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Abstract

This is a survey of the Steiner tree problem with profits, a variation of the classical Steiner problem

where, besides the costs associated with edges, there are also revenues associated with vertices. The

relationships between these costs and revenues are taken into consideration when deciding which vertices

should be spanned by the solution tree. The survey contains a classification of the problems falling

within this category and an overview of the methods developed to solve them. It also lists several graph

preprocessing procedures and analyzes their validity for the different variants of the problem. Finally,

a brief comparison is made between the profit versions of the Steiner tree problem and of the travelling

salesman problem.

Keywords: Prize collecting, network design, Steiner tree problem, quota, budget, reduction

tests.

1 Introduction

Let G = (V, E) be a graph with vertex set V = {1, . . . , n} and edge set E = {e = (i, j) :

i, j ∈ V, i < j}, where each edge e ∈ E has an associated cost ce. The problem of determining

a minimum cost network spanning all vertices V of G is known as the Minimum Spanning Tree

Problem (MSTP). The Steiner Tree Problem (STP) is a very similar problem arising when some

vertices need not be spanned, but may be used if their inclusion reduces the solution cost (see,

for instance, Hwang, Richards and Winter, 1992). Unlike the MSTP, the STP is NP-hard.

Steiner Tree Problems with Profits (STPP) are an important variation of the classical STP.
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In the STPP, in addition to the costs associated with the edges, there are also revenues ri,

associated with the vertices i of the graph. The goal is to determine a subtree minimizing

cost or maximizing revenue (or profit), subject to constraints. The exact criteria guiding the

optimization vary for the different versions of the STPP. In some particular problems, both cost

and revenue are combined in the objective function, while in others, limits on either the cost or

the revenue will appear as constraints. Therefore, four basic criteria can be used to distinguish

between the variants: the cost of edges, the revenue of vertices, the minimum collected revenue

(quota), and the maximum allowed cost (budget). Depending on the problem, some of these

criteria can be ignored or combined.

Our aim is to review the main applications of the STPP as well as the models and algorithms

proposed for its resolution. The remainder of this paper is organized as follows. Applications

are described in Section 2, followed, in Section 3, by a more detailed description of the different

problems and by an overview of the existing methods. An important component of modern

algorithms is the application of reduction tests to eliminate some vertices and edges that are

absent from at least one optimal solution. In Section 4, these preprocessing tests are reviewed

and their validity is analyzed for the different variants of the STPP. Then, in Section 5, a brief

comparison between the STPP and the travelling salesman problem with profits is reported.

The paper ends with some conclusions in Section 6.

2 Applications

Several network design problems can be appropriately modelled as an STPP. One traditional

application is the design of telecommunications local access networks. Here, the goal is to create

or expand a local access network to offer service to new customers. Each new consumer represents

a potential revenue for the company but there also exists a connection cost associated with the

network to be constructed. The problem is clearly modelled in a graph, where customers are

represented by vertices and physical links between them are represented by edges. The cost

associated with an edge is the cost of laying down the optical fiber, while the revenue of a

vertex is derived from customers. Ljubić et al. (2004) have reported a similar application in the

planning of heating networks, where customers have an estimated heat demand and the street

network provides the underlying graph where pipes can be laid down.

The STPP may also appear as a subproblem of more general problems. Engevall, Göthe-

Lundgren and Värbrand (1998) have solved an STPP as a subproblem within a constraint

generation algorithm for the problem of cost allocation in minimum 1-trees (in a graph G, a

1-tree is a spanning tree on G = (V \{1}, E) connected to vertex 1 by two edges). Chawla et

al. (2003) have used an STPP as part of a mechanism for the extended multicasting game in
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which vertices and edges are selfish agents trying to maximize their own profit. This mechanism

obtains a fraction of the market profit or demonstrates that no profitable solution exists. Finally,

Friedman and Parkes (2003) have suggested the use of an STPP as part of an online mechanism

for the dynamic pricing of WiFi service in an internet cafe. The idea is to recompute the optimal

STPP tree at each period, based on the current clients, and to maximize the profit equal to the

revenues on the connections, minus the cost of maintaining the links.

3 Classification of the Problems

Several variants of the STPP can be derived depending on how the costs and revenues are

considered in the optimization problem. In the sequel, we present the most important variants.

3.1 Node-Weighted and Prize-Collecting Steiner Tree Problems

In the node-weighted and prize-collecting STP, both costs and revenues are present in the

objective function. The idea is not to obtain a non-dominated solution, as would be the case in

a multi-objective optimization, but to optimize a linear combination of cost and revenue.

Several mathematical formulations have been developed for this case. The following formu-

lation makes use of a generalization of the classical subtour elimination constraints (SEC) intro-

duced by Dantzig, Fulkerson and Johnson (1954) for the Travelling Salesman Problem (TSP).

