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Abstract

This paper considers a single-vehicle Dial-a-Ride problem in which customers
may experience stochastic delays at their pickup locations. If a customer is
absent when the vehicle serves the pickup location, the request is fulfilled by
an alternative service (e.g., a taxi) whose cost is added to the total cost of
the tour. In this case, the vehicle skips the corresponding delivery location,
which yields a reduction in the total tour cost. The aim of the problem is to
determine an a priori Hamiltonian tour minimizing the expected cost of the
solution. This problem is solved by means of an integer L-shaped algorithm.
Computational experiments show that the algorithm yields optimal solutions
for small and medium size instances within reasonable CPU times. It is also
shown that the actual cost of an optimal solution obtained with this algorithm
can be significantly smaller than that of an optimal solution obtained with
a deterministic formulation.

Key words: dial-a-ride problem, stochastic programming, integer L-shaped
algorithm.

1. Introduction

The single-vehicle Dial-a-Ride Problem (DARP) consists in satisfying at
minimum cost a set of customer transportation requests, each defined by a
specific origin-destination pair, while respecting side constraints related to
operational considerations and to quality of service. These typically include
load and capacity constraints, total duration and ride time constraints, as
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well as time windows. Customer requests can either be outbound — a desired
arrival time at destination is specified —, or inbound — a desired departure
time from the origin is specified. Time windows of given widths are then
constructed around these desired times.

Our aim is to propose an exact algorithm for a stochastic version of the
DARP called the single-vehicle DARP with stochastic customer delays (S-
DARP). In this problem, customers arrive at their origin with a stochastic
delay. Such delays are frequently encountered when customers must be picked
up at hospitals or other healthcare facilities. Indeed, because waiting times
and the duration of medical appointments are often unpredictable, customers
cannot guarantee at which time they will become available to be picked up
for their inbound request. We assume that if a customer is absent when
the vehicle serves the pickup location, the vehicle moves immediately to the
next location. In this case, the “missed” customer request is fulfilled by an
alternative service such as a taxi whose cost must be added to the total cost of
the tour. Furthermore, the vehicle will skip the corresponding delivery node,
yielding a reduction in the tour cost. The single-vehicle S-DARP consists in
determining an a priori Hamiltonian tour that minimizes the expected cost
of the tour actually followed by the vehicle.

There exists a rich literature on the DARP. The single-vehicle case was
introduced by Psaraftis [19, 20], who solved it by dynamic programming.
Desrosiers et al. [10] formulated the problem as an integer program, and
solved instances with up to 40 requests, also by dynamic programming. More
recently, Cordeau [5] presented some valid inequalities and a branch-and-cut
algorithm for the multi-vehicle DARP. The author solved instances involving
up to 32 requests. Ropke et al. [22] later presented stronger formulations and
new valid inequalities for the DARP and the Pickup and Delivery Problem
with Time Windows (PDPTW), which can be viewed as a DARP without
ride time constraints. They solved instances with up to 96 requests using a
branch-and-cut algorithm. Ropke and Cordeau [21] then proposed a branch-
and-cut-and-price method for the PDPTW. This algorithm uses some of
the inequalities introduced by Ropke et al. [22] within a column generation
framework and it could solve some tightly constrained instances with up to
500 requests. Very recently, Bartolini [1] also formulated the PDPTW as a set
partitioning problem with additional cuts. He proposed an exact algorithm
for the problem, using both relaxations of the formulation and a branch-
and-cut-and-price algorithm. His method provided better results than that
of Ropke and Cordeau [21] in terms of lower bound quality and computing
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time. For recent reviews of the DARP, see Cordeau and Laporte [6] and
Cordeau et al. [7].

The S-DARP is related to the Probabilistic Traveling Salesman Problem
(PTSP), in which vertices are present with given probabilities. The PTSP is
solved in two stages. In the first stage, an a priori Hamiltonian tour must be
determined before any information on the present vertices is known. The set
of present vertices is then revealed. In the second stage solution, the vehicle
follows its planned tour but skips the absent vertices. The PTSP consists in
determining an a priori Hamiltonian tour that minimizes the expected length
of the tour actually followed by the vehicle in the second stage. The PTSP
was introduced by Jaillet [14, 15] who presented several combinatorial and
asymptotic results, among which an efficient method to compute the expected
length of the second stage tour. Laporte et al. [17] proposed an exact integer
L-shaped algorithm for this problem and solved instances with up to 50
vertices. The latter algorithm, which we will adapt to our problem, is based
on the L-shaped method for continuous programs (Van Slyke and Wets [24])
and on Benders decomposition [2]. The integer L-shaped algorithm was
put forward by Laporte and Louveaux [16] for stochastic integer programs
with integer recourse. It applies branch-and-cut to an initial relaxed model,
which is then iteratively tightened by appending lower bounding functionals
and optimality cuts to the current problem. The optimality cuts require the
knowledge of an integer feasible solution and are thus only imposed at nodes
of the branch-and-cut tree corresponding to integer solutions. In contrast,
the lower bounding functionals can be imposed at any node of the tree.

The integer L-shaped algorithm was also applied by Gendreau et al. [11] to
the Vehicle Routing Problem (VRP) with stochastic customers and demands.
In this problem, each vertex has a given probability of being present and has
a stochastic demand. The authors have solved instances involving up to 70
vertices. Hjorring and Holt [13] presented improved optimality cuts and lower
bounding functionals for the related single vehicle problem with stochastic
demands only (i.e., all vertices are present), and solved instances with up to
90 vertices. Finally, Laporte et al. [18] derived better optimality cuts and
lower bounding functionals for a stochastic capacitated VRP with Poisson or
normal demands. These authors have solved instances involving up to 100
vertices. For more details about the stochastic VRP, we refer the interested
reader to the surveys of Gendreau et al. [12] and of Cordeau et al. [8].
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In related work, Campbell and Thomas [3, 4] studied a PTSP in which
customers should be visited before a known deadline. In the first paper [3],
the authors presented two recourse models and a chance constrained model
for the problem, and discussed several special cases. Whereas the recourse
models penalize deadline violations in the objective function, the chance
constrained model restricts the probability that a deadline violation occurs.
The authors also compared through computational experiments the solution
values obtained using stochastic or deterministic formulations. In a follow-up
paper, Campbell and Thomas [4] proposed approximation methods to quickly
compute deadline violations. These methods provide good quality solutions
and yield significant reductions in computing time with respect to an exact
computation of the deadline violations. They can thus be incorporated within
local search algorithms.

The purpose of this paper is to introduce an integer L-shaped algorithm
for the single-vehicle S-DARP. The remainder of the paper is organized as
follows. Section 2 provides a formal description of the S-DARP, together
with a mixed-integer linear programming formulation. Section 3 describes
our integer L-shaped algorithm. This section also includes details about the
computation of the delay cost associated to a feasible Hamiltonian tour, and
provides the optimality cuts appended to the stochastic model. Note that
no lower bounding functionals are generated because no strong constraints of
this type could be identified. Computational results are presented in Section
4, followed by the conclusion in Section 5.

