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HEC Montréal and Interuniversity Research Centre on Enterprise Networks,

Logistics and Transportation (CIRRELT), Montreal, Canada H3T 2A7

email: ivan.contreras@cirrelt.ca, jean-francois.cordeau@cirrelt.ca, gilbert.laporte@cirrelt.ca

Abstract

We study stochastic uncapacitated hub location problems in which uncertainty is
associated to demands and transportation costs. We show that the stochastic prob-
lems with uncertain demands or dependent transportation costs are equivalent to their
associated deterministic expected value problem (EVP), in which random variables are
replaced by their expectations. In the case of uncertain independent transportation
costs, the corresponding stochastic problem is not equivalent to its EVP and specific
solution methods need to be developed. We describe a Monte-Carlo simulation-based
algorithm that integrates a sample average approximation scheme with a Benders de-
composition algorithm to solve problems having stochastic independent transportation
costs. Numerical results on a set of instances with up to 50 nodes are reported.

Keywords: hub location; stochastic programming; Monte-Carlo sampling; Benders
decomposition

1 Introduction

Hub location problems (HLPs) arise in transportation, telecommunication and computer net-
works, where hub-and-spoke architectures are frequently used to efficiently route commodi-
ties between many origin and destination (O/D) pairs. The performance of these networks
relies on the use of consolidation, switching, or transshipment points, called hub facilities,
where flows from several origins are consolidated and rerouted to their destinations, some-
times via another hub. In HLPs the locations of the hubs as well as the paths for sending
the commodities have to be determined. Broadly speaking, HLPs consist in locating hubs
on a network so as to minimize the total flow cost.

Due to their multiple applications, these problems are receiving increased attention. So-
lution methods have been developed for several variants of HLPs analogous to well-known
discrete facility location problems, such as uncapacitated hub location, p-hub location, p-hub
center, and hub covering. For each of these classes of problems, there exist several variants
arising from various assumptions, such as hub capacities or a specific topological structure
for the hub-and-spoke network. There are two basic assumptions underlying most HLPs.
The first is that commodities have to be routed via a set of hubs, and thus paths between
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O/D pairs include at least one hub facility. The second assumption is that hubs are fully
interconnected with more effective, higher volume pathways that enable a discount factor
τ(0 < τ < 1) to be applied to all transportation costs associated to the commodities routed
between a pair of hubs. The reader is refered to Alumur and Kara (2008) and to Campbell
et al. (2002) for recent surveys on HLPs.

The location of hub facilities corresponds to long-term strategic decisions which are typ-
ically made within an uncertain environment. That is, costs, demands, distances, and other
parameters may change after location decisions have been made. Nevertheless, standard
HLP models treat data as known and deterministic. This can result in highly sub-optimal
solutions given the inherent uncertainty surrounding future conditions. There exist basically
two streams of research dealing with optimization under uncertainty: stochastic optimiza-
tion and robust optimization. In stochastic optimization, it is assumed that the values of the
uncertain parameters are governed by known probability distributions. In robust optimiza-
tion, it is assumed that parameters are uncertain but no information about their probability
distributions is know except for the specification of intervals containing the uncertain values.

In classical facility location, stochastic models have been widely investigated over the last
four decades. Louveaux (1986, 1993) presents classical reviews on modeling approaches for
stochastic facility location in which the location of the facilities is considered as a first-stage
decision and the distribution pattern is a second-stage decision. Some of these models (see
Louveaux and Peeters, 1992; Laporte et al., 1994) consider capacities on the facilities, and
facility size is considered as a first-stage decision. Ravi and Sinha (2006) propose a stochastic
problem in which facilities may be open in either the first or second stage, while incurring
different installation costs in each stage. The survey by Snyder (2006) covers both stochastic
and robust location models for stochastic location problems.

To the best of the authors’ knowledge, there exist only three published articles related
to stochastic hub location problems. Marianov and Serra (2003) focus on stochasticity at
the hub nodes by representing hub airports as M/D/c queues and limiting through chance
constraints the number of airplanes that can queue at an airport. The authors present a
linear mixed integer programming (MIP) formulation and propose a heuristic procedure to
obtain feasible solutions for instances with up to 30 nodes. Sim et al. (2009) introduce
the stochastic p-hub center problem and employ a chance-constrained formulation to model
the minimum service-level requirement. Their model takes into account the variability in
travel times when designing the hub network so that the maximum travel time through the
network is minimized. The authors present a linear MIP formulation for the problem, under
the assumption that travel times on the arcs are independent normal random variables.
They also propose several heuristics to obtain feasible solutions for instances with up to 25
nodes. Yang (2009) presents a stochastic model for air freight hub location and flight route
planning under seasonal demand variations. The author models the problem as a two-stage
stochastic program with recourse, in which the location of hub facilities is considered as a
first-stage decision and the planning of flight routes as a second-stage decision. Stochasticity
on demands as well as on discount factors on the arcs of the network is considered. Moreover,
the model allows direct connections between non-hub nodes. A MIP formulation for the
problem is presented under the assumption that demand is governed by a discrete probability
distribution involving only three possible scenarios. A case study from a 10-node air freight
market in Taiwan and China is also described.
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One of the problems that have received most attention in deterministic hub location is
the Uncapacitated Hub Location Problem with Multiple Assignments (UHLPMA). In this
problem, the number of required hubs to locate is not known in advance, but a fixed set-up
cost for each hub facility is considered. The capacity of the hubs and of the links of the hub
network is unbounded. It is assumed that flows originating at the same node but having
different destination points can be routed through different sets of hub nodes, i.e. a multiple
assignment pattern applies. The objective is to minimize the sum of the hub fixed costs
and demand routing costs. The best known formulations for the UHLPMA, in terms of LP
relaxation bounds, are those of Hamacher et al. (2004) and of Maŕın et al. (2006), whereas
the best exact algorithms are those of Cánovas et al. (2007), Camargo et al. (2008), and
Contreras et al. (2010a). In particular, the Benders decomposition algorithm of Contreras
et al. (2010a) can efficiently solve large-scale UHLPMA instances with up to 500 nodes.