Let xij be real-valued variables associated with edges (i, j) ∈ E and yi be binary variables as-

sociated with vertices i ∈ V . Variable yi is equal to 1 if vertex i belongs to the solution, and 0

otherwise. For S ⊆ V , define E(S) as the set of edges with both endpoints in S. Finally, let T

be the set of vertices that must be present in a solution. These vertices are called mandatory or

terminal vertices. With these definitions, the problem can be written as:

Minimize
∑

(i,j)∈E

cijxij +
∑

i∈V

ri(1 − yi) (1)

subject to

∑

(i,j)∈E

xij =
∑

i∈V

yi − 1 (2)

∑

(i,j)∈E(S)

xij ≤
∑

i∈S\{k}

yi k ∈ S ⊆ V, |S| ≥ 2, (3)

yi = 1 i ∈ T, (4)

0 ≤ xij ≤ 1 (i, j) ∈ E, (5)

yi ∈ {0, 1} i ∈ V. (6)
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The objective function minimizes the cost of the opened edges and the lost revenue of the

unreached vertices. Constraint (2) forces the presence of s − 1 edges, where s is the number

of spanned vertices. Constraints (3) are the generalized subtour elimination constraints. These

are stronger than the classical SEC used in the TSP formulation in which the right-hand side is

|S| − 1. Note that for subsets S formed only by spanned vertices, constraints (3) reduce to the

classical SEC. Constraints (4) force the presence of the vertices of T in the solution.

Model (1)–(6) was used by Lucena and Resende (2004) (without constraints (4)) and follows

from an extended formulation for the Steiner tree problem proposed by Lucena (1991), Goemans

(1994) and Margot, Prodon and Liebling (1994). It is interesting to observe that the x variables

associated with edges need not to be declared as integer. Indeed, once the y variables are equal

to 0 or 1, constraints (2) and (3) define the convex hull of the characteristic vectors of the

spanning trees on the subgraph of G formed by the selected vertices (see Margot, Prodon and

Liebling, 1994).

Goemans (1994) has observed that in the presence of mandatory vertices, some redundant

generalized subtour elimination constraints can be eliminated. Let N = V \T be the set of

non-mandatory vertices. Constraints (3) then reduce to

∑

(i,j)∈E(S)

xij ≤
∑

i∈S∩N

yi + |S ∩ T | − 1 S ⊆ V, S ∩ T 6= ∅, |S| ≥ 2 (7)

and ∑

(i,j)∈E(S)

xij ≤
∑

i∈S\{k}

yi k ∈ S ⊆ N, |S| ≥ 2. (8)

The objective function (1) can be equivalently written as:

Maximize
∑

i∈V

riyi −
∑

(i,j)∈E

cijxij , (9)

i.e., the goal is to maximize the profit, equal to the revenue of the spanned vertices minus the cost

of the selected edges. When the objective function (1) is used, the problem is sometimes referred

to as the Goemans-Williamson minimization problem (Goemans and Williamson, 1995). When

the “real profit” of objective function (9) is used, the problem is known as the Net-Worth max-

imization problem. While these are equivalent from an optimization point of view, they are not

equivalent for the computation of the worst case performance ratio of approximation algorithms.

Later in this section, we present some approximation algorithms for the Goemans-Williamson

problem. However, no such algorithm exists for the Net-Worth version. Feigenbaum, Papadim-

itriou and Shenker (2001) have indeed proved that it is NP-hard to derive an approximation to

a constant factor for this problem.
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Both the Goemans-Williamson and the Net-Worth problems are known under the more

general names of Node-Weighted Steiner Tree Problem (NWSTP) and Prize-Collecting Steiner

Tree Problem (PCSTP). The difference between the NWSTP and the PCSTP is that in the

second case, the set of mandatory vertices T is empty. In practice, these mandatory vertices

often correspond to facilities (like a telecommunications central) that must be present in the

network in order to supply the service.

The NWSTP was first proposed by Segev (1987) who developed three simple heuristic solu-

tion methods for a special case of the problem in which a single vertex is mandatory. This author

also described two different Lagrangian relaxation bounding procedures. Both the heuristics and

the bounding procedures were tested in complete graphs of up to 40 vertices.

Bienstock et al. (1993) were the first to propose a solution method for the PCSTP. They

worked primarily with the TSP with Profits (TSPP), a version of the TSP in which a vertex

has a revenue but need not be visited (see Section 5). They developed a heuristic based on

Christofides’s heuristic for the TSP (Christofides, 1976). This method was later adapted to

the PCSTP (with the Goemans and Williamson objective function), yielding a heuristic with

a worst-case performance ratio of 3. Goemans and Williamson (1995) have later improved this

worst-case performance with a (2−1/(|V |−1))-approximation algorithm. The authors deal with

the rooted version of the problem (where one vertex is a root and must be present in the final

tree, as first proposed by Segev). Their procedure is an adaptation of a more general method

which can be applied to a large number of graph optimization problems called Constrained

forest problems (including the shortest path problem and the Generalized Steiner Tree Problem,

a variant of the STP in which clusters of vertices are defined and the tree must include at least

one vertex from each cluster). The method maintains a set of components. Initially, each vertex

is a component. Each component has an associated surplus (initially, the vertex revenue) and

is declared active if its surplus is positive. The edges have associated deficits, initially equal

to their costs. The deficits and surpluses are dynamically reduced until the deficit of an edge

connecting two active components reaches zero, in which case the two components are merged

together, or until an active component becomes inactive. The process ends when no active

components are left (see Johnson, Minkoff and Phillips, 2000). As suggested by the authors, the

method can be viewed as a greedy algorithm in which, at each iteration, a minimum reduced

cost edge is selected. Through the execution, the reduced costs are updated, giving rise to a

primal-dual structure for the algorithm. In a final phase, unnecessary edges are pruned.