2. Formal problem description

Consider a set of n customer requests r1, . . . , rn, where each ri is composed
of a pickup node i and a delivery node n + i. Let G = (N,A) be the
corresponding directed graph, with N = P ∪D∪{0, 2n+ 1}, P = {1, . . . , n}
the set of pickup nodes, D = {n+1, . . . , 2n} the set of delivery nodes, {0, 2n+
1} the depot nodes, and A =

{
(i, j) : i ∈ N \ {2n+ 1}, j ∈ N \ {0, i, i− n}

}
the set of arcs.

To each node i ∈ N corresponds a load qi such that q0 = q2n+1 = 0,
qi > 0 and qn+i = −qi (i = 1, . . . , n), and the vehicle capacity is given
by Q. Furthermore, a service duration di as well as a time window [ei, li]
are provided for each node i ∈ N . In a deterministic context, the latter
corresponds to an interval in which the vehicle must begin service at node i,
which implies that a customer making a request ri is supposed to be available
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at the pickup node at time ei at the latest. With each arc (i, j) ∈ A are
associated a routing cost cij and a travel time tij, which satisfy the triangle
inequality. We assume that ei ≥ e0 + d0 + t0i for all i ∈ N \ {0} since the
vehicle starts from the depot node 0. Also, a maximal ride time R is imposed
on the duration of any customer trip, while an upper bound T is imposed on
the total tour duration.

In the S-DARP, customers can be delayed, i.e., the customer is present at
node i ∈ P at time ei + ξi, where ξi is a nonnegative random variable. The
taxi cost corresponding to a “missed” customer request ri is denoted by bi.
We assume that bi ≥ maxk,l∈N{ck,n+i+ cn+i,l− ckl} for all i ∈ P , i.e., the cost
of fulfilling a customer request by taxi is always larger than the reduction
in the tour cost obtained by skipping the corresponding delivery node. Fur-
thermore, in the DARP, it is common to assume that if the vehicle arrives
at node j ∈ N earlier than ej, then waiting occurs before the beginning of
service at this node (Cordeau et al. [7]). In the S-DARP, we consider that
the vehicle should avoid arriving at node j ∈ N earlier than ej to maximize
the probability of picking up a delayed customer. Hence, if the vehicle travels
on arc (i, j), any waiting necessary before the beginning of service at node j
will be replaced by a postponement of the beginning of service at node i, up
to time li.

To model the S-DARP, we define binary flow variables xij equal to 1 if
and only if the vehicle travels on arc (i, j) ∈ A. Let yi, i ∈ N , be variables
equal to the beginning of service at the nodes of G, and let ui be the vehicle
load upon leaving node i ∈ P ∪D. The model is then:

S-DARP: minimize
∑

(i,j)∈A

cijxij + Θ(x, y) (1)

subject to:∑
j∈P

x0j = 1 (2)∑
j∈D

xj,2n+1 = 1 (3)∑
j∈N

xij = 1 i ∈ P ∪D (4)∑
j∈N

xji −
∑
j∈N

xij = 0 i ∈ P ∪D (5)
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yj ≥ yi + di + tij −Mij(1− xij) (i, j) ∈ A (6)

yi + di + ti,n+i ≤ yn+i i ∈ P (7)

yn+i − yi − di ≤ R i ∈ P (8)

uj − ui ≥ qj −Qi(1− xij) + (Qi − qi − qj)xji i, j ∈ P ∪D (9)

max{0, qi} ≤ ui ≤ min{Q,Q+ qi} i ∈ N (10)

y2n+1 − y0 ≤ T (11)

ei ≤ yi ≤ li i ∈ N (12)

yi ≥ ei +
∑
j∈N

max
{

0,min{ej − ei − di − tij, li − ei}
}
xij i ∈ N (13)

xij ∈ {0, 1} (i, j) ∈ A, (14)

with Mij = max{0, li + di + tij − ej}, Qi = Q for i ∈ P and Qi = Q −
1 for i ∈ D. The objective function (1) minimizes the expected cost of
the tour actually followed by the vehicle. In addition to the cost of the a
priori tour, a function Θ(x, y) measures the expected cost of delay caused
by absent customers (also called delay cost in the following). Constraint (2)
(resp. (3)) imposes that the first node after (resp. before) the depot is a pickup
(resp. delivery) node. Constraints (4) and (5) mean that all pickup and
delivery nodes are visited. Constraints (6) and (7) ensure that the beginning
of service variables are consistent, and constraints (8) enforce a maximal
ride time R for each customer. Constraints (9) guarantee the consistency
of load variables. Indeed, they consist of the linearization of constraints
uj − ui ≥ qjxij, lifted by using the reverse arc (j, i), as in Desrochers and
Laporte [9]. Constraints (10) define lower and upper bounds on the vehicle
load. Constraints (11) impose a total maximal duration T for the tour,
while (12) are the time window constraints. Finally, constraints (13) ensure
that the vehicle avoids arriving at a node earlier than the beginning of the
corresponding time window, if possible. Indeed, if the vehicle travels on an
arc (i, j) such that ei + di + tij ≤ ej, the earliest time ei is postponed by
min{ej − ei− di− tij, li− ei}. The last term li− ei ensures that the deadline
li is not exceeded.

3. The Integer L-Shaped Method for the S-DARP

In our implementation of the integer L-shaped method for the S-DARP,
we solve a relaxed version of model S-DARP, which is iteratively tightened
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by means of optimality cuts. Hence the objective function (1) is replaced
with

minimize
∑
i∈N

∑
j∈N\{i}

cijxij + θ, (15)

where θ is a lower bound on the delay cost Θ(x, y), while integrality con-
straints (14) are also relaxed. A lower bounding constraint θ ≥ L is also
included in the formulation, where L is a global lower bound for the delay
cost. Since we have assumed that the cost of fulfilling a request by taxi is
larger than any corresponding reduction in the tour cost, we can clearly set
L = 0.

Our implementation of the integer L-shaped method for the S-DARP can
be summarized as follows:

Step 1 (Initialization) Set a solution counter r = 0 and the best
objective function value z∗ =∞. The first subproblem in the search tree
is the relaxed problem defined above.
Step 2 (Subproblem selection) Choose a subproblem in the search
tree (according to a best-bound rule). If none exists, the best solution
has been found: stop.
Step 3 (Subproblem solution) Solve the current subproblem and let
z be its optimal value. If z > z∗, fathom the corresponding node of the
search tree and go to Step 2.
Step 4 (Integrality test) If the current solution is not integer, create
two subproblems by branching on a fractional variable xij, add these to
the search tree and go to Step 2.
Step 5 (Delay cost lower bounding) Set r = r + 1. The current
solution (xr, yr, θr) is feasible. Compute a lower bound θ on the delay
cost Θ(xr, yr). Compute the corresponding lower bound on the objective
function value zr := cTxr + θ. If θ > λθr (λ ∈ R+

0 ) or zr > z∗, generate
optimality cuts and go to Step 2.
Step 6 (Delay cost computation) Compute the delay cost Θ(xr, yr).
If Θ(xr, yr) > θr, generate optimality cuts and go to Step 2.
Step 7 (Best solution test) Compute the objective function value
zr := cTxr + Θ(xr, yr) associated with the current feasible solution
(xr, yr, θr). If zr ≤ z∗, set z∗ = zr and save xr as the new best solu-
tion. Fathom the node of the search tree and go to Step 2.