In the UHLPMA, demand between O/D pairs as well as transportation costs are treated
as known and deterministic. However, in real applications future demand is not known in
advance and only a forecast may be available. Transportation costs between node pairs are
usually defined to be proportional to the distance between nodes. However, transportation
costs are also intimately related to the price of resources (fuel, electricity, raw materials)
used to provide the actual transportation of demand, which may be highly uncertain. Other
sources of uncertainty in transportation costs may be due to: i) uncertainty in travel dis-
tances, ii) traffic and congestion, iii) tariff changes by outsourcing companies, and iv) link
failures. In this paper we study how the UHLPMA can be modeled as a two-stage integer
stochastic program with recourse in the presence of uncertainty on demands and transporta-
tion costs. In particular, we introduce three different stochastic versions of the UHLPMA.
The first is the Uncapacitated Hub Location Problem with Stochastic Demands (UHL-SD)
in which demands between O/D pairs are considered to be stochastic. The second is the
Uncapacitated Hub Location Problem with Stochastic Dependent Transportation Costs (UHL-
SDC) where uncertainty is given by a single parameter influencing transportation costs. It
is assumed that this parameter equally affects the transportation costs for all links of the
network. The third is the Uncapacitated Hub Location Problem with Stochastic Independent
Transportation Costs (UHL-SIC) in which the transportation costs are also stochastic. How-
ever, this problem considers the more general case in which the uncertainty of transportation
costs is independent for each link of the network. We show that both UHL-SD and UHL-
SDC are equivalent to their associated Expected Value Problem (EVP) in which uncertain
transportation costs are replaced with their expected value (see Birge and Louveaux, 1997).
However, this equivalence does not hold for the UHL-SIC.

We use a Monte-Carlo simulation-based method, known as the Sample Average Approx-
imation (SAA) scheme (Kleywegt et al., 2001), to solve UHL-SIC problems with continuous
distance distributions, and therefore, an infinite number of scenarios. This method can also
be applied to UHL-SIC problems with a finite but very large number of scenarios. The
idea of the SAA scheme is to generate a random sample and approximate the expected value
function by the corresponding sample average function. The associated deterministic sample
average optimization problem is then solved to obtain a solution of UHL-SIC, and the pro-
cedure is repeated. The SAA scheme not only generates high quality solutions when solving
the sample average problems, but is also able to produce a statistical estimation of their
optimality gap. We integrate a Benders decomposition scheme to solve the corresponding
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SAA problems.
The remainder of this paper is organized as follows. Sections 2 formally introduces two-

stage stochastic models for the considered problems. Section 3 describes our solution method
for the UHL-SIC. Computational results are presented in Section 4, followed by conclusions
in Section 5.

2 Stochastic Uncapacitated Hub Location Problems

Before presenting the stochastic uncapacitated hub location models under study, we describe
their deterministic counterpart, the UHLPMA. Let G = (Q,A) be a complete digraph, where
Q is the set of nodes and A is the set of arcs. Let also H ⊆ Q represent the set of potential
hub locations, and K be the set of commodities whose origin and destination points belong
to Q. For each commodity k ∈ K, define Wk as the amount of commodity k to be routed
from the origin o(k) ∈ Q to the destination d(k) ∈ Q. For each node i ∈ H, fi is the fixed
set-up cost for locating a hub at node i. The transportation cost between nodes i and j is
defined as cij = γdij, where dij is the distance between nodes i and j, which is assumed to
satisfy the triangle inequality, and γ is the resource cost per unit distance. All costs relate
to the same planning horizon.

Given that hub nodes are fully interconnected and distances satisfy the triangle inequality,
every path between an origin and a destination node will contain at least one and at most
two hubs. For this reason, paths between two nodes are of the form (o(k), i, j, d(k)), where
(i, j) ∈ H ×H is the ordered pair of hubs to which o(k) and d(k) are allocated, respectively.
Therefore, the unit transportation cost of routing commodity k along path (o(k), i, j, d(k))
is given by Fijk = χco(k)i + τcij + δcjd(k), where χ, τ , and δ represent the collection, transfer
and distribution costs along the path. To reflect economies of scale between hub nodes,
we assume that τ < χ and τ < δ. The UHLPMA consists in locating a set of hubs and
in determining the routing of commodities through the hub nodes, with the objective of
minimizing the total set-up and transportation cost.

We define binary location variables zi, i ∈ H, equal to 1 if and only if a hub is located
at node i. We also introduce binary routing variables xijk, k ∈ K and (i, j) ∈ H ×H, equal
to 1 if and only if commodity k transits via a first hub node i and a second hub node j.
Following Hamacher et al. (2004), the UHLPMA can be stated as follows:

minimize
∑
i∈H

fizi +
∑
i∈H

∑
j∈H

∑
k∈K

WkFijkxijk (1)

subject to
∑
i∈H

∑
j∈H

xijk = 1 k ∈ K (2)∑
j∈H

xijk +
∑

j∈H\{i}

xjik ≤ zi i ∈ H, k ∈ K (3)

xijk ≥ 0 i, j ∈ H, k ∈ K (4)

z ∈ B|H|. (5)

The first term of the objective function represents the total set-up cost of the hub facilities
and the second term is the total transportation cost. Constraints (2) guarantee that there is
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a single path connecting the origin and destination nodes of every commodity. Constraints
(3) prohibit commodities from being routed via a non-hub node. Finally, constraints (4)
and (5) are the standard non-negativity and integrality constraints. Given that there are no
capacity constraints on the hub nodes, there is no need to explicitly state the integrality on
the xijk variables because there always exists an optimal solution of (1)–(5) in which all xijk
variables are integer.

We now present three stochastic variants of UHLPMA that incorporate uncertainty on
demands Wk and transportation costs Fijk. They can be formulated as two-stage stochastic
programs with recourse, where the first-stage decisions correspond to the location of the hub
facilities and the second-stage decisions correspond to the optimal routing of the commodi-
ties. As before, we use the zi variables for the location of hubs and the xijk variables for the
routing of commodities. However, given that the optimal routing of commodities depends
on the particular realization of the random event ξ, we need to consider routing variables
for each possible realization of ξ, i.e., xijk(ξ), k ∈ K and (i, j) ∈ H ×H, are binary routing
variables equal to one if and only if commodity k transits via a first hub node i and a second
hub node j for realization ξ.

2.1 Case A: Stochastic Demands

We consider the UHL–SD in which demand is uncertain. For each commodity k ∈ K,
let Wk(ξ) be a random variable representing the future demand of commodity k. It is
assumed that the Wk(ξ) are independent random variables, governed by known probability
distributions, and that the distribution function of

∑
k∈KWk(ξ) can be computed. The

UHL–SD can be stated as:

minimize
∑
i∈H

fizi + Eξ

[∑
k∈K

∑
i∈H

∑
j∈H

(Wk(ξ)Fijk)xijk(ξ)

]
(6)

subject to
∑
i∈H

∑
j∈H

xijk(ξ) = 1 k ∈ K, ξ ∈ Ξ (7)∑
j∈H

xijk(ξ) +
∑

j∈H\{i}

xjik(ξ) ≤ zi i ∈ H, k ∈ K, ξ ∈ Ξ (8)

xijk(ξ) ≥ 0 i, j ∈ H, k ∈ K, ξ ∈ Ξ (9)

z ∈ B|H|, (10)

where Eξ denotes the mathematical expectation with respect to ξ and Ξ is the support of ξ.
The first term of the objective function represents the total set-up cost of the hub facilities
and the second term is the total expected transportation cost with respect to ξ. Constraints
(7)–(10) have the same meaning as in the case of UHLPMA, but they are defined for every
possible realization of ξ.