The Goemans and Williamson algorithm was recently revisited by Cole et al. (2001) who

proposed a faster implementation. Their algorithm runs in O(k(|V |+ |E|) log2 |V |) time in com-

parison to O(|V |2 log |V |) for the original algorithm, at the expense of an additive degradation
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of |V |−k in the approximation factor, for any constant k. Johnson, Minkoff and Phillips (2000)

have worked specifically with the STPP and proposed a new strategy for the pruning phase.

The authors have compared the results in graphs of up to 25,600 vertices and their tests have

shown a slightly better performance of the new pruning strategy, which has the additional ad-

vantage of being conceptually much simpler. Johnson, Minkoff and Phillips have also proposed

modifications to the core of the algorithm which leads to a (2− 1/n)-approximation for the un-

rooted problem (PCSTP). The authors also extended the methodology to the quota and budget

versions of the STPP, as will be seen in Subsections 3.2 and 3.3.

The most recent works on the PCSTP and NWSTP have explored two main streams of

research: a) the obtention of good and reasonably fast methods for real-size problems and b)

the development of exact algorithms and lower bounding procedures. Regarding the first stream,

the tendency has been to use modern heuristic methods. A good example is the work by Canuto,

Resende and Ribeiro (2001) who have developed and tested a multi-start local search method

on instances with up to 1000 vertices and 25,000 edges. The different restarts are conducted

in a GRASP fashion: the initial solutions are given by the Goemans and Williamson algorithm

feeded with perturbed vertex revenues. The final solution of each restart goes through a path-

relinking procedure, with one of the solutions maintained in a pool of the best solutions found

so far. Finally, in the last phase of the algorithm, the best known solution is used within a

variable neighborhood search procedure (Mladenović and Hansen, 1997). Optimal solutions

were obtained for most of the tested graphs.

Klau et al. (2004) have reached similar results but with less computational time. Their

approach uses a memetic algorithm which works with a population of trees. Each tree goes

through an exact algorithm to eliminate non-optimal branches. The entire procedure is followed

by an exact method. The idea is to use the memetic algorithm to eliminate edges that are

probably not present in the optimal solution and then apply the exact method, based on a

separation procedure, on the reduced instance.

Cunha et al. (2003) formulate the PCSTP as a restricted minimum forest problem. The

authors then use a Lagrangian relaxation which dualizes some constraints only when they first

become violated. A constraint is dropped from the objective function when the associated

multiplier is zero. A heuristic procedure based on the work of Johnson, Minkoff and Phillips

(2000) is used to obtain upper bounds. Results obtained on instances of up to 400 vertices and

1507 edges are rather modest, an outcome that the authors attribute to probable cycling in the

procedure.

Besides heuristics, a fair amount of research has been conducted on exact algorithms and

lower bounding procedures. Engevall, Göthe-Lundgren and Värbrand (1998) have proposed a
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Lagrangian-based lower bounding procedure using a formulation based on a graph transforma-

tion which enables the NWSTP to be treated as an MSTP. The resulting bounds were stronger

than those obtained by Segev (1987).

Lucena and Resende (2004) have also developed a new lower bounding method. The authors

have used formulation (1)-(6), and proposed a cutting-plane algorithm based on a separation

procedure that identifies violated subtour elimination constraints. The separation procedure has

been refined to introduce the idea of orthogonal cuts (cuts generated from subtour elimination

constraints with no common vertices). A total of 114 instances with up to 1000 vertices and

25,000 edges were solved and the bounds were proved to be optimal in 99 of these.

Recently, Ljubić et al. (2004) have improved these results with a branch-and-cut algorithm,

applied to a formulation that uses connectivity inequalities. These inequalities are generated

efficiently via a separation procedure based on a maximum flow algorithm. The authors have

solved instances of up to 2500 vertices and 62,500 edges, including the Lucena and Resende

instances, for which similar results were obtained with a decrease of two orders of magnitude in

the computation time.

3.2 The quota STPP

In the quota version of the STPP the goal is to minimize the costs while guaranteing a

minimum value for the collected revenues:

Minimize
∑

(i,j)∈E

cijxij (10)

subject to (2)–(6) and
∑

i∈V

riyi ≥ Q, (11)

where Q is the quota, i.e., the minimum acceptable collected revenue.