The main difficulty of this method consists in computing the delay cost
Θ(xr, yr) associated with a feasible solution (xr, yr, θr) in Step 6. In the
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following section, we define the delay cost more precisely and provide details
on its computation.

3.1. Computing the delay cost associated with a feasible Hamiltonian tour

The probability that the vehicle picks up a customer at a node depends
on the customer delay relative to the beginning of service at this node. In
order to ensure that the vehicle picks up as many customers as possible,
the beginning of service at any pickup node has to be scheduled as late
as possible in order to maximize the related probabilities. Consider that a
feasible solution (xr, yr, θr) to the stochastic relaxed model is known, and
let the vector (s0 = 0, s1, . . . , s2n, s2n+1 = 2n+ 1) describe the corresponding
Hamiltonian tour. The waiting times before the beginning of service at nodes
are defined as

wrsi
= max{0, yrsi

− tsi−1si
− dsi−1

− yrsi−1
} i = 1, . . . , 2n+ 1. (16)

Similarly to Savelsbergh [23], we define forward time slack variables zsi
(si ∈

N) such that

zs2n+1 = l2n+1 − yr2n+1 (17)

zsi
= min{lsi

− yrsi
, zsi+1

+ wrsi+1
} i = 0, . . . , 2n. (18)

These correspond to the largest postponements that can be imposed on the
beginning of service at the nodes so that the Hamiltonian tour remains fea-
sible. In order to satisfy constraint (11) on the maximal tour duration,
these variables are iteratively adjusted. Indeed, assume that yr0 + z0 + T >
yr2n+1 + z2n+1, i.e., the maximal postponements of beginning of service at
nodes 0 and 2n + 1 yield a tour duration larger than T . In this case, we
set z2n+1 = yr0 + z0 + T − yr2n+1, and the variables zsi

(i = 0, . . . , 2n) are
recomputed using (18). Then we can set the updated beginning of service
yR0 = yr0 + z0.

Next, the beginning of service at nodes are updated in order to maximize
the probabilities that the vehicle picks up customers. In order to satisfy
constraints (8) on the maximal customer ride times, the first pickup node sj
of the tour is postponed:

yRsj
= yrsj

+ zsj
, (19)
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where yRsj
is the updated beginning of service at node sj, and the forward

time slack variable at the corresponding delivery node is updated as follows:

zn+sj
= min{zn+sj

, R + yRsj
+ dsj

− yrn+sj
} (20)

to ensure a maximal ride time R for this customer request. Let k be the
index of the delivery node, i.e., n + sj = sk. Now let j denote the index of
the second pickup node of the tour. Forward time slack variables for nodes
si such that j ≤ i < k are recomputed using (18). Then, the beginning of
service at the second pickup node can be postponed following (19), and this
process is iterated until the last pickup node of the tour has been reached.
Note that the beginning of service at delivery nodes, as well as the beginning
of service at the depot node 2n + 1, do not have to be scheduled as late as
possible. The latter are set according to the postponements at pickup nodes,
i.e.,

yRsi
= max{yrsi

, yRsi−1
+ dsi−1

+ tsi−1si
} si ∈ D ∪ {2n+ 1}. (21)

Now consider a customer request rj, j ∈ {1, . . . , n}, and let (s0, . . . , sk =
j, . . . , sl = n+ j, . . . , s2n+1) be a feasible Hamiltonian tour. With probability
1− pj, an additional taxi cost bj must be included in the delay cost whereas
the vehicle skips the delivery node n + j ∈ D, yielding a reduction in the
tour cost and thus in the delay cost. In this case, the beginning of service
at each pickup node si ∈ P such that k < i < l is postponed by at most
g(rj) = tsl−1sl

+ dsl
+ tslsl+1

− tsl−1sl+1
in order to increase the corresponding

probabilities psi
. The beginning of service at delivery nodes si ∈ D such

that k < i < l are postponed accordingly. However, note that the full
postponement g(rj) is only achieved at nodes such that the remaining tour
remains feasible. We thus define the following updated waiting times:

wR(rj)
sl+1

= max{0, yRsl+1
− tsl−1sl+1

− dsl−1
− yRsl−1

} (22)

wR(rj)
si

= max{0, yRsi
− tsi−1si

− dsi−1
− yRsi−1

} i = k + 2, . . . , l − 1. (23)

Hence new forward time slack variables z
(rj)
si are defined for the nodes
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si ∈ N such that k < i < l:

z(rj)
sl−1

= min{lsl−1
− yRsl−1

, zsl+1
− yRsl+1

+ yrsl+1
+ wR(rj)

sl+1
} sl−1 ∈ P (24)

z(rj)
sl−1

= min{lsl−1
− yRsl−1

, zsl+1
− yRsl+1

+ yrsl+1
+ wR(rj)

sl+1
,

R + yRsl−1−n + dsl−1−n − yRsl−1
} sl−1 ∈ D (25)

z(rj)
si

= min{lsi
− yRsi

, z(rj)
si+1

+ wR(rj)
si+1
} si ∈ P, i = k + 1, . . . , l − 2 (26)

z(rj)
si

= min{lsi
− yRsi

, z(rj)
si+1

+ wR(rj)
si+1

, R + yRsi−n + dsi−n − yRsi
}

si ∈ D, i = k + 1, . . . , l − 2. (27)

These correspond to the largest feasible postponements of beginning of ser-
vice at nodes when the customer request rj is fulfilled by taxi. In this case,

updated beginning of service at nodes y
R(rj)
si are set as follows:

yR(rj)
si

= yRsi
+ min{g(rj), z(rj)

si
} k < i < l, si ∈ P (28)

yR(rj)
si

= max{yRsi
, yR(rj)
si−1

+ dsi−1
+ tsi−1si

} k < i < l, si ∈ N \ P, (29)

with y
R(rj)
sk = yRsk

. Note that the computation of the forward time slack
variables implies that, even if the beginning of service is further postponed
at a pickup node j, a maximal ride time of R still holds with respect to yRj .