We now show that the UHL–SD is in fact a deterministic problem in which the demands
Wk(ξ) can be replaced by their expectation.
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Proposition 1 The stochastic program UHL–SD is equivalent to the expected value problem:

minimize
∑
i∈H

fizi +
∑
i∈H

∑
j∈H

∑
k∈K

(Eξ [Wk(ξ)]Fijk)xijk (11)

subject to (2)− (5).

Proof Observe that, given a first-stage vector z, the second-stage term of the objective
function can be separated into |K| independent subproblems, one for each commodity k ∈ K.
Furthermore, and more importantly, the optimal solution of each of these subproblems does
not depend on the particular realization of the random variable ξ. That is, the optimal route
for sending each commodity is the same regardless of the actual value of the demand Wk(ξ).
Let x(z) be the optimal solution vector associated to a first-stage solution z. Then

xijk(ξ) = xijk(z) ∀k ∈ K, ∀i, j ∈ H, ∀ξ ∈ Ξ. (12)

By (12), the second-stage expectation of the objective function can be expressed as

Eξ

[∑
i∈H

∑
j∈H

∑
k∈K

(Wk(ξ)Fijk)xijk(z)

]
=
∑
i∈H

∑
j∈H

∑
k∈K

(Eξ [Wk(ξ)]Fijk)xijk(z),

where the equality follows from the fact that summations and expectation can be inter-
changed. The UHL-SD is therefore equivalent to the deterministic problem (11), (2)–(5).
�

2.2 Case B: Dependent Stochastic Transportation Costs

We now focus on the UHL–SDC in which uncertainty relates to the resource cost γ. Con-
sequently, the transportation costs Fijk are stochastic but dependent on a single uncertain
parameter. In this problem the random variable γ is described by a known probability distri-
bution. The unit transportation cost between every node pair (i, j) is c1ij(ξ) = γ(ξ)dij. There-
fore, the unit transportation cost of routing commodity k along the path (o(k), i, j, d(k)) is

given by F 1
ijk(ξ) =

(
χc1o(k)i(ξ) + τc1ij(ξ) + δc1jd(k)(ξ)

)
. The UHL–SDC can be stated as:

minimize
∑
i∈H

fizi + Eξ

[∑
k∈K

∑
i∈H

∑
j∈H

(
WkF

1
ijk(ξ)

)
xijk(ξ)

]
(13)

subject to (7)− (10).

We now show that the UHL–SDC can also be represented by a deterministic problem in
which the transportation scale cost γ(ξ) is replaced by its expectation.

Proposition 2 The stochastic program UHL–SDC is equivalent to the expected value prob-
lem:

minimize
∑
i∈H

fizi +
∑
i∈H

∑
j∈H

∑
k∈K

(
WkEξ

[
F 1
ijk(ξ)

])
xijk (14)

subject to (2)− (5).
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Proof The proof uses the same idea as that of Proposition 1. Given a first-stage vector
z, the second-stage term of the objective function can be separated into |K| independent
subproblems. Given that

F 1
ijk(ξ) =

(
χγ(ξ)do(k)i + τγ(ξ)dij + δγ(ξ)djd(k)

)
= γ(ξ)

(
χdo(k)i + τdij + δdjd(k)

)
,

the optimal route for sending each commodity is the same regardless of the actual value of
γ(ξ). Let x(z) be the optimal solution vector associated to a first-stage solution z. Then
(12) follows and the second-stage expectation of the objective function can be expressed as

Eξ

[∑
i∈H

∑
j∈H

∑
k∈K

(
Wk(ξ)F

1
ijk

)
xijk(z)

]
=
∑
i∈H

∑
j∈H

∑
k∈K

(
WkEξ

[
F 1
ijk(ξ)

])
xijk.

The UHL–SDC is thus equivalent to the deterministic problem (14), (2)–(5). �

2.3 Case C: Independent Stochastic Transportation Costs

We now consider the UHL-SIC in which transportation costs Fijk are stochastic. It is assumed
that the random variables dij(ξ), i, j ∈ Q, are independent and described by known proba-
bility distributions, and that for any S ⊆ Q×Q, the distribution function of

∑
(i,j)∈S dij(ξ)

can be computed. In this case, transportation costs between nodes may no longer satisfy the
triangle inequality. However, we assume that for each commodity k the path between origin
and destination nodes will have at least one and at most two hub nodes. This assumption is
often made even when transportation costs do not satisfy the triangle inequality (see, e.g.,
Maŕın et al., 2006; Contreras et al., 2010b). It is also consistent with practice. In ground
transportation, for example, it is convenient to restrict each route to use at most two hub
nodes so as to reduce handling and congestion in the hub facilities. In air transportation, it
is also uncommon for a passenger to connect at more than two hub nodes.

The unit transportation cost between nodes i and j is c2ij(ξ) = γdij(ξ). Therefore,
the unit cost of routing commodity k along the path (o(k), i, j, d(k)) is given by F 2

ijk(ξ) =(
χc2o(k)i(ξ) + τc2ij(ξ) + δc2jd(k)(ξ)

)
. The UHL-SIC can be stated as

minimize
∑
i∈H

fizi + Eξ

[∑
k∈K

∑
i∈H

∑
j∈H

(
WkF

2
ijk(ξ)

)
xijk(ξ)

]
(15)

subject to (7)− (10).

Observe that, in the case of the UHL-SIC, we cannot replace F 2
ijk(ξ) variables by their

expected value to obtain an equivalent deterministic problem because, contrary to the pre-
vious cases, the optimal solution of the second-stage depends on the particular realization
of the random vector ξ.

We can extend some properties of optimal solutions of the UHLPMA to perform pre-
processing to the UHL-SIC (see Contreras et al., 2010a). These properties lead to a more
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compact formulation with fewer variables, but with the same number of constraints. In
particular, we define a set of candidate hub edges for each commodity k ∈ K and for every
possible realization of ξ as

Ek(ξ) =

{
{e|e ∈ E, |e| = 1}

⋃
Ak(ξ), if o(k) 6= d(k),

{e|e ∈ E, |e| = 1} , otherwise,

where

Ak(ξ) =
{
e : e ∈ E, |e| = 2 and

(
Fek(ξ) < min

{
F{e1}k(ξ), F{e2}k(ξ)

})}
.