The quota version of the STPP has received almost no attention in the literature. To our

knowledge, this problem is mentioned in only one article: Johnson, Minkoff and Phillips (2000)

have observed that the quota STPP is a generalization of the k-MSTP, in which one tries to

determine a minimum cost spanning tree containing at least k vertices (note that if the revenues

of all vertices are set to 1 and the quota is set to k, then the PCSTP becomes a k-MSTP). The

authors use this fact to obtain a 2.5-approximation algorithm for the resulting quota STPP,

based on an algorithm for the unrooted k-MSTP (Arya and Ramesh, 1998). The resulting

procedure is, however, not likely to be efficient in practice.

A more practical algorithm has also been developed. The idea is to multiply the vertex

revenues by a factor α and then use the Goemans and Williamson algorithm on the modified
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instance. The larger the value of α, the more revenues should be collected (since these will easily

counterbalance the costs). The value of α is increased until a solution with the minimum quota

has been reached. If the total collected revenue exceeds the quota, then one can try to reduce

α and still find a total revenue that will satisfy (11). The authors use binary search to find

the minimum value α yielding an acceptable quota. By varying α, they also construct tradeoff

curves between the total cost and total revenue.

3.3 The budget STPP

The budget STPP is the counterpart of the quota problem. Here, one wants to maximize

the total collected revenues under the restriction that the total cost is limited by a budget:

Maximize
∑

i∈V

riyi (12)

subject to (2)–(6) and

∑

(i,j)∈E

cijxij ≤ B, (13)

where B is the allowed budget.

Almost no research has been devoted to the budget STPP. Johnson, Minkoff and Phillips

(2000) have proved that by repeatedly running a 3-approximation algorithm for the quota prob-

lem, one can find a (5+ǫ)-approximation algorithm for the unrooted budget STPP, where ǫ > 0.

Again, this approximation algorithm is not likely to be useful in practice. For a more efficient

procedure, the authors propose applying the same strategy as for the quota STPP, i.e., mul-

tiplying the costs by a factor α (this time, in order to try to find a solution that satisfies the

budget constraint) and applying a binary search procedure on the values of α.

3.4 The fractional STPP

A non-linear version of the STPP maximizes the revenue-to-cost ratio. In this version of the

problem, the value of a solution associated with a solution tree T = (VT , ET ), where VT ⊆ V is

the set of selected vertices and ET ⊆ E is the set of selected edges, is given by

v(T ) =

∑
v∈VT

rv

c0 +
∑

e∈ET
ce

, (14)

where c0 is a fixed cost, and the goal is to determine a tree T maximizing v(T ). The fractional

STPP enables the consideration of a fixed cost for the construction of the network.

Klau et al. (2003) have dealt with a variation of this problem where the underlying graph is

already a tree. The goal is, therefore, to identify an optimal subtree containing the root. The
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authors have developed three algorithms based on a parametric formulation: a binary search,

a Newton method, and an algorithm based on Megiddo’s parametric search (Megiddo, 1979).

Tests were conducted on trees of up to 10,000 vertices and showed that the Newton method

had a better performance. One could probably consider adding budget or quota constraints to

this problem. However, to our knowledge, not even the basic version of the fractional STPP on

graphs has been the subject of any research.

4 Reduction Tests

When solving the Steiner tree problem and its variants, several authors make use of reduction

tests. These tests attempt to find vertices and edges that are absent from at least one optimal

solution, or to find sets of vertices and edges that can be treated as a single vertex. Preprocessing

procedures often iterate between one or more different tests until no more reductions can be

made.

The field of graph preprocessing for Steiner tree problems is rooted in the work of Beasley

(1984) and Balakrishnan and Patel (1987). A classical set of tests was established by Duin and

Volgenant (1989). With the appearance of the profit versions of the problem, some of these

tests were promptly adapted to the new problems (Duin and Volgenant, 1987) and combina-

tions of these started being used as a preprocessing phase in many solution procedures. These

preprocessing phases have become an important part of the more recent algorithms. Since they

can significantly reduce the size of the graph that must effectively be solved, they enable the

resolution of larger instances. Ljubić et al. (2004) have studied the efficiency of a few simple

reduction tests. In about 100 seconds of computational time, their largest instances of 2500

vertices and 62,500 edges could be slightly reduced in terms of the number vertices, while the

number of their edges was more than halved. In one extreme case, the final number of vertices

and edges after preprocessing were 861 and 3881, a reduction of 65% and 94%, respectively.

4.1 Description of the reduction tests

As part of this survey on the STPP, we present an overview of the most common reduction

tests. These tests are adapted from the classical STP to the PCSTP and to the NWSTP. Their

validity is not always clear for other variants of the STPP, like the quota or budget versions,

and is therefore analyzed in this section. For all tests presented in the sequel, we assume all

costs cij and revenues ri to be non-negative. Moreover, note that one can eliminate any edge

(i, j) with cost cij = 0 by merging vertices i and j into a single vertex.
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Test 1 (Degree one test): (a) A vertex i that is only adjacent to one vertex j can be eliminated

if ri < cij. (b) If ri > cij and rj > cij, vertices i and j are merged into a single vertex v of

revenue rv = rj + ri − cij.