If several delivery nodes are skipped by the vehicle, the services times
at nodes must be updated accordingly. Let rj1 and rj2 be two customer
requests whose corresponding delivery nodes n + j1, n + j2 ∈ D are skipped
by the vehicle with probability (1 − pj1) and (1 − pj2), respectively. Let
(s0, . . . , sh = j1, . . . , sk = j2, . . . , sl = n + j1, . . . , sm = n + j2, . . . , s2n+1) be
the feasible tour. The updated waiting times are then defined as:

w
R(rj1 ,rj2 )
sl+1 = max{0, yR(rj2 )

sl+1 − tsl−1sl+1
− dsl−1

− yR(rj2 )
sl−1 } m > l + 1 (30)

w
R(rj1 ,rj2 )
sm+1 = max{0, yRsm+1

− tsl−1sl+1
− dsl−1

− yR(rj2 )
sl−1 } m = l + 1 (31)

w
R(rj1 ,rj2 )
si = max{0, yR(rj2 )

si − tsi−1si
− dsi−1

− yR(rj2 )
si−1 }
i = k + 2, . . . , l − 1. (32)

In what concerns the forward time slack variables, several particular cases
must be considered for the node sl−1, which depend on the relative positions
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of the nodes sl and sm:

z
(rj1 ,rj2 )
sl−1 = min{lsl−1

− yR(rj2 )
sl−1 , z

(rj2 )
sl+1 − y

R(rj2 )
sl+1 + yRsl+1

+ w
R(rj1 ,rj2 )
sl+1 }

sl−1 ∈ P,m > l + 1 (33)

z
(rj1 ,rj2 )
sl−1 = min{lsl−1

− yR(rj2 )
sl−1 , z

(rj2 )
sl+1 − y

R(rj2 )
sl+1 + yRsl+1

+ w
R(rj1 ,rj2 )
sl+1 ,

R− yR(rj2 )
sl−1 + yRsl−1−n + dsl−1−n}

sl−1 ∈ D,m > l + 1 (34)

z
(rj1 ,rj2 )
sl−1 = min{lsl−1

− yR(rj2 )
sl−1 , zsm+1 − yRsm+1

+ yrsm+1
+ w

R(rj1 ,rj2 )
sm+1 }

sl−1 ∈ P,m = l + 1 (35)

z
(rj1 ,rj2 )
sl−1 = min{lsl−1

− yR(rj2 )
sl−1 , zsm+1 − yRsm+1

+ yrsm+1
+ w

R(rj1 ,rj2 )
sm+1 ,

R− yR(rj2 )
sl−1 + yRsl−1−n + dsl−1−n}

sl−1 ∈ D,m = l + 1. (36)

The remaining forward time slack variables are defined as follows:

z
(rj1 ,rj2 )
si = min{lsi

− yR(rj2 )
si , z

(rj1 ,rj2 )
si+1 + w

R(rj1 ,rj2 )
si+1 }
si ∈ P, i = k + 1, . . . , l − 2 (37)

z
(rj1 ,rj2 )
si = min{lsi

− yR(rj2 )
si , z

(rj1 ,rj2 )
si+1 + w

R(rj1 ,rj2 )
si+1 ,

R− yR(rj2 )
si + yRsi−n + dsi−n}

si ∈ D, i = k + 1, . . . , l − 2. (38)

For the corresponding beginning of service at nodes, we obtain

y
R(rj1 ,rj2 )
si = y

R(rj2 )
si + min

{
g(rj1 ,rj2 ), z

(rj1 ,rj2 )
si

}
k < i < l, si ∈ P (39)

y
R(rj1 ,rj2 )
si = max{yR(rj2 )

si , y
R(rj1 ,rj2 )
si−1 + dsi−1

+ tsi−1si
}

k < i < l, si ∈ D, (40)

where

g(rj1 ,rj2 ) = tsl−1sl
+ dsl

+ tslsl+1
− tsl−1sl+1

m > l + 1 (41)

g(rj1 ,rj2 ) = tsl−1sl
+ dsl

+ tslsl+2
− tsl−1sl+2

m = l + 1. (42)
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Indeed, if the vehicle skips node n + j2 ∈ D, the beginning of service at
pickup nodes si ∈ P such that k < i < m can be postponed by at most
g(rj2 ). Since the vehicle skips both nodes n+ j1, n+ j2 ∈ D with probability
(1− pj1)(1− pj2), the beginning of service at pickup nodes si ∈ P such that
k < i < l can be further postponed by at most g(rj1 ,rj2 ). This quantity
results from the elimination of node n + j1 from the tour, considering that
node n+ j2 has already been skipped. As before, the beginning of service at
delivery nodes are postponed according to the previous modifications. Also,
the maximal ride time of R for customer request rj is still ensured with
respect to the updated beginning of service yRj at the corresponding pickup
node.

The beginning of service at nodes can be updated similarly when more
than two delivery nodes are skipped by the vehicle. In order to compute
all possible updated beginnings of service at nodes, we use the following
pseudo-codes. We denote by π(k) the index of node k ∈ N in the current
feasible tour. The purpose of Algorithm 1 is to compute all possible up-
dated beginnings of service at nodes. The updated beginning of service at
nodes yRi , i ∈ N are first provided. For each pickup node i ∈ P which is
not immediately before the corresponding delivery node n + i ∈ D in the
Hamiltonian tour, Algorithm 1 also computes the updated beginning of ser-
vice at nodes y

R(ri)
π(l) , π(i) < π(l) < π(n + i), i.e., at the nodes lying between

i and n + i in the Hamiltonian tour. Next, for each pickup node j ∈ P
such that the corresponding delivery node n + j ∈ D (i) lies between i
and n + i and (ii) is not the immediate successor of j in the Hamiltonian
tour, Algorithm 1 selects the maximal index I between π(i) and π(j), and
then calls a function ‘Revision(j, I, yR(ri))’. In this function, whose descrip-
tion is provided in Algorithm 2, the updated beginning of service at nodes

y
R(rj ,ri)

π(l) , I < π(l) < π(n+ j) are computed. Then, as above, for each pickup

node k ∈ P such that n+k ∈ D (i) lies between I and n+j and (ii) is not the
immediate successor of k in the Hamiltonian tour, the maximal index J be-
tween I and π(k) is selected and the recursive function Revision(k, J, yR(rj ,ri))
is called again. The latter will compute the updated beginning of service at

nodes y
R(rk,rj ,ri)

π(l) , J < π(l) < π(n + k), and so on until all possible updated
beginnings of service at nodes are provided.
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Algorithm 1 Computation of all updated beginnings of service at nodes
(represented by a vector y)

1: compute yR

2: for all i ∈ P s.t. π(n+ i) > π(i) + 1 do
3: compute yR(ri) from yR

4: for j ∈ P s.t. π(i) < π(n+ j) < π(n+ i) and π(n+ j) > π(j) + 1 do
5: I ← max{π(i), π(j)}
6: Revision(j, I, yR(ri))

{this function computes the updated beginning}
{of service at nodes of the form yR(rj ,ri), from yR(ri)}

7: end for
8: end for
9: return y

Algorithm 2 Revision (j, I, y)

1: compute yR(rj ,...) from y {for instance, compute yR(rj ,ri) from yR(ri)}
2: for all k ∈ P s.t. I < π(n+ k) < π(n+ j) and π(n+ k) > π(k) + 1 do
3: J ← max{I, π(k)}
4: Revision(k, J, yR(rj ,...))