The UHL–SIC can thus be restated as

minimize
∑
i∈H

fizi + Eξ

∑
k∈K

∑
e∈Ek(ξ)

(
WkF

2
ek(ξ)

)
xek(ξ)

 (16)

subject to
∑
e∈Ek

xek(ξ) = 1 k ∈ K, ξ ∈ Ξ (17)∑
e∈Ek(ξ):i∈e

xek(ξ) ≤ zi i ∈ H, k ∈ K, ξ ∈ Ξ (18)

xek(ξ) ≥ 0 k ∈ K, ξ ∈ Ξ, e ∈ Ek(ξ) (19)

z ∈ B|H|. (20)

3 Algorithm for the UHL-SIC

We now present an algorithm for the UHL-SIC. The methodology incorporates a sampling
technique, known as the SAA scheme (see Shapiro and Homem-De-Mello, 1998; Mak et al.,
1999; Kleywegt et al., 2001), coupled with a Benders decomposition method (see Benders,
1962). The SAA scheme has previously been applied to obtain high quality solutions to
stochastic supply chain design problems with a very large number of scenarios (Santoso et
al., 2005; Schütz et al., 2009).

3.1 Sample Average Approximation

The main difficulty in solving the stochastic problem (15), (7)–(10) lies in the evaluation
of the expected value of the objective function. In the SAA scheme, a random sample
N =

{
ξi, . . . , ξ|N |

}
of realizations of the random vector ξ is generated, and the second-stage

expectation

Eξ

∑
k∈K

∑
e∈Ek(ξ)

(
WkF

2
ek(ξ)

)
xek(ξ)


is approximated by the sample average function

1

|N |
∑
n∈N

∑
k∈K

∑
e∈Ekn

F̂eknxekn,
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where F̂ekn = WkF
2
ekn. Therefore, the original problem (15), (7)–(10) is approximated by the

SAA problem

minimize
∑
i∈H

fizi +
1

|N |
∑
n∈N

∑
k∈K

∑
e∈Ekn

F̂eknxekn (21)

subject to
∑
e∈Ekn

xnek = 1 n ∈ N, k ∈ K (22)∑
e∈Ekn:i∈e

xekn ≤ zi n ∈ N, i ∈ H, k ∈ K (23)

xekn ≥ 0 n ∈ N, k ∈ K, e ∈ Ekn (24)

z ∈ B|H|. (25)

Let vN and ẑN be the optimal solution value and an optimal solution, respectively, of the
SAA problem (21)–(25). Observe that for a particular realization ξi, . . . , ξ|N | of the random
sample, the problem (21)–(25) is deterministic and can be solved by integer programming
techniques.

It can be shown that under mild regularity conditions, vN and ẑN converge with prob-
ability one to their true counterparts, as the sample size |N | increases, and furthermore
ẑN converges to an optimal solution of the true problem with probability approaching one
exponentially fast (see Kleywegt et al., 2001). It is possible to estimate the sample size |N |
needed to generate an ε-optimal solution to the original problem, assuming that the SAA
problem is solved within an absolute optimality gap δ ≥ 0, with probability at least equal
to 1− α whenever

|N | ≥ 3σ2
max

(ε− δ)2
log

(
|B|H||
α

)
, (26)

where ε > δ and α ∈ (0, 1). Here σ2
max is a maximal variance of certain function differences

(see Kleywegt et al., 2001, for details). It is known that the sample size estimate (26) is too
conservative for practical applications. However, one can choose a sample size |N | as a trade-
off between the quality of the associated optimal solution of the SAA problem (21)–(25) and
the computational burden needed to solve it. Therefore, instead of solving one large-scale
SAA problem, the SAA algorithm involves the repeated solution of the smaller SAA problem
(21)–(25) with independent samples. Then, statistical confidence intervals are computed to
evaluate the quality of the approximate solutions. We now describe this procedure.

1. Generate a set M =
{
N1, . . . , N|M |

}
of independent samples, each of size |N |, i.e.,

ξij, . . . , ξ
|N |
j for j ∈M . For each sample Nj solve the corresponding SAA problem

minimize
∑
i∈H

fizi +
1

|N |
∑
n∈Nj

∑
k∈K

∑
e∈Ekn

F̂eknxekn (27)

subject to (22)− (25).

Let vNj and ẑNj , j ∈M , be the corresponding optimal objective value and an optimal
solution, respectively.
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2. Compute the average of all optimal solution values from the SAA problems and their
variance:

µNM =
1

|M |
∑
j∈M

vNj ,

σ2
µN

M
=

1

(|M | − 1)|M |
∑
j∈M

(
vNj − µNM

)2
.

It is known that the average µNM provides a statistical lower bound for the optimal
value of the original problem (15), (7)–(10) (Norkin et al., 1998; Mak et al., 1999), and
σ2
µN

M
is an estimate of the variance of this estimator.

3. Choose a feasible solution ẑ ∈ B|H| of the original problem, for instance, one of the
previously obtained solutions ẑNj . Using this solution, it is possible to estimate the
optimal solution value v∗ of the original problem (15), (7)–(10) as follows:

vN ′(ẑ) =
∑
i∈H

fizi +
1

|N ′|
∑
n∈N ′

∑
k∈K

∑
e∈Ekn

F̂eknxekn,

where ξi, . . . , ξN
′

is a sample of size N ′ generated independently of the samples em-
ployed in the SAA problems. Given that the first-stage variables are fixed, one can
take |N ′| much larger than the sample size |N | used in the SAA problems. Note that
v(ẑ) is an estimate on the upper bound on the optimal solution value v∗ of the original
problem. The variance of this estimate can be computed as

σ2
N ′(ẑ) =

1

(|N ′| − 1)|N ′|
∑
n∈N ′

(∑
i∈H

fizi +
∑
k∈K

∑
e∈Ekn

F̂eknxekn − v(ẑ)

)2

.

4. Compute an estimate of the absolute optimality gap of solution ẑ and its variance by
using the lower and upper bound estimates on the optimal solution value of the original
problem (15), (7)–(10) obtained in Steps 2 and 3.

gapN,M,N ′(ẑ) = vN ′(ẑ)− µNM ,
σ2

gap = σ2
µN

M
+ σ2

N ′(ẑ).

Using these estimators, we can construct a confidence interval for the optimality gap.