Test 2 (Degree two test): A vertex i that is only adjacent to vertices j and k cannot have

degree 1 in the optimal solution if ri < min{cij , cik}. In this case, the vertex can be eliminated

and an edge (j, k) of cost cjk = cij +cik−ri is created or, if edge (j, k) exists, its cost is redefined

as min{cjk, cij + cik − ri}.

Test 3 (General degree test): A generalization of tests 1 and 2 can be applied to vertices

with degree superior to two. Consider a vertex i with ri = 0 and let Ad(i) = {v1, v2, . . . , vn} be

the set of vertices adjacent to it. For a subset of vertices V ′ ⊆ V , let MST(V ′) be the cost of

the minimum spanning tree problem in the complete graph formed by the nodes in V’, where the

cost of each edge (vi, vj) is given by the shortest path distance between vi and vj in G. We know

that if

MST (V ′) ≤
∑

v∈V ′

civ, ∀V ′ ⊆ Ad(i), |V ′| ≥ 3, (15)

then the degree of i in the optimal PCSTP solution must be zero or two. Therefore, vertex i

can be eliminated and each pair of edges (vi, i), (i, vj) can be replaced by an edge (vi, vj) of cost

cvivj
= cvii + civj

or, if this edge already exists, of cost cvivj
= min{cvivj

, cvii + civj
}.

Test 4 (Minimum adjacency or V\K reduction test): Adjacent vertices i and j can be

merged into a single vertex v if cij is the smallest cost of all edges incident to vertex i (or j),

and cij is smaller than each revenue ri and rj. The revenue rv of the merged vertex is equal to

ri + rj − cij.

Test 5 (Shortest-path or least-cost test): An edge (i, j) can be eliminated if there exists a

shortest path between i and j (considering the costs cij) not containing (i, j).

Test 6 (Nearest vertex test): In the NWSTP, let T be the set of mandatory vertices and

dij be the shortest path distance between vertices i and j, considering the edge costs. Suppose

k ∈ T and (i, k) is a minimum-weighted edge incident to k, i.e., cik = min{cjk|j ∈ V, j 6= k}. If

a vertex l ∈ T\{k} exists with

dli + cik ≤ min{cjk|j ∈ V, j 6= i, k},

then edge (i, k) is part of an optimal solution and vertices k and i can be merged.
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Recently some new tests have been proposed by Uchoa (2005) who has revisited the tests for

the classical Steiner problem and, in particular, two tests using what Duin and Volgenant have

called bottleneck distances. Let P(i, j) be the set of all paths connecting vertices i and j. The

bottleneck distance between two vertices i and j is defined as

B(i, j) = min{SD(P )|P ∈ P(i, j)}, (16)

where SD(P ) is the Steiner distance, i.e., the maximal distance between two terminal vertices in

path P . Uchoa proposes a counterpart of the bottleneck distances for problems with revenues.

Consider P ∈ P(i, j), and let e(P ) be the set of edges (k, ℓ) ∈ E such that k and ℓ are consecutive

in P , and v(P ) be the set of vertices v ∈ V appearing in P . Also let Sxy be the subpath of

P between x and y, with x, y ∈ v(P ). Then define the Steiner distance associated with this

subpath as

SD(Sxy) =
∑

e∈e(Sxy)

ce −
∑

i∈v(Sxy)\{x,y}

ri, (17)

and the Steiner distance associated with the whole path as

SD(P ) = maxx,y∈v(P )SD(Sxy). (18)

This new definition of the Steiner distance can be used in the bottleneck distance formula

(16), and the tests originally proposed for the Steiner Problem in the article of Duin and Vol-

genant (1989) become valid for the PCSTP. In these tests, reproduced below, B(i, j)−e is the

bottleneck distance without passing through a given edge e, and is defined as:

B(i, j)−e = min{SD(P )|P ∈ P(i, j); e /∈ e(P )}. (19)

Test 7 (Special distance): Let (i, j) ∈ E. If B(i, j)−(i,j) ≤ cij, then edge (i, j) can be

removed.

Test 8 (Non-terminal degree 3): Let i be a vertex with ri = 0, adjacent to vertices v, w and

z. If

min{B(v, w) + B(v, z), B(w, v) + B(w, z), B(z, v) + B(z, w)} ≤ civ + ciw + ciz,

then there exists an optimal solution in which the degree of i is 0 or 2. Therefore, i and its three

adjacent edges can be replaced by the following three edges: (v,w) with cost civ + ciw, (v,z) with

cost civ + ciz, and (w,z) with cost ciw + ciz.
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4.2 Validity for the quota and budget STPP

The structure of the objective function for the PCSTP and the NWSTP is quite convenient

for the development of reduction tests since it combines additive edge costs and vertex revenues.