{this function computes the updated beginning}
{of service at nodes of the form yR(rk,rj ,...), from yR(rj ,...)}

5: end for

13



The delay cost associated with a feasible Hamiltonian tour of the form
(s0, s1, . . . , s2n, s2n+1) can now be defined as follows:

Θ(xr, yr) = EξΘ(xr, yr, ξ)

=
∑
si∈D

bsi−n(1− vsi
) +

2n∑
i=0

2n+1∑
j=i+1

csisj
vsi
vsj

j−1∏
k=i+1

(1− vsk
)−

2n∑
i=0

csisi+1
, (43)

where
∏j−1

k=i+1(1 − vsk
) = 1 for i = j − 1, and vsi

is the probability that the
vehicle actually visits node si ∈ N . This probability is defined as

vsi
=

{
1 if si ∈ P ∪ {0, 2n+ 1}
psi−n if si ∈ D,

(44)

where psi
is the probability that the vehicle picks up the customer at node

si ∈ P . To obtain the latest psi
, we need to aggregate the probabilities that

the vehicle picks up the customer at node si ∈ P , over all possible values
for the beginning of service variable ysi

. Define R(si) as the set of customer
requests rj such that node si appears between the nodes j and n+ j on the
tour, i.e., R(si) = {rj : π(j) < i < π(n + j)}. The set Y (si) of all possible

values for ysi
can be described as Y (si) = {yR(S)

si : S ⊆ R(si)}. We obtain:

psi
=

∑
y

R(S)
si
∈Y (si)

P (ξsi
≤ yR(S)

si
− esi

)P (ysi
= yR(S)

si
) (45)

=
∑

y
R(S)
si
∈Y (si)

psi
|
y

R(S)
si

P (ysi
= yR(S)

si
). (46)

with

P
(
ysi

= yR(S)
si

)
=
∏
rk∈S

(1− pk)
∏

rk∈R(si)\S

pk. (47)

Indeed, the probability that the beginning of service at node si ∈ P equals
y
R(S)
si depends on what happened before this node on the Hamiltonian tour.

More precisely, it depends on the probabilities pk that the vehicle picks up
the customer at node k, where rk ∈ R(si).

Note that, because calculating all possible updated beginnings of service
at nodes of N is computationally expensive, the same is true for the compu-
tation of the exact delay cost Θ(xr, yr) using (43) to (47). This explains why,
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in Step 5 of the integer L-shaped algorithm, a lower bound θ for Θ(xr, yr)
is first computed. In the following section, we provide a valid setting for θ
and focus on the optimality cuts appended to the stochastic model in Steps
5 and 6 of the integer L-shaped algorithm.

3.2. Optimality cuts

Every time a feasible solution (xr, yr, θr) of the stochastic model is found
in Step 5 of the integer L-shaped algorithm, a lower bound θ for Θ(xr, yr)
is computed. Similarly to Hjorring and Holt [13], we define a partial route
as a sequence (s0 = 0, s1, s2, . . . , sp) such that sp ∈ P and xsisi+1

= 1 for
i = 0, . . . , p− 1. The next proposition provides a valid setting for θ.

Proposition 1 Assume that (s0 = 0, s1, s2, . . . , sp) is a partial route, where
sp ∈ P and V ⊆ N is the corresponding node set. Then a lower bound for
the delay cost associated to the partial route can be computed as:

θ =
∑

si∈D∩V

bsi−n(1− v̄si
) +

p−1∑
i=0

p∑
j=i+1

csisj
vsi
vsj

j−1∏
k=i+1

(1− v̄sk
)−

p−1∑
i=0

csisi+1

(48)

where
∏l

k=i+1(1− v̄sk
) = 1 for i = l, while vsi

and v̄si
(si ∈ V ) are computed

as follows:

vsi
= v̄si

= 1 si ∈ P (49)

vsi
= p

si−n
= P (ξsi−n ≤ y

si−n
− esi−n) si ∈ D (50)

v̄si
= p̄si−n = P (ξsi−n ≤ ȳsi−n − esi−n) si ∈ D, (51)

with

y
s0

= e0 (52)

y
si

= max{esi
, ysi−1

+ dsi−1
+ tsi−1si

} 1 ≤ i ≤ p (53)

ȳsp = min
{
lsp , ln+sp − tsp,n+sp − dsp , min

i∈P\V
{lsi
− tsp,si

− dsp}
}

(54)

ȳsi
= min

{
lsi
, ln+si

− tsi,n+si
− dsi

, ȳsk
− tsi,sk

− dsi

}
si ∈ P (55)

ȳsi
= min

{
lsi
, ȳsk
− tsi,sk

− dsi

}
si ∈ D, (56)

where sk is the next pickup node appearing after si in the partial route. Fur-
ther, for any pickup node si such that the corresponding delivery node n+ si
appears before sk in the partial route, we can replace ln+si

by ȳn+si
in (55).
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Proof The lower bound θ can be decomposed into several parts: a re-
duction in the tour cost according to the sequence of nodes that are actually
visited by the vehicle, and an additional taxi cost for customer requests whose
corresponding delivery node belongs to the partial route.

Since s1 and sp are pickup nodes, these are actually visited by the vehicle.
Hence the reduction in the tour cost for the partial route is equal to the total
cost of the successive arcs that are actually traversed by the vehicle, minus
the cost of all arcs belonging to the sequence.

The probability psi
that the vehicle picks up the customer at node si ∈ P

is psi
= P (ξsi

≤ ysi
− esi

), where ysi
is the beginning of service at node

si. By constraints (6) and (12), the lower bounds (52) and (53) can eas-
ily be deduced. Next, the beginning of service at node si can be post-
poned depending on the delivery nodes that the vehicle will skip on its tour.
One can easily check that it cannot be scheduled after ȳsi

, and we obtain
1− psi

= P (ξsi
> ysi

− esi
) ≥ P (ξsi

> ȳsi
− esi

). The result follows. �

Now let S ⊆ A be the arc set corresponding to a partial route. As in
Hjorring and Holt [13], a general optimality cut for this partial route is:

θ ≥ θ

 ∑
(i,j)∈S

xij − |S|+ 1

 , (57)

where θ is a lower bound on the delay cost associated to the partial route. The
number of general optimality cuts associated with any feasible Hamiltonian
tour xr is in O(n). In order to avoid appending all these to the stochastic
model in Step 5, this step is executed as follows:

Step 5.1 (Initialization) Let (s0 = 0, s1, . . . , s2n, s2n+1 = 2n + 1) rep-
resent the feasible Hamiltonian tour xr. Set a boolean b = 0, an arc
counter k = 1, S = {(s0, s1)} and θ = 0.
Step 5.2 (Partial route construction) While sk+1 ∈ D, set S =
S ∪ {(sk, sk+1)} and k = k + 1. If sk+1 = 2n + 1: stop (go to Step 6 of
the algorithm).
Step 5.3 (Delay cost lower bounding) Set S = S ∪ {(sk, sk+1)},
k = k + 1 and update θ. If b = 0 and θ ≥ λθr (λ ∈ R+

0 ), append the
corresponding optimality cut to the model and set b = 1.
Step 5.4 (Optimality cut test) If cTxr + θ ≥ z∗, append the corre-
sponding optimality cut to the stochastic model and stop (go to Step 2
of the algorithm). Otherwise go to Step 5.2.
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With the above decomposition of Step 5, at most two general optimality
cuts are appended to the stochastic model from a given feasible solution
(xr, yr, θr). Next, if we obtain sk+1 = 2n+ 1 in Step 5.2, this means that the
partial route corresponds to the feasible Hamiltonian tour xr. In this case,
the exact delay cost Θ(xr, yr) is computed in Step 6 and compared to the
current value θr. If Θ(xr, yr) > θr, then the specific optimality cut

θ ≥ Θ(xr, yr)

 ∑
(i,j)∈A:xr

ij=1

xij − 2n

 (58)

is included in the stochastic model. However, we should note that this cut is
only active when x = xr, which means that numerous optimality cuts could
be required during the algorithm.