3.2 Benders Decomposition for the SAA Problem

The most computationaly expensive part of the SAA algorithm is the solution of |M | two-
stage stochastic integer problems (21)–(25) involving |N | scenarios in Step 1. Even though
problem (21)–(25) has far fewer scenarios than the original problem (15), (7)–(10), it is still
a very large MIP problem that cannot be efficiently solved by means of a general-purpose
solver, even for small size instances. We must therefore resort to a decomposition algorithm.
In what follows, we present a Benders decomposition scheme for solving the SAA problem
to optimality.
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Benders decomposition is a well-known partitioning algorithm that separates an origi-
nal mixed-integer problem into two simpler ones: an integer master problem and a linear
subproblem. In this section, we introduce a Benders reformulation of the SAA problem and
describe a Benders decomposition algorithm to solve it.

3.2.1 Benders Reformulation

For any fixed vector ẑ ∈ B|H|, the primal subproblem (PS) in the space of the xekn variables
is

v(ẑ) = minimize
1

|N |
∑
n∈N

∑
k∈K

∑
e∈Ekn

F̂eknxekn

subject to (22), (25)∑
e∈Ekn:i∈e

xekn ≤ ẑi n ∈ N, i ∈ H, k ∈ K. (28)

Let αkn and uikn be the dual variables associated with constraints (22) and (28), respectively.
The dual subproblem (DS), which is the dual of PS, can be stated as follows:

maximize
∑
k∈K

∑
n∈N

αkn −
∑
i∈H

∑
k∈K

∑
n∈N

ẑiuikn (29)

subject to αkn − ue1kn − ue2kn ≤ F̂ekn n ∈ N, k ∈ K, e ∈ Ekn, |e| = 2 (30)

αkn − ue1kn ≤ F̂ekn n ∈ N, k ∈ K, e ∈ Ekn, |e| = 1 (31)

uikn ≥ 0 n ∈ N, k ∈ K, i ∈ H. (32)

Let D denote the set of feasible solutions of DS and let PD denote the set of extreme
points of D. Observe that D is not modified when changing ẑ and, because Fekn ≥ 0 for
each e ∈ Ek and k ∈ K, the null vector 0 is always a solution to DS. Hence, because of
strong duality, either the primal subproblem is feasible and bounded, or it is infeasible. We
are thus interested in ẑ vectors that give rise to primal subproblems of the former case. It is
known that if there exists at least one open hub facility, the primal and dual subproblems
are always feasible and bounded (see Contreras et al., 2010a). Therefore, it follows that the
dual objective function value is equal to

max
(α,u)∈PD

∑
k∈K

∑
n∈N

αkn −
∑
i∈H

∑
k∈K

∑
n∈N

ẑiuikn. (33)

Introducing an extra variable η for the overall transportation cost, we can formulate the
Benders master problem (MP) as follows:

minimize
∑
i∈H

fizi + η

subject to η ≥
∑
k∈K

∑
n∈N

αkn −
∑
i∈H

∑
k∈K

∑
n∈N

uiknzi ∀(α, u) ∈ PD (34)∑
i∈H

zi ≥ 1 (35)

z ∈ B|H|. (36)

11



Observe that Benders feasibility cuts associated with the extreme rays of D are not necessary
in the Benders reformulation because the feasibility of PS is ensured by constraints (35).
We have thus transformed problem (21)–(25) into an equivalent MIP problem with |H|
binary variables and one continuous variable. Nevertheless, the above Benders reformulation
contains an exponential number of constraints and must be tackled by an adequate cutting
plane approach. Thus, we iteratively solve relaxed master problems containing a small subset
of constraints (34) associated with the extreme points of PD, and we keep adding these as
needed by solving dual subproblems until an optimal solution to the original problem is
obtained.

It is known that the number of cuts required to obtain an optimal solution can be reduced
given that the subproblem is decomposable into |K| × |N | independent subproblems (see,
e.g. Birge and Louveaux, 1988). We could in principle generate optimality cuts associated to
extreme points of each dual polyhedron of the |K|×|N | subproblems. However, this approach
may not be so effective given the large number of cuts to be added at each iteration. In fact,
preliminary computational experiments have shown that the best Benders reformulation, in
terms of required CPU times, is the one obtained by aggregating the information obtained to
generate a set of optimality cuts associated with subsets of commodities. This reformulation
has also been the most effective for solving the UHLPMA (Contreras et al., 2010a). In
particular, for each node i ∈ H, let Ki ⊂ K be the subset of commodities whose origin
node is i. We can separate the subproblem into |H| independent subproblems, one for each
node. Hence, we consider the dual polyhedra of these |H| subproblems and generate cuts
from them. Let PD be the set of extreme points of the dual polyhedron PDi associated with
subproblem i. We thus obtain the following Benders reformulation:

minimize
∑
i∈H

fizi +
∑
i∈H

ηi

subject to (35), (36)

ηi ≥
∑
k∈Ki

∑
n∈N

αtkn −
∑
i∈H

∑
k∈Ki

∑
n∈N

utiknzi ∀i ∈ H, (α, u) ∈ PDi . (37)

Using this reformulation, only |H| potential optimality cuts will be generated when solv-
ing the subproblem, instead of |K| × |N | cuts needed for the full separability into |K| × |N |
dual subproblems.

3.2.2 Benders Decomposition Algorithm

Let ub denote an upper bound on the optimal solution value and let t represent the current
iteration number. Let P t

D denote the restricted set of extreme points of D at iteration t,
MP(P t

D) the relaxed master problem obtained by replacing PD by P t
D in MP, and v(MP (P t

D))
its optimal solution value. Also, let zt be an optimal solution vector of MP(P t

D), DS(zt) the
dual subproblem for zt, and v(DS(zt)) its optimal solution value. A pseudo-code of the
Benders decomposition algorithm is provided in Algorithm 1.

12



Algorithm 1: Benders decomposition
ub←∞, t← 0
P t
D ← ∅
terminate← false
while (terminate = false) do

Solve MP(P t
D) to obtain zt

if (v(MP (P t
D)) = ub) then

terminate← true
else

Solve DS(zt) to obtain (αt, ut) ∈ PD
P t+1
D ← P t

D ∪ {(αt, ut)}
if (v(DS(zt)) +

∑
i∈H fiz

t
i < ub) then

ub← v(DS(zt)) +
∑

i∈H fiz
t
i

end if
end if
t← t+ 1

end while

Whenever the problem defined by (21)–(25) is feasible, Algorithm 1 will yield an optimal
solution. We use the algorithm described in Contreras et al. (2010a) for efficiently solving
DS(zt) and obtain good optimality cuts at each iteration of the algorithm.

4 Computational Experiments

In this section we present the results of computational experiments performed to assess
the behaviour of the proposed solution method. We first focus on some implementation
details concerning the practical convergence of the SAA scheme, we then compare the effects
of uncertainty under different continuous probability distributions and different levels of
uncertainty on the optimal solutions of the UHL-SIC, and finally we test the robustness and
limitations of our method on instances involving up to 50 nodes. All algorithms were coded
in C and run on a Dell Studio PC with an Intel Core 2 Quad processor Q8200 running at 2.33
GHz and 8 GB of RAM under a Linux environment. The master problems of all versions of
the algorithm to solve the SAA problems were solved using the callable library of CPLEX
10.1.