In the cases of the quota and budget STPP, however, the objective function contains only one

of these terms (either revenues or costs) and therefore, all tests based on a cost analysis using

both the costs and revenues become invalid. This fact is even more pronounced in the presence

of the additional constraints. Indeed, the quota constraint might force the presence of a vertex

that was considered unprofitable for the PCSTP or the NWSTP (since the cost to reach it was

larger than its revenue), while the budget constraint might avoid the inclusion of a profitable

vertex. Therefore, all tests based on a combination of costs and revenues become invalid for the

quota and budget STPP. These include tests 1, 2 and 4. In Figure 1, the representative case of

degree-one test (test 1 in the list) is analyzed through two simple examples.

1 2

3

4

100100
50

10

15

20

20

B = 60 / Q = 220

(a)

1 2

3

4

100100
50

25

35

20

20

B = 80 / Q = 220

(b)

Figure 1: Invalidity of test 1 for the budget and quota STPP.

In Figure 1, the values on the vertices represent their revenues, while those on the edges

represent their costs. Consider the application of test 1(a) to the graph of Figure 1a. Vertices

3 and 4 should be merged with vertex 2. However, in the optimal solution of the budget STPP,

vertex 2 is present along with vertices 1 and 3, but vertex 4 is not, due to the budget constraint.

In the quota STPP, vertex 4 is not present either, since its presence would increase the objective

function and the presence of vertices 1, 2 and 3 is sufficient to satisfy the quota constraint. For

the case of test 1(b), consider the graph of Figure 1b. According to the test, vertices 3 and

4 should be deleted from the graph. However, vertex 3 belongs to the optimal solution of the

budget STPP along with vertices 1 and 2 since its addition increases the objective function value

and does not violate the budget constraint. For the quota STPP, vertex 3 is also present in the

final solution, along with vertices 1 and 2, since it is necessary to satisfy the quota constraint.

Like tests 1, 2 and 4, tests 7 and 8 make use of calculations mixing revenues and edge costs

(see the definition of the special distance for one subpath in (17)). They are therefore invalid

for the quota and budget STPP, since the presence of either budget or quota constraints, or the
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absence of either costs or revenues in the objective function might invalidate the conclusions.

Even for the case of the PCSTP and NWSTP, Uchoa (2005) reports that the computation of the

new bottleneck distances is NP-hard. However, the author uses a heuristic method to calculate

these distances and implements a preprocessing package including classical preprocessing tests

as well as tests 7 and 8. A comparison of the results with those of Ljubić et al. (2004) has

revealed that significant extra reductions were obtained with the additional tests, especially for

instances containing a large number of mandatory vertices.

4.3 Validity for the fractional STPP

Although no author has considered the fractional STPP in general graphs, it is interesting

to analyze the validity of the reduction tests for this problem. One can easily conclude that

the presence of the quotient in the objective function forbids any local consideration using both

the costs and revenues. Therefore, as for the quota and budget STPP, tests 1, 2 and 4 become

invalid. Tests 3, 5 and 6 make considerations based on the edge costs, acting only on the

denominator of (14) and are, therefore, valid. Like tests 1, 2 and 4, tests 7 and 8 are invalid for

the fractional STPP since they are based on local considerations using both the costs and the

revenues.

4.4 New tests for the budget STPP

As a last note on the reduction tests, one can clearly see that the introduction of the quota and

budget constraints invalidates many of the tests developed for the NWSTP and for the PCSTP.

However, these constraints may also represent an opportunity. Indeed, some new reduction tests

specifically adapted to the quota and budget versions of the problem can be derived because of

the introduction of the new constraints. The two simple tests presented below for the case of

the budget STPP are illustrative examples.

Test 9 (Distance to terminal): In the budget STPP with a mandatory vertex set T , a vertex

i /∈ T can be eliminated if the cost of the shortest path linking i and any vertex in T is larger

than B.

Test 10 (Minimum distance to terminal tree): Let T be the set of mandatory nodes and

STPG(T ) be the cost of the STP in G. A vertex i /∈ T with a single incident edge (i, k) can be

eliminated if STPG(T ) + cik > B.

13



4.5 Summary of the reduction tests

Table 1 presents a summary of the reduction tests presented in this section. For each test,

it is possible to see its applicability to the different problems, the original reference in which the

test is described and the articles where it has been used as part of a preprocessing algorithm.

Test NWSTP/ Quota Budget Fractional Proposed Used

PCSTP STPP STPP STPP by in

1 yes no no no Duin and Volgenant (1987) Cunha et al. (2003),

Lucena and Resende (2004)

Klau et al. (2004),

Lujbic et al. (2004)

2 yes no no no Duin and Volgenant (1987) Cunha et al. (2003),

Lucena and Resende (2004),

Klau et al. (2004),

Lujbic et al. (2004)

3 yes yes yes yes Duin and Volgenant (1989) a Cunha et al. (2003)

Lucena and Resende (2004),

Klau et al. (2004),

Lujbic et al. (2004)

4 yes no no no Duin and Volgenant (1987) Cunha et al. (2003),

Klau et al. (2004),

Lujbic et al. (2004)

5 yes yes yes yes Duin and Volgenant (1987) Cunha et al. (2003),

Lucena and Resende (2004),

Klau et al. (2004),

Lujbic et al. (2004)

6b yes yes yes yes Duin and Volgenant (1989) –

7 yes no no no Uchoa (2005)c –

8 yes no no no Uchoa (2005)c –

9 no no yesd no this article –

10 no no yesd no this article –

aProposed for the classical STP.
bThe problem must contain at least two mandatory vertices.
cAdapted from Duin and Volgenant (1989).
dFor the version with mandatory vertices.