4. Computational results

The integer L-shaped algorithm for the single-vehicle S-DARP was incor-
porated within the branch-and-cut algorithm of Cordeau [7] and tested on
several instances. The algorithm was programmed in C++ and implemented
with ILOG CPLEX 10.1 and the Concert Library. All tests were run on an
AMD Opteron 285 computer (2.6 GHz) running Linux.

The algorithm was applied to four sets of randomly generated instances
involving from 12 to 26 customer requests. As in Cordeau [5], the node
positions are randomly chosen in a square [−10, 10]2 according to a con-
tinuous uniform distribution, and the depot is located at the center of the
square. Routing costs and travel times are both equal to the Euclidean dis-
tance between the nodes. All instances include half inbound requests and
half outbound requests. For an inbound request, an earliest time ei at the
pickup node is randomly generated in [0, T − 60], where T is the maximal
tour duration. For an outbound request, a deadline ln+i at the delivery node
is randomly generated in [60, T ]. The corresponding deadline li at the pickup
node and earliest time en+i at the delivery node are then set according to
a prespecified time window width. The latter is equal to 15 for half of the
inbound and outbound requests; the time window width for the other half of
the requests is equal to 30 in instances C1 and CL1, and to 60 in instances
D1 and DL1. Furthermore, instances C1 and D1 are generated with R = 30,
Q = 3, qi = 1 and di = 3. Instances CL1 and DL1 are generated with
R = 45, Q = 6 and di = qi, where qi is randomly chosen according to a
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uniform distribution on {1, . . . , Q}. Finally, the maximum tour duration is
set to T = 720 for instances with up to 18 customer requests, and to T = 840
otherwise.

In what concerns the taxi costs, we consider that the cost of a taxi from
node i to node n + i is equal to twice the Euclidean distance between these
nodes plus a fixed cost of 25, i.e., bi = 2di,n+i + 25. The fixed cost can be
interpreted as an administrative cost related to calling a taxi and updating
data in the computer system. Furthermore, we assume that each stochastic
delay variable ξi (i ∈ P ) follows a semi-triangular distribution on the interval
[0, li − ei], whose density function f(x) is given by

f(x) =
−2x

(li − ei)2
+

2

li − ei
x ∈ [0, li − ei]. (59)

It follows that

P (ξi ≤ x) =

∫ x

0

−2t

(li − ei)2
+

2

li − ei
dt =

−x2

(li − ei)2
+

2x

li − ei
. (60)

In Tables 1 to 4, we compare several possible choices in terms of optimality
cuts for instances C1, D1 and CL1, DL1, respectively. The columns ‘CPU’
and ‘Cuts’ provide the CPU times (in seconds) and the number of optimality
cuts appended to model S-DARP. The first six columns provide the results
obtained when adding general optimality cuts during the algorithm. The
notation ‘O1’ means that a cut is appended to the model when the current
feasible solution is such that cTxr+θ ≥ z∗, i.e., a lower bound on the current
objective function value is larger that the best current objective function
value. The notation ‘O2 (1.1)’ (resp. ‘O2 (2.5)’) means that a cut is appended
to the model when θ ≥ λθr with λ = 1.1 (resp. λ = 2.5), i.e., a lower bound
on the current delay cost exceeds the current θr value by 10% (resp. 150%).
The last two columns provide the results obtained when appending only
specific cuts during the algorithm. We have also imposed a time limit of two
hours on the solution of any instance, after which the solution process was
aborted.

From Tables 1 to 4, we observe that appending general optimality cuts
to S-DARP allows us to solve more instances than with specific optimality
cuts. Also, appending general cuts yields smaller CPU times and fewer cuts
than with specific cuts. However, the differences are not always important.
The largest instances solved to optimality within two hours involve 20 cus-
tomer requests for instances C1, 14 customer requests for instances D1, 26
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General cuts Specific cuts
O1 + O2 (1.1) O1 + O2 (2.5) O1

Inst. Cuts CPU Cuts CPU Cuts CPU Cuts CPU

C1-12 161 6 161 6 160 6 166 6
101 3 101 3 101 3 100 3
26 3 26 3 34 2 47 3

C1-14 4154 328 4146 328 3958 350 6395 560
66 4 66 4 66 4 73 4

1260 82 1296 80 1250 85 1833 122
C1-16 10054 3466 10052 3795 10135 4154 10368 3900

3370 260 3366 272 3669 396 11574 2240
21977 7200 21834 7200 20945 7200 22045 7200

C1-18 754 65 754 65 751 65 759 64
15549 7200 15209 7200 15175 7200 15310 7200
18050 7200 18241 7200 17985 7200 19751 7200

C1-20 16810 7200 17476 7200 16076 7200 17861 7200
5659 1327 5505 1365 5252 1415 5387 1615

18859 7200 18043 7200 16338 7200 15824 7200

Table 1: Appending general or specific optimality cuts to (S-DARP) for instances C1

General cuts Specific cuts
C1 + C2 (1.1) C1 + C2 (2.5) C1

Inst. Cuts CPU Cuts CPU Cuts CPU Cuts CPU

D1-12 310 20 310 21 310 21 350 23
232 14 232 14 284 19 363 21

14744 7200 14513 4002 13478 7091 17247 7200
D1-14 13995 7200 12883 7200 13508 7200 16052 7200

5499 608 5499 609 5499 601 5495 546
780 43 780 44 780 44 780 42

Table 2: Appending general or specific optimality cuts to (S-DARP) for instances D1

customer requests for instances CL1, and 22 customer requests for instances
DL1. For most instances, the best strategy in terms of optimality cuts con-
sists in appending both types (‘O1’ and ‘O2’) of general cuts. Furthermore,
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General cuts Specific cuts
C1 + C2 (1.1) C1 + C2 (2.5) C1