We have generated a set of benchmark instances using the procedure described in Contr-
eras et al. (2010a). These instances consider different levels of magnitude for the amount of
flow originating at a given node to obtain three different sets of nodes: low-level (LL) nodes,
medium-level (ML) nodes, and high-level (HL) nodes. The total outgoing flow of LL, ML
and HL nodes lies in the interval [1, 10], [10, 100], and [100, 1000], respectively. Using these
nodes, different classes of instances can be generated. We generate instances of the class Set
I (see Contreras et al., 2010a, for details), in which the number of HL, ML, and LL nodes
is 2%, 38% and 60% of the total number of nodes, respectively. We generate instances with
|H| = 10, 20, 30, 40, and 50 and assume gamma and normal distributions for the uncertain
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transportation costs. We set the mean transportation costs cij between node i and j, for all
i, j ∈ H, equal to the Euclidean distance and the standard deviation equal to σij = ν × cij,
where ν is the coefficient of variation. The non-negativity of the transportation costs is
naturally preserved in the gamma distribution, whereas the normal distribution has to be
truncated to avoid negative values.

4.1 Practical Convergence of SAA Algorithm

The aim of the first part of the computational experiments is to analyze the practical con-
vergence of the SAA scheme. Recall that during the SAA procedure, we need to generate
|M | independent samples of size |N |. In order to select the proper sizes |N | and |M |, some
trade-offs need to be made. On the one hand, the objective function of the SAA problem
tends to be a more accurate estimate of the objective function as we increase |N |. This
implies that an optimal solution of the SAA problem tends to be a better solution and the
corresponding estimate on the optimality gap tends to be tighter as |N | increase. On the
other hand, the computational complexity for the solution of the SAA problem increases
at least linearly in |N | and frequently exponentially. Therefore, it may be more efficient to
choose a smaller sample of size |N | and to increase |M |. We are interested in finding |N |
and |M | such that the estimated optimality gap and the variance of the gap estimator are
sufficiently small while keeping the required CPU time at minimum.

We test the practical convergence of the SAA algorithm by using different combinations
of sample sizes |N | ∈ {20, 50, 100, 500, 1000} and |M | ∈ {10, 20, 40, 60, 80, 100}. To perform
this analysis, we select two 10-node instances of Set I having both τ = 0.2 and ν = 0.5, but
with different probability distributions for the uncertain transportation costs. For each of
the optimal solutions obtained in the SAA problems, we use a sample size of |N ′| = 100,000
to obtain good estimations of the optimal solution value of the true problem (15), (7)–(10).
Figures 1A and 1B plot the estimated optimality gap for different sample sizes |N | and
|M | when considering the normal and gamma distributions for the uncertain transportation
costs, respectively.

Hoja4

Página 1

-0.5

0

0.5

1

1.5

2

2.5

3

|M|=10 |M|=20 |M|=40 |M|=60 |M|=80 |M|=100

Es
ti

m
at

ed
 %

 g
ap

Number of SAA problems (M)

|N|=20

|N|=50

|N|=100

|N|=500

|N|=1000

Hoja4

Página 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

|M|=10 |M|=20 |M|=40 |M|=60 |M|=80 |M|=100

Es
ti

m
at

ed
 %

 g
ap

Number of SAA problems (M)

|N|=20

|N|=50

|N|=100

|N|=500

|N|=1000

(A) Normal distribution (B) Gamma distribution

Figure 1: Optimality gap for a 10-node instance with different values of |N | and |M |.
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For the normal distribution (Figure 2A), we observe that by choosing a small sample size
|N | ≤ 100, the optimality gap remains above 0.5% even if we increase the sample size |M |.
We can also appreciate that a higher number of SAA problems need to be solved in order to
obtain a more accurate estimation of the optimality gap corresponding to a particular value
of the sample size |N |. In contrast, when using a larger sample size such as |N | = 500 and
|N | = 1000, only a small number of SAA problems are required to obtain more accurate
optimality gaps below 0.1%. For the gamma distribution (Figure 2B), it is necessary to
increase the number of SAA problems to solve in order to obtain accurate optimality gaps
when using small samples |N | ≤ 100. Observe that if |N | = 20, the estimated optimality gap
is -0.1% if |M | = 10, whereas a more accurate estimation of 0.8% is obtained when increasing
the number of SAA problems to |M | = 100. When using a larger sample |N | ≥ 500, only a
small number of SAA problems are needed to obtain an accurate optimality gap below 0.1%.

Figures 2A and 2B plot the estimated standard deviation for the optimality gap for
different sample sizes of |N | and |M |, with normal and gamma distributions, respectively.
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Figure 2: Standard deviation for the optimality gap for a 10-node instance with different
values of |N | and |M |.

As expected, we observe that as the sample sizes |N | and |M | increase, the corresponding
standard deviation for the optimality gap is considerably reduced for both the normal and
gamma distributions. However, when considering large sample sizes |N | ≥ 500 the standard
deviation is sufficiently small, even if a small number of SAA problems are solved. In
contrast, with sample sizes |N | ≤ 50 a larger number of SAA problems are needed to reduce
the variability.

Figures 3A and 3B plot the total CPU time required for the SAA algorithm for different
sample sizes |N | and |M | with the normal and gamma distributions, respectively. From
these figures, we observe that the computational complexity for solving the SAA problems
seems to increase only linearly in |N | in both cases. For instance, the required CPU time in
the case of the normal distribution, |N | = 500 and |M | = 80 is 80 seconds whereas the CPU
time increases to 140 seconds when |N | = 1000.

The results of the previous experiments indicate that it seems better to increase the
sample size |N | rather than the number of SAA problems when applying the SAA algorithm
to the UHL-SIC. Furthermore, our results also indicate that when using a large sample size
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Figure 3: Total CPU time for a 10-node instance with different values of |N | and |M |.

|N |, only a small number of SAA problems are required to obtain tight optimality gaps having
a small deviation. For these reasons, during the rest of the computational experiments we
use sample sizes |N | = 1000 and |M | = 20.

4.2 Effects of Uncertainty on Optimal Solutions

The second part of the experiments is devoted to studying the effects of introducing uncer-
tainty in the transportation costs of the UHLPMA. We use the coefficient of variation as
a control parameter to introduce different levels of uncertainty into the model. In particu-
lar, we consider ν ∈ {0.25, 0.5, 0.75, 1.0, 2.0} to represent a wide range of situations for the
amount of uncertainty in the transportation costs. We compare the stochastic solutions of
UHL-SIC obtained with the SAA algorithm to those of the optimal solution of EVP.

