Computation time (in seconds) for the root node on data set 1.

the best lower bound proved after branching, RLB/UB reports the value 100z/z̄, where z is
the lower bound in the root node and z̄ is the best integer solution, BLB/UB reports the value
100z′/z̄, where z′ is the best lower bound after branching, BC nodes is the number of nodes
in the branch-and-cut tree, #cuts is the number of cuts applied (excluding CPLEX cuts).

The results reported in Tables 6 and 7 show that the algorithm is able to solve all in-
stances with up 20 requests (42 vertices) within one minute, and most of the instances with
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n SEC+PC GOC DGOMC LSEC GLSEC DC PSC StEnC All All+CPLEX
25 0.1 2.3 4.3 0.3 0.5 0.2 0.9 0.3 10.1 29.7
34 0.4 5.7 22.1 1.3 2.0 0.5 3.4 1.0 54.4 129.0
37 0.4 6.2 21.6 1.4 2.8 0.4 4.1 9.5 43.0 120.3
49 1.3 25.6 80.5 4.3 7.3 1.6 14.0 58.1 130.6 429.8
50 1.3 18.6 60.2 2.7 4.5 1.6 10.0 1.4 77.5 192.2

Avg. 1.0 17.5 55.7 3.0 5.1 1.1 9.7 33.6 92.0 288.2

Table 5 Computation time (in seconds) for the root node on data set 2.

25 requests could be solved within the time limit. Some instances with 30 and 35 requests
could be solved as well. Most of the larger instances in Table 7 seem to be out of reach
of the current algorithm, although a few instances with 49 requests might be solved if the
time limit was increased to one or two days (i.e. KROB99B and RAT99C). For the larger
instances the algorithm manages to prove reasonable lower bounds after branching. These
lower bounds are often within 5% of the upper bound.

Table 8 tells a different story. Here all instances are solved within a relatively short time
even though the data set contains instances with up to 100 requests. The reason is that the
optimal solutions for these instances are identical to the optimal TSP solutions as explained
earlier. This implies that we are able to obtain very good lower bounds at the root node as it
is well know that the linear relaxation of (3), (4) and (6) provides a tight lower bound on the
optimal TSP solution. Adding TSPPD inequalities improves the lower bound even further.

We are aware of only two papers reporting computational testing of exact algorithms
for the TSPPD. In Kalantari et al. [1985] instances with up to 15 requests are solved to
optimality. The authors also solve an instance with 18 requests, but this instance has the
same structure as the instances in our data set 3: the optimal solution to the TSPPD coincides
with the optimal TSP solution. In Ruland and Rodin [1997] instances with up to 15 requests
are also solved to optimality. Unfortunately the data sets used in the two aforementioned
papers are not available, and therefore a direct comparison is not possible. We can conclude
that our approach more than doubles the number of requests in the largest instance solved to
optimality (35 requests); we do not consider the instances of the third data set here because
of their particular structure.

8 Conclusions

We have presented new polyhedral results, valid inequalities and separation procedures for
the Traveling Salesman Problem with Pickup and Delivery, a very difficult combinatorial
optimization problem. Using these results we have devised an exact branch-and-cut algo-
rithm capable of solving instances involving up to 35 pickups and delivery requests, thus
more than doubling the previous record of 15 requests.

Acknowledgements This work was partially supported by the Canadian National Sciences and Engineering
Research Counsil under grants 227837-04 and 39682-05. This support is gratefully acknowledged.

References

E. Balas, M. Fischetti, and W. R. Pulleyblank. The precedence-constrained asymmetric
traveling salesman polytope. Mathematical Programming, 68:241–265, 1995.



29

Name n Best IP Seconds Opt Root LB Best LB RLB/UB BLB/UB BC Nodes #cuts
prob5a 5 3585 0 X 3585.00 3585.00 100.0 100.0 1 19
prob5b 5 2565 0 X 2565.00 2565.00 100.0 100.0 1 6
prob5c 5 3787 0 X 3787.00 3787.00 100.0 100.0 1 6
prob5d 5 3128 0 X 3128.00 3128.00 100.0 100.0 1 6
prob5e 5 3123 0 X 3123.00 3123.00 100.0 100.0 1 45

prob10a 10 4896 3 X 4851.08 4896.00 99.1 100.0 4 134
prob10b 10 4490 2 X 4490.00 4490.00 100.0 100.0 1 135
prob10c 10 4070 0 X 4070.00 4070.00 100.0 100.0 1 93
prob10d 10 4551 1 X 4551.00 4551.00 100.0 100.0 1 93
prob10e 10 4874 4 X 4874.00 4874.00 100.0 100.0 1 97
prob15a 15 5150 8 X 5030.48 5150.00 97.7 100.0 6 268
prob15b 15 5391 21 X 5085.48 5391.00 94.3 100.0 45 580
prob15c 15 5008 0 X 5008.00 5008.00 100.0 100.0 1 165
prob15d 15 5566 14 X 5417.93 5566.00 97.3 100.0 15 390
prob15e 15 5229 0 X 5229.00 5229.00 100.0 100.0 1 140
prob20a 20 5698 12 X 5647.92 5698.00 99.1 100.0 9 438
prob20b 20 6213 20 X 6125.61 6213.00 98.6 100.0 20 473
prob20c 20 6200 19 X 6042.74 6200.00 97.5 100.0 28 444
prob20d 20 6106 17 X 5985.96 6106.00 98.0 100.0 28 369
prob20e 20 6465 58 X 6181.51 6465.00 95.6 100.0 115 962
prob25a 25 7332 14400 6632.90 7168.14 90.5 97.8 14377 3244
prob25b 25 6665 3138 X 6259.86 6665.00 93.9 100.0 7952 2266
prob25c 25 7095 291 X 6767.27 7095.00 95.4 100.0 878 1255
prob25d 25 7069 14323 X 6515.85 7069.00 92.2 100.0 21627 3873
prob25e 25 6754 72 X 6529.99 6754.00 96.7 100.0 125 704
prob30a 30 7309 14400 6745.14 7196.27 92.3 98.5 8296 3238
prob30b 30 6857 2843 X 6461.94 6857.00 94.2 100.0 4528 2262
prob30c 30 7723 1891 X 7258.73 7723.00 94.0 100.0 4269 2019
prob30d 30 7310 573 X 7028.66 7310.00 96.2 100.0 1783 1372
prob30e 30 7213 14400 6683.29 7166.34 92.7 99.4 10523 3412
prob35a 35 7746 2104 X 7338.12 7746.00 94.7 100.0 3541 1649
prob35b 35 7904 14400 7084.73 7496.03 89.6 94.8 6167 2764
prob35c 35 7949 14400 7509.94 7858.39 94.5 98.9 8427 3194
prob35d 35 7905 14400 7306.69 7686.77 92.4 97.2 9025 2944
prob35e 35 8530 14400 7690.94 8069.74 90.2 94.6 9791 3562

28 96.5 99.5

Table 6 Branch-and-cut results for data set 1 - Randomly generated instances
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Name n Best IP Seconds Opt Root LB Best LB RLB/UB BLB/UB BC Nodes #cuts
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