Inst. Cuts CPU Cuts CPU Cuts CPU Cuts CPU

CL1-12 190 5 189 5 186 6 186 5
591 23 591 25 591 23 622 24
33 1 33 1 33 1 33 1

CL1-14 42 2 42 2 40 3 114 8
21530 7200 20350 7200 21932 7200 23400 7200

932 52 928 49 944 50 1306 63
CL1-16 69 3 68 3 66 4 66 4

21374 7200 18652 7200 19187 7200 19840 7200
1533 115 1533 104 1532 102 1841 120

CL1-18 116 7 114 7 115 7 148 8
2273 202 2273 200 2130 205 2402 222

14011 7200 14206 7200 14167 7200 16217 7200
CL1-20 4987 677 4987 641 4983 650 4983 627

18197 7200 19152 7200 17818 7200 18866 7200
137 14 137 14 137 14 137 14

CL1-22 10581 2215 10567 2174 10564 2300 10564 2112
17122 7200 17292 7200 16287 7200 17492 7200
14555 7200 14916 7200 14859 7200 15919 7200

CL1-24 17879 7200 19278 7200 17799 7200 19488 7200
11911 7200 12075 7200 9311 7200 10045 7200
5041 1215 4825 1129 4709 1164 4709 1083

CL1-26 2541 572 2290 572 2107 559 2138 547
5731 7200 6273 7200 4837 7200 5212 7200

14982 7200 15430 7200 15213 6913 18309 7200

Table 3: Appending general or specific optimality cuts to (S-DARP) for instances CL1

the second type ‘O2’ of general cuts should not be used too often, and the
parameter λ = 2.5 is preferred to λ = 1.1. However, note that appending
only the first type ‘O1’ of general cuts provides better CPU times for several
large instances.

In Tables 5 to 8, we compare the results obtained by solving the S-DARP
with the integer L-shaped algorithm to the results obtained by first solving
the corresponding deterministic model, and then computing the expected
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General cuts Specific cuts
C1 + C2 (1.1) C1 + C2 (2.5) C1

Inst. Cuts CPU Cuts CPU Cuts CPU Cuts CPU

DL1-12 306 8 303 8 316 9 364 10
2549 182 2549 182 2525 157 4236 292
286 31 286 31 286 31 287 30

DL1-14 103 3 98 3 94 3 97 3
1523 128 1522 130 1516 130 1607 132
147 8 147 8 147 8 147 7

DL1-16 367 34 363 34 351 35 418 35
7431 1486 7845 1698 6950 1294 10533 2327

16913 7200 16639 7200 11763 7200 14429 7200
DL1-18 882 64 882 64 882 64 882 61

21976 7200 21722 7200 20688 7200 22396 7200
750 148 741 150 607 153 1418 221

DL1-20 15253 7200 15280 7200 15089 7200 16604 7200
12973 7200 13059 7200 13166 7200 14050 7200

366 27 364 27 291 26 295 26
DL1-22 2774 359 2774 356 2774 358 2773 344

13080 7200 12945 7200 13235 7200 14311 7200
14589 7200 12636 7200 13342 7200 14539 7200

Table 4: Appending general or specific optimality cuts to (S-DARP) for instances DL1

delay cost associated with the optimal solution. Both types of general op-
timality cuts (with parameter λ = 2.5) are appended during the algorithm,
i.e., cuts are added whenever cTxr + θ ≥ z∗ or θ ≥ 2.5θr. To compare the
stochastic and deterministic models in terms of optimal solution values, we
have also computed the delay cost associated to the deterministic optimal
solution. Columns ‘F.Cost’ and ‘D.Cost’ denote the fixed and delay costs
associated with the optimal tour. For the stochastic model, column ‘IGap’
provides the percent gap between the first integer feasible solution and the
optimal solution. For the deterministic model, column ‘Gap’ provides the
percent gap between the optimal solutions of the linear relaxation and of
the integer problem, respectively. Columns ‘CPU’ and ‘Nodes’ provide the
CPU times (in seconds) and the number of nodes in the branch-and-cut tree.
As above, a time limit of two hours was imposed, after which the solution
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process was aborted. In this case, the reported results are those correspond-
ing to the best integer feasible solution found by the algorithm. Finally, the
column ‘% Red’ provides the percent cost reduction achieved by solving the
stochastic model optimally, compared with solving a deterministic model and
then computing the associated delay cost.

Stochastic Deterministic
Inst. F.Cost D.Cost IGap CPU Nodes F.Cost D.Cost Gap CPU % Red

C1-12 142.84 3.24 22.42 6 428 125.86 63.30 0.00 <1 22.76
142.54 5.41 31.91 3 209 139.84 11.18 0.00 <1 2.02
133.74 0.34 34.63 3 184 121.84 58.67 0.00 <1 25.71

C1-14 153.54 12.05 30.85 328 14233 150.14 54.41 7.35 3 19.04
146.00 5.10 9.39 4 212 142.12 23.17 0.00 <1 8.57
135.87 6.24 36.36 80 4283 123.93 61.50 0.00 <1 23.35

C1-16 159.70 44.96 11.84 3795 34475 141.12 90.13 8.69 7 11.49
173.40 21.06 23.07 272 9488 157.84 80.80 0.00 <1 18.5
161.39 32.94 15.05 7200 75737 146.07 89.84 3.55 3 17.62

C1-18 208.93 26.57 19.15 65 2056 204.26 40.66 2.31 3 3.84
191.45 27.66 28.58 7200 48320 176.38 107.33 5.91 4 22.76
185.34 18.99 49.72 7200 70061 171.61 72.70 0.00 1 16.35

C1-20 195.27 26.02 19.60 7200 45831 181.90 125.56 1.64 4 28.02
194.36 54.00 24.43 1365 17174 188.99 120.06 3.73 5 19.63
182.49 42.69 18.12 7200 61950 164.97 101.02 16.55 433 15.33

Table 5: Comparison of stochastic and deterministic optimal solutions for instances C1

Comparing Tables 5, 6, 7 and 8, we conclude that the wider time windows
of instances D1 and DL1 make the problem more difficult to solve. Indeed, we
observe larger CPU times for these instances, both for the stochastic and for
the deterministic models. These tables also show that instances C1 and D1
are more difficult to solve than instances CL1 and DL1. Hence the S-DARP
is easier to solve for larger vehicles.

As expected, the CPU times are larger for the S-DARP than for the
corresponding deterministic model. For the former problem, we also observe
very large gaps between the first integer feasible solutions and the optimal
solutions, as well as a large number of nodes in the branch-and-cut tree.
This can be explained by the fact that the integer L-shaped algorithm starts
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Stochastic Deterministic
Inst. F.Cost D.Cost IGap CPU Nodes F.Cost D.Cost Gap CPU % Red

D1-12 117.35 0.96 35.93 21 1564 109.80 36.84 5.53 1 19.31
150.64 8.67 44.62 14 1158 142.38 82.68 0.00 <1 29.20
115.32 23.16 29.64 4002 85047 84.86 94.67 0.00 <1 22.86

D1-14 135.20 5.77 31.85 7200 130725 119.58 68.53 10.09 62 25.05
141.64 13.95 5.32 609 19044 140.24 20.80 5.12 2 3.37
129.12 16.77 20.42 44 2602 128.86 17.17 0.00 <1 0.09

Table 6: Comparison of stochastic and deterministic optimal solutions for instances D1

without any information on the delay cost. Yet, we can solve several small
to medium size instances. Furthermore, from the last columns ‘% Red’ of
Tables 5 to 8, we conclude that using a stochastic model yields a significant
reduction of the optimal solution values (i.e., fixed costs plus delay costs).