We first study the effects of uncertainty by using the two 10-node instances of Set I
used in the previous experiments. The computational results for the normal and gamma
distributions are summarized in Tables 1 and 2, respectively. The first column provides the
coefficient of variation ν whereas the next two columns give the estimated objective value
relative to the EVP and the best solution provided by the SAA algorithm, respectively.
The Lower bound SAA column provides the statistical lower bound obtained with the SAA
algorithm, i.e. the average µNM . The next two columns under the heading Estimated % gap
provide the percent optimality gap relative to the EVP and the best solution provided by the
SAA algorithm, respectively. We recall that the gaps are computed with respect to the lower
bound obtained by the SAA algorithm. The next column gives the 95% confidence interval
for the optimality gap of the best solution obtained by the SAA algorithm. We assume that
gapN,M,N ′(ẑ) is normally distributed with variance σ2

gap. The next column under the heading
Time (sec) gives the total time in seconds for required for the SAA algorithm. The last
column provides the best found solution for the SAA algorithm. The first row with ν = 0.00
corresponds to the optimal EVP solution.

The results presented in Table 1 show that, for the considered instance, the optimal EVP
solution does not remain optimal when uncertainty is introduced in the transportation costs.
The SAA algorithm yields in all cases a better solution having a smaller optimality gap than
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Table 1: Comparison for a 10-node instance of Set I using a normal distribution.
Objective value Lower bound Optimality % gap CI for SAA Time Best

ν EVP SAA SAA EVP SAA % gap at 95% (sec) solution
0.00 25483.75 - - - - - 0.14 1,5,8
0.25 25333.91 25224.59 25214.35 0.47 0.04 (-0.13,0.21) 28.68 1,5
0.50 24976.67 24255.89 24244.58 2.93 0.05 (-0.21,0.30) 34.29 5,7,9
0.75 25182.79 23859.95 23860.72 5,25 0.00 (-0.27,0.26) 38.56 5,7,9
1.00 25973.57 24344.77 24276.20 6.53 0.28 (0.00,0.56) 56.41 5,7,9
2.00 31434.09 28188.67 28161.16 10.41 0.10 (-0.21,0.41) 76.38 4,5,7,9

that of the EVP. Moreover, this difference becomes more important when the variability
in the uncertain transportation costs increases. For a low variability level ν = 0.25, the
optimal (or best known) set of hubs is reduced to only two hubs by eliminating hub node 8.
However, for medium variability levels ν = 0.50, 0.75 and 1.0, the set changes to be the hub
nodes 5, 7 and 9. In the case of a high variability level ν = 2.0, the cardinality of the set
increases by one. Note that node 5 is the only hub node that appears in all considered cases
of uncertainty.

Table 2: Comparison for a 10-node instance of Set I using a gamma distribution.
Objective value Lower bound Optimality % gap CI for SAA Time Best

ν EVP SAA SAA EVP SAA % gap at 95% (sec) solution
0.00 25483.75 - - - - - 0.14 1,5,8
0.25 24543.10 24152.47 24130.73 1.68 0.09 (-0.12,0.30) 34.94 1,5
0.50 23479.64 22851.23 22852.34 2.67 0.00 (-0.23,0.22) 39.76 1,5,7
0.75 22573.51 21595.95 21598.96 4.32 -0.01 (-0.29,0.26) 42.01 1,5,7
1.00 21795.88 20584.52 20564.26 5.65 0.10 (-0.20,0.39) 47.05 1,5,7
2.00 19525.83 17846.37 17827.08 8.70 0.11 (-0.23,0.45) 60.35 1,5,7

Similar observations can be drawn from Table 2 for the gamma distribution. When
ν = 0.25, the best set of hub nodes is the same as for the normal distribution. However, for
higher levels of variability ν ≥ 0.5, the set of hubs becomes {1, 5, 7}. Note that nodes 1 and
5 are always selected as hub nodes in all considered cases of uncertainty.

We have also used a 10-node instance from the well-known AP (Australian Post) set of
instances to study the effects of uncertainty. This data set is the most commonly used in the
hub location literature (mscmga.ms.ic.ac.uk/jeb/orlib/phubinfo.html). Transportation costs
are proportional to the Euclidean distances eij between 200 cities in Australia and the values
of Wk represent postal flows between pairs of cities. From this set of instances, we select the
10-node instances with set-up costs of the type loose (L), inter-hub discount cost τ = 0.2,
and compute the expected transportation cost as dij = TC×eij for each pair (i, j) ∈ H×H,
where TC = 3 is a scaling parameter for the transportation costs (see Contreras et al.,
2010a, for details). The computational results for the normal and gamma distributions are
summarized in Tables 3 and 4, respectively.

The results presented in Table 3 show that the optimal EVP solution remains the best
(provably optimal) solution when uncertainty is introduced in the transportation costs, even
for the largest considered level of variability ν = 2.0. Similar results can be drawn from
Table 4 for the gamma distribution. Only for the highest level of variability ν = 2.0,
is the SAA algorithm capable of finding a slightly better solution than the optimal EVP
solution. Additional computational experiment have shown that similar results are obtained
for the majority of AP data instances with up to 50 nodes. This situation may be partially
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Table 3: Comparison for a 10-node instance of AP using a normal distribution.
Objective value Lower bound Optimality % gap CI for SAA Time Best

ν EVP SAA SAA EVP SAA % gap at 95% (sec) solution
0.00 189568.81 - - - - - 0.12 1,4,7
0.25 189503.05 189503.05 189498.61 0.00 0.00 (-0.24,0.24) 27.82 1,4,7
0.50 189427.06 189427.06 189423.11 0.00 0.00 (-0.24,0.24) 28.01 1,4,7
0.75 189332.76 189332.76 189342.71 -0.01 -0.01 (-0.25,0.23) 29.11 1,4,7
1.00 189222.63 189222.63 189216.51 0.00 0.00 (-0.24,0.24) 28.65 1,4,7
2.00 188847.70 188847.70 188844.77 0.00 0.00 (-0.24,0.24) 28.33 1,4,7

Table 4: Comparison for a 10-node instance of AP using a gamma distribution.
Objective value Lower bound Optimality % gap CI for SAA Time Best

ν EVP SAA SAA EVP SAA % gap at 95% (sec) solution
0.00 189568.81 - - - - - 0.12 1,4,7
0.25 189497.02 189497.02 189491.78 0.00 0.00 (-0.24,0.24) 27.62 1,4,7
0.50 189128.30 189128.30 189118.00 0.01 0.01 (-0.24,0.25) 27.70 1,4,7
0.75 188511.60 188511.60 188493.37 0.01 0.01 (-0.25,0.24) 29.74 1,4,7
1.00 187621.25 187621.25 187584.65 0.02 0.02 (-0.22,0.26) 32.51 1,4,7
2.00 183165.52 183085.70 182979.98 0.10 0.06 (-0.12,0.24) 46.57 4,7

explained by the fact that the AP instances are known to have a very peculiar flow structure.
In particular, it is known that the amount of flow originating at each node is highly variable
in every instance of this set: all instances have a very small number of nodes for which
the outgoing flow is much larger than for the other nodes (see Contreras et al., 2010a).
This situation seems to bias the optimal location of the hubs since very few nodes have a
large impact on the overall cost of the network and thus greatly influence the hub location
decisions. Therefore, even if we introduce a high variability in the uncertain transportation
costs, the optimal EVP solution is still the best one.