Table 1: Summary of the reduction tests.
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5 A comparison with the Travelling Salesman Problem with

Profits

The Travelling Salesman Problem with Profits (TSPP) is a variation of the classical TSP

where revenues are associated with vertices. It has received considerable attention as witnessed

by the review articles of Feillet, Dejax and Gendreau (2005) and of Laporte and Rodŕıguez-

Mart́ın (2005). Several versions of the TSPP have been proposed, as in the case of the STPP.

Indeed, the similarities between the two problems are numerous. Concerning the different ver-

sions, the TSPP also exists in a variation where both revenues and costs are considered in the

objective function (the Profitable Tour Problem (PTP)), and there exist variants where limits

on either the revenues or the costs are imposed as constraints: these are the Prize-Collecting

Travelling Salesman Problem (PCTSP) and the Orienteering Problem (OP), respectively. Con-

cerning the solution methodologies for the two families of problems, there are also some common

features. As seen in Section 3, the approximation algorithm of Bienstock, Goemans, Simchi-

Levi and Williamson (1993) for the PCSTP has been adapted from an algorithm for the PTP.

Moreover, the general framework of Goemans and Williamson (1995) has been used to develop

approximation algorithms both for the PCSTP and for the PTP.

Due to the closeness of the problems, we found that it could be insightful to present a

comparison between the methods proposed both for the STPP and for the TSPP. In Table 2, we

present a summary of these methods. For the STPP, we use Section 3 of this article, while for

the TSPP, we use the articles surveyed in Feillet, Dejax and Gendreau (2005) and in Laporte

and Rodŕıguez-Mart́ın (2005).

Table 2 shows that the TSPP has received considerably more attention than the STPP. More

interesting, and perhaps less justifiable, is the fact that the research efforts for both problems

have been distributed differently. While for the TSPP, most research has concentrated on the

OP (where the costs are introduced in the constraints of the model), for the STPP almost all

research has been devoted to the NWSTP and the PCSTP.

6 Conclusions

We have studied the Steiner Tree Problem with Profits, and we have presented an overview

of the available algorithms for several variants of this problem. We have also presented an

overview of the existing reduction tests to eliminate or agglomerate vertices and edges of the

original graph. We have observed that the research efforts to solve the STPP are concentrated

on the PCSTP and NWSTP variants. Indeed, a single article mentions the quota and the

budget versions of the STPP, and no author seems to have considered the fractional STPP on
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general graphs. While this may not come as a surprise for the fractional STPP (since it is hard

to associate its objective function with a profit), this is less justifiable for the other problems.

In the particular case of the budget STPP, the absence of any study is even more remarkable

considering that most of the research conducted on the similar TSPP has been devoted to the

OP.

The question that arises is: are the budget variants only important in the context of the TSP

and not in the case of the STPP ? There are at least two indications that the answer to this

question is negative. First, budget constraints seem to be relevant in practice in several design

problems. It is quite natural to conceive that they are also present in the major projets associated

with the expansion of telecommunications or heating networks, two important applications of

the STPP. Secondly, the PCSTP and NWSTP variants may present optimal solutions with the

same value but with very different practical implications. It is easy to construct an example

along the lines of Johnson, Minkoff and Phillips (2000). Consider two different solutions, both

with a profit of $100. The PCSTP and the NWSTP are insensitive to the fact that this solution

could have come from a situation where the sum of the costs are $10 and the sum of the revenues

are $110, or from a network with construction costs of $10,000 and revenues of $10,100. The

budget STPP as well as the quota STPP are more robust to this kind of situation, since only

the revenues (or the costs) are present in the objective function.

Even if the budget STPP also has its own flaws (as seen in the example of Figure 1b, where

the unprofitable vertex 3 is unnecessarily spanned), this version of the problem seems to deserve

more attention than it has received so far in the literature. The existing knowledge on the

PCSTP and NWSTP versions can certainly be useful in developing methods that deal with the

particularities of this problem. An interesting study from a practical point of view is the analysis

of cost vs revenue tradeoff curves, as suggested by Johnson, Minkoff and Phillips (2000).

Concerning the preprocessing phases, Section 4 has presented an overview of the most com-

mon reduction tests. These tests have been developed for the NWSTP and PCSTP and are in

general invalid for the other variants of the problem. Since the preprocessing phase which is

based on these reduction tests has become an important part of most algorithms, the need for

additional research for the different versions of the STPP is, again, justified. We hope that this

survey will encourage such research efforts and prove a helpful source of ideas and references.
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Type Steiner Tree Problem with Profits Travelling Salesman Problem with Profits

Node-Weighted STP or Prize-Collecting STP Profitable Tour Problem

Segev (1987): Simple heuristics and Lagrangian bounding procedures. Mittenthal and Noon (1992): Insertion/deletion heuristic procedure.