Since solving the deterministic model does not encourage Hamiltonian
tours with late beginnings of service at the nodes, we questioned the fairness
of the above comparison. In order to better assess the value of a stochastic
model, we have compared the corresponding optimal solution values with
those of restricted or penalized deterministic models, both constructed to
encourage Hamiltonian tours with late beginnings of service at the nodes. In
the restricted deterministic model, the earliest times ei of inbound requests
(i.e., those for which a desired departure time is specified by the customer)
were increased by E(ξi) = (li − ei)/3. In the penalized deterministic model,
the term

∑
i∈P (li− yi)/(li− ei) was appended to the objective function. We

then compared the corresponding optimal solution values with those of the
stochastic and deterministic models presented earlier. We first observed that
several instances became infeasible when reducing the time window width
of inbound requests. In addition, we observed that the modified models
do not necessarily decrease the gap with respect to the optimal solution
values of the stochastic model. Indeed, modifying the deterministic model
implies changes in the optimal tour, which could force the vehicle to serve
some customers earlier than what is desirable. Instead, the stochastic model
allows the identification of good tradeoffs, i.e., it encourages the vehicle to
serve some customers early and thus to follow a tour in which several other
customers are served sufficiently late.

23



Stochastic Deterministic
Inst. F.Cost D.Cost IGap CPU Nodes F.Cost D.Cost Gap CPU % Red

CL1-12 123.12 13.44 18.43 5 385 112.00 49.73 0.00 <1 15.55
111.31 6.66 13.66 25 1914 103.02 31.07 0.00 <1 12.01
128.39 5.58 0.31 1 84 125.46 8.92 0.00 <1 0.30

CL1-14 156.53 3.36 13.94 2 111 147.10 35.09 0.00 <1 12.23
130.47 8.62 21.30 7200 68370 119.36 59.26 3.15 1 22.12
131.01 15.01 1.25 49 2911 122.32 25.53 0.00 <1 1.23

CL1-16 184.23 26.81 27.40 3 133 174.66 80.72 0.00 <1 17.35
153.61 18.60 14.24 7200 59626 146.94 69.20 8.17 10 20.31
154.02 33.39 28.47 104 4464 148.40 82.07 0.00 <1 18.67

CL1-18 183.10 35.24 17.95 7 238 182.17 75.35 0.00 <1 15.20
177.36 18.84 33.55 200 6817 177.34 32.37 0.00 <1 6.43
170.17 42.06 26.07 7200 69633 156.06 100.29 0.83 1 17.20

CL1-20 206.04 9.23 16.89 641 13203 195.16 45.75 0.00 <1 10.63
191.27 0.00 60.83 7200 46160 155.62 62.04 5.09 6 12.11
210.37 20.39 0.48 14 450 205.01 26.85 0.00 <1 0.46

CL1-22 233.57 31.55 26.07 2174 22132 225.59 80.74 6.87 7 13.44
212.21 8.07 17.23 7200 46421 175.00 81.38 0.23 1 14.07
203.82 12.12 26.25 7200 57918 193.74 57.27 2.40 2 13.96

CL1-24 217.06 46.76 1.30 7200 48587 209.80 89.24 0.00 1 11.77
212.71 57.06 20.11 7200 36330 185.44 132.03 3.94 10 15.02
256.60 75.21 30.54 1129 13192 247.77 125.20 3.58 9 11.03

CL1-26 214.75 70.89 10.36 572 7453 206.37 108.88 6.25 20 9.38
251.20 47.90 30.61 7200 56776 238.39 154.94 9.42 340 23.95
276.76 35.19 26.51 7200 45867 260.37 176.48 3.11 10 28.58

Table 7: Comparison of stochastic and deterministic optimal solutions for instances CL1

5. Conclusion

This paper was concerned with a single-vehicle Dial-a-Ride Problem with
stochastic customer delays, a problem often arising when customers need to
be picked up after a medical appointment. The aim is then to determine an
a priori Hamiltonian tour minimizing the expected cost of the tour followed
by the vehicle. Since customer delays can yield important modifications of
the objective function, we have decomposed the actual cost of a tour into
two parts. The first one corresponds to the deterministic tour cost, whereas
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Stochastic Deterministic
Inst. F.Cost D.Cost IGap CPU Nodes F.Cost D.Cost Gap CPU % Red

DL1-12 116.31 9.49 19.48 8 640 105.45 52.41 0.00 <1 20.30
101.54 3.30 34.55 182 11058 93.14 47.92 0.00 <1 25.67
113.01 12.67 45.91 31 2561 106.78 31.03 2.62 2 8.79

DL1-14 152.58 16.79 12.75 3 176 145.84 39.35 0.00 <1 8.53
161.06 6.42 26.90 130 7364 159.68 9.75 3.61 1 1.14
140.98 9.60 51.04 8 418 136.15 87.61 0.00 <1 32.69

DL1-16 163.94 17.68 36.22 34 1473 154.37 53.43 5.66 2 12.59
141.31 0.00 52.98 1698 35343 125.75 82.58 0.00 <1 32.16
148.56 7.77 16.32 7200 55011 137.09 44.75 5.46 7 14.02

DL1-18 177.15 7.21 17.18 64 2122 168.13 42.06 0.00 <1 12.28
180.41 17.97 36.96 7200 42428 166.74 78.30 2.94 1 19.03
168.97 22.56 1.59 150 5047 167.93 26.64 4.28 3 1.55

DL1-20 200.05 5.36 14.47 7200 76469 196.04 27.72 3.74 2 8.19
172.31 30.44 12.97 7200 40324 168.36 69.77 8.35 12 14.85
200.34 14.84 14.08 27 850 185.55 59.93 0.00 <1 12.33

DL1-22 219.97 18.2 13.43 356 7512 209.11 61.05 0.18 1 11.83
215.67 43.04 14.50 7200 55415 187.19 160.39 4.05 13 25.56
207.67 32.46 4.96 7200 45647 206.29 38.16 6.58 19 1.76

Table 8: Comparison of stochastic and deterministic optimal solutions for instances DL1

the second one is a cost associated with stochastic customer delays. We have
described an integer L-shaped algorithm for the problem. Computational
results have shown that this algorithm provides optimal solutions for small
to medium size instances within reasonable computing times. We have also
observed that solving the problem as a stochastic program instead of a deter-
ministic program can yield reductions of up to 33% in the expected solution
cost.

Acknowledgments

This work was partly funded by the Canadian Natural Sciences and Engi-
neering Research Council under grants 227837-09 and 39682-10. This support
is gratefully acknowledged.

25



References

[1] E. Bartolini. Algorithms for network design and routing problems.
PhD thesis, Università di Bologna, 2009.
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