4.3 Solving Medium-Size Instances

In the last part of the computational experiments, we analyze and evaluate the performance
of the SAA algorithm on medium-size instances with up to 50 nodes. The computational
results for the normal and gamma distributions are summarized in Tables 5 and 6, respec-
tively. The first three columns provide the number of nodes, the discount factor and the
coefficient of variation. The other columns have the same meaning as in the previous tables.

The results of Table 5 confirm the efficiency of the SAA algorithm for the UHL-SIC. The
estimated optimality gaps of the best solutions provided by the SAA algorithm are always
below 0.1%, except for one instance with 0.28%, and the upper bounds of the confidence
intervals never exceed 0.56%. Moreover, the SAA algorithm is able to improve the solution of
the expected value problem in 19 out of the 20 tested instances. Nevertheless, the CPU time
required for the SAA algorithm grows very fast when instance size and variability increase.

Similar results can be drawn from Table 6 for the gamma distribution. The estimated
optimality gap provided by the SAA algorithm is always below 0.1% and the upper bound
for the confidence interval never exceeds 0.46%.
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Table 5: Computational results for 20 instances of Set I using a normal distribution.
Instance Objective value LB % Gap CI for SAA Time Best solution

|H| τ ν EVP SAA SAA EVP SAA % gap SAA EVP SAA
10 0.2 0.5 24976.67 24255.89 24244.58 2.93 0.05 (-0,21,0,30) 34.29 1,5,8 5,7,9
10 0.7 0.5 28220.7 28220.70 28198.95 0.08 0.08 (-0,12,0,28) 19.49 1,5 1,5
10 0.2 1.0 25973.57 24344.77 24276.20 6.53 0.28 (0,00,0,56) 56.41 1,5,8 5,7,9
10 0.7 1.0 29650.95 29355.77 29325.46 1.10 0.10 (-0,15,0,36) 37.22 1,5 1,5,9
20 0.2 0.5 41060.47 40757.68 40751.59 0.75 0.01 (-0,21,0,24) 791.07 2,20 2,4,20
20 0.7 0.5 48853.55 48695.73 48693.27 0.33 0.01 (-0,15,0,16) 374.20 2,20 2,11
20 0.2 1.0 44758.35 41915.99 41877.31 6.44 0.09 (-0,14,0,33) 1740.00 2,20 2,11,20
20 0.7 1.0 53093.10 50712.01 50752.43 4.41 -0.08 (-0,38,0,18) 1499.68 2,20 2,11,19,20
30 0.2 0.5 149425.70 148219.39 148219.39 0.81 0.00 (-0,20,0,20) 5332.18 7,24,28 6,7,24
30 0.7 0.5 178453.27 175772.29 175765.89 1.51 0.00 (-0,16,0,17) 2421.57 7,18 6,7,17
30 0.2 1.0 151485.62 148820.66 148849.47 1.74 -0.02 (-0,26,0,22) 18329.18 7,24,28 7,11,17,24
30 0.7 1.0 184972.61 173460.65 173356.94 6.28 0.06 (-0,14,0,26) 13759.99 7,18 1,7,17
40 0.2 0.5 112094.75 112094.75 112129.65 -0.03 -0.03 (-0,28,0,18) 11582.06 9,17,20 9,17,20
40 0.7 0.5 129931.89 125250.34 125185.79 3.65 0.05 (-0,09,0,19) 6169.20 9,21 9,28
40 0.2 1.0 121937.39 120169.73 120208.65 1.42 -0.03 (-0.34,0.27) 52745.89 9,17,20 9,20,28
40 0.7 1.0 146287.70 135070.60 135129.94 7.63 -0.04 (-0,26,0,17) 30930.29 9,21 9,28,34
50 0.2 0.5 65622.75 59880.41 59925.68 8.68 -0.08 (-0,39,0,23) 23458.24 7 43,50
50 0.7 0.5 65635.07 62501.18 62562.61 4.68 -0.10 (-0,33,0,09) 14563.79 7 43,50
50 0.2 1.0 90642.87 72518.57 72556.89 19.95 -0.05 (-0,47,0,28) 86400.00 7 43,50
50 0.7 1.0 95781.32 76082.17 76141.13 20.51 -0.08 (-0,55,0,22) 86400.00 7 43,50

5 Conclusions

We have introduced stochastic uncapacitated hub location problems in which demands or
transportation costs are uncertain. We have proved that stochastic problems with uncertain
demands or dependent transportation costs are equivalent to a deterministic expected value
problem. For the uncertain independent transportation costs, we have presented a solu-
tion method that integrates a sampling strategy, the SAA scheme, coupled with a Benders
decomposition algorithm to obtain solutions to problems with a very large number of sce-
narios. Computational results confirm the efficiency and robustness of the proposed solution
method. Benchmark instances involving up to 50 nodes were solved within an estimated
optimality gap inferior to 0.3%. Furthermore, we have shown that the stochastic solutions
obtained with the SAA algorithm are superior to those of the expected value problem, and
the relative difference between the solution costs of the two problems tends to increase with
the variance of the uncertain transportation costs.
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A. Maŕın, L. Canovas, M. Landete. New formulations for the uncapacitated multiple al-
location hub location problem, European Journal of Operational Research, 172 (2006)
274–292.

V.I. Norkin, G.C. Pflug, A. Ruszczynski, A branch and bound method for stochastic global
optimization, Mathematical Programming, 83 (1998) 425–450.

R. Ravi, A. Sinha, Hedging uncertainty: Approximation algorithms for stochastic optimiza-
tion problems, Mathematical Programming Series A, 108 (2006) 97–114.

T. Santoso, S. Ahmed, M. Goetschalckx, A. Shapiro, A stochastic programming approach for
supply chain network design under uncertainty, European Journal of Operational Research,
167 (2005) 96–115.
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