Bienstock et al. (1993): Heuristic with worth case performance of 3. Bienstock et al. (1993): Heuristic with worth case performance of 2.5.

Goemans and Williamson (1995): (2 − 1/(|V | − 1))-approximation

algorithm.

Goemans and Williamson (1995): (2 − 1/(|V | − 1))-approximation

algorithm.
Costs and profits in the

objective function
Johnson, Minkoff and Phillips (2000): (2 − 1/|V |)-approximation al-

gorithm for the unrooted problem.

Dell’Amico, Maffioli and Sciomachen (1998): Branch-and-bound on

the problem transformed into an asymmetric TSP.

Cole et al. (2001): Faster implementation of the Goemans-Williamson

algorithm with a small loss in the approximation.

Canuto, Resende and Ribeiro (2001): Multi-Start with local search

and VNS post-optimization phase.

Cunha et al. (2003): Lagrangian relaxation with dynamically gener-

ated cutting planes.

Lucena and Resende (2004): Lower bounding procedure based on a

cutting planes algorithm.

Klau et al. (2004): Hybrid Exact-Memetic algorithm.

Ljubić et al. (2004): Branch and cut algorithm based on connectivity

inequalities.

Quota STPP Prize-Collecting Travelling Salesman Problem

Costs in the objec-

tive function, profits as

constraints

Johnson, Minkoff and Phillips (2000): Theoretical 2.5-approximation

algorithm and a more efficient heuristic based on the work of Goemans

and Williamson (1995).

Fischetti and Toth (1988): Branch-and-bound with additive bounding

procedures.

Dell’Amico, Maffioli and Sciomachen (1998): Heuristic based on La-

grangian relaxation and improvement moves.

Awerbuch et al. (1998): Heuristic based on an approximation algo-

rithm for the k-MST problem.

Table 2: Summary and comparison between the methods for the STPP and for the TSPP.
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Type Steiner Tree Problem with Profits Travelling Salesman Problem with Profits

Budget STPP Orienteering Travelling Salesman Problem

Johnson, Minkoff and Phillips (2000): Theoretical 2.5-approximation

algorithm and a more efficient heuristic based on the work of Goemans

and Williamson (1995).

Tsiligirides (1984): Two approximate algorithms, one based on a for-

mer vehicle routing procedure and another based on Monte Carlo

techniques.

Golden, Levy and Vohra (1987): Heuristic based on the idea of center

of gravity.

Golden, Wang and Liu (1988): Heuristic based on the idea of center

of gravity improved by a learning measure.

Kataoka and Morito (1988): Branch-and-bound algorithm.

Keller (1989): Two-phase algorithm consisting of a construction pro-

cedure followed by an improvement phase.

Laporte and Martello (1990): Branch-and-bound algorithm.

Ramesh and Brown (1991): Four-phase algorithm incorporating a

tabu list.

Ramesh, Yoon and Karwan (1992): Lagrangian relaxation based

branch-and-bound algorithm.

Leifer and Rosenwein (1994): Cutting planes algorithm.

Wang, Sun, Golden and Jia (1995): Neural network algorithm.

Profits in the objective

function, costs as con-

straints

Chao, Golden and Wasil (1996): Construction algorithm followed by

an deterministic annealing algorithm.

Fischetti, Salazar-González and Toth (1998): Branch-and-cut algo-

rithm.

Gendreau, Laporte and Semet (1998a): Branch-and-cut algorithm.

Gendreau, Laporte and Semet (1998b): Tabu search with neighbor-

hoods based on clusters.

Tasgetiren and Smith (2000): Genetic algorithm.

Table 2: (continued) Summary and comparison between the methods for the STPP and for the TSPP.
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in Rio, Búzios - Brazil : 72–78.

Dantzig, G. B., Fulkerson, D. R. and Johnson, S. M. (1954). Solution of a large-scale traveling

salesman problem, Operations Research 2: 393–410.

20



Dell’Amico, M., Maffioli, F. and Sciomachen, A. (1998). A Lagrangian heuristic for the prize-

collecting travelling salesman problem, Annals of Operations Research 81: 289–305.

Duin, C. W. and Volgenant, A. (1987). Some generalizations of the Steiner problem in graphs,

Networks 17: 353–364.

Duin, C. W. and Volgenant, A. (1989). Reduction tests for the Steiner problem in graphs,

Networks 19: 549–567.
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Klau, G. W., Ljubić, I., Moser, A., Mutzel, P., Neuner, P., Pferschy, U., Raidl, G. and

Weiskircher, R. (2004). Combining a memetic algorithm with integer programming to

solve the prize-collecting Steiner tree problem, Springer Lecture Notes in Computer Sci-

ence 3102: 1304–1315.
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